JP6832073B2 - Manufacturing method of positive electrode active material for all-solid-state batteries - Google Patents

Manufacturing method of positive electrode active material for all-solid-state batteries Download PDF

Info

Publication number
JP6832073B2
JP6832073B2 JP2016064930A JP2016064930A JP6832073B2 JP 6832073 B2 JP6832073 B2 JP 6832073B2 JP 2016064930 A JP2016064930 A JP 2016064930A JP 2016064930 A JP2016064930 A JP 2016064930A JP 6832073 B2 JP6832073 B2 JP 6832073B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
solid
state battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016064930A
Other languages
Japanese (ja)
Other versions
JP2017182949A (en
Inventor
羊一郎 河野
羊一郎 河野
藤井 信三
信三 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2016064930A priority Critical patent/JP6832073B2/en
Publication of JP2017182949A publication Critical patent/JP2017182949A/en
Application granted granted Critical
Publication of JP6832073B2 publication Critical patent/JP6832073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は全固体電池に用いられる正極活物質材料の製造方法およびその製造方法で製造された正極活物質材料に関する。 The present invention relates to a method for producing a positive electrode active material used in an all-solid-state battery and a positive electrode active material material produced by the method.

電気自動車、携帯情報端末、定置型蓄電設備などでは、高容量の二次電池が利用され、現在の二次電池の主流はリチウム二次電池である。リチウム二次電池用の正極活物質としては、LiCoO、LiMnなどが知られているが、これらの正極活物質は一つの遷移金属に対して一つのLiしか関与しないため、より高容量のリチウム二次電池を達成するためには、一つの遷移金属に対して複数のLiが関与する、所謂「多電子反応」を示す正極活物質を含む正極層材料を開発することが必要となる。そして多電子反応を示す正極活物質では、複数のLiがレドックス反応に寄与することから、より高電位で動作し、高容量とともに高いエネルギー密度も得られる。ところが一般に普及しているリチウム二次電池は、電解質に可燃性の有機電解液を用いているため、液漏れ、短絡、過充電などに対する安全対策が他の電池よりも厳しく求められている。そして多電子反応を示す正極活物質は、高電位で動作することから有機電解液を用いた従来のリチウム二次電池に用いることが難しい。 High-capacity secondary batteries are used in electric vehicles, personal digital assistants, stationary power storage facilities, etc., and the current mainstream of secondary batteries is lithium secondary batteries. LiCoO 2 , LiMn 2 O 4, and the like are known as positive electrode active materials for lithium secondary batteries, but these positive electrode active materials are higher because only one Li is involved in one transition metal. In order to achieve a capacity lithium secondary battery, it is necessary to develop a positive electrode layer material containing a positive electrode active material exhibiting a so-called "multi-electron reaction" in which a plurality of Lis are involved in one transition metal. Become. In a positive electrode active material that exhibits a multi-electron reaction, since a plurality of Lis contribute to the redox reaction, it operates at a higher potential, and a high capacity and a high energy density can be obtained. However, since lithium secondary batteries, which are widely used, use a flammable organic electrolyte as an electrolyte, safety measures against liquid leakage, short circuit, overcharge, etc. are required more strictly than other batteries. Since the positive electrode active material exhibiting a multi-electron reaction operates at a high potential, it is difficult to use it in a conventional lithium secondary battery using an organic electrolytic solution.

そこで近年、電解質に酸化物系や硫化物系の固体電解質を用いた全固体電池に関する研究開発が盛んに行われている。固体電解質は、固体中でイオン伝導が可能なイオン伝導体を主体として構成される材料であり、従来のリチウム二次電池のように可燃性の有機電解液に起因する各種問題が原理的に発生しない。そして全固体電池は層状の正極(正極層)と層状の負極(負極層)との間に層状の固体電解質(電解質層)が狭持されてなる一体的な焼結体(以下、積層電極体とも言う)に集電体を形成した構造を有している。 Therefore, in recent years, research and development on an all-solid-state battery using an oxide-based or sulfide-based solid electrolyte as an electrolyte has been actively carried out. The solid electrolyte is a material composed mainly of an ionic conductor capable of ionic conduction in a solid, and in principle, various problems caused by a flammable organic electrolytic solution like a conventional lithium secondary battery occur. do not do. An all-solid-state battery is an integral sintered body (hereinafter referred to as a laminated electrode body) in which a layered solid electrolyte (electrolyte layer) is sandwiched between a layered positive electrode (positive electrode layer) and a layered negative electrode (negative electrode layer). It also has a structure in which a current collector is formed.

上述した「多電子反応」が期待できる全固体電池用の正極活物質としては、例えば、LiMPの化学式(Mは遷移金属)で表される化合物があり、以下の非特許文献1や2にはMをFeとしたLiFeP(ピロリン酸鉄リチウム)の特性などについて記載されている。また上記LiMPにおいて、遷移金属MとしてCoとNiの一方あるいは双方を含む化合物は、化学式の上では一つのMに対して2個のLiがレドックス反応に寄与することが可能であり、極めて高い容量とエネルギー密度を有した正極活物質として期待されている。 Examples of the positive electrode active material for an all-solid-state battery in which the above-mentioned "multi-electron reaction" can be expected include a compound represented by the chemical formula of Li 2 MP 2 O 7 (M is a transition metal), and the following non-patent documents In 1 and 2, the characteristics of Li 2 FeP 2 O 7 (lithium iron pyrophosphate) in which M is Fe are described. Further, in the above Li 2 MP 2 O 7 , in the compound containing one or both of Co and Ni as the transition metal M, two Lis can contribute to the redox reaction for one M in the chemical formula. It is expected as a positive electrode active material with extremely high capacity and energy density.

