JP2019011416A - Lubricant, metal material, plastic processing method of metal material and method for producing molded metal material - Google Patents

Lubricant, metal material, plastic processing method of metal material and method for producing molded metal material Download PDF

Info

Publication number
JP2019011416A
JP2019011416A JP2017128071A JP2017128071A JP2019011416A JP 2019011416 A JP2019011416 A JP 2019011416A JP 2017128071 A JP2017128071 A JP 2017128071A JP 2017128071 A JP2017128071 A JP 2017128071A JP 2019011416 A JP2019011416 A JP 2019011416A
Authority
JP
Japan
Prior art keywords
lubricant
metal material
amine
production example
cec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017128071A
Other languages
Japanese (ja)
Inventor
睦 柳
Mutsumi Yanagi
睦 柳
小見山 忍
Shinobu Komiyama
忍 小見山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2017128071A priority Critical patent/JP2019011416A/en
Priority to CN201880034796.9A priority patent/CN110662823A/en
Priority to PCT/JP2018/024478 priority patent/WO2019004328A1/en
Priority to EP18824041.0A priority patent/EP3647396A1/en
Publication of JP2019011416A publication Critical patent/JP2019011416A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M109/00Lubricating compositions characterised by the base-material being a compound of unknown or incompletely defined constitution
    • C10M109/02Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M113/00Lubricating compositions characterised by the thickening agent being an inorganic material
    • C10M113/16Inorganic material treated with organic compounds, e.g. coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J3/00Lubricating during forging or pressing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/103Clays; Mica; Zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/12Polysaccharides, e.g. cellulose, biopolymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids

Abstract

To provide a novel lubricant for suppressing seizure caused by friction between metal materials.SOLUTION: A lubricant of the present invention comprises a smectite clay mineral and an ammonium ion formed by cationization of a primary amine or a secondary amine or a tertiary amine. The ammonium ion is inserted between layers of the smectite clay mineral. The primary amine or the secondary amine or the tertiary amine comprises at least one long chain alkyl group having 8 or more carbons in a main chain, and a total of carbon number of main chain of long chain alkyl group is 16 or more. The lubricant comprises no lithium borate. Further, the lubricant preferably comprises at least one kind of inorganic solid particles selected from a graphite, a graphene, a graphene oxide, a fullerene, a carbon nanotube, a diamond-like carbon (DLC), an onion-like carbon, a molybdenum disulfide and a tungsten disulfide.SELECTED DRAWING: None

Description

本発明は、金属材の塑性加工に有用な潤滑剤、該潤滑剤の被膜を有する金属材、該潤滑剤が付着した金属材、並びに、該潤滑剤を用いた、金属材の塑性加工方法及び成形加工金属材の製造方法に関するものである。   The present invention relates to a lubricant useful for plastic processing of a metal material, a metal material having a coating of the lubricant, a metal material to which the lubricant is attached, a method of plastic processing of a metal material using the lubricant, and The present invention relates to a method for manufacturing a shaped metal material.

塑性加工や摩擦運動の際、金属材同士(例えば、機械部品同士、金型と成形加工用金属材等)の摩擦が生じ、その摩擦によって金属材に悪影響を及ぼすため、摩擦を低減するための潤滑剤が種々開発されている。例えば、特許文献1には、層状粘土鉱物の層間に陽イオン性の有機化合物を坦持した有機変性粘土鉱物を、固形分比で5〜95質量%の範囲で含有する金属材料の塑性加工用潤滑剤が開示されている。   During plastic working and friction movement, friction between metal materials (for example, machine parts, metal molds and metal materials for molding) occurs, and the friction adversely affects the metal material. Various lubricants have been developed. For example, Patent Document 1 discloses a method for plastic processing of a metal material containing an organically modified clay mineral in which a cationic organic compound is supported between layers of a layered clay mineral in a solid content ratio of 5 to 95% by mass. A lubricant is disclosed.

国際公開第2012/086564号International Publication No. 2012/085564

本発明は、金属材同士の摩擦による焼付きを抑制することができる新規潤滑剤、該潤滑剤の被膜を有する金属材、該潤滑剤が付着した金属材、並びに、該潤滑剤を用いた、金属材の塑性加工方法及び成形加工金属材の製造方法を提供することを目的とする。   The present invention uses a novel lubricant capable of suppressing seizure due to friction between metal materials, a metal material having a coating of the lubricant, a metal material to which the lubricant is adhered, and the lubricant. It aims at providing the plastic working method of a metal material, and the manufacturing method of a shaping | molding metal material.

本発明者らは上記課題を解決するために鋭意検討した結果、カチオン化した所定の、第1級アミン又は第2級アミン又は第3級アミンが層間に挿入された、スメクタイト系粘土鉱物を含む潤滑剤を、塑性加工前の金属材(塑性加工用被加工材)に接触させて、該金属材の表面上に潤滑被膜を形成させた後、金型を用いて塑性加工を行ったところ、金属材と金型との摩擦による焼付きを抑制することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors include a smectite clay mineral in which a predetermined cationized primary amine, secondary amine, or tertiary amine is inserted between layers. The lubricant was brought into contact with the metal material before plastic processing (work material for plastic processing), and after forming a lubricating film on the surface of the metal material, plastic processing was performed using a mold. It has been found that seizure due to friction between the metal material and the mold can be suppressed, and the present invention has been completed.

本発明(1)は、スメクタイト系粘土鉱物と、第1級アミン又は第2級アミン又は第3級アミンがカチオン化したアンモニウムイオンとを含み、前記スメクタイト系粘土鉱物の層間に前記アンモニウムイオンが挿入され、前記第1級アミン又は第2級アミン又は第3級アミンは、主鎖の炭素数が8以上である長鎖アルキル基を1以上有し、前記長鎖アルキル基の主鎖の炭素数の合計が16以上である、潤滑剤(但し、ホウ酸リチウムを含むものを除く)である。
本発明(2)は、スメクタイト系粘土鉱物と、第1級アミン又は第2級アミン又は第3級アミンがカチオン化したアンモニウムイオンと、グラファイト、グラフェン、酸化グラフェン、フラーレン、カーボンナノチューブ、ダイヤモンドライクカーボン(DLC)、オニオンライクカーボン、二硫化モリブデン、及び二硫化タングステンから選ばれる1種以上の無機固体粒子とを含み、前記スメクタイト系粘土鉱物の層間に少なくとも前記アンモニウムイオンが挿入され、前記第1級アミン又は第2級アミン又は第3級アミンは、主鎖の炭素数が8以上である長鎖アルキル基を1以上有し、前記長鎖アルキル基の主鎖の炭素数の合計が16以上である、潤滑剤である。
本発明(3)は、固体である、前記発明(1)又は(2)の潤滑剤である。
本発明(4)は、前記発明(1)又は(2)の潤滑剤の被膜を有する金属材である。
本発明(5)は、前記発明(3)の潤滑剤が付着した金属材である。
本発明(6)は、前記発明(1)又は(2)の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に接触させて潤滑被膜を形成させる工程を含む、金属材の塑性加工方法である。
本発明(7)は、前記発明(3)の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に付着させる工程を含む、金属材の塑性加工方法である。
本発明(8)は、前記発明(1)又は(2)の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に接触させて潤滑被膜を形成させる工程と、2つの金属材を接触させて塑性加工を行う工程と、を含む、成形加工金属材の製造方法である。
本発明(9)は、前記発明(3)の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に付着させる工程と、2つの金属材を接触させて塑性加工を行う工程と、を含む、成形加工金属材の製造方法である。
The present invention (1) includes a smectite clay mineral and an ammonium ion obtained by cationizing a primary amine, a secondary amine or a tertiary amine, and the ammonium ion is inserted between layers of the smectite clay mineral. The primary amine, secondary amine, or tertiary amine has one or more long-chain alkyl groups having a main chain carbon number of 8 or more, and the main chain carbon number of the long-chain alkyl group. Is a lubricant (excluding those containing lithium borate) having a total of 16 or more.
The present invention (2) includes a smectite clay mineral, an ammonium ion cationized by a primary amine, secondary amine, or tertiary amine, graphite, graphene, graphene oxide, fullerene, carbon nanotube, diamond-like carbon (DLC), onion-like carbon, molybdenum disulfide, and one or more inorganic solid particles selected from tungsten disulfide, wherein at least the ammonium ions are inserted between layers of the smectite clay mineral, The amine, secondary amine, or tertiary amine has one or more long-chain alkyl groups having 8 or more carbon atoms in the main chain, and the total number of carbon atoms in the main chain of the long-chain alkyl group is 16 or more. There is a lubricant.
The present invention (3) is the lubricant according to the invention (1) or (2), which is solid.
The present invention (4) is a metal material having the lubricant film of the invention (1) or (2).
The present invention (5) is a metal material to which the lubricant of the invention (3) is attached.
The present invention (6) includes the step of bringing the lubricant of the invention (1) or (2) into contact with at least one surface of two metal materials that cause friction to form a lubricating film. This is a plastic working method of a metal material.
The present invention (7) is a metal material plastic working method comprising a step of adhering the lubricant of the invention (3) on at least one surface of two metal materials causing friction.
The present invention (8) includes a step of bringing the lubricant of the invention (1) or (2) into contact with at least one surface of two metal materials that cause friction to form a lubricating film; And a step of performing plastic working by bringing two metal materials into contact with each other.
The present invention (9) includes a step of attaching the lubricant of the invention (3) on at least one surface of two metal materials that cause friction, and plastic processing by bringing the two metal materials into contact with each other. And a step of performing a method for producing a shaped metal material.

本発明によれば、金属材同士の摩擦による焼付きを抑制することができる新規潤滑剤、該潤滑剤の被膜を有する金属材、該潤滑剤が付着した金属材、並びに、該潤滑剤を用いた、金属材の塑性加工方法及び成形加工金属材の製造方法を提供することができる。   According to the present invention, a novel lubricant capable of suppressing seizure due to friction between metal materials, a metal material having a film of the lubricant, a metal material to which the lubricant adheres, and the lubricant are used. It is possible to provide a plastic working method for a metal material and a method for producing a formed metal material.

加工性能評価試験を行った試験片の、焼付き程度の評価基準を示す図である。It is a figure which shows the evaluation criteria of the seizure degree of the test piece which performed the processing performance evaluation test.

以下、本発明の内容を詳細に説明するが、本発明はこれには何ら限定されない。   Hereinafter, the contents of the present invention will be described in detail, but the present invention is not limited thereto.

