JP2018197174A - Aluminum nitride single crystal manufacturing device - Google Patents

Aluminum nitride single crystal manufacturing device Download PDF

Info

Publication number
JP2018197174A
JP2018197174A JP2017102153A JP2017102153A JP2018197174A JP 2018197174 A JP2018197174 A JP 2018197174A JP 2017102153 A JP2017102153 A JP 2017102153A JP 2017102153 A JP2017102153 A JP 2017102153A JP 2018197174 A JP2018197174 A JP 2018197174A
Authority
JP
Japan
Prior art keywords
crucible
lid
single crystal
aluminum nitride
nitride single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017102153A
Other languages
Japanese (ja)
Other versions
JP6291615B1 (en
Inventor
啓一郎 中村
Keiichiro Nakamura
啓一郎 中村
洋介 岩▲崎▼
Yosuke Iwasaki
洋介 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2017102153A priority Critical patent/JP6291615B1/en
Application granted granted Critical
Publication of JP6291615B1 publication Critical patent/JP6291615B1/en
Publication of JP2018197174A publication Critical patent/JP2018197174A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an aluminum nitride single crystal manufacturing device capable of efficiently manufacturing aluminum nitride single crystals with a small domain region and high crystalline by making it easy to cause convergence of a domain in a crystal growing process.SOLUTION: A device for manufacturing an aluminum nitride single crystal by a sublimation method comprises a raising crucible 1, and heating means 2 for heating the raising crucible 1 from outside. The raising crucible 1 comprises a crucible main body 3 opened at a top and housing a raw material at a bottom, and a cover body 4 set to the crucible main body 3 to block the opened top while holding seed crystals at a lower face center part. A region e for holding at least the seed crystals on a plane of the cover body 4 has a structure with non-constant thickness by forming irregularities 40 on an upper face side or/and a lower face side. A heat extraction effect of the cover body becomes uneven in a plane, and temperature distribution of a seed crystal surface can be made uneven. Therefore, there is a difference in a crystal growing speed per domain region in a seed crystal plane, so that the domain can be efficiently converged.SELECTED DRAWING: Figure 1

Description

本発明は、窒化アルミニウム単結晶の製造装置であって、加熱して昇華させた原料物質を種結晶に堆積させ、種結晶上に窒化アルミニウム単結晶を成長させる単結晶製造装置に関するものである。   The present invention relates to an apparatus for producing an aluminum nitride single crystal, which relates to an apparatus for producing a single crystal in which a source material heated and sublimated is deposited on a seed crystal and an aluminum nitride single crystal is grown on the seed crystal.

近年、AlN、GaN、InNなどの第13族元素の窒化物からなる単結晶が、広いエネルギーバンドギャップ、高い熱伝導率及び高い電気抵抗を有していることから、種々の光デバイスや電子デバイスなどの半導体デバイス用の基板材料として注目されている。
従来、第13族元素の窒化物である窒化アルミニウム単結晶の製造方法としては、加熱により昇華した原料物質を単結晶として成長させる昇華法が知られている(例えば、特許文献1など)。この昇華法では、通常、坩堝内に入れた原料物質を非酸化性雰囲気中で加熱することにより分解気化させ、この分解気化成分を種結晶上に結晶成長させることにより窒化アルミニウム単結晶を得る。
In recent years, single crystals made of Group 13 element nitrides such as AlN, GaN, and InN have a wide energy band gap, high thermal conductivity, and high electrical resistance. It is attracting attention as a substrate material for semiconductor devices.
Conventionally, as a method for producing an aluminum nitride single crystal that is a nitride of a Group 13 element, a sublimation method is known in which a source material sublimated by heating is grown as a single crystal (for example, Patent Document 1). In this sublimation method, an aluminum nitride single crystal is usually obtained by decomposing and vaporizing a raw material material put in a crucible by heating it in a non-oxidizing atmosphere, and crystallizing this decomposed and vaporized component on a seed crystal.

特開平10−53495号公報Japanese Patent Laid-Open No. 10-53495

窒化アルミニウム単結晶は、その結晶成長過程において径方向の成長によりドメインの収斂が起こり、結晶性が向上するが、種結晶中に多くのドメイン領域が存在する場合、昇華法による従来の製造技術を用いて、そのドメインを収斂させるには、数多くの繰り返しの育成が必要となり、ドメイン領域が少なく結晶性の高い窒化アルミニウム単結晶を得るには長い時間を要する。   Aluminum nitride single crystal causes domain convergence due to radial growth during the crystal growth process and improves crystallinity. However, when many domain regions exist in the seed crystal, conventional manufacturing technology by sublimation is used. It takes a long time to obtain an aluminum nitride single crystal having a small number of domain regions and high crystallinity in order to condense the domain by using it and to repeatedly grow it.

したがって本発明の目的は、以上のような従来技術の課題を解決し、結晶成長過程においてドメインの収斂が起こりやすく、これによりドメイン領域が少なく結晶性の高い窒化アルミニウム単結晶を効率的に製造することができる窒化アルミニウム単結晶製造装置及びその部品である育成坩堝用の蓋体を提供することにある。   Accordingly, the object of the present invention is to solve the above-described problems of the prior art and to easily produce an aluminum nitride single crystal having a small domain region and high crystallinity due to the tendency of domain convergence during the crystal growth process. Another object of the present invention is to provide an aluminum nitride single crystal manufacturing apparatus that can be used, and a lid for a growing crucible that is a part thereof.

本発明者らは、上記課題を解決するために検討を重ねた結果、次のような知見を得た。すなわち、従来の窒化アルミニウム単結晶製造装置では、種結晶表面の温度分布が均一であるため、昇華した原料物質が種結晶に堆積する際に種結晶面内において結晶成長速度(堆積速度)に差がなく、ドメインの収斂が起こりにくい状態となっていることが判った。このため、ドメインを収斂させるには数多くの繰り返しの育成が必要であった。これに対して、種結晶表面の温度分布を不均一とすることにより、ドメイン領域ごとの結晶成長速度に差を生じさせることで、ドメインの収斂が起こりやすくなり、このため、ドメイン領域が少なく結晶性の高い窒化アルミニウム単結晶を効率的に製造できることが判った。   As a result of repeated studies to solve the above problems, the present inventors have obtained the following knowledge. That is, in the conventional aluminum nitride single crystal manufacturing apparatus, since the temperature distribution on the surface of the seed crystal is uniform, the difference in the crystal growth rate (deposition rate) within the seed crystal plane when the sublimated source material is deposited on the seed crystal. It was found that domain convergence is unlikely to occur. For this reason, many repeated trainings were required to converge the domain. In contrast, by making the temperature distribution on the surface of the seed crystal non-uniform, it causes a difference in the crystal growth rate of each domain region, thereby making it easy for the domain to converge. It has been found that an aluminum nitride single crystal having high properties can be produced efficiently.