なお全固体電池の本体となる上記積層電極体の製造方法としては、周知のグリーンシートを用いた方法がある。概略的には、正極活物質と固体電解質を含むスラリー状の正極層材料、負極活物質と固体電解質を含むスラリー状の負極層材料、および固体電解質を含むスラリー状の固体電解質層材料をそれぞれシート状(グリーンシート)に成形するとともに、固体電解質層材料のグリーンシートを正極層材料と負極層材料のグリーンシートで挟持した積層体を焼成して焼結体にすることで作製される。なお各層のグリーンシートを作製する方法としては、周知のドクターブレード法がある。ドクターブレード法では、無機酸化物などのセラミックス粉体にバインダ(ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリフッ化ビニリレン(PVDF)、アクリル、エチルメチルセルロースなど)および溶剤(無水アルコールなど)を混合して得たスラリーを塗布工程あるいは印刷工程により薄板状に成形してグリーンシートを作製する。そしてスラリーに含ませるセラミック粉体として正極活物質、固体電解質、および負極活物質のそれぞれの粉体を用いる。 As a method for manufacturing the laminated electrode body which is the main body of the all-solid-state battery, there is a method using a well-known green sheet. Roughly speaking, a slurry positive electrode layer material containing a positive electrode active material and a solid electrolyte, a slurry negative electrode layer material containing a negative electrode active material and a solid electrolyte, and a slurry solid electrolyte layer material containing a solid electrolyte are each sheeted. It is produced by molding into a shape (green sheet) and firing a laminate in which a green sheet of a solid electrolyte layer material is sandwiched between a green sheet of a positive electrode layer material and a green sheet of a negative electrode layer material to form a sintered body. As a method for producing a green sheet for each layer, there is a well-known doctor blade method. In the doctor blade method, a binder (polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinylylene polyfluoride (PVDF), acrylic, ethyl methyl cellulose, etc.) and a solvent (anhydrous alcohol, etc.) are mixed with ceramic powder such as inorganic oxide. The slurry thus obtained is formed into a thin plate by a coating step or a printing step to prepare a green sheet. Then, as the ceramic powder to be contained in the slurry, each powder of the positive electrode active material, the solid electrolyte, and the negative electrode active material is used.

Shin-ichi Nishimura,Megumi Nakamura,Ryuichi Natsui,and AtsuoYamada、「New Lithium Iron Pyrophosphate as 3.5V Class Cathode Material for Lithium Ion Battery」、J.Am.Chem.Soc.、2010,132(39),pp13596-13597Shin-ichi Nishimura, Megumi Nakamura, Ryuichi Natsui, and Atsuo Yamada, "New Lithium Iron Pyrophosphate as 3.5V Class Cathode Material for Lithium Ion Battery", J.Am.Chem.Soc., 2010,132 (39), pp13596-13597 Hui Zhou,Shailesh Upreti,Natasha A.Chernova,Geoffroy Hautier,Gerbrand Ceder,and M. Stanley Whittingham、「Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries」、Chem. Mater.、2011,23(2),pp293-300Hui Zhou, Shailesh Upreti, Natasha A. Chernova, Geoffroy Hautier, Gerbrand Ceder, and M. Stanley Whittingham, "Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries", Chem. Mater., 2011, 23 (2), pp293 -300

上述したように全固体電池の製造方法の主体は、グリーシートからなる積層体を焼結させて積層電極体を作製することにあるが、上記化学式LiMPで表され、遷移金属MとしてCoとNiの一方あるいは双方を含む化合物は、理論上では高容量、高エネルギー密度が得られる正極活物質として有望であるものの、現状では、その化合物をグリーンシート法によって製造される全固体電池の正極活物質として実際に使用するための検討がほとんどなされていない。すなわちグリーンシート法によって全固体電池を製造する過程で、正極活物質からなる焼結体を粉砕してセラミック粉体の状態にするための検討や、そのセラミック粉体からなる正極活物質(以下、正極活物質材料とも言う)と粉体状の固体電解質とを含んだグリーンを焼成によって積層電極体における正極層として確実に焼結させるための検討などがなされていない。 As described above, the main body of the method for manufacturing an all-solid-state battery is to produce a laminated electrode body by sintering a laminated body made of a green sheet, which is represented by the above chemical formula Li 2 MP 2 O 7 and is a transition metal. A compound containing one or both of Co and Ni as M is theoretically promising as a positive electrode active material capable of obtaining a high capacity and a high energy density, but at present, the compound is an all-solid state produced by the green sheet method. Little studies have been made on its actual use as a positive electrode active material for batteries. That is, in the process of manufacturing an all-solid-state battery by the green sheet method, a study for crushing a sintered body made of a positive electrode active material into a ceramic powder state, and a positive electrode active material made of the ceramic powder (hereinafter, No studies have been made to ensure that the green containing the positive electrode active material (also referred to as the positive electrode active material) and the powdery solid electrolyte are sintered as the positive electrode layer in the laminated electrode body by firing.

そこで本発明は、遷移金属MとしてCoとNiの一方あるいは双方を含む含んだLiMPで表される化合物をグリーンシート法によって製造される全固体電池の正極活物質として実際に使用できるようにするための全固体電池用正極活物質材料の製造方法を提供することを目的としている。またその製造方法によって作製された正極活物質材料を提供することも目的としている。 Therefore, the present invention actually uses a compound represented by Li 2 MP 2 O 7, which contains one or both of Co and Ni as the transition metal M, as a positive electrode active material of an all-solid-state battery manufactured by the green sheet method. It is an object of the present invention to provide a method for producing a positive electrode active material for an all-solid-state battery. Another object of the present invention is to provide a positive electrode active material material produced by the production method.