<<<潤滑剤>>>
本発明の実施形態において、潤滑剤は、スメクタイト系粘土鉱物と、第1級アミン又は第2級アミン又は第3級アミンがカチオン化したアンモニウムイオンとを含み、スメクタイト系粘土鉱物の層間に上記アンモニウムイオンが挿入されたものを含む。なお、この潤滑剤は、ホウ酸リチウムを含まないものである。この潤滑剤は、スメクタイト系粘土鉱物と上記アンモニウムイオンのみからなるものであってもよいし、スメクタイト系粘土鉱物と上記アンモニウムイオン以外に他の成分を含むものであってもよい。
また、本発明の実施形態において、潤滑剤は、スメクタイト系粘土鉱物と、第1級アミン又は第2級アミン又は第3級アミンがカチオン化したアンモニウムイオンと、無機固体粒子とを含み、スメクタイト系粘土鉱物の層間に少なくとも上記アンモニウムイオンが挿入されたものを含む。なお、この潤滑剤は、ホウ酸リチウムを更に含んでいてもよいし、含まれていなくてもよい。この潤滑剤は、スメクタイト系粘土鉱物と上記アンモニウムイオンと無機固体粒子のみからなるものであってもよいし、スメクタイト系粘土鉱物と上記アンモニウムイオンと無機固体粒子以外に他の成分を含むものであってもよい。
これらの潤滑剤は、固体潤滑剤であってもよいし、更に液体媒体を含む液体潤滑剤であってもよい。
このような潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に付着させたり、該表面上に上記潤滑剤の被膜を形成させたりすることにより、金属材同士の摩擦による焼付きを抑制することが可能となる。
<<< Lubricant >>>>
In an embodiment of the present invention, the lubricant includes a smectite clay mineral and a primary amine, a secondary amine, or an ammonium ion cationized by a tertiary amine, and the ammonium is interposed between the smectite clay mineral layers. Includes those with ions inserted. This lubricant does not contain lithium borate. This lubricant may be composed of only a smectite clay mineral and the ammonium ion, or may contain other components in addition to the smectite clay mineral and the ammonium ion.
Further, in the embodiment of the present invention, the lubricant contains a smectite clay mineral, a primary amine, a secondary amine or a tertiary amine cationized ammonium ion, and inorganic solid particles. A material in which at least the ammonium ion is inserted between layers of clay minerals is included. The lubricant may further contain lithium borate or may not contain lithium borate. This lubricant may be composed only of a smectite clay mineral, the ammonium ion and inorganic solid particles, or may contain other components in addition to the smectite clay mineral, the ammonium ion and inorganic solid particles. May be.
These lubricants may be solid lubricants or liquid lubricants containing a liquid medium.
By attaching such a lubricant on the surface of at least one of the two metal materials that cause friction, or by forming a film of the lubricant on the surface, friction between the metal materials is caused. It becomes possible to suppress the seizure due to.

<<成分>>
<スメクタイト系粘土鉱物>
スメクタイト系粘土鉱物は、特に制限されるものではない。具体的には、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、鉄サポナイト、ヘクトライト、ソーコナイト等の天然品及びこれらの合成品を挙げることができる。これらのスメクタイト系粘土鉱物は、1種を単独で用いてもよいが、2種以上を組み合わせて用いてもよい。
<< Ingredient >>
<Smectite clay mineral>
The smectite clay mineral is not particularly limited. Specific examples include natural products such as montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, and soconite, and synthetic products thereof. These smectite clay minerals may be used alone or in combination of two or more.

原料となるスメクタイト系粘土鉱物の層間には、通常、Li、K、Na、NH 、H,Ca2+、Mg2+、Ba2+、Fe2+、Al3+等の陽イオンが存在しているが、これら以外の陽イオン(但し、後述のアンモニウムイオンは除く)が存在していてもよい。 Between the layers of the smectite clay mineral that is the raw material, usually, positive ions such as Li + , K + , Na + , NH 4 + , H 3 O + , Ca 2+ , Mg 2+ , Ba 2+ , Fe 2+ , Al 3+, etc. Ions are present, but cations other than these (except for the ammonium ions described later) may be present.

<アンモニウムイオン>
上記アンモニウムイオンは、第1級アミン又は第2級アミン又は第3級アミンをカチオン化させることにより得られる。第1級アミン又は第2級アミン又は第3級アミンとしては、主鎖の炭素数が8以上であるアルキル基(以下、このようなアルキル基を長鎖アルキル基と称する場合がある。)を1以上有し、且つ、全ての長鎖アルキル基の主鎖に含まれる炭素数の合計が16以上のものであれば特に制限されるものではない。すなわち、下式(1)で表される化合物[以下、化合物(1)と称する。]において、少なくともRは長鎖アルキル基であり、Rは水素原子又はアルキル基であり、Rは水素原子又はアルキル基である。なお、R及びRのアルキル基は、別個独立に、主鎖の炭素数が1〜22のアルキル基であってもよく、主鎖の炭素数が8〜22のアルキル基であってもよい。また、化合物(1)において、Nに結合する全ての長鎖アルキル基の主鎖にそれぞれ含まれる炭素数の合計は16以上である。
<Ammonium ion>
The ammonium ion can be obtained by cationizing a primary amine, a secondary amine or a tertiary amine. As the primary amine, secondary amine, or tertiary amine, an alkyl group having 8 or more carbon atoms in the main chain (hereinafter, such an alkyl group may be referred to as a long-chain alkyl group). It is not particularly limited as long as it has 1 or more and the total number of carbon atoms contained in the main chain of all long-chain alkyl groups is 16 or more. That is, a compound represented by the following formula (1) [hereinafter referred to as compound (1). In, at least R 1 is a long chain alkyl group, R 2 is a hydrogen atom or an alkyl group, R 3 is hydrogen atom or an alkyl group. In addition, the alkyl group of R 2 and R 3 may be independently an alkyl group having 1 to 22 carbon atoms in the main chain, or an alkyl group having 8 to 22 carbon atoms in the main chain. Good. In the compound (1), the total number of carbon atoms contained in the main chain of all long-chain alkyl groups bonded to N is 16 or more.

具体的には、第1級アミンの場合、化合物(1)において、Rは主鎖の炭素数が16以上の長鎖アルキル基であり、R及びRは水素原子である。なお、第1級アミンの場合、長鎖アルキル基の主鎖の炭素数は、16以上であれば特に限定されないが、好ましくは22以下である。 Specifically, in the case of a primary amine, in the compound (1), R 1 is a long chain alkyl group having 16 or more carbon atoms in the main chain, and R 2 and R 3 are hydrogen atoms. In the case of a primary amine, the number of carbon atoms in the main chain of the long-chain alkyl group is not particularly limited as long as it is 16 or more, but is preferably 22 or less.

第1級アミンとしては、例えば、n−パルミチルアミン、n−ステアリルアミン等の化合物が挙げられるが、これらに限定されるものではない。   Examples of the primary amine include, but are not limited to, compounds such as n-palmitylamine and n-stearylamine.

第2級アミンの場合、化合物(1)において、Rは主鎖の炭素数が16以上の長鎖アルキル基であり、Rは主鎖の炭素数が1以上のアルキル基であり、Rは水素原子である;又は、Rは主鎖の炭素数が8以上の長鎖アルキル基であり、Rは主鎖の炭素数が8以上の長鎖アルキル基であり、Rは水素原子である。なお、第2級アミンの場合、長鎖アルキル基の主鎖の炭素数の合計は、16以上であれば特に限定されないが、好ましくは36以下である。 In the case of the secondary amine, in the compound (1), R 1 is a long chain alkyl group having 16 or more carbon atoms in the main chain, R 2 is an alkyl group having 1 or more carbon atoms in the main chain, and R 2 3 is a hydrogen atom; or R 1 is a long-chain alkyl group having 8 or more carbon atoms in the main chain, R 2 is a long-chain alkyl group having 8 or more carbon atoms in the main chain, and R 3 is It is a hydrogen atom. In the case of a secondary amine, the total number of carbon atoms in the main chain of the long-chain alkyl group is not particularly limited as long as it is 16 or more, but is preferably 36 or less.

第2級アミンとしては、例えば、N,N−ジ−n−ステアリルアミン、N−n−ステアリル−N−メチルアミン等の化合物が挙げられるが、これらに限定されるものではない。   Examples of the secondary amine include compounds such as N, N-di-n-stearylamine and Nn-stearyl-N-methylamine, but are not limited thereto.

第3級アミンの場合、化合物(1)において、Rは主鎖の炭素数が16以上の長鎖アルキル基であり、R及びRは主鎖の炭素数が1以上のアルキル基である;又は、Rは主鎖の炭素数が8以上の長鎖アルキル基であり、R及び/若しくはRは主鎖の炭素数が8以上の長鎖アルキル基である。なお、第3級アミンの場合、長鎖アルキル基の主鎖の炭素数の合計は、16以上であれば特に限定されないが、好ましくは36以下である。 In the case of a tertiary amine, in the compound (1), R 1 is a long chain alkyl group having 16 or more carbon atoms in the main chain, and R 2 and R 3 are alkyl groups having 1 or more carbon atoms in the main chain. Or R 1 is a long-chain alkyl group having 8 or more carbon atoms in the main chain, and R 2 and / or R 3 is a long-chain alkyl group having 8 or more carbon atoms in the main chain. In the case of a tertiary amine, the total number of carbon atoms in the main chain of the long-chain alkyl group is not particularly limited as long as it is 16 or more, but is preferably 36 or less.

第3級アミンとしては、例えば、N,N−ジ−n−オクチル−N−メチルアミン、N,N−ジ−n−デシル−N−メチルアミン、N,N−ジ−n−ラウリル−N−メチルアミン、N,N−ジ−n−ミリスチル−N−メチルアミン、N,N−ジ−n−ステアリル−N−メチルアミン、N,N−ジメチル−N−n−パルミチルアミン、N,N−ジメチル−N−n−ステアリルアミン、N,N−ジメチル−N−n−ベヘニルアミン、N,N,N−トリ−n−オクチルアミン、N,N,N−トリ−n−デシルアミン、N,N,N−トリ−n−ドデシルアミン等の化合物が挙げられるが、これらに限定されるものではない。   As the tertiary amine, for example, N, N-di-n-octyl-N-methylamine, N, N-di-n-decyl-N-methylamine, N, N-di-n-lauryl-N -Methylamine, N, N-di-n-myristyl-N-methylamine, N, N-di-n-stearyl-N-methylamine, N, N-dimethyl-Nn-palmitylamine, N, N-dimethyl-Nn-stearylamine, N, N-dimethyl-Nn-behenylamine, N, N, N-tri-n-octylamine, N, N, N-tri-n-decylamine, N , N, N-tri-n-dodecylamine and the like, but is not limited thereto.