具体的には、下面に種結晶が取り付けられた育成坩堝の蓋体について、凹凸を形成することにより厚みが一定でない構造(部位により厚みが異なる不均一な厚みを有する構造)とすることが有効であることが判った。すなわち、蓋体をこのような構造とすることにより、蓋体の抜熱効果が面内で不均一になるため、種結晶表面の温度分布が不均一となり、その結果、種結晶面内におけるドメイン領域ごとの結晶成長速度に差が生じる。これにより、特定の領域のドメインが優先的に成長し、成長速度の遅いドメインを覆いこむように結晶成長が生じる。このためドメインの収斂が効率的に起こり、結晶性が向上した窒化アルミニウム単結晶を得ることができる。   Specifically, it is effective to make the structure of the growth crucible lid with the seed crystal attached to the lower surface by forming irregularities so that the thickness is not constant (a structure having a non-uniform thickness that varies depending on the part). It turned out that. That is, when the lid has such a structure, the heat removal effect of the lid becomes non-uniform in the plane, so that the temperature distribution on the surface of the seed crystal becomes non-uniform, and as a result, the domain in the seed crystal plane A difference occurs in the crystal growth rate for each region. As a result, a domain in a specific region grows preferentially, and crystal growth occurs so as to cover a domain with a slow growth rate. Therefore, domain convergence occurs efficiently, and an aluminum nitride single crystal with improved crystallinity can be obtained.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]育成坩堝(1)と、該育成坩堝(1)を外側から加熱する加熱手段(2)を備え、昇華法により窒化アルミニウム単結晶を製造する装置であって、
育成坩堝(1)は、上部が開放し、下部に原料物質が収容される坩堝本体(3)と、下面中央部に種結晶を保持した状態で、坩堝本体(3)に対してその開放した上部を塞ぐようにセットされる蓋体(4)を備え、
蓋体(4)の平面における少なくとも種結晶が保持される領域(e)は、その上面側又は/及び下面側に凹凸(40)が形成されることにより、厚みが一定でない構造を有することを特徴とする窒化アルミニウム単結晶製造装置。
[2]上記[1]の製造装置において、凹凸(40)は、蓋体(4)の上面側又は/及び下面側に設けられる溝又は/及び穴により形成されることを特徴とする窒化アルミニウム単結晶製造装置。
The present invention has been made on the basis of such knowledge and has the following gist.
[1] An apparatus for producing an aluminum nitride single crystal by a sublimation method, comprising a growing crucible (1) and heating means (2) for heating the growing crucible (1) from the outside,
The growing crucible (1) is open to the crucible main body (3) with the upper part opened and the lower part containing the raw material and the seed crystal held at the center of the lower surface. It has a lid (4) that is set to close the top,
The region (e) in which at least the seed crystal is held in the plane of the lid (4) has a structure in which the thickness is not constant by forming the unevenness (40) on the upper surface side and / or the lower surface side. An apparatus for producing an aluminum nitride single crystal.
[2] In the manufacturing apparatus of [1], the unevenness (40) is formed by grooves or / and holes provided on the upper surface side and / or the lower surface side of the lid (4). Single crystal manufacturing equipment.

[3]昇華法により窒化アルミニウム単結晶を製造する装置において、下面中央部に種結晶を保持した状態で、育成坩堝を構成する坩堝本体に対してその開放した上部を塞ぐようにセットされる蓋体であって、
蓋体平面における少なくとも種結晶が保持される領域(e)は、その上面側又は/及び下面側に凹凸(40)が形成されることにより、厚みが一定でない構造を有することを特徴とする窒化アルミニウム単結晶製造装置における育成坩堝の蓋体。
[4]上記[3]の蓋体において、凹凸(40)は、蓋体の上面側又は/及び下面側に設けられる溝又は/及び穴により形成されることを特徴とする窒化アルミニウム単結晶製造装置における育成坩堝の蓋体。
[3] In an apparatus for producing an aluminum nitride single crystal by a sublimation method, a lid that is set so as to close an open upper portion with respect to a crucible body that constitutes a growth crucible while holding a seed crystal at the center of the lower surface Body,
The region (e) in which at least the seed crystal is held on the plane of the lid body has a structure in which the thickness is not constant by forming irregularities (40) on the upper surface side and / or the lower surface side thereof. A lid for a growth crucible in an aluminum single crystal manufacturing apparatus.
[4] The aluminum nitride single crystal production characterized in that in the lid of [3], the irregularities (40) are formed by grooves or / and holes provided on the upper surface side and / or the lower surface side of the lid body. The lid of the growing crucible in the apparatus.

本発明の窒化アルミニウム単結晶製造装置は、蓋体4の平面における少なくとも種結晶が保持される領域eが、凹凸40が形成されることにより厚みが一定でない構造を有するので、蓋体の抜熱効果が面内で不均一になり、種結晶表面の温度分布を不均一にすることができる。このため、種結晶面内におけるドメイン領域ごとの結晶成長速度に差を生じさせ、特定の領域のドメインを優先的に成長させることでドメインを効率よく収斂させることができ、半導体デバイス用の基板材料などに適した結晶性の高い高品質な窒化アルミニウム単結晶を効率よく製造することができる。   In the aluminum nitride single crystal manufacturing apparatus of the present invention, the region e where at least the seed crystal is held in the plane of the lid body 4 has a structure in which the thickness is not constant due to the formation of the irregularities 40. The effect becomes non-uniform in the plane, and the temperature distribution on the seed crystal surface can be made non-uniform. For this reason, a difference occurs in the crystal growth rate of each domain region in the seed crystal plane, and the domain can be efficiently converged by preferentially growing the domain in a specific region. It is possible to efficiently produce a high-quality aluminum nitride single crystal having high crystallinity suitable for such as.

本発明の窒化アルミニウム単結晶製造装置の一実施形態を示す縦断面図The longitudinal cross-sectional view which shows one Embodiment of the aluminum nitride single crystal manufacturing apparatus of this invention 図1のII-II線に沿う断面図Sectional view along the line II-II in FIG. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は平面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a top view. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は平面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a top view. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は平面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a top view. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は平面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a top view. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は平面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a top view. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は平面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a top view. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は平面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a top view. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は平面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a top view. 本発明の窒化アルミニウム単結晶製造装置に用いる蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は平面図The other embodiment of the cover body used for the aluminum nitride single crystal manufacturing apparatus of this invention is shown, A figure (a) is a longitudinal cross-sectional view, A figure (b) is a top view.

本発明の単結晶製造装置は、昇華法により窒化アルミニウム単結晶を製造する装置である。図1及び図2は、本発明の単結晶製造装置の一実施形態を示すもので、図1は縦断面図、図2は図1のII-II線に沿う断面図である。
図において、1は育成坩堝、2はこの育成坩堝1を外側から加熱する加熱手段であり、これらは炉体A(結晶成長炉)内に収納されている。
育成坩堝1は、上部が開放し、下部に原料物質xが収容される円筒状で有底の坩堝本体3と、下面中央部に種結晶を保持した状態で、この坩堝本体3に対してその開放した上部を塞ぐようにセットされる蓋体4を備えている。
The single crystal production apparatus of the present invention is an apparatus for producing an aluminum nitride single crystal by a sublimation method. 1 and 2 show an embodiment of the single crystal production apparatus of the present invention. FIG. 1 is a longitudinal sectional view, and FIG. 2 is a sectional view taken along line II-II in FIG.
In the figure, 1 is a growth crucible, 2 is a heating means for heating the growth crucible 1 from the outside, and these are housed in a furnace body A (crystal growth furnace).
The growing crucible 1 has a cylindrical bottomed crucible main body 3 with an upper part opened and a raw material x stored in the lower part, and a seed crystal held in the center of the lower surface. A lid 4 is provided so as to close the opened upper portion.