上記目的を達成するための本発明は、全固体電池用の正極活物質材料の製造方法であって、
化学式LiMPで表されるとともに、当該化学式中のMがCoとNiの一方あるいは双方を含む化合物からなる正極活物質の原材料を秤量して混合する混合ステップと、
前記混合ステップにより得た混合物を大気雰囲気中で仮焼成する一次焼成ステップと、
当該一次焼成ステップ後の前記混合物の粉体を当該一次焼成ステップよりも高い温度で大気雰囲気中で焼結させる二次焼成ステップと、
前記二次焼成ステップにより得た焼結体を粉砕する粉砕ステップと、
を含み、
前記二次焼成ステップでは、650℃以上680℃以下の温度で20時間以上30時間以下の時間で焼成すること、
を特徴とする全固体電池用正極活物質材料の製造方法としている。
The present invention for achieving the above object is a method for producing a positive electrode active material for an all-solid-state battery.
A mixing step of weighing and mixing the raw materials of the positive electrode active material, which is represented by the chemical formula Li 2 MP 2 O 7 and is composed of a compound in which M in the chemical formula contains one or both of Co and Ni,
A primary firing step in which the mixture obtained by the mixing step is provisionally fired in an air atmosphere, and a primary firing step.
A secondary firing step in which the powder of the mixture after the primary firing step is sintered in an atmospheric atmosphere at a temperature higher than that of the primary firing step, and
A crushing step of crushing the sintered body obtained by the secondary firing step, and a crushing step.
Including
In the secondary firing step, firing is performed at a temperature of 650 ° C. or higher and 680 ° C. or lower for 20 hours or longer and 30 hours or shorter.
It is a method for producing a positive electrode active material for an all-solid-state battery.

また前記粉砕ステップ、あるいは当該粉砕ステップによって得た粉砕物を解砕するステップを実行することで、1μm以上7μm以下の平均粒子径を有する正極活物質材料を得ることを特徴とする全固体電池用正極活物質材料の製造方法とすれば好ましい。 Further, for an all-solid-state battery, a positive electrode active material having an average particle size of 1 μm or more and 7 μm or less can be obtained by executing the pulverization step or the step of crushing the pulverized product obtained by the pulverization step. arbitrary preferred if the production method of the positive electrode active material.

本発明の全固体電池用正極活物質の製造方法によれば、LiMPで表される化合物(MはCoとNiの一方あるいは双方を含む遷移金属)を全固体電池の正極活物質として実用化させることができる。そして当該製造方法によって製造される正極活物質材料は、多電子反応を示す正極活物質を含んだセラミック粉体であり、正極活物質材料を含む正極層を備えた全固体電池をグリーンシート法によって作製することができる。そのため大容量でエネルギー密度が高い全固体電池を安価に提供することができる。 According to the method for producing a positive electrode active material for an all-solid-state battery of the present invention, a compound represented by Li 2 MP 2 O 7 (M is a transition metal containing one or both of Co and Ni) is used as the positive electrode activity of the all-solid-state battery. It can be put into practical use as a substance. The positive electrode active material produced by the production method is a ceramic powder containing a positive electrode active material exhibiting a multi-electron reaction, and an all-solid-state battery provided with a positive electrode layer containing the positive electrode active material is subjected to the green sheet method. Can be made. Therefore, an all-solid-state battery having a large capacity and a high energy density can be provided at low cost.

本発明の実施例に係る全固体電池用正極活物質材料の製造方法の流れを示す図である。It is a figure which shows the flow of the manufacturing method of the positive electrode active material material for the all-solid-state battery which concerns on Example of this invention. 上記正極活物質材料の温度と熱収縮率との関係を示す図である。It is a figure which shows the relationship between the temperature of the positive electrode active material material and a heat shrinkage rate.

===本発明に想到する過程===
周知のごとく、焼結体は多結晶材料であり、全固体電池の正極層や負極層(以下、総称して電極層とも言う)ではセラミック粉体の状態にある正極活物質材料や負極活物質材料(以下、総称して電極活物質材料とも言う)では、粉体を構成する個々の粒子が結晶化している。そして結晶化した際には個々の粒子が同じ結晶相であることが必要である。すなわち異相が混在する電極活物質のグリーンシートと固体電解質層のグリーンシートから構成される積層体を焼成して積層電極体として焼結させると、その積層電極体の電極層内には異相界面が存在することになる。そして異相界面では歪みや欠陥が発生し易く、焼結性が悪化する。そこで本発明者は、上述したLiMPで表される化合物(Mは少なくともCoとNiの一方を含む)を全固体電池の正極活物質として使用するために、グリーンシートに含ませるセラミック粉体の状態にある正極活物質材料の個々の粒子を同相にするための検討を行った。またその正極活物質材料を用いた全固体電池の容量をより高めるための検討も行った。そして本発明はこれらの検討事項に基づいて鋭意研究を重ねた結果なされたものである。
=== Process to reach the present invention ===
As is well known, the sintered body is a polycrystalline material, and the positive electrode layer and the negative electrode layer (hereinafter collectively referred to as the electrode layer) of the all-solid-state battery are in the state of ceramic powder. In the material (hereinafter, also collectively referred to as the electrode active material), the individual particles constituting the powder are crystallized. When crystallized, it is necessary that the individual particles have the same crystal phase. That is, when a laminate composed of a green sheet of an electrode active material in which different phases are mixed and a green sheet of a solid electrolyte layer is fired and sintered as a laminated electrode body, an heterophase interface is formed in the electrode layer of the laminated electrode body. It will exist. Then, distortion and defects are likely to occur at the heterophase interface, and the sinterability deteriorates. Therefore, the present inventor includes the above-mentioned compound represented by Li 2 MP 2 O 7 (M contains at least one of Co and Ni) in the green sheet in order to use it as the positive electrode active material of the all-solid-state battery. A study was conducted to make the individual particles of the positive electrode active material in the state of ceramic powder in-phase. We also conducted a study to further increase the capacity of the all-solid-state battery using the positive electrode active material. The present invention has been made as a result of extensive research based on these considerations.