ここで、化合物(1)における長鎖アルキル基は、主鎖の炭素数が8以上であれば、直鎖状に限定されず、分枝鎖状であってもよい。分枝鎖状の長鎖アルキル基を1以上有し、且つ、長鎖アルキル基の主鎖の炭素数の合計が16以上である化合物としては、例えば、ジイソノニルアミン、トリス(7-メチルオクチル)アミン、ビス(2,4−ジエチルオクチル)アミン、ビス(10−メチルウンデシル)アミン等が挙げられるが、これらに限定されるものではない。   Here, the long chain alkyl group in the compound (1) is not limited to a straight chain as long as the main chain has 8 or more carbon atoms, and may be a branched chain. Examples of the compound having one or more branched long-chain alkyl groups and having a total of 16 or more carbon atoms in the main chain of the long-chain alkyl group include diisononylamine and tris (7-methyloctyl). Examples thereof include, but are not limited to, amine, bis (2,4-diethyloctyl) amine, and bis (10-methylundecyl) amine.

なお、上記各種アミンをカチオン化したアンモニウムイオンは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   In addition, the ammonium ion which cationized said various amines may be used individually by 1 type, and may be used in combination of 2 or more type.

<無機固体粒子>
上記無機固体粒子としては、グラファイト、グラフェン、酸化グラフェン、フラーレン、カーボンナノチューブ、オニオンライクカーボン、ダイヤモンドライクカーボン(DLC)、二硫化モリブデン、二硫化タングステン等を挙げることができる。これらの無機固体粒子は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。無機固体粒子を含む本実施形態の潤滑剤を金属材の表面上に接触させることにより得られる、該潤滑剤が付着した金属材又は該潤滑剤を表面上に接触させることにより形成した潤滑被膜を有する金属材に対して、高温(200℃以上;金属材の温度)条件下で塑性加工や摩擦運動を行っても、該金属材の表面における焼付けをより抑制することが可能となる。
<Inorganic solid particles>
Examples of the inorganic solid particles include graphite, graphene, graphene oxide, fullerene, carbon nanotube, onion-like carbon, diamond-like carbon (DLC), molybdenum disulfide, and tungsten disulfide. These inorganic solid particles may be used individually by 1 type, and may be used in combination of 2 or more type. A lubricant film formed by bringing the lubricant of this embodiment containing inorganic solid particles into contact with the surface of the metal material and contacting the metal material to which the lubricant is adhered or the lubricant on the surface. Even when plastic working or frictional motion is performed on the metal material having a high temperature (200 ° C. or higher; temperature of the metal material), it is possible to further suppress the baking on the surface of the metal material.

<液体媒体>
液体媒体としては、例えば、水、又は、水と水混和性溶媒の混合溶媒(水の割合は、例えば、混合溶媒の全質量に対して60質量%以上のもの)を挙げることができる。水混和性溶媒としては、水と混合した後、相分離しないものであれば特に限定されるものではないが、例えば、メタノール、エタノール等のアルコール類が挙げられる。
<Liquid medium>
Examples of the liquid medium include water or a mixed solvent of water and a water-miscible solvent (the ratio of water is, for example, 60% by mass or more based on the total mass of the mixed solvent). The water-miscible solvent is not particularly limited as long as it does not undergo phase separation after mixing with water, and examples thereof include alcohols such as methanol and ethanol.

<他の成分>
上記他の成分としては、例えば、有機高分子(例えば、アクリル系樹脂、アミド系樹脂、エポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂及びポリマレイン酸系樹脂等)、水溶性無機塩類(例えば、硫酸塩、ケイ酸塩、ホウ酸塩、モリブデン酸塩、バナジン酸塩、タングステン酸塩等)、水溶性有機塩(例えば、リンゴ酸塩、コハク酸塩、クエン酸塩、酒石酸塩等)等の被膜形成成分;亜リン酸塩、ジルコニウム化合物、タングステン酸塩、バナジン酸塩、ケイ酸塩、ホウ酸塩、炭酸塩、アミン類、ベンゾトリアゾール類、キレート化合物等の防錆添加剤;ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリアクリル酸アミド、ポリアクリル酸ナトリウム、ポリビニルピロリドン、ポリビニルアルコール、マイカやタルク等の粘土鉱物、微粉シリカ等の粘度調整剤;非イオン性界面活性剤、陰イオン界面活性剤、両性界面活性剤、陽イオン性界面活性剤、水溶性高分子等の分散剤;石けん類(ステアリン酸ナトリウム、ステアリン酸カリウム、オレイン酸ナトリウム)、金属石けん類(ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸リチウム、ステアリン酸亜鉛、パルミチン酸カルシウム)、ワックス類(ポリエチレンワックス、ポリプロピレンワックス、カルナバロウ、ミツロウ、パラフィンワックス、マイクロクリスタリンワックス)、脂肪酸アマイド(エチレンビスラウリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスベヘン酸アマイド、N,N’−ジステアリルアジピン酸アマイド、エチレンビスオレイン酸アマイド、エチレンビスエルカ酸アマイド、ヘキサメチレンビスオレイン酸アマイド、N,N’−ジオレイルアジピン酸アマイド)等の潤滑成分;植物油、鉱物油、合成油等の油類;等が挙げられる。これらの成分は、本発明の潤滑剤に1種含有させてもよいし、2種以上を組み合わせて含有させてもよい。
なお、水溶性とは、25℃、100gの水に1g以上溶解する性質を意味する。
<Other ingredients>
Examples of the other components include organic polymers (for example, acrylic resins, amide resins, epoxy resins, phenol resins, urethane resins, and polymaleic resins), water-soluble inorganic salts (for example, sulfuric acid). Salt, silicate, borate, molybdate, vanadate, tungstate, etc.), water-soluble organic salts (eg malate, succinate, citrate, tartrate, etc.) Forming components: anti-corrosive additives such as phosphites, zirconium compounds, tungstates, vanadates, silicates, borates, carbonates, amines, benzotriazoles, chelate compounds; hydroxyethyl cellulose, carboxy Methyl cellulose, polyacrylic acid amide, sodium polyacrylate, polyvinyl pyrrolidone, polyvinyl alcohol, mica and talc Viscosity modifiers such as non-ionic surfactants, anionic surfactants, amphoteric surfactants, cationic surfactants, water-soluble polymers, etc .; soaps (stearin) Sodium sulfate, potassium stearate, sodium oleate), metal soaps (calcium stearate, magnesium stearate, aluminum stearate, barium stearate, lithium stearate, zinc stearate, calcium palmitate), waxes (polyethylene wax, Polypropylene wax, carnauba wax, beeswax, paraffin wax, microcrystalline wax), fatty acid amide (ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bisbehenic acid amide, N, N′-disteari Lubricating components such as adipic acid amide, ethylene bisoleic acid amide, ethylene bis erucic acid amide, hexamethylene bis oleic acid amide, N, N'-dioleyl adipic acid amide); oils such as vegetable oil, mineral oil, synthetic oil And the like. One type of these components may be contained in the lubricant of the present invention, or two or more types may be used in combination.
Water-soluble means the property of dissolving 1 g or more in 100 g of water at 25 ° C.

<<含有量>>
潤滑剤に含まれる、上記スメクタイト系粘土鉱物の質量(A)と、上記アンモニウムイオンのアミン換算質量(アンモニウムイオンの原料である化合物(1)の総質量:B)との比(B/A)は、特に制限されるものではないが、0.1〜1.0の範囲内であることが好ましく、0.25〜0.65の範囲内であることがより好ましい。また、本発明の潤滑剤に上記無機固体粒子が含まれている場合、無機固体粒子の含有量は特に限定されないが、潤滑剤全体における無機固体粒子の固形分割合として、好ましくは0.01〜10質量%の範囲内であり、より好ましくは0.05〜5質量%の範囲内である。
<< Content >>
Ratio (B M ) between the mass (A M ) of the smectite clay mineral contained in the lubricant and the amine equivalent mass of the ammonium ion (the total mass of the compound (1) which is a raw material of ammonium ion: B M ). / A M ) is not particularly limited, but is preferably in the range of 0.1 to 1.0, and more preferably in the range of 0.25 to 0.65. Further, when the inorganic solid particles are contained in the lubricant of the present invention, the content of the inorganic solid particles is not particularly limited, but as a solid content ratio of the inorganic solid particles in the entire lubricant, preferably 0.01 ~ It is in the range of 10% by mass, and more preferably in the range of 0.05-5% by mass.

なお、本発明の潤滑剤が液体潤滑剤である場合、液体潤滑剤に含まれる液体媒体の含有量は、特に制限されず、金属材の表面上に潤滑剤を接触させる方法、形成させる潤滑被膜の膜厚等を考慮して適宜設定される。   In addition, when the lubricant of the present invention is a liquid lubricant, the content of the liquid medium contained in the liquid lubricant is not particularly limited, and a method of bringing the lubricant into contact with the surface of the metal material, a lubricant film to be formed The thickness is appropriately set in consideration of the thickness of the film.

<<潤滑剤の製造方法>>
上記潤滑剤は、例えば、以下のように製造することができる。化合物(1)を該化合物(1)の融点温度以上に加熱した脱イオン水に分散させた後、該化合物(1)をカチオン化するための酸を加えて混合し、pHを所定の範囲に調整して、カチオン化したアミンの水溶液を調製する。次に、この水溶液と、上記液体媒体にスメクタイト系粘土鉱物を分散させた分散液とを、所定の範囲のpHに維持したまま混合する。この混合により、スメクタイト系粘土鉱物の層間に存在する陽イオンと、カチオン化した化合物(1)とがイオン交換されて、カチオン化した化合物(1)が層間に挿入されたスメクタイト系粘土鉱物を含む液体潤滑剤を製造することができる。なお、2種以上のアミンを組み合わせて用いる場合には、融点温度が高いアミンの融点温度以上に加熱した脱イオン水に、2種以上のアミンを分散させた後、上記と同様に液体潤滑剤を製造することができる。また、pHは、6.0以下であれば特に限定されるものではなく、4.5以下であることが好ましい。pHの値は、既存のpHメーターあるいはpH試験紙を用いて、脱イオン水を加熱した上記温度にて測定した値である。化合物(1)をカチオン化するために使用する酸としては、特に限定されるものではなく、例えば、硝酸、リン酸等の無機酸;マレイン酸、コハク酸、リンゴ酸、酒石酸、クエン酸等の有機酸;等を挙げることができるが、非ハロゲン系の酸であることが好ましい。
<< Lubricant Manufacturing Method >>
The lubricant can be produced, for example, as follows. The compound (1) is dispersed in deionized water heated to a temperature equal to or higher than the melting temperature of the compound (1), and then an acid for cationizing the compound (1) is added and mixed to bring the pH within a predetermined range. Prepare an aqueous solution of a cationized amine. Next, this aqueous solution and a dispersion obtained by dispersing smectite clay mineral in the liquid medium are mixed while maintaining the pH within a predetermined range. By this mixing, the cation existing between the layers of the smectite clay mineral is ion-exchanged with the cationized compound (1), and the cationized compound (1) includes the smectite clay mineral inserted between the layers. Liquid lubricants can be manufactured. In the case of using two or more kinds of amines in combination, after the two or more kinds of amines are dispersed in deionized water heated above the melting point temperature of the amine having a high melting point temperature, a liquid lubricant is used in the same manner as above. Can be manufactured. Moreover, if pH is 6.0 or less, it will not specifically limit, It is preferable that it is 4.5 or less. The value of pH is a value measured at the above-mentioned temperature at which deionized water is heated using an existing pH meter or pH test paper. The acid used for cationizing the compound (1) is not particularly limited, and examples thereof include inorganic acids such as nitric acid and phosphoric acid; maleic acid, succinic acid, malic acid, tartaric acid, citric acid and the like. Organic acids; etc. can be mentioned, but non-halogen acids are preferred.