坩堝本体3は、原料物質xのセットを容易にするため上下2分割されており、原料物質xが収容される有底の下部坩堝本体3aと、その上に置かれる筒状の上部坩堝本体3bで構成されている。なお、本実施形態では、下部坩堝本体3aと上部坩堝本体3bは同径としてあるが、例えば、結晶成長部である上部坩堝本体3bの方を下部坩堝本体3aより大径に構成してもよい。また、坩堝本体3は、本実施形態のように上下2分割された構造ではなく、一体型の構造としてもよい。
蓋体4は、下面中央部に種結晶sを保持(密着状態で保持)しており、坩堝本体3の上部にセット(載置)された状態で、保持した種結晶sが下向きとなり、坩堝本体3の下部に収容された原料物質xと対向する。
本発明装置の蓋体4は、凹凸40が形成されることにより厚みが一定でない構造を有することを特徴とするが、これについては後に詳述する。
The crucible body 3 is divided into an upper part and a lower part in order to facilitate the setting of the raw material x, a bottomed lower crucible main body 3a in which the raw material x is accommodated, and a cylindrical upper crucible main body 3b placed thereon. It consists of In the present embodiment, the lower crucible body 3a and the upper crucible body 3b have the same diameter. For example, the upper crucible body 3b, which is a crystal growth portion, may be configured to have a larger diameter than the lower crucible body 3a. . Further, the crucible body 3 may have an integral structure instead of the vertically divided structure as in the present embodiment.
The lid 4 holds the seed crystal s at the center of the lower surface (holds in close contact), and the held seed crystal s faces downward while being set (placed) on the upper part of the crucible body 3. Opposite to the source material x housed in the lower part of the main body 3.
The lid 4 of the device of the present invention is characterized in that the thickness is not constant due to the formation of the irregularities 40, which will be described in detail later.

本実施形態の蓋体4は、種結晶sの交換や育成で得られた単結晶の取り出しを容易にするため、上下に重ねられた蓋本体4aとプレート4bで構成され、プレート4bの下面中央部に種結晶sが保持されている。したがって、蓋体4は、下面中央部に種結晶sを保持したプレート4bが坩堝本体3の上部に置かれ、その上に重ねて蓋本体4aが置かれることで、坩堝本体3に対してその開放した上部を塞ぐようにセットされる。なお、蓋体4は、本実施形態のように蓋本体4aとプレート4bからなるのではなく、一体型のものとしてもよい。
蓋体4の径は、坩堝本体3(本実施形態では上部坩堝本体3b)の外径とほぼ同じであり、特に制限はないが、一般には10〜150mm程度である。また、蓋体4の厚み(蓋本体4aとプレート4bを合わせた厚み)も特に制限はないが、一般には、その上面側又は/及び下面側に凹凸40が形成される中央領域及びその外側領域を含めて0.2〜20mm程度の範囲とする。
The lid 4 of the present embodiment is composed of a lid body 4a and a plate 4b that are stacked one above the other in order to facilitate the removal of the single crystal obtained by exchanging and growing the seed crystal s. The seed crystal s is held in the part. Therefore, the lid 4 has the plate 4b holding the seed crystal s in the center of the lower surface placed on the upper part of the crucible body 3, and the lid body 4a is placed on top of the plate 4b. It is set to close the open top. The lid 4 is not composed of the lid body 4a and the plate 4b as in the present embodiment, but may be an integral type.
The diameter of the lid body 4 is substantially the same as the outer diameter of the crucible body 3 (in this embodiment, the upper crucible body 3b), and is not particularly limited, but is generally about 10 to 150 mm. Further, the thickness of the lid 4 (the thickness of the lid body 4a and the plate 4b combined) is not particularly limited, but in general, the central region where the irregularities 40 are formed on the upper surface side and / or the lower surface side thereof and the outer region thereof In the range of about 0.2 to 20 mm.

種結晶sは、任意の形状を有することができるが、本実施形態では円板状であり、蓋体4(本実施形態ではプレート4b)の下面中央部に密着した状態で固定される。固定方法としては、例えば、熱融着による固定、固定具を用いた機械的な固定など、適宜な方法を採ることができる。
通常、種結晶sは、窒化アルミニウム単結晶を結晶成長させ得るような方位を持った単結晶であって、表面(下面)が化学機械的研磨(CMP)された窒化アルミニウム単結晶である。なお、種結晶sは、表面(下面)だけでなく、裏面についてもCMPなどにより処理されていてもよい。
The seed crystal s can have an arbitrary shape, but in the present embodiment, the seed crystal s has a disk shape, and is fixed in a state of being in close contact with the center of the lower surface of the lid 4 (the plate 4b in the present embodiment). As a fixing method, for example, an appropriate method such as fixing by heat fusion or mechanical fixing using a fixing tool can be employed.
Usually, the seed crystal s is a single crystal having an orientation capable of growing an aluminum nitride single crystal, and is an aluminum nitride single crystal whose surface (lower surface) is subjected to chemical mechanical polishing (CMP). The seed crystal s may be processed not only on the front surface (lower surface) but also on the back surface by CMP or the like.

育成坩堝1は、下部坩堝本体3aの上に上部坩堝本体3bを重ね置いて坩堝本体3を構成し、この坩堝本体3の上に、下面中央部に種結晶sを保持した蓋体4(蓋本体4a及びプレート4b)を置くだけで組み立てられる。このように育成坩堝1は、原料物質xや種結晶sのセッティングの都合上、分解・組立式としてあるが、昇華した原料物質が育成坩堝1から漏出しないようにするため、育成坩堝1を構成する各部材間になるべく隙間が生じないように組み立てられることが好ましい。このため、例えば、隙間を生じやすい部分にシール材を巻き付けるようにしてもよい。   In the growing crucible 1, an upper crucible body 3b is placed on a lower crucible body 3a to form a crucible body 3, and a lid 4 (lid) holding a seed crystal s in the center of the lower surface on the crucible body 3 It is assembled simply by placing the main body 4a and the plate 4b). In this way, the growing crucible 1 is disassembled and assembled for the convenience of setting the raw material x and seed crystal s. However, the growing crucible 1 is configured to prevent the sublimated raw material from leaking out of the growing crucible 1. It is preferable to assemble so that a gap is not generated as much as possible between each member. For this reason, for example, a sealing material may be wound around a portion where a gap is likely to occur.

加熱手段2(ヒーター)は、例えば、抵抗加熱式ヒーター、高周波加熱装置、高周波誘導加熱装置などで構成される。加熱手段2は、育成坩堝1を所定の間隔で外囲するように配置される。この加熱手段2は、種結晶s上で結晶成長させるのに最適な温度と、原料物質xを昇華させるのに最適な温度となるように、育成坩堝1を加熱する。   The heating means 2 (heater) is composed of, for example, a resistance heating heater, a high frequency heating device, a high frequency induction heating device, or the like. The heating means 2 is arranged so as to surround the growing crucible 1 at a predetermined interval. The heating means 2 heats the growth crucible 1 so that the temperature is optimal for crystal growth on the seed crystal s and the optimal temperature for sublimating the source material x.