===正極活物質材料の製造方法===
本発明の実施例に係る全固体電池用正極活物質材料の製造方法として、ピロリン酸コバルトリチウム(LiCoP、以下LCPOとも言う)を正極活物質とした正極活物質材料の製造手順を挙げる。図1に当該製造手順の流れを示した。まずLCPOの原料として(NH)HPO、LiCO、CoC・2HOを使用し、これらを化学量論比で秤量し(s1)、その原料を磁性乳鉢で混合した(s2)。そしてこのこれら原料の混合物をアルミナルツボに入れ、大気雰囲中、所定の温度で2時間加熱して仮焼き(以下、一次焼成とも言う)を行った(s3)。つぎに一次焼成後の上記混合物をメノウ乳鉢で粉砕して仮焼き粉体とし(s4)、その仮焼き粉体をアルミナルツボに入れて大気雰囲気中で本焼成(以下、二次焼成とも言う)して焼結体を得た(s5)。そしてその焼結体をメノウ乳鉢で粉砕して得たLCPOからなるセラミック粉体を正極活物質材料とする(s6)。
=== Manufacturing method of positive electrode active material ===
As a method for producing a positive electrode active material for an all-solid-state battery according to an embodiment of the present invention, a procedure for producing a positive electrode active material using lithium cobalt pyrophosphate (Li 2 CoP 2 O 7 , hereinafter also referred to as LCPO) as a positive electrode active material. List. FIG. 1 shows the flow of the manufacturing procedure. First as a raw material for LCPO (NH 4) using 2 HPO 4, Li 2 CO 3 , CoC 2 O 4 · 2H 2 O, they were weighed in a stoichiometric ratio (s1), mixing the raw material with magnetic mortar (S2). Then, a mixture of these raw materials was placed in an alumina crucible and heated at a predetermined temperature for 2 hours in an atmospheric atmosphere to perform calcining (hereinafter, also referred to as primary firing) (s3). Next, the above mixture after the primary firing is crushed in a Menou mortar to obtain a calcined powder (s4), and the calcined powder is placed in an aluminal pot and main calcined in an air atmosphere (hereinafter, also referred to as secondary calcining). A sintered body was obtained (s5). Then, the ceramic powder made of LCPO obtained by crushing the sintered body in an agate mortar is used as the positive electrode active material (s6).

このように上記の正極活物質材料の製造手順は、原料が異なるだけで他の正極活物質材料とほぼ同じである。しかし本実施例の製造方法では、二次焼成工程における温度と時間を最適化することで、作製された正極活物質材料中の粒子が全て同じ結晶相となるように制御している。しかも製造コストに鑑み、二次焼成を窒素雰囲気などではなく、大気雰囲気中で行うこととしている。すなわち二次焼成に際して焼成炉内を排気したり、炉内に不活性ガスを導入したりする必要がない。あるいは排気や不活性ガスの導入に必要な付帯装置がない安価な焼成炉を使用することが可能となる。なお上記製造手順における一次焼成工程(s3)は、周知のごとく、二次焼成工程(s5)よりも低い温度で原料を焼成することで、原料に含まれる炭酸や硝酸を離脱させて、原料を酸化させることである。すなわち一次焼成は大気雰囲気中であることが前提となる。したがって本実施例の製造方法によれば、一次焼成と二次焼成の双方を大気雰囲気中で行うことができる。 As described above, the procedure for producing the positive electrode active material is almost the same as that of other positive electrode active materials except that the raw materials are different. However, in the production method of this example, by optimizing the temperature and time in the secondary firing step, all the particles in the produced positive electrode active material are controlled to have the same crystal phase. Moreover, in view of the manufacturing cost, the secondary firing is performed in the atmospheric atmosphere instead of the nitrogen atmosphere. That is, it is not necessary to exhaust the inside of the firing furnace or introduce an inert gas into the furnace during the secondary firing. Alternatively, it is possible to use an inexpensive firing furnace that does not have ancillary equipment required for exhaust gas or introduction of an inert gas. As is well known, in the primary firing step (s3) in the above manufacturing procedure, the raw material is fired at a temperature lower than that of the secondary firing step (s5) to release carbon dioxide and nitric acid contained in the raw material, thereby producing the raw material. To oxidize. That is, it is premised that the primary firing is in the air atmosphere. Therefore, according to the production method of this example, both the primary firing and the secondary firing can be performed in the air atmosphere.