なお、スメクタイト系粘土鉱物の層間に存在する陽イオンと、化合物(1)をカチオン化したアンモニウムイオンとのイオン交換が行われると、スメクタイト系粘土鉱物の層間の間隔が増大する。従って、上記アンモニウムイオンが、スメクタイト系粘土鉱物の層間に挿入されたことは、該アンモニウムイオンの挿入前後の、スメクタイト系粘土鉱物の層間の間隔を測定することにより、容易に確認することができる。なお、層間の間隔は、例えば、Cu管球を用いた定方位法によるX線回折で回折パターンを測定し、その回折パターンから底面反射(d001)面の回折角を求めて、ブラッグの式(2d・sinθ=λ)からスメクタイト系粘土鉱物の層間の間隔を求めることができる。なお、ブラッグの式における、「d」はスメクタイト系粘土鉱物の層間の間隔を、「θ」は求めた回折角を、「λ」はKα線の波長を、それぞれ意味する。   In addition, when the ion exchange with the cation which exists between the layers of a smectite clay mineral and the ammonium ion which cationized the compound (1) is performed, the space | interval between layers of a smectite clay mineral will increase. Therefore, it can be easily confirmed that the ammonium ions are inserted between the layers of the smectite clay mineral by measuring the distance between the layers of the smectite clay mineral before and after the insertion of the ammonium ions. The distance between the layers can be determined by, for example, measuring a diffraction pattern by X-ray diffraction by a fixed orientation method using a Cu tube, obtaining a diffraction angle of a bottom reflection (d001) plane from the diffraction pattern, and Bragg's formula ( 2d · sin θ = λ), the distance between the layers of the smectite clay mineral can be obtained. In the Bragg equation, “d” means the distance between the layers of the smectite clay mineral, “θ” means the obtained diffraction angle, and “λ” means the wavelength of the Kα ray.

無機固体粒子や他の成分を含む潤滑剤を製造する場合、無機固体粒子や他の成分の添加タイミングは特に制限されるものではなく、例えば、上記アミンの水溶液又は上記スメクタイト系粘土鉱物を分散させた分散液に添加してもよいし、上記アミンの水溶液と、上記スメクタイト系粘土鉱物を分散させた分散液とを混合させた混合物にこれらを添加してもよいが、上記アミンの水溶液に予め添加しておくことが好ましい。   When producing a lubricant containing inorganic solid particles and other components, the timing of adding the inorganic solid particles and other components is not particularly limited. For example, an aqueous solution of the amine or the smectite clay mineral is dispersed. These may be added to the dispersion, or may be added to a mixture obtained by mixing the aqueous solution of the amine and the dispersion in which the smectite clay mineral is dispersed. It is preferable to add it.

また、上記液体潤滑剤に含まれる液体媒体を、蒸発させたり、減圧留去したりすることにより、固体潤滑剤を製造することができる。なお、液体潤滑剤や固体潤滑剤は、粉砕機を用いて粉砕してもよい。また、製造した固体潤滑剤に液体媒体を加えて液体潤滑剤を製造してもよい。   Moreover, a solid lubricant can be manufactured by evaporating or depressurizingly distilling the liquid medium contained in the said liquid lubricant. The liquid lubricant and the solid lubricant may be pulverized using a pulverizer. Further, a liquid lubricant may be produced by adding a liquid medium to the produced solid lubricant.

<<潤滑剤の用途>>
摺動運動、回転運動、ピストン運動等の運動、又は線材、管材、棒材、ブロック材等の塑性加工で生じる金属材同士の摩擦は、金属材の焼付きをもたらすため、金属材の焼付きを抑制できる本発明の潤滑剤は、摩擦が生じる金属材に対して有用である。
<< Use of lubricant >>
Friction between metal materials caused by sliding motion, rotational motion, piston motion, or plastic processing such as wire rods, pipes, rods, block materials, etc. results in seizure of metal materials. The lubricant of the present invention that can suppress the friction is useful for a metal material in which friction occurs.

<<<潤滑剤の被膜を有する金属材、潤滑剤が付着した金属材>>>
潤滑剤の被膜(以下、潤滑被膜と称する場合がある。)を有する金属材は、金属材の表面上に液体潤滑剤を接触させる接触工程と、接触させた液体潤滑剤を乾燥させる乾燥工程とを実施することにより製造することができる。液体潤滑剤の接触方法としては、例えば、浸漬法、フローコート法、スプレー法等の公知の方法を挙げることができる。接触工程における接触条件、すなわち、接触時間及び接触温度は、潤滑被膜を製造できる条件であれば特に制限されるものではない。液体潤滑剤の乾燥は、潤滑剤中の液体媒体を、15重量%以下、好ましくは3重量%以下になるまで蒸発させることにより行なわれる。乾燥方法としては、例えば、自然乾燥、加熱乾燥、風乾等の公知の方法を挙げることができる。
<<< Metal Material with Lubricant Film, Metal Material with Lubricant >>>
A metal material having a lubricant film (hereinafter sometimes referred to as a lubricant film) includes a contact process in which a liquid lubricant is brought into contact with the surface of the metal material, and a drying process in which the contacted liquid lubricant is dried. It can manufacture by implementing. Examples of the contact method of the liquid lubricant include known methods such as an immersion method, a flow coating method, and a spray method. The contact conditions in the contact process, that is, the contact time and the contact temperature are not particularly limited as long as the lubricant film can be produced. The liquid lubricant is dried by evaporating the liquid medium in the lubricant to 15% by weight or less, preferably 3% by weight or less. Examples of the drying method include known methods such as natural drying, heat drying, and air drying.

このようにして形成させた潤滑被膜の付着量は、0.5〜40g/mの範囲内であることが好ましく、0.5〜30g/mの範囲内であることがより好ましく、2〜20g/mの範囲内であることが特に好ましい。潤滑被膜の付着量を0.5〜40g/mの範囲内とすることで、優れた潤滑性を有するだけでなく、耐焼付き性、耐カス詰まり性等の性能を向上させることができる。 Adhesion amount of the thus lubricating coating which is formed is preferably in the range of 0.5 to 40 g / m 2, more preferably in the range of 0.5 to 30 g / m 2, 2 Particularly preferably, it is in the range of ˜20 g / m 2 . By setting the adhesion amount of the lubricating coating within the range of 0.5 to 40 g / m 2 , not only has excellent lubricity, but also performance such as seizure resistance and clogging resistance can be improved.

固体潤滑剤が付着した金属材は、金属材の表面上に固体潤滑剤を付着させる付着工程を実施することにより製造することができる。固体潤滑剤の付着方法としては、例えば、静電塗布、流動浸漬、散布等の公知の方法を挙げることができる。付着工程における付着条件、すなわち、付着温度は特に制限されるものではない。   The metal material to which the solid lubricant is adhered can be manufactured by performing an adhesion process in which the solid lubricant is adhered on the surface of the metal material. Examples of the method for attaching the solid lubricant include known methods such as electrostatic coating, fluid dipping, and spraying. The deposition conditions in the deposition process, that is, the deposition temperature is not particularly limited.

固体潤滑剤の付着量は、0.5〜40g/mの範囲内であることが好ましく、0.5〜30g/mの範囲内であることがより好ましく、2〜20g/mの範囲内であることが特に好ましい。固体潤滑剤の付着量を0.5〜40g/mの範囲内とすることで、優れた潤滑性を有するだけでなく、耐焼付き性、耐カス詰まり性等の性能を向上させることができる。 Adhesion amount of the solid lubricant is preferably in the range of 0.5 to 40 g / m 2, more preferably in the range of 0.5 to 30 g / m 2, of 2 to 20 g / m 2 It is particularly preferable that it is within the range. By making the adhesion amount of the solid lubricant within the range of 0.5 to 40 g / m 2 , not only has excellent lubricity, but also performance such as seizure resistance and clogging resistance can be improved. .

なお、潤滑被膜を有する金属材の製造方法又は固体潤滑剤が付着した金属材の製造方法において、接触工程又は付着工程の前に、金属材に対して、ショットブラスト、サンドブラスト、ウェットブラスト、ピーリング、アルカリ脱脂及び酸洗浄よりなる群から選ばれる少なくとも一種類の清浄化処理を行ってもよい。ここでの清浄化とは、焼鈍等により成長した酸化スケールや各種汚れ(油等)を除去することを目的とするものである。また、これらの処理の前及び/又は後に、水洗を行ってもよいし、行わなくともよい。   In addition, in the method for producing a metal material having a lubricant film or the method for producing a metal material to which a solid lubricant is adhered, before the contact step or the adhesion step, the metal material is subjected to shot blasting, sand blasting, wet blasting, peeling, At least one type of cleaning treatment selected from the group consisting of alkali degreasing and acid cleaning may be performed. The purpose of cleaning here is to remove oxide scales and various types of dirt (oil, etc.) grown by annealing or the like. Moreover, before and / or after these treatments, washing with water may or may not be performed.