炉体Aは、雰囲気ガスの導入口6と排気口7を備えている。導入口6にはガス供給管8が接続され、図示しないガス供給源から雰囲気ガスが供給される。また、排気口7には排気管9が接続され、この排気管9には排気ポンプ(図示せず)が設けられる。
この炉体A内に収納された加熱手段2と炉体Aの内壁面との間には、加熱手段2の熱から炉体Aを保護するための遮熱体5が設けられている。本実施形態の遮熱体5は、上部及び下部に開口部50、51を有する筒体であり、炉体Aの底部に置かれ、その内部に育成坩堝1と加熱手段2が収納されている。遮熱体5の下端には内フランジ52が形成され、この内フランジ52の上面に支持台11がその外縁部を介して支持されるとともに、この支持台11上に育成坩堝1と加熱手段2が支持されている。なお、遮熱体5は、複数のリング状部材を重ねて構成してもよいし、一体型に構成してもよい。
炉体Aの上部中央部には石英ガラス板が嵌め込まれた窓12が設けられ、この窓12に面して放射温度計10が配置され、この放射温度計10により遮熱体5の開口部50を通して蓋体4の温度が測定できるようになっている。
The furnace body A includes an atmosphere gas inlet 6 and an exhaust 7. A gas supply pipe 8 is connected to the introduction port 6 and atmospheric gas is supplied from a gas supply source (not shown). An exhaust pipe 9 is connected to the exhaust port 7, and an exhaust pump (not shown) is provided in the exhaust pipe 9.
Between the heating means 2 accommodated in the furnace body A and the inner wall surface of the furnace body A, a heat shield 5 for protecting the furnace body A from the heat of the heating means 2 is provided. The heat shield 5 of the present embodiment is a cylindrical body having openings 50 and 51 at the top and bottom, and is placed at the bottom of the furnace body A, in which the growth crucible 1 and the heating means 2 are housed. . An inner flange 52 is formed at the lower end of the heat shield 5, and the support base 11 is supported on the upper surface of the inner flange 52 via the outer edge portion. The growth crucible 1 and the heating means 2 are supported on the support base 11. Is supported. In addition, the heat shield 5 may be configured by stacking a plurality of ring-shaped members, or may be configured as an integral type.
A window 12 in which a quartz glass plate is fitted is provided in the upper central portion of the furnace body A, and a radiation thermometer 10 is disposed facing the window 12. The radiation thermometer 10 opens the opening of the heat shield 5. 50, the temperature of the lid 4 can be measured.

育成坩堝1を構成する坩堝本体3(下部坩堝本体3a、上部坩堝本体3b)と蓋体4(蓋本体4a、プレート4b)は、窒化アルミニウム単結晶よりも高い融点を有する材料で構成される。例えば、窒化アルミニウム単結晶の融点よりも高い融点を有する金属、窒化物、炭化物などの中から選ばれる1種以上で構成することができる。また、金属などの適当な母材に窒化アルミニウム単結晶の融点よりも高い融点を有する金属、窒化物、炭化物などの中から選ばれる1種以上からなるコーティングを施したもので構成してもよい。また、窒化アルミニウム単結晶の融点よりも高い融点を有する金属、窒化物、炭化物としては、特に、タンタル(Ta)、タングステン(W)、これらの各金属の合金、炭化タンタル(TaC)、炭化タングステン(WC)、窒化ホウ素(BN)が好ましい。これらの材料は、窒化アルミニウム単結晶との反応性が低く、且つ高温での耐熱性に優れているため特に好適な材料である。   The crucible body 3 (lower crucible body 3a, upper crucible body 3b) and the lid 4 (lid body 4a, plate 4b) constituting the growth crucible 1 are made of a material having a melting point higher than that of the aluminum nitride single crystal. For example, it can be composed of one or more selected from metals, nitrides, carbides and the like having a melting point higher than that of the aluminum nitride single crystal. In addition, a suitable base material such as metal may be formed by coating with one or more kinds selected from metals, nitrides, carbides and the like having a melting point higher than that of the aluminum nitride single crystal. . In addition, as metals, nitrides, and carbides having a melting point higher than that of the aluminum nitride single crystal, tantalum (Ta), tungsten (W), alloys of these metals, tantalum carbide (TaC), tungsten carbide, among others. (WC) and boron nitride (BN) are preferable. These materials are particularly suitable because of their low reactivity with aluminum nitride single crystals and excellent heat resistance at high temperatures.

蓋体4は、蓋体平面における少なくとも種結晶sが保持される領域eが、その上面側又は/及び下面側に凹凸40が形成されることにより、厚みが一定でない構造(部位により厚みが異なる不均一な厚みを有する構造)を有する。このような蓋体の構造は、面内において厚肉部位と薄肉部位が混在した構造であるとも言える。一般に、凹凸40は、蓋体4の上面側又は/及び下面側に設けられる溝又は/及び穴により形成されるが、本実施形態では、蓋体4(蓋本体4a)の上面に複数の環状溝400が同心円状に設けられることで凹凸40が形成されている。   The lid body 4 has a structure in which the thickness is different from each other by forming the unevenness 40 on the upper surface side and / or the lower surface side of the region e in which at least the seed crystal s is held in the plane of the lid body. A structure having a non-uniform thickness). It can be said that the structure of such a lid is a structure in which a thick portion and a thin portion are mixed in the plane. In general, the irregularities 40 are formed by grooves or / and holes provided on the upper surface side and / or the lower surface side of the lid body 4, but in the present embodiment, a plurality of annular shapes are formed on the upper surface of the lid body 4 (lid body 4a). The recesses and protrusions 40 are formed by providing the grooves 400 concentrically.

このように蓋体4に凹凸40を形成して厚みが一定でない構造とする狙いは、次の通りである。種結晶sの表面は、温度が低い部位ほど原料物質が堆積しやすい(結晶成長がしやすい)。蓋体4に凹凸40を形成して厚みが一定でない構造とすると、蓋体4の抜熱効果が面内で不均一になるため、種結晶sの面内に温度が高い部位と低い部位が生じ、種結晶面内の温度分布が不均一となる。これにより、種結晶面内におけるドメイン領域ごとの結晶成長速度に差が生じて、種結晶面内において温度が低い部位のドメイン領域に堆積が起こりやすくなり(すなわち結晶成長速度が大きくなる)、当該ドメイン領域の優先的な成長が起こり、成長速度の遅いドメインを覆いこむように結晶成長が生じる。このためドメインの収斂が効率的に起こり、結晶性が向上した窒化アルミニウム単結晶を効率的に製造することができる。   The aim of forming the unevenness 40 on the lid body 4 to make the thickness non-constant is as follows. On the surface of the seed crystal s, the lower the temperature, the easier the source material is deposited (the crystal growth is easier). If the unevenness 40 is formed on the lid 4 so that the thickness is not constant, the heat removal effect of the lid 4 becomes non-uniform in the plane, so that there are high and low temperature sites in the plane of the seed crystal s. As a result, the temperature distribution in the seed crystal plane becomes uneven. As a result, a difference occurs in the crystal growth rate for each domain region in the seed crystal plane, and deposition tends to occur in the domain region at a low temperature in the seed crystal plane (that is, the crystal growth rate increases). Preferential growth of the domain region occurs, and crystal growth occurs so as to cover the slow growth domain. For this reason, domain convergence occurs efficiently, and an aluminum nitride single crystal with improved crystallinity can be produced efficiently.

蓋体4の凹凸40は、図1及び図2の実施形態に限らず、種々の形態で形成することができる。また、凹凸40は蓋体4の上面側、下面側のいずれに形成してよく、また、上面側と下面側の両方に形成してもよい。
図3〜図11は、それぞれ蓋体の他の実施形態を示すもので、図(a)は縦断面図、図(b)は平面図である。
図3の実施形態では、蓋体4(蓋本体4a)の上面に平行に設けられる複数の直線溝401と、これら直線溝401を周方向で連通させるように設けられる溝402により凹凸40が形成されている。
The unevenness 40 of the lid 4 is not limited to the embodiment shown in FIGS. 1 and 2 and can be formed in various forms. Further, the unevenness 40 may be formed on either the upper surface side or the lower surface side of the lid body 4 or may be formed on both the upper surface side and the lower surface side.
3 to 11 show other embodiments of the lid, respectively. FIG. 3 (a) is a longitudinal sectional view, and FIG. 3 (b) is a plan view.
In the embodiment of FIG. 3, the unevenness 40 is formed by a plurality of linear grooves 401 provided in parallel to the upper surface of the lid body 4 (lid body 4a) and the grooves 402 provided so as to communicate these linear grooves 401 in the circumferential direction. Has been.