<二次焼成条件の最適化>
上述したように、本実施例の製造方法では、大気雰囲気中で二次焼成工程を行うこととし、その二次焼成工程における温度と時間を最適化することで正極活物質材料中の粒子が全て同じ結晶相となるように制御している。そこでこの二次焼成工程における条件(温度、時間)を最適化するために、図1に示した製造手順において、温度と時間を変えた様々な条件で二次焼成工程を行った。そしてその二次焼成後の焼結体に対してX線回折法を用いた結晶構造解析を行った。
<Optimization of secondary firing conditions>
As described above, in the production method of this embodiment, the secondary firing step is performed in the atmospheric atmosphere, and by optimizing the temperature and time in the secondary firing step, all the particles in the positive electrode active material material are all. It is controlled so that it has the same crystal phase. Therefore, in order to optimize the conditions (temperature, time) in this secondary firing step, the secondary firing step was performed under various conditions in which the temperature and time were changed in the manufacturing procedure shown in FIG. Then, a crystal structure analysis using an X-ray diffraction method was performed on the sintered body after the secondary firing.

以下の表1に二次焼成工程の条件と当該結晶構造解析の結果との関係を示した。 Table 1 below shows the relationship between the conditions of the secondary firing step and the results of the crystal structure analysis.

Figure 0006832073
表1に示した結果から、650℃以上680℃以下の温度で20時間以上30時間以下の時間で焼成することで結晶構造に異相がない焼結体が得られることがわかった。したがって本発明の実施例では、この二次焼成条件によって得られた焼結体を粉砕したものを正極活物質材料とすることになる。なお650℃未満の温度でも焼成時間を30時間よりも長くすることで同相の結晶構造が得られる可能性もあるが、闇雲に焼成時間を長くしても製造コストを増大させるだけである。もちろん焼成時間が長ければ焼成後に炉内を冷却させる時間も長くなり製造高ストがさらに嵩むことになる。そこで本発明の実施例では、30時間以下の時間で二次焼成した際に異相がない結晶構造が得られることを条件として規定した。
Figure 0006832073
From the results shown in Table 1, it was found that a sintered body having no different phase in the crystal structure can be obtained by firing at a temperature of 650 ° C. or higher and 680 ° C. or lower for a time of 20 hours or more and 30 hours or less. Therefore, in the embodiment of the present invention, the crushed sintered body obtained under the secondary firing conditions is used as the positive electrode active material. Even at a temperature of less than 650 ° C., it is possible to obtain a crystal structure of the same phase by lengthening the firing time to more than 30 hours, but even if the firing time is lengthened in the dark clouds, the production cost is only increased. Of course, if the firing time is long, the time for cooling the inside of the furnace after firing is also long, and the production amount strike is further increased. Therefore, in the examples of the present invention, it is defined as a condition that a crystal structure having no different phases can be obtained when the secondary firing is performed for a time of 30 hours or less.

===正極活物質材料の収縮率について===
本発明の実施例に係る製造方法で作製された正極活物質材料を用いて全固体電池を製造するためには、この正極活物質材料と粉体状の固体電解質とを含むスラリー状の正極層材料を用いてグリーンシートにすることになる。すなわち全固体電池における正極層内には正極活物質の他に電池容量に寄与しない固体電解質を含ませる必要がある。したがってより高容量の全固体電池を得るためには、正極層材料にイオン導電性が確保できる程度の固体電解質と、より多くの正極活物質とを含ませる必要がある。しかし従来の全固体電池では、正極層材料中に正極活物質材料と固体電解質とは質量比でほぼ同じ割合だけ含まれており、バインダや溶剤などを含めれば正極層材料内の正極活物質材料は50wt%未満である。
=== Shrinkage rate of positive electrode active material ===
In order to manufacture an all-solid-state battery using the positive electrode active material material produced by the production method according to the embodiment of the present invention, a slurry-like positive electrode layer containing the positive electrode active material material and a powdery solid electrolyte. The material will be used to make a green sheet. That is, it is necessary to include a solid electrolyte that does not contribute to the battery capacity in addition to the positive electrode active material in the positive electrode layer of the all-solid-state battery. Therefore, in order to obtain a higher capacity all-solid-state battery, it is necessary to include a solid electrolyte that can secure ionic conductivity and a larger amount of positive electrode active material in the positive electrode layer material. However, in the conventional all-solid-state battery, the positive electrode active material and the solid electrolyte are contained in the positive electrode layer material in almost the same ratio by mass, and if the binder and the solvent are included, the positive electrode active material in the positive electrode layer material is contained. Is less than 50 wt%.

そこで本発明者は、LCPOからなる粉体状の電極活物質材料を得るための最適な二次焼成条件を検討するのに並行して、より多くの正極活物質材料を正極層材料中に含ませることについても検討し、その検討過程でLCPOからなる粉体状の電極活物質材料は、スラリー状の正極層材料が正極層として焼結する際に収縮し、その収縮率が電極活物質材料の粒子径に応じて変化することに着目した。すなわち上記製造工程において、粉砕工程後の正極物質よりも大きな収縮率が得られれば、その収縮を見込んでより多くの正極活物質材料を正極層材料中に含ませることができると考えた。そして平均粒子径が異なる電極活物質材料を作製するとともに、焼結させた際の熱収縮率の差を調べた。平均粒子径が異なる電極活物質材料については、上述した製造工程によって製造した平均粒子径7μmの電極活物質材料をボールミルを用いてアルコール媒体中で所定時間解砕することで平均粒子径が1μm、2μm、3μm、5μmに調整された電極活物質材料を得た。したがって、解砕前の平均粒子径7μmの電極活物質材料と併せて、平均粒子径が異なる5種類の電極活物質材料を得た。 Therefore, the present inventor includes a larger amount of the positive electrode active material in the positive electrode layer material in parallel with examining the optimum secondary firing conditions for obtaining the powdered electrode active material made of LCPO. In the process of studying, the powdery electrode active material material made of LCPO shrinks when the slurry-like positive electrode layer material is sintered as the positive electrode layer, and the shrinkage rate is the electrode active material material. We paid attention to the fact that it changes according to the particle size of. That is, in the above manufacturing process, if a shrinkage rate larger than that of the positive electrode material after the pulverization step is obtained, it is considered that more positive electrode active material can be contained in the positive electrode layer material in anticipation of the shrinkage. Then, while preparing electrode active material materials having different average particle diameters, the difference in heat shrinkage when sintered was investigated. For electrode active material materials having different average particle sizes, the electrode active material materials having an average particle size of 7 μm produced by the above-mentioned manufacturing process are crushed in an alcohol medium for a predetermined time using a ball mill to obtain an average particle size of 1 μm. An electrode active material material adjusted to 2 μm, 3 μm, and 5 μm was obtained. Therefore, five types of electrode active material materials having different average particle sizes were obtained in addition to the electrode active material materials having an average particle size of 7 μm before crushing.