また、接触工程又は付着工程の前に、必要に応じて、金属材に対して化成処理や下地処理等を施しても構わない。化成処理としては、例えば、リン酸鉄化成処理、リン酸亜鉛化成処理、リン酸亜鉛カルシウム化成処理、シュウ酸鉄化成処理、フッ化アルミニウム化成処理、酸化ジルコン化成処理等を挙げることができる。下地処理としては、例えば、ホウ酸、ケイ酸、硫酸、リン酸、タングステン酸等のアルカリ金属塩を含む下地処理剤を、金属材の表面上に接触させて乾燥させる方法;ブラスト等の投射法により、本発明の潤滑剤以外の、公知の固形潤滑剤(例えば、リン酸亜鉛、酸化亜鉛、二酸化チタン、雲母、二硫化モリブデン、二硫化タングステン、二硫化錫、フッ化黒鉛、黒鉛、窒化ホウ素、水酸化カルシウム、炭酸カルシウム、石灰、硫酸カルシウム、硫酸バリウム等)をメカニカルにコーティングする方法;等を挙げることができる。   Moreover, you may perform a chemical conversion treatment, a base treatment, etc. with respect to a metal material as needed before a contact process or an adhesion process. Examples of the chemical conversion treatment include iron phosphate chemical conversion treatment, zinc phosphate chemical conversion treatment, zinc phosphate calcium chemical conversion treatment, iron oxalate chemical conversion treatment, aluminum fluoride chemical conversion treatment, and zircon oxide chemical conversion treatment. As the surface treatment, for example, a method in which a surface treatment agent containing an alkali metal salt such as boric acid, silicic acid, sulfuric acid, phosphoric acid, tungstic acid is brought into contact with the surface of the metal material and dried; a projection method such as blasting By using a known solid lubricant other than the lubricant of the present invention (for example, zinc phosphate, zinc oxide, titanium dioxide, mica, molybdenum disulfide, tungsten disulfide, tin disulfide, graphite fluoride, graphite, boron nitride) , Calcium hydroxide, calcium carbonate, lime, calcium sulfate, barium sulfate and the like).

金属材としては、特に限定されないが、鉄、鉄合金(例えば、鋼、ステンレス)、銅、銅合金、アルミニウム、アルミニウム合金、チタン、チタン合金等が挙げられる。金属材は、摺動部材、該摺動部材に接触する部材、回転運動部材、シリンダー、ピストン、塑性加工用被加工材、塑性加工用金型部材等である。   Although it does not specifically limit as a metal material, Iron, an iron alloy (for example, steel, stainless steel), copper, a copper alloy, aluminum, an aluminum alloy, titanium, a titanium alloy, etc. are mentioned. The metal material is a sliding member, a member in contact with the sliding member, a rotational motion member, a cylinder, a piston, a workpiece for plastic working, a mold member for plastic working, or the like.

<<<金属材の塑性加工方法及び成形加工金属材の製造方法>>>
上記潤滑剤を用いることにより、金属材の塑性加工を効率よく行なうことができる。金属材の塑性加工方法は、摩擦を生じさせる2つの金属材(塑性加工用被加工材及び塑性加工用金型部材)のうち少なくとも1方の表面上に、液体潤滑剤を接触させて潤滑被膜を形成させる工程を含む。該潤滑被膜の形成は、上述の接触工程と乾燥工程とを実施することにより行うことができる。なお、潤滑被膜の形成は、2つの金属材(塑性加工用被加工材、及び塑性加工用金型部材の表面)が接触する面上に、それぞれ行ってもよい。
<<< Plastic processing method of metal material and manufacturing method of forming metal material >>>
By using the lubricant, plastic processing of the metal material can be performed efficiently. The plastic processing method of a metal material is a method in which a liquid lubricant is brought into contact with at least one surface of two metal materials (a workpiece for plastic processing and a mold member for plastic processing) that generate friction, and a lubricating coating is formed. Forming a step. The formation of the lubricating coating can be performed by carrying out the contact step and the drying step described above. In addition, you may perform formation of a lubricating film on the surface where two metal materials (The workpiece for plastic working, and the surface of the metal member for plastic working) contact, respectively.

また、金属材の塑性加工方法は、摩擦を生じさせる2つの金属材(塑性加工用被加工材及び塑性加工用金型部材)のうち少なくとも1方の表面上に、固体潤滑剤を付着させる工程を含む。固体潤滑剤の付着は、上述の付着工程を実施することにより行うことができる。なお、固体潤滑剤の付着は、2つの金属材(塑性加工用被加工材、及び塑性加工用金型部材)が接触する面上に、それぞれ行ってもよい。   Further, the plastic working method of the metal material includes a step of attaching a solid lubricant on at least one surface of two metal materials (a work material for plastic working and a mold member for plastic working) that cause friction. including. The solid lubricant can be attached by performing the above-described attaching step. The solid lubricant may be attached to the surfaces where the two metal materials (the workpiece for plastic working and the mold member for plastic working) are in contact with each other.

なお、潤滑被膜の形成又は固体潤滑剤の付着の前に、上記清浄化処理、化成処理、下地処理等の処理を行ってもよい。   In addition, you may perform processes, such as the said cleaning process, chemical conversion treatment, and surface treatment, before formation of a lubricating film or adhesion of a solid lubricant.

上述のように、潤滑被膜の形成又は固体潤滑剤の付着を行った後、2つの金属材を接触させて塑性加工を行う工程を実施することにより、所望の形状に成形加工した金属材を製造することができる。塑性加工方法としては特に限定されないが、例えば、押し出し加工、伸線加工、引き抜き加工、絞り加工、曲げ加工、接合加工、せん断加工、サイジング加工等の公知の方法が挙げられる。   As described above, after forming a lubricant film or attaching a solid lubricant, a metal material molded into a desired shape is manufactured by carrying out a plastic working process by bringing two metal materials into contact with each other. can do. Although it does not specifically limit as a plastic processing method, For example, well-known methods, such as an extrusion process, a wire drawing process, a drawing process, a drawing process, a bending process, a joining process, a shearing process, a sizing process, are mentioned.

以下、本発明の実施例を比較例と共に挙げることによって、本発明をその効果と共に更に具体的に説明する。なお、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described more specifically together with the effects thereof by giving examples of the present invention together with comparative examples. In addition, this invention is not limited by these Examples.

I.潤滑剤の製造
潤滑剤の製造例を以下に示す。
(製造例1)
脱イオン水950gにモンモリロナイト(交換性陽イオン=Na+、CEC(陽イオン交換容量:Cation Exchange Capacity)値=115meq/100g)50gを添加し、ホモジナイザーで1時間撹拌して分散液を作製した。次にn−パルミチルアミン[長鎖アルキル基の数(以下、単に「Num」と称する):1、長鎖アルキル基の主鎖の炭素数の合計数(以下、単に「Tot」と称する):16]13.9g(CECの1.0モル当量分)を、該アミンの融点温度以上に加熱した脱イオン水200gに分散させた後、10wt%の酒石酸を用いてpHを3.3に調整することにより、カチオン化したアミンの水溶液を調製した。調製した水溶液のpHを3.3に維持させながら、分散液を添加し、1時間更に撹拌した。続いて、攪拌混合物を、5Cのろ紙を用いて吸引ろ過した後、固形分を回収した。回収物を60℃で一晩乾燥させた後、メノウ乳鉢で粉砕し、固体潤滑剤を製造した。なお、CEC値は、Schollenberger法に基づいて測定した。
I. Lubricant Production Examples of lubricant production are shown below.
(Production Example 1)
To 950 g of deionized water, 50 g of montmorillonite (exchangeable cation = Na +, CEC (cation exchange capacity) value = 115 meq / 100 g) was added and stirred for 1 hour with a homogenizer to prepare a dispersion. Next, n-palmitylamine [the number of long-chain alkyl groups (hereinafter simply referred to as “Num”): 1, the total number of carbons in the main chain of the long-chain alkyl group (hereinafter simply referred to as “Tot”) : 16] 13.9 g (1.0 molar equivalent of CEC) was dispersed in 200 g of deionized water heated above the melting point temperature of the amine, and then the pH was adjusted to 3.3 using 10 wt% tartaric acid. By adjusting, an aqueous solution of a cationized amine was prepared. While maintaining the pH of the prepared aqueous solution at 3.3, the dispersion was added and further stirred for 1 hour. Subsequently, the stirred mixture was subjected to suction filtration using 5C filter paper, and then the solid content was recovered. The collected material was dried at 60 ° C. overnight and then pulverized in an agate mortar to produce a solid lubricant. The CEC value was measured based on the Schollenberger method.

(製造例2)
n−パルミチルアミン(CECの1.0モル当量分)をn−ステアリルアミン(CECの1.0モル当量分、Num=1、Tot=18)に代え、pHを4.1に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 2)
The pH was adjusted to 4.1 by replacing n-palmitylamine (1.0 molar equivalent of CEC) with n-stearylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 18). Produced a solid lubricant in the same manner as in Production Example 1.

(製造例3)
n−パルミチルアミン(CECの1.0モル当量分)をN,N−ジメチル−N−n−パルミチルアミン(CECの1.0モル当量分、Num=1、Tot=16)に代え、pHを3.2に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 3)
n-palmitylamine (1.0 molar equivalent of CEC) was replaced with N, N-dimethyl-Nn-palmitylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 16) A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 3.2.

(製造例4)
n−パルミチルアミン(CECの1.0モル当量分)をN,N−ジメチル−N−n−ステアリルアミン(CECの1.0モル当量分、Num=1、Tot=18)に代え、pHを3.2に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 4)
n-palmitylamine (1.0 molar equivalent of CEC) is replaced with N, N-dimethyl-Nn-stearylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 18), pH A solid lubricant was produced in the same manner as in Production Example 1 except that was adjusted to 3.2.

(製造例5)
CECの1.0モル当量分をCECの0.8モル当量分に代え、pHを3.2に調整した他は、製造例4と同様に固体潤滑剤を製造した。
(Production Example 5)
A solid lubricant was produced in the same manner as in Production Example 4 except that the 1.0 molar equivalent of CEC was replaced with 0.8 molar equivalent of CEC and the pH was adjusted to 3.2.

(製造例6)
CECの1.0モル当量分をCECの1.2モル当量分に代え、pHを3.8に調整した他は、製造例4と同様に固体潤滑剤を製造した。
(Production Example 6)
A solid lubricant was produced in the same manner as in Production Example 4, except that 1.0 molar equivalent of CEC was replaced with 1.2 molar equivalent of CEC and the pH was adjusted to 3.8.

(製造例7)
CECの1.0モル当量分をCECの1.4モル当量分に代え、pHを4.0に調整した他は、製造例4と同様に固体潤滑剤を製造した。
(Production Example 7)
A solid lubricant was produced in the same manner as in Production Example 4, except that 1.0 molar equivalent of CEC was replaced with 1.4 molar equivalent of CEC and the pH was adjusted to 4.0.

(製造例8)
CECの1.0モル当量分をCECの1.6モル当量分に代え、pHを3.6に調整した他は、製造例4と同様に固体潤滑剤を製造した。
(Production Example 8)
A solid lubricant was produced in the same manner as in Production Example 4, except that 1.0 molar equivalent of CEC was replaced with 1.6 molar equivalent of CEC and the pH was adjusted to 3.6.

(製造例9)
n−パルミチルアミン(CECの1.0モル当量分)をN,N−ジメチル−N−n−ベヘニルアミン(CECの1.0モル当量分、Num=1、Tot=22)に代え、pHを3.7に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 9)
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N-dimethyl-Nn-behenylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 22), pH A solid lubricant was produced in the same manner as in Production Example 1, except that was adjusted to 3.7.