図4の実施形態では、蓋体4(蓋本体4a)の上面に格子状に設けられる複数の直線溝403と、これらの直線溝403を周方向で連通させるように設けられる溝404により凹凸40が形成されている。
図5の実施形態では、蓋体4(蓋本体4a)の上面に同心円状に設けられる、図1の実施形態に較べて溝幅が小さい複数の環状溝400により凹凸40が形成されている。
図6の実施形態では、蓋体4(蓋本体4a)の上面に同心状に設けられる六角形状の複数の環状溝405により凹凸40が形成されている。
In the embodiment of FIG. 4, the concave and convex portions 40 are formed by a plurality of linear grooves 403 provided in a lattice shape on the upper surface of the lid body 4 (lid body 4a) and grooves 404 provided so as to communicate these linear grooves 403 in the circumferential direction. Is formed.
In the embodiment of FIG. 5, the unevenness 40 is formed by a plurality of annular grooves 400 that are provided concentrically on the upper surface of the lid 4 (lid body 4 a) and have a groove width smaller than that of the embodiment of FIG. 1.
In the embodiment of FIG. 6, the unevenness 40 is formed by a plurality of hexagonal annular grooves 405 provided concentrically on the upper surface of the lid 4 (lid body 4a).

図7の実施形態では、蓋体4(蓋本体4a)の上面に平行に設けられる複数の谷状の直線溝406により凹凸40が形成されている。
図8の実施形態では、蓋体4(蓋本体4a)の上面に設けられる複数の穴407により凹凸40が形成されている。
図9の実施形態では、蓋体4の下面に同心円状に設けられる複数の環状溝400により凹凸40が形成されている。なお、図1、図3〜図8のような形態の凹凸40を、図9の実施形態のように蓋体4の下面に設けることもでき、また、蓋体4の上面と下面の両方に設けることもできる。
In the embodiment of FIG. 7, the unevenness 40 is formed by a plurality of valley-shaped linear grooves 406 provided in parallel to the upper surface of the lid body 4 (lid body 4a).
In the embodiment of FIG. 8, the unevenness 40 is formed by a plurality of holes 407 provided on the upper surface of the lid 4 (lid body 4a).
In the embodiment of FIG. 9, the unevenness 40 is formed by a plurality of annular grooves 400 provided concentrically on the lower surface of the lid 4. In addition, the unevenness | corrugation 40 of a form like FIG. 1, FIG. 3-FIG. 8 can also be provided in the lower surface of the cover body 4 like embodiment of FIG. It can also be provided.

図10及び図11の各実施形態では、蓋体4(蓋本体4a)の上面の中央領域に窪み41(凹陥部)が設けられることで薄肉部42が形成され、この薄肉部42に凹凸40が形成されている。通常、薄肉部42(窪み41)は、種結晶sと同じく円形状に形成され、且つ蓋体4の下面中央部に保持される種結晶sと同心状になるように形成される。
ここで、蓋体4の中央領域に薄肉部42を形成する狙いは、次の通りである。育成坩堝1内で昇華した原料物質は温度が低い部位ほど堆積しやすい。一方、蓋体4は厚さが薄いほど熱容量が小さいために抜熱効果が大きく、温度が低下しやすい。そこで、種結晶sの背面側(蓋体4の中央領域)の蓋体部分を薄肉部42とすることで、種結晶sの温度が周囲の温度よりも低くなるようにし、原料物質の種結晶周囲への堆積を防止し、原料物質が種結晶sに優先的に堆積し(種結晶周囲への堆積が防止される)、種結晶s上での結晶成長が促進されるようにしたものである。また、原料物質の種結晶周囲への堆積が防止される結果、種結晶径方向での結晶成長を阻害するものがなくなり、これにより種結晶径方向での結晶成長が促進され、ドメインの収斂による結晶性をより高めることができる。
In each embodiment of FIG.10 and FIG.11, the thin part 42 is formed by providing the hollow 41 (recessed part) in the center area | region of the upper surface of the cover body 4 (lid body 4a), and uneven | corrugated 40 is formed in this thin part 42. Is formed. Usually, the thin portion 42 (the depression 41) is formed in a circular shape like the seed crystal s, and is formed concentrically with the seed crystal s held at the center of the lower surface of the lid 4.
Here, the aim of forming the thin portion 42 in the central region of the lid 4 is as follows. The source material sublimated in the growth crucible 1 is more likely to be deposited at a lower temperature. On the other hand, since the heat capacity is smaller as the thickness of the lid 4 is smaller, the heat removal effect is larger and the temperature is likely to decrease. Therefore, the lid portion on the back side of the seed crystal s (the central region of the lid body 4) is a thin portion 42 so that the temperature of the seed crystal s is lower than the ambient temperature, and the seed crystal of the source material This prevents deposition to the surroundings, so that the source material is preferentially deposited on the seed crystal s (preventing deposition around the seed crystal) and crystal growth on the seed crystal s is promoted. is there. In addition, as a result of preventing the deposition of the source material around the seed crystal, there is no obstacle to the crystal growth in the seed crystal diameter direction, which promotes crystal growth in the seed crystal diameter direction and causes domain convergence. Crystallinity can be further increased.

図10の実施形態では、蓋体4(蓋本体4a)の上面に窪み41(凹陥部)が設けられることで薄肉部42が形成され、この薄肉部42の上面に格子状に設けられる複数の直線溝403により凹凸40が形成されている。
また、図11の実施形態では、蓋体4(蓋本体4a)の上面に窪み41(凹陥部)が設けられることで薄肉部42が形成され、この薄肉部42の上面に同心円状に設けられる複数の環状溝400により凹凸40が形成されている。
In the embodiment of FIG. 10, a thin portion 42 is formed by providing a recess 41 (concave portion) on the upper surface of the lid 4 (lid body 4 a), and a plurality of grids are provided on the upper surface of the thin portion 42. Unevenness 40 is formed by the straight grooves 403.
Further, in the embodiment of FIG. 11, a thin portion 42 is formed by providing a recess 41 (concave portion) on the upper surface of the lid body 4 (lid body 4 a), and concentrically provided on the upper surface of the thin portion 42. The irregularities 40 are formed by the plurality of annular grooves 400.

次に、本実施形態の単結晶製造装置を使用した単結晶の製造方法について説明する。
原料物質xとしては、例えば、市販のAlN粉末を1800〜2300℃程度で加熱処理し、凝集体としたものを使用する。
原料物質xを収容した坩堝本体3(下部坩堝本体3a及び上部坩堝本体3b)と、下面中央部に種結晶sを保持した蓋体4(蓋本体4a及びプレート4b)を図1のような育成坩堝1に組み立て、この育成坩堝1と加熱手段2と遮熱体5を図1のように炉体A内にセットする。
製造開始に当たり、炉体Aの排出口7に接続された排気管9の排気ポンプにより炉体A内を減圧し、ガス供給源から供給される雰囲気ガス(窒素ガスなどの非酸化性ガス)をガス供給管8及び導入口6を通じて炉体A内に導入し、炉体A内を非酸化性ガス雰囲気とする。
Next, the manufacturing method of the single crystal using the single crystal manufacturing apparatus of this embodiment is demonstrated.
As the raw material x, for example, a commercially available AlN powder is heat-treated at about 1800 to 2300 ° C. to obtain an aggregate.
The crucible main body 3 (lower crucible main body 3a and upper crucible main body 3b) containing the raw material x and the lid 4 (lid main body 4a and plate 4b) holding the seed crystal s at the center of the lower surface are grown as shown in FIG. The crucible 1 is assembled, and the growing crucible 1, the heating means 2, and the heat shield 5 are set in the furnace body A as shown in FIG.
At the start of production, the inside of the furnace body A is depressurized by the exhaust pump of the exhaust pipe 9 connected to the discharge port 7 of the furnace body A, and the atmospheric gas (non-oxidizing gas such as nitrogen gas) supplied from the gas supply source is supplied. It introduce | transduces in the furnace body A through the gas supply pipe | tube 8 and the inlet port 6, and makes the inside of the furnace body A a non-oxidizing gas atmosphere.