以下の表2に解砕時間と電極活物質材料の平均粒子径D50との関係を示した。 Shows the relationship between the average particle diameter D 50 between disintegration and the electrode active material in Table 2 below.

Figure 0006832073
表2に示したように、解砕時間が長いほど平均粒子径D50が小さくなる。そして12時間の解砕時間で平均粒子径1μmの電極活物質が得られた。もちろん、さらに長い時間を掛けて解砕すれば平均粒子径が1μm未満の微粉末からなる電極活物質材料も得られる。しかし解砕に長大な時間を掛ければ製造コストが増大する。また微粉末は僅かな気流によって容易に飛沫するので、取り扱いが難しいという問題もある。
Figure 0006832073
As shown in Table 2, the longer the crushing time, the smaller the average particle size D 50. Then, an electrode active material having an average particle size of 1 μm was obtained in a crushing time of 12 hours. Of course, if it is crushed over a longer period of time, an electrode active material material composed of fine powder having an average particle size of less than 1 μm can be obtained. However, if it takes a long time to crush, the manufacturing cost will increase. In addition, there is a problem that the fine powder is difficult to handle because it is easily splashed by a slight air flow.

つぎに平均粒子径D50が異なる5種類の正極活物質材料をそれぞれ50mg取り出すとともに、その取り出した正極活物質材料に所定の圧力(例えば、6t/cm)を掛けてペレットに成形した。そして正極活物質材料の平均粒子径D50が異なる5種類のペレットをサンプルとして、各サンプルを焼成炉内に置いて熱収縮率を測定した。ここでは焼成炉内に100ml/minの流速で大気を導入しながら当該炉内を30℃から700℃まで100℃/hの速度で昇温させていったときの各サンプルの熱収縮率を熱機械分析装置(TMA)を用いて測定した。図2に各サンプルの熱収縮率の変化を示した。この図2では焼成炉内の昇温開始時点を起点とした経過時間(h)と、焼成炉内の温度(℃)および各サンプルのTMAの測定値(%)との関係が示されている。なおTMA測定値は、サンプルの体積変化率(%)を示しており、体積が膨張する場合はプラス「+」の数値となり、熱膨張率を示していることになる。収縮する場合はマイナス「−」の数値となり、その絶対値が熱収縮率となる。そして図示したように、各サンプルとも焼成炉内の温度が上昇するのに従って収縮し、また平均粒子径D50が小さなサンプルほど大きく収縮していることが確認できた。 Next, 50 mg of each of the five types of positive electrode active material materials having different average particle diameters D50 were taken out, and a predetermined pressure (for example, 6 t / cm 2 ) was applied to the taken out positive electrode active material materials to form pellets. The average particle diameter D 50 of five different pellets of positive electrode active material as a sample was measured for thermal shrinkage rate at each sample in a firing furnace. Here, the heat shrinkage rate of each sample when the temperature of the furnace is raised from 30 ° C. to 700 ° C. at a rate of 100 ° C./h while introducing the atmosphere into the firing furnace at a flow rate of 100 ml / min is heated. It was measured using a mechanical analyzer (TMA). FIG. 2 shows changes in the heat shrinkage rate of each sample. FIG. 2 shows the relationship between the elapsed time (h) starting from the start point of temperature rise in the firing furnace, the temperature (° C.) in the firing furnace, and the measured value (%) of TMA of each sample. .. The TMA measured value indicates the volume change rate (%) of the sample, and when the volume expands, it becomes a value of plus "+", indicating the coefficient of thermal expansion. When it shrinks, it becomes a minus "-" value, and its absolute value becomes the heat shrinkage rate. And as illustrated, contracts in accordance with the temperature in the firing furnace is increased in each sample, it was also confirmed that the average particle diameter D 50 is greater shrinkage smaller the sample.