(製造例10)
n−パルミチルアミン(CECの1.0モル当量分)をN,N−ジ−n−オクチル−N−メチルアミン(CECの1.0モル当量分、Num=2、Tot=16)に代え、pHを3.7に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 10)
Replacing n-palmitylamine (1.0 molar equivalent of CEC) with N, N-di-n-octyl-N-methylamine (1.0 molar equivalent of CEC, Num = 2, Tot = 16) A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 3.7.

(製造例11)
n−パルミチルアミン(CECの1.0モル当量分)をN,N−ジ−n−ラウリル−N−メチルアミン(CECの1.0モル当量、Num=2、Tot=24)に代え、pHを3.9に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 11)
Replacing n-palmitylamine (1.0 molar equivalent of CEC) with N, N-di-n-lauryl-N-methylamine (1.0 molar equivalent of CEC, Num = 2, Tot = 24) A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 3.9.

(製造例12)
n−パルミチルアミン(CECの1.0モル当量分)をN,N−ジ−n−ステアリル−N−メチルアミン(CECの1.0モル当量、Num=2、Tot=36)に代え、pHを3.5に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 12)
n-palmitylamine (1.0 molar equivalent of CEC) was replaced with N, N-di-n-stearyl-N-methylamine (1.0 molar equivalent of CEC, Num = 2, Tot = 36) A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 3.5.

(製造例13)
n−パルミチルアミン(CECの1.0モル当量分)をN,N,N−トリ−n−オクチルアミン(CECの1.0モル当量、Num=3、Tot=24)に代え、pHを4.0に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 13)
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N, N-tri-n-octylamine (1.0 molar equivalent of CEC, Num = 3, Tot = 24) A solid lubricant was produced in the same manner as in Production Example 1 except that it was adjusted to 4.0.

(製造例14)
n−パルミチルアミン(CECの1.0モル当量分)をN,N,N−トリ−n−デシルアミン(CECの1.0モル当量、Num=3、Tot=30)に代え、pHを3.8に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 14)
n-palmitylamine (1.0 molar equivalent of CEC) was replaced with N, N, N-tri-n-decylamine (1.0 molar equivalent of CEC, Num = 3, Tot = 30) and the pH was changed to 3 A solid lubricant was produced in the same manner as in Production Example 1 except for adjusting to .8.

(製造例15)
n−パルミチルアミン(CECの1.0モル当量分)をN,N,N−トリ−n−ドデシルアミン(CECの1.0モル当量、Num=3、Tot=36)に代え、pHを3.7に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 15)
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N, N-tri-n-dodecylamine (1.0 molar equivalent of CEC, Num = 3, Tot = 36) A solid lubricant was produced in the same manner as in Production Example 1 except that the amount was adjusted to 3.7.

(製造例16)
n−パルミチルアミン(CECの1.0モル当量分)をN,N−ジ−n−ステアリルアミン(CECの1.0モル当量、Num=2、Tot=36)に代え、pHを4.0に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 16)
The n-palmitylamine (1.0 molar equivalent of CEC) was replaced with N, N-di-n-stearylamine (1.0 molar equivalent of CEC, Num = 2, Tot = 36) and the pH was 4. A solid lubricant was produced in the same manner as in Production Example 1 except that it was adjusted to 0.

(製造例17)
脱イオン水950gにモンモリロナイト(交換性陽イオン=Na+、CEC値=115meq/100g)50gを添加し、ホモジナイザーで1時間撹拌して分散液を作製した。次にN,N−ジ−n−ステアリルアミン(CECの1.0モル当量分、Num=2、Tot=36)を、該アミンの融点温度以上に加熱した脱イオン水200gに分散させた後、10wt%の酒石酸を用いてpHを3.3に調整することにより、カチオン化したアミンの水溶液を調製した。次いでこの水溶液に無機固体粒子としてグラフェン0.5g(モンモリロナイトの1wt%)を30分かけて混合することにより混合液を調製した。調製した混合液のpHを維持させながら、分散液を添加し、1時間更に撹拌した。続いて、攪拌混合物を、5Cのろ紙を用いて吸引ろ過した後、固形分を回収した。回収物を60℃で一晩乾燥させた後、メノウ乳鉢で粉砕し、固体潤滑剤を製造した。
(Production Example 17)
To 950 g of deionized water, 50 g of montmorillonite (exchangeable cation = Na +, CEC value = 115 meq / 100 g) was added and stirred for 1 hour with a homogenizer to prepare a dispersion. Next, N, N-di-n-stearylamine (1.0 molar equivalent of CEC, Num = 2, Tot = 36) was dispersed in 200 g of deionized water heated to a temperature higher than the melting point of the amine. An aqueous solution of a cationized amine was prepared by adjusting the pH to 3.3 using 10 wt% tartaric acid. Next, 0.5 g of graphene (1 wt% of montmorillonite) as inorganic solid particles was mixed with this aqueous solution over 30 minutes to prepare a mixed solution. While maintaining the pH of the prepared mixture, the dispersion was added and further stirred for 1 hour. Subsequently, the stirred mixture was subjected to suction filtration using 5C filter paper, and then the solid content was recovered. The collected material was dried at 60 ° C. overnight and then pulverized in an agate mortar to produce a solid lubricant.

(製造例18)
pHを3.7に調整する以外は製造例17と同様にカチオン化したアミンの水溶液を調製した。調製した水溶液のpHを維持させながら、分散液を添加し、1時間更に撹拌した後、無機固体粒子としてグラフェン0.5gを30分かけて混合し、混合液を調製した。続いて、混合液を、5Cのろ紙を用いて吸引ろ過した後、固形分を回収した。回収物を60℃で一晩乾燥させた後、メノウ乳鉢で粉砕し、固体潤滑剤を製造した。
(Production Example 18)
An aqueous solution of a cationized amine was prepared in the same manner as in Production Example 17 except that the pH was adjusted to 3.7. While maintaining the pH of the prepared aqueous solution, the dispersion was added and further stirred for 1 hour, and then 0.5 g of graphene was mixed as inorganic solid particles over 30 minutes to prepare a mixed solution. Subsequently, the mixed solution was subjected to suction filtration using 5C filter paper, and then the solid content was recovered. The collected material was dried at 60 ° C. overnight and then pulverized in an agate mortar to produce a solid lubricant.

(製造例19)
グラフェンをカーボンナノチューブに代え、pHを4.0に調整した他は、製造例17と同様に固体潤滑剤を製造した。
(Production Example 19)
A solid lubricant was produced in the same manner as in Production Example 17 except that the graphene was replaced with carbon nanotubes and the pH was adjusted to 4.0.

(製造例20)
グラフェンをカーボンナノチューブに代え、pHを4.1に調整した他は、製造例18と同様に固体潤滑剤を製造した。
(Production Example 20)
A solid lubricant was produced in the same manner as in Production Example 18, except that the graphene was replaced with carbon nanotubes and the pH was adjusted to 4.1.

(製造例21)
グラフェンを二硫化モリブデンに代え、pHを3.7に調整した他は、製造例17と同様に固体潤滑剤を製造した。
(Production Example 21)
A solid lubricant was produced in the same manner as in Production Example 17 except that graphene was replaced with molybdenum disulfide and the pH was adjusted to 3.7.

(製造例22)
グラフェンを二硫化モリブデンに代え、pHを4.0に調整した他は、製造例18と同様に固体潤滑剤を製造した。
(Production Example 22)
A solid lubricant was produced in the same manner as in Production Example 18 except that graphene was replaced with molybdenum disulfide and the pH was adjusted to 4.0.

(製造例23)
モンモリロナイトを天然ヘクトライト(交換性陽イオン=Na+、CEC値=97meq/100g)に、n−パルミチルアミンをN,N−ジ−n−ステアリルアミン24.1g(CECの1.0モル当量分)にそれぞれ代え、pHを2.8に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 23)
Montmorillonite is natural hectorite (exchangeable cation = Na +, CEC value = 97 meq / 100 g), n-palmitylamine is 24.1 g of N, N-di-n-stearylamine (1.0 molar equivalent of CEC) ), And a solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 2.8.

(製造例24)
モンモリロナイトを合成ヘクトライト(交換性陽イオン=Na+;CEC値=79meq/100g)に、n−パルミチルアミンをN,N−ジ−n−ステアリルアミン29.9g(CECの1.0モル当量)にそれぞれ代え、pHを2.9に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 24)
Montmorillonite is a synthetic hectorite (exchangeable cation = Na +; CEC value = 79 meq / 100 g), n-palmitylamine is 29.9 g of N, N-di-n-stearylamine (1.0 molar equivalent of CEC) A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 2.9.

(製造例25)
n−パルミチルアミン(CECの1.0モル当量分)をn−オクチルアミン(CECの1.0モル当量、Num=1、Tot=8)に代え、pHを3.0に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 25)
n-palmitylamine (1.0 molar equivalent of CEC) was replaced with n-octylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 8), and the pH was adjusted to 3.0. A solid lubricant was produced in the same manner as in Production Example 1.

(製造例26)
n−パルミチルアミン(CECの1.0モル当量分)をn−ラウリルアミン(CECの1.0モル当量、Num=1、Tot=12)に代え、pHを3.4に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 26)
n-palmitylamine (1.0 molar equivalent of CEC) was replaced with n-laurylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 12), and the pH was adjusted to 3.4. A solid lubricant was produced in the same manner as in Production Example 1.

(製造例27)
n−パルミチルアミン(CECの1.0モル当量分)をn−ミリスチルアミン(CECの1.0モル当量、Num=1、Tot=14)に代え、pHを4.0に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 27)
n-palmitylamine (1.0 molar equivalent of CEC) was replaced with n-myristylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 14), and the pH was adjusted to 4.0. A solid lubricant was produced in the same manner as in Production Example 1.

(製造例28)
n−パルミチルアミン(CECの1.0モル当量分)をN,N−ジメチル−N−n−オクチルアミン(CECの1.0モル当量、Num=1、Tot=8)に代え、pHを3.6に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 28)
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N-dimethyl-Nn-octylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 8) A solid lubricant was produced in the same manner as in Production Example 1 except that the amount was adjusted to 3.6.

(製造例29)
n−パルミチルアミン(CECの1.0モル当量分)をN,N−ジメチル−N−n−ラウリルアミン(CECの1.0モル当量、Num=1、Tot=12)に代え、pHを3.8に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 29)
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N-dimethyl-Nn-laurylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 12) A solid lubricant was produced in the same manner as in Production Example 1 except that the amount was adjusted to 3.8.