次いで、加熱手段2による加熱を開始し、種結晶sの表面を昇温させるとともに、原料物質xを昇温させる。この時、蓋体4からの抜熱の影響により、育成坩堝1内では、上部側ほど温度が低く、下部側ほど温度が高くなるような温度勾配が形成される。原料物質xが一定温度まで加熱されると、原料物質xの昇華が始まる。昇華した原料物質xは、上記のような温度勾配に従い低温側である育成坩堝1の上部側に移動する。昇華した原料物質xは、温度が低い部位ほど堆積しやすいが、坩堝本体3の上部坩堝本体3bは加熱手段2による加熱の影響を大きく受けるために、種結晶sや蓋体4よりも高温状態となっているため、その内面には原料物質xの堆積は生じにくい。   Next, heating by the heating unit 2 is started to raise the temperature of the surface of the seed crystal s and raise the temperature of the source material x. At this time, due to the effect of heat removal from the lid 4, a temperature gradient is formed in the growth crucible 1 such that the temperature is lower on the upper side and higher on the lower side. When the raw material x is heated to a certain temperature, sublimation of the raw material x begins. The sublimated source material x moves to the upper side of the growth crucible 1 which is the low temperature side according to the temperature gradient as described above. The sublimated source material x is more likely to be deposited at lower temperatures, but the upper crucible body 3b of the crucible body 3 is greatly affected by the heating by the heating means 2, so that it is at a higher temperature than the seed crystal s and the lid 4 Therefore, the deposition of the raw material x is unlikely to occur on the inner surface.

一方、種結晶sと蓋体4の温度は、加熱手段2による加熱と蓋体4からの抜熱の影響を大きく受ける。育成坩堝1の外側の炉内雰囲気ガス温度(一般に1500〜2000℃程度)は、加熱手段2で加熱されている種結晶sや蓋体4の温度(一般に1800〜2300℃程度)よりも低く、このため蓋体4から炉内雰囲気ガス中に抜熱が生じる。蓋体4は、凹凸40が形成されることにより厚みが一定でない構造を有し、厚さが薄いほど熱容量が小さいために抜熱効果が大きくなるので、蓋体の抜熱効果が面内で不均一になり、このため種結晶sの面内に温度が高い部位と低い部位が生じ、種結晶面内の温度分布が不均一となる。これにより、種結晶面内におけるドメイン領域ごとの結晶成長速度に差が生じて、種結晶面内において温度が低い部位のドメイン領域に堆積が起こりやすくなり(すなわち結晶成長速度が大きくなる)、当該ドメイン領域の優先的な成長が起こり、成長速度の遅いドメインを覆いこむように結晶成長が生じる。このためドメインの収斂が効率的に起こり、結晶性が向上した窒化アルミニウム単結晶を効率的に製造することができる。   On the other hand, the temperature of the seed crystal s and the lid 4 is greatly affected by heating by the heating means 2 and heat removal from the lid 4. The furnace atmosphere gas temperature outside the growth crucible 1 (generally about 1500 to 2000 ° C.) is lower than the temperature of the seed crystal s heated by the heating means 2 and the temperature of the lid 4 (generally about 1800 to 2300 ° C.), For this reason, heat is removed from the lid 4 into the furnace atmosphere gas. The lid body 4 has a structure in which the thickness is not constant due to the formation of the irregularities 40, and the heat removal effect increases because the heat capacity is smaller as the thickness is thinner, so the heat removal effect of the lid body is in-plane. For this reason, a high temperature portion and a low temperature portion are generated in the plane of the seed crystal s, and the temperature distribution in the seed crystal plane is non-uniform. As a result, a difference occurs in the crystal growth rate for each domain region in the seed crystal plane, and deposition tends to occur in the domain region at a low temperature in the seed crystal plane (that is, the crystal growth rate increases). Preferential growth of the domain region occurs, and crystal growth occurs so as to cover the slow growth domain. For this reason, domain convergence occurs efficiently, and an aluminum nitride single crystal with improved crystallinity can be produced efficiently.

なお、以上のような窒化アルミニウム単結晶の製造中、炉体A内にはガス供給管8及び導入口6を通じて雰囲気ガスが導入されるとともに、排気ポンプにより排気口7及び排気管9を通じて炉体A内の雰囲気ガスが排出され、且つ炉内圧力が一定に保たれる。このようなガスの給排気と炉内圧力のコントロールにより、炉体Aや育成坩堝1内に酸素を浸入させることなく、安定した操業を行うことができる。
また、放射温度計10で蓋体4の温度を測定し、例えば、加熱手段2の不具合による蓋体4の温度異常などを検知する。
During the production of the aluminum nitride single crystal as described above, atmospheric gas is introduced into the furnace body A through the gas supply pipe 8 and the introduction port 6, and the furnace body through the exhaust port 7 and the exhaust pipe 9 by an exhaust pump. The atmospheric gas in A is discharged, and the furnace pressure is kept constant. By controlling the supply and exhaust of gas and the pressure in the furnace, stable operation can be performed without allowing oxygen to enter the furnace body A and the growth crucible 1.
Further, the temperature of the lid body 4 is measured by the radiation thermometer 10 to detect, for example, an abnormal temperature of the lid body 4 due to a malfunction of the heating means 2.

また、窒化アルミニウム単結晶製造装置の部品である本発明に係る育成坩堝用の蓋体は、昇華法により窒化アルミニウム単結晶を製造する装置において、下面中央部に種結晶を保持した状態で、育成坩堝を構成する坩堝本体に対してその開放した上部を塞ぐようにセットされる蓋体であって、蓋体平面における少なくとも種結晶が保持される領域eが、その上面側又は/及び下面側に凹凸40が形成されることにより、厚みが一定でない構造を有するものであり、その構成及び実施形態は、上述した通りである。   Moreover, the lid for the growth crucible according to the present invention, which is a part of the aluminum nitride single crystal manufacturing apparatus, is grown in a state where the seed crystal is held at the center of the lower surface in the apparatus for manufacturing the aluminum nitride single crystal by the sublimation method. A lid body that is set so as to close the open upper portion with respect to the crucible main body constituting the crucible, and a region e in which at least a seed crystal is held in the plane of the lid body is formed on the upper surface side and / or the lower surface side. By forming the irregularities 40, the thickness is not constant, and the configuration and embodiment thereof are as described above.