なお当然のことながら、積層電極体として焼結させる際にも、正極層内の電極活物質材料中に異相の結晶を混在させないようにする必要がある。すなわち上記製造工程における二次焼成の条件の範囲内で積層電極体を焼結させる必要がある。そして図2に示した平均粒子径D50が異なる電極活物質材料を含む各サンプルの体積変化率の時間変化と炉内温度の時間変化とから、各サンプルは結晶相が同相となる650℃〜680℃の温度範囲内で熱収縮していることが確認できる。したがって電極活物質材料の平均粒子径D50を1μm以上7μm以下に調整すれば、その電極活物質材料を用いることで全固体電池の容量を向上させることが期待できる。 As a matter of course, even when sintering as a laminated electrode body, it is necessary to prevent crystals of different phases from being mixed in the electrode active material in the positive electrode layer. That is, it is necessary to sinter the laminated electrode body within the range of the secondary firing conditions in the above manufacturing process. Then from the time variation of the time change and the furnace temperature of the volume change rate of each sample is an average particle diameter D 50 shown includes a different electrode active material 2, each sample 650 ° C. ~ the crystalline phase in phase It can be confirmed that the heat shrinks within the temperature range of 680 ° C. Therefore, if the average particle size D 50 of the electrode active material is adjusted to 1 μm or more and 7 μm or less, it can be expected that the capacity of the all-solid-state battery can be improved by using the electrode active material.

===その他の実施例===
本発明の実施例に係る全固体電池用正極活物質材料の製造方法では、LCPOからなる正極活物質材料を作製していたが、CoとNiとはその物性が近似しており、上記化学式LiMPにおいて、MをNiとした化合物や、MとしてCoとNiの双方を含む化合物であっても3個のLiが移動する多電子反応を示すため、その化合物を電極活物質として使用してもよい。
=== Other Examples ===
In the method for producing a positive electrode active material for an all-solid-state battery according to an embodiment of the present invention, a positive electrode active material made of LCPO was produced, but Co and Ni have similar physical properties, and the above chemical formula Li In 2 MP 2 O 7 , even a compound containing Ni as M or a compound containing both Co and Ni as M exhibits a multi-electron reaction in which three Lis move, so that compound is used as an electrode active material. You may use it.

正極活物質自体をセラミック粉体の状態にしていたが、正極活物質の電子伝導性を向上させるためにセラミック粉体の粒子表面に、ジルコニア(ZrO)、アルミナ(Al)、チタン酸リチウム(LiTi12)、ニオブ酸リチウム(LiNbO)、炭素(C)などの導電剤をコーティングすることとしてもよい。導電剤を正極活物質材料にコーティングするためには、例えば、図1に示した製造手順において、一次焼成工程(s3)によって得られた粉体に導電剤の粉体を混合し、その混合物を二次焼成すればよい。 The positive electrode active material itself was in the state of ceramic powder, but in order to improve the electron conductivity of the positive electrode active material, zirconia (ZrO 2 ), alumina (Al 2 O 3 ), and titanium were placed on the particle surface of the ceramic powder. It may be coated with a conductive agent such as lithium acid (Li 4 Ti 5 O 12 ), lithium niobate (LiNbO 3), or carbon (C). In order to coat the positive electrode active material with the conductive agent, for example, in the production procedure shown in FIG. 1, the powder obtained by the primary firing step (s3) is mixed with the powder of the conductive agent, and the mixture is mixed. Secondary firing may be sufficient.

なおLiMPは、リチウム金属に対して5V程度の高い電位を示す。したがって、この対リチウム金属電位では、現在の非水電解液電池で使用されている有機電解液の多くが酸化分解してしまう。そのため現時点では、上記実施例の方法で作製された正極活物質材料を有機電解液を用いたリチウムイオン2次電池に使用することができない。しかし、今後、耐酸化性を有する電解液が生産された場合には、この当該材料を有機電解液を用いた電池にも使用できる。すなわち、本発明の適用範囲は、全固体電池のみに限定されず、電解液を用いたリチウム二次電池にも及んでいる。 Li 2 MP 2 O 7 shows a high potential of about 5 V with respect to lithium metal. Therefore, at this potential against lithium metal, most of the organic electrolytes used in the current non-aqueous electrolyte batteries are oxidatively decomposed. Therefore, at present, the positive electrode active material material produced by the method of the above embodiment cannot be used for a lithium ion secondary battery using an organic electrolytic solution. However, in the future, when an electrolytic solution having oxidation resistance is produced, this material can also be used for a battery using an organic electrolytic solution. That is, the scope of application of the present invention is not limited to all-solid-state batteries, but extends to lithium secondary batteries using an electrolytic solution.

s2 混合工程、s3 一次焼成工程、s5 二次焼成工程 s2 mixing step, s3 primary firing step, s5 secondary firing step

Claims (2)

全固体電池用の正極活物質材料の製造方法であって、
化学式LiMPで表されるとともに、当該化学式中のMがCoとNiの一方あるいは双方を含む化合物からなる正極活物質の原材料を秤量して混合する混合ステップと、
前記混合ステップにより得た混合物を大気雰囲気中で仮焼成する一次焼成ステップと、
当該一次焼成ステップ後の前記混合物の粉体を当該一次焼成ステップよりも高い温度で大気雰囲気中で焼結させる二次焼成ステップと、
前記二次焼成ステップにより得た焼結体を粉砕する粉砕ステップと、
を含み、
前記二次焼成ステップでは、650℃以上680℃以下の温度で20時間以上30時間以下の時間で焼成すること、
を特徴とする全固体電池用正極活物質材料の製造方法。
A method for manufacturing a positive electrode active material for an all-solid-state battery.
In addition to being represented by the chemical formula Li 2 MP 2 O 7 , a mixing step of weighing and mixing the raw materials of the positive electrode active material composed of a compound in which M in the chemical formula contains one or both of Co and Ni is used.
A primary firing step in which the mixture obtained by the mixing step is provisionally fired in an air atmosphere, and a primary firing step.
A secondary firing step in which the powder of the mixture after the primary firing step is sintered in an atmospheric atmosphere at a temperature higher than that of the primary firing step, and
A crushing step of crushing the sintered body obtained by the secondary firing step, and
Including
In the secondary firing step, firing is performed at a temperature of 650 ° C. or higher and 680 ° C. or lower for 20 hours or longer and 30 hours or shorter.
A method for producing a positive electrode active material for an all-solid-state battery.
請求項1において、前記粉砕ステップ、あるいは当該粉砕ステップによって得た粉砕物を解砕するステップを実行することで、1μm以上7μm以下の平均粒子径を有する正極活物質材料を得ることを特徴とする全固体電池用正極活物質材料の製造方法。 The first aspect of the present invention is characterized in that a positive electrode active material having an average particle size of 1 μm or more and 7 μm or less is obtained by executing the pulverization step or the step of crushing the pulverized product obtained by the pulverization step. A method for manufacturing a positive electrode active material for an all-solid-state battery.
JP2016064930A 2016-03-29 2016-03-29 Manufacturing method of positive electrode active material for all-solid-state batteries Active JP6832073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016064930A JP6832073B2 (en) 2016-03-29 2016-03-29 Manufacturing method of positive electrode active material for all-solid-state batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064930A JP6832073B2 (en) 2016-03-29 2016-03-29 Manufacturing method of positive electrode active material for all-solid-state batteries

Publications (2)

Publication Number Publication Date
JP2017182949A JP2017182949A (en) 2017-10-05
JP6832073B2 true JP6832073B2 (en) 2021-02-24

Family

ID=60006261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064930A Active JP6832073B2 (en) 2016-03-29 2016-03-29 Manufacturing method of positive electrode active material for all-solid-state batteries

Country Status (1)

Country Link
JP (1) JP6832073B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7133435B2 (en) * 2018-02-20 2022-09-08 Fdk株式会社 All-solid battery
JP7022616B2 (en) * 2018-02-27 2022-02-18 Fdk株式会社 Manufacturing method of positive electrode active material
JP7101005B2 (en) * 2018-03-22 2022-07-14 Fdk株式会社 Manufacturing method of positive electrode active material
KR20210039462A (en) 2018-08-10 2021-04-09 니폰 가가쿠 고교 가부시키가이샤 Method for producing tritium pyrophosphate and method for producing tritium pyrophosphate carbon composite
JP7045292B2 (en) 2018-09-11 2022-03-31 太陽誘電株式会社 All-solid-state battery, all-solid-state battery manufacturing method, and solid electrolyte paste
JP7131406B2 (en) * 2019-01-24 2022-09-06 富士通株式会社 Cathode material, manufacturing method thereof, battery, and electronic device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008566B2 (en) * 2003-04-08 2006-03-07 Valence Technology, Inc. Oligo phosphate-based electrode active materials and methods of making same
CN101659408B (en) * 2009-09-25 2011-04-20 四川大学 Process for preparing LixFeyPzO4 from ferrophosphorus
JP5830540B2 (en) * 2011-09-09 2015-12-09 株式会社日立製作所 Positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5928302B2 (en) * 2012-11-02 2016-06-01 日立金属株式会社 Method for producing positive electrode active material for lithium secondary battery
JP5932691B2 (en) * 2013-03-18 2016-06-08 三井造船株式会社 Positive electrode material for lithium secondary battery and method for producing the same
JP6111118B2 (en) * 2013-03-29 2017-04-05 Fdk株式会社 Method for producing electrode active material for lithium secondary battery
JP6610150B2 (en) * 2015-10-09 2019-11-27 富士通株式会社 Positive electrode material for secondary battery, method for producing the same, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2017182949A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6832073B2 (en) Manufacturing method of positive electrode active material for all-solid-state batteries
Wang et al. Low temperature and rapid microwave sintering of Na3Zr2Si2PO12 solid electrolytes for Na-Ion batteries
JP5288816B2 (en) Solid battery
JP6460316B2 (en) Sodium ion battery electrode mixture, method for producing the same, and sodium all-solid battery
Wang et al. NASICON-structured NaTi2 (PO4) 3@ C nanocomposite as the low operation-voltage anode material for high-performance sodium-ion batteries
JP5484928B2 (en) All solid battery
Jiang et al. Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material
JP6079307B2 (en) Method for producing garnet-type lithium ion conductive oxide
KR101624805B1 (en) Secondary battery comprising solid electrolyte layer
JP5144845B2 (en) Solid battery
JP5754442B2 (en) Battery sintered body, method for producing battery sintered body, and all-solid lithium battery
WO2017026285A1 (en) Solid electrolyte sheet, method for manufacturing same, and sodium ion all-solid-state secondary cell
JP6252350B2 (en) Solid electrolyte structure, manufacturing method thereof, and all-solid battery
JP2013037992A (en) Solid electrolyte and method for producing the same
JP2014229579A (en) Lithium ion conductive inorganic solid composite
JP2014096350A (en) Ceramic positive electrode-solid electrolyte assembly
CN114946049B (en) Solid-state battery
JP2016103381A (en) Method for manufacturing all-solid battery
JP2016225058A (en) Method of manufacturing electrode, composite particle, electrode and battery
CN110476290B (en) All-solid-state battery
CN110462912B (en) All-solid battery
JP7002199B2 (en) Manufacturing method of all-solid-state battery
KR101537067B1 (en) Solid electrolyte for all solid state rechargeable lithium battery, method for preparing the same, and all solid state rechargeable lithium battery including the same
Nowack et al. Rapid, microwave-assisted synthesis of battery-grade lithium titanate (LTO)
JP2020024780A (en) All-solid battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R150 Certificate of patent or registration of utility model

Ref document number: 6832073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250