(製造例30)
n−パルミチルアミン(CECの1.0モル当量分)をN,N−ジメチル−N−n−ミリスチルアミン(CECの1.0モル当量、Num=1、Tot=14)に代え、pHを3.9に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 30)
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N-dimethyl-Nn-myristylamine (1.0 molar equivalent of CEC, Num = 1, Tot = 14) A solid lubricant was produced in the same manner as in Production Example 1 except that the content was adjusted to 3.9.

(製造例31)
n−パルミチルアミン(CECの1.0モル当量分)をN,N−ジ−n−ヘキシル−N−メチルアミン(CECの1.0モル当量、Num=0、Tot=0)に代え、pHを3.6に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 31)
Replacing n-palmitylamine (1.0 molar equivalent of CEC) with N, N-di-n-hexyl-N-methylamine (1.0 molar equivalent of CEC, Num = 0, Tot = 0) A solid lubricant was produced in the same manner as in Production Example 1 except that the pH was adjusted to 3.6.

(製造例32)
n−パルミチルアミン(CECの1.0モル当量分)をN,N,N−トリ−n−ヘキシルアミン(CECの1.0モル当量、Num=0、Tot=0)に代え、pHを3.7に調整した他は、製造例1と同様に固体潤滑剤を製造した。
(Production Example 32)
Replace n-palmitylamine (1.0 molar equivalent of CEC) with N, N, N-tri-n-hexylamine (1.0 molar equivalent of CEC, Num = 0, Tot = 0) A solid lubricant was produced in the same manner as in Production Example 1 except that the amount was adjusted to 3.7.

(製造例33)
脱イオン水950gにモンモリロナイト50gを添加し、ホモジナイザーで1時間撹拌して分散液を作製した。次にN,N−ジ−n−ステアリルアミン(CECの1.0モル当量分)を、該アミンの融点温度以上に加熱した脱イオン水200gに分散させた後、10wt%の酒石酸を用いてpHを4.0に調整することにより、カチオン化したアミンの水溶液を調製した。調製した水溶液のpHを維持させながら、分散液を添加し、1時間更に撹拌して、スラリー体を製造した。このスラリー体91.0重量部に、バインダーとして1.6重量部の四ホウ酸カリウム、分散剤として0.5重量部のカルボキシメチルセルロース、6.9重量部の脱イオン水をそれぞれ加えて、液体潤滑剤を製造した。
(Production Example 33)
50 g of montmorillonite was added to 950 g of deionized water and stirred for 1 hour with a homogenizer to prepare a dispersion. Next, N, N-di-n-stearylamine (1.0 molar equivalent of CEC) was dispersed in 200 g of deionized water heated to a temperature equal to or higher than the melting point of the amine, and then 10 wt% tartaric acid was used. An aqueous solution of a cationized amine was prepared by adjusting the pH to 4.0. While maintaining the pH of the prepared aqueous solution, the dispersion was added and further stirred for 1 hour to produce a slurry. To 91.0 parts by weight of this slurry body, 1.6 parts by weight of potassium tetraborate as a binder, 0.5 parts by weight of carboxymethyl cellulose as a dispersant, and 6.9 parts by weight of deionized water were added respectively. A lubricant was produced.

II.液体潤滑剤の調製方法
製造例1〜32の各固体潤滑剤を用い、下記の配合組成で各液体潤滑剤を調製した。
(配合組成)
有機変性スメクタイト系粘土鉱物(粉末) 7.5重量%
バインダー:四ホウ酸カリウム 2.0重量%
分散剤:カルボキシメチルセルロース 0.5重量%
脱イオン水 90.0重量%
II. Preparation Method of Liquid Lubricant Using each solid lubricant of Production Examples 1 to 32, each liquid lubricant was prepared with the following composition.
(Composition composition)
Organically modified smectite clay mineral (powder) 7.5% by weight
Binder: Potassium tetraborate 2.0% by weight
Dispersant: Carboxymethylcellulose 0.5% by weight
Deionized water 90.0% by weight

III.加工性能評価
<潤滑被膜を形成した試験片の製造>
試験片として、直径14mmφ、高さ32mmの円柱状鋼材(S10C)を用い、以下の処理工程を実施した。
(処理工程)
アルカリ脱脂剤[ファインクリーナーE6400(日本パーカライジング(株)製)を濃度20g/Lとなるように水に混合した水溶液]に、試験片を60℃で10分間浸漬して、アルカリ脱脂を行った。次に、水道水に試験片を1分間浸漬した後、脱イオン水に試験片を1分間浸漬した。続いて、製造例1〜32の固体潤滑剤を用いて調製した液体潤滑剤、又は、製造例33の液体潤滑剤に、試験片を60℃で1分間浸漬した。浸漬後、100℃で30分間乾燥し、潤滑被膜を形成した試験片(実施例1〜18及び20〜28並びに比較例1〜8)を作製した。なお、製造例16の固体潤滑剤を用いて調製した液体潤滑剤については、上記乾燥温度を25℃に変えた他は、上記と同様に、潤滑被膜を形成した試験片(実施例19)を作製した。
実施例1〜28及び比較例1〜8の試験片における各潤滑被膜の付着量を表1に示す。潤滑被膜の付着量は被膜形成前後の重量差により求めた。なお、潤滑被膜の付着量は、液体潤滑剤における固形分比率を変更することで調整した。
III. Machining performance evaluation
<Manufacture of a test piece with a lubricating coating>
A cylindrical steel material (S10C) having a diameter of 14 mmφ and a height of 32 mm was used as a test piece, and the following processing steps were performed.
(Processing process)
The test piece was immersed in an alkaline degreasing agent [an aqueous solution in which Fine Cleaner E6400 (manufactured by Nihon Parkerizing Co., Ltd.) was mixed with water to a concentration of 20 g / L] at 60 ° C. for 10 minutes to perform alkaline degreasing. Next, after immersing the test piece in tap water for 1 minute, the test piece was immersed in deionized water for 1 minute. Then, the test piece was immersed in the liquid lubricant prepared using the solid lubricant of manufacture examples 1-32 or the liquid lubricant of manufacture example 33 at 60 degreeC for 1 minute. After immersion, the test piece (Examples 1-18 and 20-28 and Comparative Examples 1-8) which dried at 100 degreeC for 30 minutes and formed the lubricating film was produced. In addition, about the liquid lubricant prepared using the solid lubricant of manufacture example 16, the test piece (Example 19) which formed the lubricating film similarly to the above was changed except having changed the said drying temperature to 25 degreeC. Produced.
Table 1 shows the adhesion amounts of the respective lubricating coatings on the test pieces of Examples 1 to 28 and Comparative Examples 1 to 8. The adhesion amount of the lubricating coating was determined from the weight difference before and after the coating was formed. In addition, the adhesion amount of the lubricating film was adjusted by changing the solid content ratio in the liquid lubricant.

<加工性能評価試験>
加工性能評価は、参考文献(高橋昭紀・広瀬仁俊・小見山忍・王志剛:第62回塑性加工連合会講演論文集,(2011),89−90)に開示されている据込み−ボールしごき形摩擦試験法に基づいて実施した。なお、据込み加工は据込み率45%で実施し、実施例1〜28及び比較例1〜8の試験片を樽状の形状に加工した。樽状の試験片において張り出した側面部分を対象に、3個のボール状金型(直径10mmのSUJ−2ベアリングボール)を用いてしごき加工(強加工)を行なった。
各試験片の加工性能評価は、表面積拡大が大きいしごき加工後半部の焼付き程度を確認し、図1に示す評価基準に従って実施した。その結果を表1に示す。なお、「△」以上を合格とした。
<Processing performance evaluation test>
Machining performance evaluation is based on the upsetting-ball ironing type disclosed in the references (Akiaki Takahashi, Hitoshi Hirose, Shinobu Komiyama, Shigo Wang: Proceedings of the 62nd Japan Plastic Working Federation Lecture, (2011), 89-90) Based on the friction test method. The upsetting process was performed at an upsetting rate of 45%, and the test pieces of Examples 1 to 28 and Comparative Examples 1 to 8 were processed into a barrel shape. Ironing processing (strong processing) was performed using three ball-shaped molds (SUJ-2 bearing balls having a diameter of 10 mm) on the side surface portion protruding from the barrel-shaped test piece.
The processing performance of each test piece was evaluated according to the evaluation criteria shown in FIG. 1 after confirming the degree of seizure in the latter half of the ironing process with a large surface area expansion. The results are shown in Table 1. In addition, "△" or more was set as the pass.

IV.潤滑性能評価
<潤滑被膜を形成した試験片の製造>
試験片として、直径14mmφ、高さ32mmの円柱状鋼材(S10C)の代わりに、70mm×150mm(厚み0.8mm)の冷延鋼板(SPCC)を用いて、加工性能評価に記載の処理工程を実施し、潤滑被膜を形成した試験片(実施例29〜54及び比較例9〜16)を作製した。なお、実施例44の試験片は100℃で乾燥したものであり、実施例45の試験片は25℃で乾燥したものである。また、潤滑被膜の付着量はそれぞれ4g/mであった。
IV. Lubrication performance evaluation <Manufacture of test pieces with a lubricating coating>
As a test piece, instead of a cylindrical steel material (S10C) having a diameter of 14 mmφ and a height of 32 mm, a cold rolled steel sheet (SPCC) of 70 mm × 150 mm (thickness 0.8 mm) is used, and the processing steps described in the processing performance evaluation are performed It carried out and produced the test piece (Examples 29-54 and Comparative Examples 9-16) which formed the lubricating film. The test piece of Example 44 was dried at 100 ° C., and the test piece of Example 45 was dried at 25 ° C. Moreover, the adhesion amount of the lubricating coating was 4 g / m 2 , respectively.