[窒化アルミニウム単結晶の製造例]
図1及び図2に示す本発明の単結晶製造装置を用い、窒化アルミニウム単結晶を製造した。装置の仕様は以下の通りである。
(1)坩堝本体3
・高さ:100mm
・内径:65mm
(2)蓋体4
・凹凸40(環状溝400)の深さ:4.0mm
・凹凸40以外の部分(外側領域)の厚さ:5.0mm
(3)加熱手段2
・加熱方式:高周波誘導加熱式ヒーター
(4)種結晶s
・(0001)方位を有し、表面がCMPで表面処理されたAlN単結晶板
・径Ds:40mm
・厚さ:1.0mm
[Production example of aluminum nitride single crystal]
An aluminum nitride single crystal was manufactured using the single crystal manufacturing apparatus of the present invention shown in FIGS. The specifications of the device are as follows.
(1) Crucible body 3
・ Height: 100mm
・ Inner diameter: 65mm
(2) Lid 4
-Depth of irregularities 40 (annular groove 400): 4.0 mm
-Thickness of the part (outside area) other than the irregularities 40: 5.0 mm
(3) Heating means 2
・ Heating system: High frequency induction heating heater (4) Seed crystal
-AlN single crystal plate having (0001) orientation and surface treated by CMP-Diameter Ds: 40 mm
・ Thickness: 1.0mm

原料物質としては、市販のAlN粉末(平均粒径1.2μm)を予め窒素雰囲気中で約1500〜2000℃で加熱処理し、凝集させて得られたAlN凝集体を用いた。この原料物質を坩堝本体3に収容した後、装置を構成する各部材を組み立て、図1及び図2に示すような装置とした。
製造開始に当たり、排気管9に設けられた排気ポンプを用いて、炉体A内の空気を1.0×10−3Pa以下となるまで排気した後、原料物質x中の吸着酸素の蒸発を容易にするために、坩堝本体3を加熱手段2により下部坩堝本体3aが約400℃になるまで加熱した。その後、前記排気ポンプで炉体A内を5.0×10−4Pa以下まで排気した後、窒素ガスを導入し、炉体A内が所定圧力(300kPa)に到達したところで、加熱手段2によるさらなる加熱を行い、種結晶sの温度が1800〜2000℃、原料物質xの温度が2000〜2300℃になるまで昇温を行いながら、前記排気ポンプで炉体A内を100kPaまで排気し、原料物質xを昇華させ、種結晶sの方位(0001)でAlN単結晶の育成を100時間行った。
また、比較例の製造装置として、蓋体4のみを平坦な蓋体(厚さ5mm)に変更した製造装置を用い、AlN単結晶を製造した。
As a raw material, an AlN aggregate obtained by agglomerating commercially available AlN powder (average particle size 1.2 μm) in advance in a nitrogen atmosphere at about 1500 to 2000 ° C. was used. After this raw material was accommodated in the crucible body 3, the members constituting the apparatus were assembled to obtain an apparatus as shown in FIGS.
At the start of production, the air in the furnace body A is exhausted to 1.0 × 10 −3 Pa or less using an exhaust pump provided in the exhaust pipe 9, and then the adsorbed oxygen in the raw material x is evaporated. In order to facilitate, the crucible body 3 was heated by the heating means 2 until the lower crucible body 3a reached about 400 ° C. Thereafter, the inside of the furnace body A is evacuated to 5.0 × 10 −4 Pa or less by the exhaust pump, nitrogen gas is introduced, and when the inside of the furnace body A reaches a predetermined pressure (300 kPa), the heating means 2 Further heating is performed until the temperature of the seed crystal s is 1800 to 2000 ° C. and the temperature of the raw material x is 2000 to 2300 ° C., and the furnace body A is exhausted to 100 kPa with the exhaust pump. The substance x was sublimated, and an AlN single crystal was grown for 100 hours in the orientation (0001) of the seed crystal s.
Moreover, as a manufacturing apparatus of the comparative example, an AlN single crystal was manufactured using a manufacturing apparatus in which only the lid 4 was changed to a flat lid (thickness 5 mm).

上述した本発明の製造装置と比較例の製造装置でそれぞれ製造されたAlN単結晶の結晶性を以下のように評価した。製造されたAlN単結晶から所定の面方位に切り出し、外形を整えたAlN単結晶基板を、遊離砥粒にて両面ラッピング加工した後、化学機械的研磨(CMP)を実施した。このようにして得られたAlN単結晶基板のロッキングカーブ測定を行い、半値全幅(FWHM:Full Width at Half Maximum)を求めた。
その結果、比較例の製造装置で製造されたAlN単結晶基板は147arcsecであったのに対して、本発明の製造装置で製造されたAlN単結晶基板は80arcsecであった。このため、本発明の製造装置によれば、比較例の製造装置に較べてAlN単結晶のドメインを効率よく収斂させることができ、結晶性の高い高品質なAlN単結晶を効率よく製造できることが確認できた。
The crystallinity of the AlN single crystal produced by the production apparatus of the present invention described above and the production apparatus of the comparative example was evaluated as follows. An AlN single crystal substrate cut out from the manufactured AlN single crystal in a predetermined plane orientation and trimmed in shape was subjected to double-side lapping with loose abrasive grains, and then chemical mechanical polishing (CMP) was performed. The rocking curve of the AlN single crystal substrate thus obtained was measured to determine the full width at half maximum (FWHM).
As a result, the AlN single crystal substrate manufactured by the manufacturing apparatus of the comparative example was 147 arcsec, whereas the AlN single crystal substrate manufactured by the manufacturing apparatus of the present invention was 80 arcsec. For this reason, according to the manufacturing apparatus of the present invention, the domain of the AlN single crystal can be efficiently converged as compared with the manufacturing apparatus of the comparative example, and a high-quality AlN single crystal with high crystallinity can be efficiently manufactured. It could be confirmed.

1 育成坩堝
2 加熱手段
3 坩堝本体
3a 下部坩堝本体
3b 上部坩堝本体
4 蓋体
4a 蓋本体
4b プレート
5 遮熱体
6 導入口
7 排気口
8 ガス供給管
9 排気管
10 放射温度計
11 支持台
12 窓
40 凹凸
41 窪み(凹陥部)
42 薄肉部
50,51 開口部
52 内フランジ
400 環状溝
401 直線溝
402 溝
403 直線溝
404 溝
405 環状溝
406 直線溝
407 穴
A 炉体
a 炉内空間
e 領域
DESCRIPTION OF SYMBOLS 1 Growing crucible 2 Heating means 3 Crucible body 3a Lower crucible body 3b Upper crucible body 4 Lid body 4a Lid body 4b Plate 5 Heat shield 6 Inlet 7 Exhaust port 8 Gas supply pipe 9 Exhaust pipe 10 Radiation thermometer 11 Radiation support 11 Window 40 Concavity and convexity 41 Depression (concave part)
42 Thin-walled portion 50, 51 Opening portion 52 Inner flange 400 Annular groove 401 Linear groove 402 Groove 403 Linear groove 404 Groove 405 Annular groove 406 Linear groove 407 Hole A Furnace a Space in the furnace e Region

Claims (4)