<潤滑性能評価試験>
実施例29〜54及び比較例9〜16の試験片に対して摩擦摩耗試験機による摺動試験を行った。摺動試験は、バウデン試験にて行った。より具体的には、潤滑被膜を形成させた面に対して、SUJ2鋼球(10mmφ)に1kgの荷重をかけて10mm/sの速度で試験片を往復運動させた。なお、往復運動は1cm間隔で実施した。また、本試験は、25℃の条件下にて実施した。各試験片の潤滑性能評価は、往復運動5回目の動摩擦係数値を測定し、以下の評価基準に従って評価した。なお、「△」以上を合格とした。
(評価基準)
○:動摩擦係数が0.15未満
△:動摩擦係数が0.15以上0.2未満
×:動摩擦係数が0.2以上
<Lubrication performance evaluation test>
A sliding test using a friction and wear tester was performed on the test pieces of Examples 29 to 54 and Comparative Examples 9 to 16. The sliding test was performed by the Bowden test. More specifically, a test piece was reciprocated at a speed of 10 mm / s with a load of 1 kg applied to a SUJ2 steel ball (10 mmφ) on the surface on which the lubricating coating was formed. The reciprocating motion was performed at 1 cm intervals. Moreover, this test was implemented on 25 degreeC conditions. The lubrication performance of each test piece was evaluated according to the following evaluation criteria by measuring the dynamic friction coefficient value at the fifth reciprocating motion. In addition, "△" or more was set as the pass.
(Evaluation criteria)
○: Dynamic friction coefficient is less than 0.15 Δ: Dynamic friction coefficient is 0.15 or more and less than 0.2 ×: Dynamic friction coefficient is 0.2 or more

V.耐食性能評価
<潤滑被膜を形成した試験片の製造>
試験片として、直径14mmφ、高さ32mmの円柱状鋼材(S10C)の代わりに、直径25mmφ、高さ30mmの円柱状鋼材(S45C)を用いて、加工性能評価に記載の処理工程を実施し、潤滑被膜を形成した試験片(実施例55〜80及び比較例17〜24)を作製した。なお、実施例70の試験片は100℃で乾燥したものであり、実施例71の試験片は、25℃で乾燥したものである。また、潤滑被膜の付着量はそれぞれ4g/mであった。
V. Corrosion resistance evaluation <Manufacture of test pieces with lubricating coating>
As a test piece, instead of a cylindrical steel material (S10C) having a diameter of 14 mmφ and a height of 32 mm, a cylindrical steel material (S45C) having a diameter of 25 mmφ and a height of 30 mm was used, and the processing steps described in the processing performance evaluation were performed. Test pieces (Examples 55 to 80 and Comparative Examples 17 to 24) on which a lubricating coating was formed were prepared. In addition, the test piece of Example 70 was dried at 100 ° C., and the test piece of Example 71 was dried at 25 ° C. Moreover, the adhesion amount of the lubricating coating was 4 g / m 2 , respectively.

<耐食性能評価試験>
実施例55〜80及び比較例17〜24の試験片に対して、据込み加工を実施した。据込み加工は、200トンクランクプレスを用いて、各試験片を鏡面仕上げの平面金型(SKD11)で挟み込み、圧縮率が約50%となるように圧力をかけて実施した(加工速度は30ストローク/分)。
据込み加工した試験片の耐食性能評価は、据込み加工した試験片を10日間室内で放置した後、加工面を観察し、発錆の有無を確認することにより実施した。発錆が認められないものを○、発錆が認められたものを×と評価した。その結果を表3に示す。
<Corrosion resistance evaluation test>
Upsetting was performed on the test pieces of Examples 55 to 80 and Comparative Examples 17 to 24. The upsetting process was performed using a 200-ton crank press with each test piece sandwiched between mirror-finished flat molds (SKD11) and applied with pressure so that the compression rate was about 50% (processing speed was 30). Stroke / min).
The corrosion resistance evaluation of the upset processed specimen was carried out by leaving the upset processed specimen in a room for 10 days, then observing the processed surface and checking for rusting. The case where rusting was not recognized was evaluated as ◯, and the case where rusting was observed was evaluated as ×. The results are shown in Table 3.

Claims (9)

スメクタイト系粘土鉱物と、第1級アミン又は第2級アミン又は第3級アミンがカチオン化したアンモニウムイオンとを含み、前記スメクタイト系粘土鉱物の層間に前記アンモニウムイオンが挿入され、前記第1級アミン又は第2級アミン又は第3級アミンは、主鎖の炭素数が8以上である長鎖アルキル基を1以上有し、前記長鎖アルキル基の主鎖の炭素数の合計が16以上である、潤滑剤(但し、ホウ酸リチウムを含むものを除く)。   A primary amine or a secondary amine or a tertiary amine cationized ammonium ion, wherein the ammonium ion is inserted between layers of the smectite clay mineral, and the primary amine Alternatively, the secondary amine or the tertiary amine has one or more long chain alkyl groups having 8 or more carbon atoms in the main chain, and the total number of carbon atoms in the main chain of the long chain alkyl group is 16 or more. , Lubricant (excluding those containing lithium borate). スメクタイト系粘土鉱物と、第1級アミン又は第2級アミン又は第3級アミンがカチオン化したアンモニウムイオンと、グラファイト、グラフェン、酸化グラフェン、フラーレン、カーボンナノチューブ、ダイヤモンドライクカーボン(DLC)、オニオンライクカーボン、二硫化モリブデン、及び二硫化タングステンから選ばれる1種以上の無機固体粒子とを含み、前記スメクタイト系粘土鉱物の層間に少なくとも前記アンモニウムイオンが挿入され、前記第1級アミン又は第2級アミン又は第3級アミンは、主鎖の炭素数が8以上である長鎖アルキル基を1以上有し、前記長鎖アルキル基の主鎖の炭素数の合計が16以上である、潤滑剤。   Smectite clay mineral, ammonium ion cationized by primary amine, secondary amine or tertiary amine, graphite, graphene, graphene oxide, fullerene, carbon nanotube, diamond-like carbon (DLC), onion-like carbon , Molybdenum disulfide, and one or more inorganic solid particles selected from tungsten disulfide, and at least the ammonium ion is inserted between layers of the smectite clay mineral, and the primary amine or secondary amine or The tertiary amine has one or more long-chain alkyl groups having 8 or more carbon atoms in the main chain, and the total number of carbon atoms in the main chain of the long-chain alkyl group is 16 or more. 固体である、請求項1又は2に記載の潤滑剤。   The lubricant according to claim 1 or 2, which is a solid. 請求項1又は2に記載された潤滑剤の被膜を有する金属材。   A metal material having the lubricant coating according to claim 1. 請求項3に記載された潤滑剤が付着した金属材。   A metal material to which the lubricant according to claim 3 is adhered. 請求項1又は2に記載の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に接触させて潤滑被膜を形成させる工程を含む、金属材の塑性加工方法。   A method for plastic working a metal material, comprising the step of bringing the lubricant according to claim 1 or 2 into contact with at least one surface of two metal materials causing friction to form a lubricant film. 請求項3に記載の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に付着させる工程を含む、金属材の塑性加工方法。   A method for plastic working a metal material, comprising the step of adhering the lubricant according to claim 3 on at least one surface of two metal materials causing friction. 請求項1又は2に記載の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に接触させて潤滑被膜を形成させる工程と、2つの金属材を接触させて塑性加工を行う工程と、を含む、成形加工金属材の製造方法。   A step of bringing the lubricant according to claim 1 or 2 into contact with the surface of at least one of two metal materials that cause friction to form a lubricant film, and plastic processing by bringing the two metal materials into contact with each other A method of manufacturing a shaped metal material. 請求項3に記載の潤滑剤を、摩擦を生じさせる2つの金属材のうち少なくとも1方の表面上に付着させる工程と、2つの金属材を接触させて塑性加工を行う工程と、を含む、成形加工金属材の製造方法。   The step of attaching the lubricant according to claim 3 on at least one surface of two metal materials that cause friction, and the step of performing plastic working by bringing the two metal materials into contact with each other, A method for producing a molded metal material.
JP2017128071A 2017-06-29 2017-06-29 Lubricant, metal material, plastic processing method of metal material and method for producing molded metal material Pending JP2019011416A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017128071A JP2019011416A (en) 2017-06-29 2017-06-29 Lubricant, metal material, plastic processing method of metal material and method for producing molded metal material
CN201880034796.9A CN110662823A (en) 2017-06-29 2018-06-28 Lubricant, metal material, method for plastic working of metal material, and method for producing formed metal material
PCT/JP2018/024478 WO2019004328A1 (en) 2017-06-29 2018-06-28 Lubricant, metal material, method for plastically forming metal material, and method for producing formed metal material
EP18824041.0A EP3647396A1 (en) 2017-06-29 2018-06-28 Lubricant, metal material, method for plastically forming metal material, and method for producing formed metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017128071A JP2019011416A (en) 2017-06-29 2017-06-29 Lubricant, metal material, plastic processing method of metal material and method for producing molded metal material

Publications (1)

Publication Number Publication Date
JP2019011416A true JP2019011416A (en) 2019-01-24

Family

ID=64741679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017128071A Pending JP2019011416A (en) 2017-06-29 2017-06-29 Lubricant, metal material, plastic processing method of metal material and method for producing molded metal material

Country Status (4)

Country Link
EP (1) EP3647396A1 (en)
JP (1) JP2019011416A (en)
CN (1) CN110662823A (en)
WO (1) WO2019004328A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373247B (en) * 2019-07-18 2021-09-21 南京理工大学 Functional graphene/montmorillonite/lanthanum borate composite lubricating oil additive
CN114805982B (en) * 2022-04-18 2023-08-18 嘉应学院 Luminescent material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0554822B1 (en) * 1992-02-06 1999-12-29 Timcal Ag Mandrel lubricant for the manufacture of seamless tubes
JP5102952B2 (en) * 2004-10-27 2012-12-19 株式会社豊田自動織機 Sliding member and method of manufacturing sliding member
JP5718944B2 (en) 2010-12-20 2015-05-13 日本パーカライジング株式会社 Lubricant for plastic working of metal materials

Also Published As

Publication number Publication date
WO2019004328A1 (en) 2019-01-03
EP3647396A1 (en) 2020-05-06
CN110662823A (en) 2020-01-07

Similar Documents

Publication Publication Date Title
JP5682021B2 (en) Metallic material with poor crystallinity and excellent moisture absorption, corrosion resistance and workability Water-based lubricant for plastic working and metal material with its lubricating film formed
JP5457452B2 (en) Water-based lubricant for plastic working with excellent corrosion resistance and metal material with excellent plastic workability
CN103261384B (en) Lubricant for plastic processing of metal material
JP5450892B2 (en) Lubricating coating agent for plastic working and method for producing the same
JP3684363B2 (en) Aqueous composition for protective film formation
KR101817456B1 (en) Steel wire rod having lubricating coating film that has excellent corrosion resistance and workability
JP6243515B2 (en) Water-based lubricating film treatment agent and metal material with excellent corrosion resistance and workability
JP3939700B2 (en) Metal soap-coated particles, products using the same, and production methods, and lubricant coatings and lubricant coatings
JP2019011416A (en) Lubricant, metal material, plastic processing method of metal material and method for producing molded metal material
KR101811165B1 (en) Steel wire rod having coating film that has excellent corrosion resistance and workability and method for producing same
CN103154216A (en) Lubricant composition for metal material plasticity processing, lubricating film and coated metal material provided therewith, and method for manufacturing coated metal material
JP6694769B2 (en) Steel wire rod with excellent corrosion resistance and appearance after processing
JPWO2015118602A1 (en) Lubricating coating agent for metal plastic working and metal material for metal plastic working
EP3371288A1 (en) Powder lubricant based on fatty acids and fatty acid glycerides and use thereof
WO2017057385A1 (en) Steel wire with excellent corrosion resistance and appearance after processing