育成坩堝(1)と、該育成坩堝(1)を外側から加熱する加熱手段(2)を備え、昇華法により窒化アルミニウム単結晶を製造する装置であって、
育成坩堝(1)は、上部が開放し、下部に原料物質が収容される坩堝本体(3)と、下面中央部に種結晶を保持した状態で、坩堝本体(3)に対してその開放した上部を塞ぐようにセットされる蓋体(4)を備え、
蓋体(4)の平面における少なくとも種結晶が保持される領域(e)は、その上面側又は/及び下面側に凹凸(40)が形成されることにより、厚みが一定でない構造を有することを特徴とする窒化アルミニウム単結晶製造装置。
An apparatus for producing an aluminum nitride single crystal by a sublimation method, comprising a growth crucible (1) and heating means (2) for heating the growth crucible (1) from the outside,
The growing crucible (1) is open to the crucible main body (3) with the upper part opened and the lower part containing the raw material and the seed crystal held at the center of the lower surface. It has a lid (4) that is set to close the top,
The region (e) in which at least the seed crystal is held in the plane of the lid (4) has a structure in which the thickness is not constant by forming the unevenness (40) on the upper surface side and / or the lower surface side. An apparatus for producing an aluminum nitride single crystal.
凹凸(40)は、蓋体(4)の上面側又は/及び下面側に設けられる溝又は/及び穴により形成されることを特徴とする請求項1に記載の窒化アルミニウム単結晶製造装置。   The apparatus for producing an aluminum nitride single crystal according to claim 1, wherein the unevenness (40) is formed by a groove or / and a hole provided on the upper surface side and / or the lower surface side of the lid (4). 昇華法により窒化アルミニウム単結晶を製造する装置において、下面中央部に種結晶を保持した状態で、育成坩堝を構成する坩堝本体に対してその開放した上部を塞ぐようにセットされる蓋体であって、
蓋体平面における少なくとも種結晶が保持される領域(e)は、その上面側又は/及び下面側に凹凸(40)が形成されることにより、厚みが一定でない構造を有することを特徴とする窒化アルミニウム単結晶製造装置における育成坩堝の蓋体。
In an apparatus for producing an aluminum nitride single crystal by a sublimation method, a lid body is set so as to close an open upper portion with respect to a crucible body constituting a growth crucible in a state where a seed crystal is held at a central portion of a lower surface. And
The region (e) in which at least the seed crystal is held on the plane of the lid body has a structure in which the thickness is not constant by forming irregularities (40) on the upper surface side and / or the lower surface side thereof. A lid for a growth crucible in an aluminum single crystal manufacturing apparatus.
凹凸(40)は、蓋体の上面側又は/及び下面側に設けられる溝又は/及び穴により形成されることを特徴とする請求項3に記載の窒化アルミニウム単結晶製造装置における育成坩堝の蓋体。   4. The lid of the growth crucible in the aluminum nitride single crystal manufacturing apparatus according to claim 3, wherein the unevenness (40) is formed by a groove or / and a hole provided on the upper surface side and / or the lower surface side of the lid body. body.
JP2017102153A 2017-05-23 2017-05-23 Aluminum nitride single crystal production equipment Expired - Fee Related JP6291615B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017102153A JP6291615B1 (en) 2017-05-23 2017-05-23 Aluminum nitride single crystal production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017102153A JP6291615B1 (en) 2017-05-23 2017-05-23 Aluminum nitride single crystal production equipment

Publications (2)

Publication Number Publication Date
JP6291615B1 JP6291615B1 (en) 2018-03-14
JP2018197174A true JP2018197174A (en) 2018-12-13

Family

ID=61628644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017102153A Expired - Fee Related JP6291615B1 (en) 2017-05-23 2017-05-23 Aluminum nitride single crystal production equipment

Country Status (1)

Country Link
JP (1) JP6291615B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813499A (en) * 2020-12-31 2021-05-18 山东天岳先进科技股份有限公司 Preparation method and growth device of N-type silicon carbide crystal

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733979U (en) * 1993-11-26 1995-06-23 住友金属鉱山株式会社 Graphite crucible for producing SiC single crystal
JPH11278985A (en) * 1998-03-26 1999-10-12 Toyota Central Res & Dev Lab Inc Production of single crystal
US6508880B2 (en) * 2000-02-15 2003-01-21 The Fox Group, Inc. Apparatus for growing low defect density silicon carbide
KR200368827Y1 (en) * 2004-05-17 2004-12-03 구갑렬 Crucible with inner tube and convex lid for sublimation growth of SiC single crystal
JP2011132079A (en) * 2009-12-25 2011-07-07 National Institute Of Advanced Industrial Science & Technology Aluminum nitride single crystal, method and apparatus for manufacturing the same
JP2011219295A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Apparatus for producing silicon carbide single crystal ingot
KR20130020488A (en) * 2011-08-19 2013-02-27 엘지이노텍 주식회사 Apparatus for fabricating ingot
JP2015054799A (en) * 2013-09-12 2015-03-23 株式会社フジクラ Apparatus for producing aluminum nitride single crystal
JP2017105676A (en) * 2015-12-10 2017-06-15 昭和電工株式会社 Manufacturing method of single crystal, and manufacturing apparatus of single crystal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733979U (en) * 1993-11-26 1995-06-23 住友金属鉱山株式会社 Graphite crucible for producing SiC single crystal
JPH11278985A (en) * 1998-03-26 1999-10-12 Toyota Central Res & Dev Lab Inc Production of single crystal
US6508880B2 (en) * 2000-02-15 2003-01-21 The Fox Group, Inc. Apparatus for growing low defect density silicon carbide
KR200368827Y1 (en) * 2004-05-17 2004-12-03 구갑렬 Crucible with inner tube and convex lid for sublimation growth of SiC single crystal
JP2011132079A (en) * 2009-12-25 2011-07-07 National Institute Of Advanced Industrial Science & Technology Aluminum nitride single crystal, method and apparatus for manufacturing the same
JP2011219295A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Apparatus for producing silicon carbide single crystal ingot
KR20130020488A (en) * 2011-08-19 2013-02-27 엘지이노텍 주식회사 Apparatus for fabricating ingot
JP2015054799A (en) * 2013-09-12 2015-03-23 株式会社フジクラ Apparatus for producing aluminum nitride single crystal
JP2017105676A (en) * 2015-12-10 2017-06-15 昭和電工株式会社 Manufacturing method of single crystal, and manufacturing apparatus of single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813499A (en) * 2020-12-31 2021-05-18 山东天岳先进科技股份有限公司 Preparation method and growth device of N-type silicon carbide crystal

Also Published As

Publication number Publication date
JP6291615B1 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP5289045B2 (en) Method and apparatus for producing silicon carbide crystal
WO2009139447A1 (en) Single crystal manufacturing device and manufacturing method
KR20120082873A (en) Sublimation growth of sic single crystals
JP2008535759A (en) Seed-forming growth method for preparing aluminum nitride single crystals
KR101458183B1 (en) An apparatus and method for growing silicon carbide single crystal
US20160002820A1 (en) Crucible and method for producing single crystal
JP2000264795A (en) Apparatus and method for producing silicon carbide single crystal
KR20150087310A (en) Storing container, storing container manufacturing method, semiconductor manufacturing method, and semiconductor manufacturing apparatus
JP6291615B1 (en) Aluminum nitride single crystal production equipment
JP6300990B1 (en) Aluminum nitride single crystal production equipment
JP6317868B1 (en) Aluminum nitride single crystal production equipment
JP2020040845A (en) SiC SINGLE CRYSTAL MANUFACTURING APPARATUS
CN115768929A (en) Crystal growth unit for producing single crystals
JP2013075793A (en) Apparatus and method for producing single crystal
JP5252495B2 (en) Method for producing aluminum nitride single crystal
US20140190413A1 (en) Apparatus for fabricating ingot
US20240052520A1 (en) System and method of producing monocrystalline layers on a substrate
JP6196859B2 (en) Wafer mounting material
KR20130069192A (en) Apparatus for growing of sic single crystal
CN112334607B (en) Silicon carbide single crystal and method for producing same
KR101365483B1 (en) Single-Crystal Growing Apparatus
KR20130063675A (en) Single-crystal growing apparatus
CN117529582A (en) Simultaneous growth of two silicon carbide layers
WO2017104133A1 (en) Solution growth method, pedestal, and method for producing single crystal sic
JP2014084240A (en) Apparatus for producing single crystal of aluminum nitride

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180209

R150 Certificate of patent or registration of utility model

Ref document number: 6291615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees