JP2018195266A - 状態分析装置、状態分析方法、およびプログラム - Google Patents

状態分析装置、状態分析方法、およびプログラム Download PDF

Info

Publication number
JP2018195266A
JP2018195266A JP2017101117A JP2017101117A JP2018195266A JP 2018195266 A JP2018195266 A JP 2018195266A JP 2017101117 A JP2017101117 A JP 2017101117A JP 2017101117 A JP2017101117 A JP 2017101117A JP 2018195266 A JP2018195266 A JP 2018195266A
Authority
JP
Japan
Prior art keywords
state
parameter
values
range
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017101117A
Other languages
English (en)
Other versions
JP6976080B2 (ja
Inventor
熊野 信太郎
Shintaro Kumano
信太郎 熊野
森下 靖
Yasushi Morishita
靖 森下
園田 隆
Takashi Sonoda
隆 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017101117A priority Critical patent/JP6976080B2/ja
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to US16/614,918 priority patent/US11488034B2/en
Priority to EP18805569.3A priority patent/EP3633397A4/en
Priority to PCT/JP2018/019323 priority patent/WO2018216620A1/ja
Priority to CN201880033156.6A priority patent/CN110651192B/zh
Priority to KR1020197033837A priority patent/KR102467129B1/ko
Priority to TW107117373A priority patent/TWI687699B/zh
Publication of JP2018195266A publication Critical patent/JP2018195266A/ja
Priority to PH12019502592A priority patent/PH12019502592A1/en
Application granted granted Critical
Publication of JP6976080B2 publication Critical patent/JP6976080B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】未来の状態量の予測値を、予測の曖昧さを含めて効果的に表示する。
【解決手段】状態量取得部は、対象装置に係るあるタイミングにおける複数の状態量の値を取得する。状態量予測部は、取得した複数の状態量の値に基づいて、複数の状態量の値が所定時間後に取り得る範囲を予測する。表示情報生成部は、複数の状態量のそれぞれを軸とした座標空間に、複数の状態量の値が取り得る範囲に応じた形状の図形である予測値図形を配置した表示情報を生成する。
【選択図】図7

Description

本発明は、状態分析装置、状態分析方法、およびプログラムに関する。
特許文献1−4には、あるタイミングで機器の状態量を取得し、当該状態量に基づいて未来の状態量を予測し、これらをグラフィカルに表示する技術が開示されている。
特開2007−257444号公報 特許第5827426号公報 特許第3392526号公報 特許第5363238号公報
一方で、機器の状態量は必ずしも予測値に沿って推移するとは限られない。特許文献1−4に記載の技術によれば、機器の管理者は、状態量の予測値に基づいて対策を講じることができるが、表示された予測値と異なる方向へ状態量が推移してしまう場合に、適切な対応が取れない可能性がある。
本発明の目的は、未来の状態量の予測値を、予測の曖昧さを含めて効果的に表示することができる状態分析装置、状態分析方法、およびプログラムを提供することにある。
本発明の第1の態様によれば、状態分析装置は、対象装置に係るあるタイミングにおける複数の状態量の値を取得する状態量取得部と、取得した前記複数の状態量の値に基づいて、前記複数の状態量の値が所定時間後に取り得る範囲を予測する状態量予測部と、前記複数の状態量のそれぞれを軸とした座標空間に、前記複数の状態量の値が取り得る範囲に応じた形状の図形である予測値図形を配置した表示情報を生成する表示情報生成部とを備える。
本発明の第2の態様によれば、第1の態様に係る状態分析装置は、前記表示情報生成部は、前記座標空間に、前記状態量取得部が取得した前記複数の状態量の値を表す図形である取得値図形をさらに配置した前記表示情報を生成するものであってよい。
本発明の第3の態様によれば、第1または第2の態様に係る状態分析装置は、前記複数の状態量の相関の強さを特定する相関特定部をさらに備え、前記表示情報生成部は、前記相関の強さに応じた形状を有する前記予測値図形を配置した前記表示情報を生成するものであってよい。
本発明の第4の態様によれば、第1から第3の何れかの態様に係る状態分析装置は、前記対象装置と同種の装置の前記複数の状態量の値の履歴を記憶する状態量記憶部をさらに備え、前記状態量予測部は、前記状態量記憶部が記憶する前記履歴のうち、取得した前記複数の状態量の値の推移と類似する複数の部分を特定し、当該複数の部分に基づいて前記取り得る範囲を予測するものであってよい。
本発明の第5の態様によれば、第4の態様に係る状態分析装置は、前記状態量予測部は、前記状態量記憶部が記憶する前記履歴のうち、取得した前記複数の状態量の値と近似する値を有する複数のタイミングを特定し、当該複数のタイミングの前記所定時間後における前記状態量記憶部が記憶する前記複数の状態量の値に基づいて前記取り得る範囲を予測するものであってよい。
本発明の第6の態様によれば、第4の態様に係る状態分析装置は、前記状態量予測部は、前記状態量記憶部が記憶する前記履歴のうち、取得した前記複数の状態量の値の変化量と類似する変化量を有する複数のタイミングを特定し、当該複数のタイミングの前記所定時間後における前記状態量記憶部が記憶する前記複数の状態量の変化量に基づいて前記取り得る範囲を予測するものであってよい。
本発明の第7の態様によれば、第1から第6の何れかの態様に係る状態分析装置は、前記対象装置の動作を模擬するシミュレータをさらに備え、前記状態量予測部は、前記シミュレータの外部パラメータを変化させて得られる複数の前記複数の状態量の値に基づいて前記取り得る範囲を予測するものであってよい。
本発明の第8の態様によれば、第1から第7の何れかの態様に係る状態分析装置は、前記表示情報生成部は、前記取り得る範囲のうち発生確率が所定値以上の値を包含する形状の前記予測値図形を配置した前記表示情報を生成するものであってよい。
本発明の第9の態様によれば、第1から第8の何れかの態様に係る状態分析装置は、前記状態量予測部は、複数の予測手段ごとに前記取り得る範囲を予測するものであってよい。
本発明の第10の態様によれば、第9の態様に係る状態分析装置は、前記状態量予測部は、取得した前記複数の状態量の値に基づいて前記複数の予測手段の中から前記取り得る範囲の予測に用いる予測手段を決定し、当該予測手段に基づいて前記取り得る範囲を予測するものであってよい。
本発明の第11の態様によれば、第9または第10の態様に係る状態分析装置は、前記表示情報生成部は、複数の予測手段ごとに前記予測値図形を生成し、各予測値図形を配置した前記表示情報を生成するものであってよい。
本発明の第12の態様によれば、状態分析方法は、対象装置に係るあるタイミングにおける複数の状態量の値を取得するステップと、取得した前記複数の状態量の値に基づいて、前記複数の状態量の値が所定時間後に取り得る範囲を予測するステップと、前記複数の状態量のそれぞれを軸とした座標空間に、前記複数の状態量の値が取り得る範囲に応じた形状の図形である予測値図形を配置した表示情報を生成するステップとを有する。
本発明の第13の態様によれば、プログラムは、コンピュータに、対象装置に係るあるタイミングにおける複数の状態量の値を取得するステップと、取得した前記複数の状態量の値に基づいて、前記複数の状態量の値が所定時間後に取り得る範囲を予測するステップと、前記複数の状態量のそれぞれを軸とした座標空間に、前記複数の状態量の値が取り得る範囲に応じた形状の図形である予測値図形を配置した表示情報を生成するステップとを実行させる。
上記態様のうち少なくとも1つの態様によれば、状態分析装置は、複数の状態量の値が取り得る範囲に応じた形状の図形である予測値図形を配置した表示情報を生成する。これにより、対象装置の管理者は、予測値図形を視認することで、予測値および予測の曖昧さを直感的に認識することができる。
第1の実施形態に係る状態分析システムの構成を示す概略図である。 第1の実施形態に係る状態分析装置の構成を示す概略ブロック図である。 第1の実施形態に係るパラメータ記憶部が記憶する情報の例を示す図である。 第1の実施形態に係る閾値記憶部が記憶する情報の例を示す図である。 第1の実施形態に係る状態分析装置による電流パラメータ算出処理を示すフローチャートである。 第1の実施形態に係る状態分析装置による電流パラメータ表示処理を示すフローチャートである。 KIパラメータとLpoleパラメータとの関係を示す第1のグラフの例を示す図である。 KIパラメータとLpoleパラメータとの関係を示す第1のグラフの例を示す図である。 第3の実施形態に係る状態分析装置の構成を示す概略ブロック図である。 第3の実施形態に係る状態分析装置による電流パラメータ表示処理を示すフローチャートである。 第4の実施形態に係る状態分析装置の構成を示す概略ブロック図である。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
〈第1の実施形態〉
以下、図面を参照しながら第1の実施形態について詳しく説明する。
《状態分析システムの構成》
図1は、第1の実施形態に係る状態分析システムの構成を示す概略図である。
第1の実施形態に係る状態分析システム1は、状態分析装置10、表示装置20、対象装置30、三相交流電源40、電力線50、クランプ電流計60を備える。
第1の実施形態に係る状態分析装置10は、検査対象となる対象装置30の状態を表す情報を表示装置20に表示させる。第1の実施形態に係る対象装置30は、三相交流電源40で駆動するモータ、モータが備えるロータと共に回転するポンプまたはファンなどの補機を備える回転機械システムである。対象装置30は、電力線50を介して三相交流電源40に接続される。電力線50はクランプ電流計60に挟み込まれる。状態分析システム1は、クランプ電流計60を3つ備え、各クランプ電流計60はそれぞれ異なる電力線を挟み込む。なお、他の実施形態においては、状態分析システム1がクランプ電流計60を1つまたは2つ備え、3本の電力線50のうち一部の電流を計測しないものであってもよい。クランプ電流計60は、電力線50を流れる電流の大きさを計測し、デジタル信号(電流信号)として状態分析装置10に出力する。状態分析装置10は、クランプ電流計60から受信した電流信号に基づいて、対象装置30の状態を表す情報を表示装置20に表示させる。
《状態分析装置の構成》
図2は、第1の実施形態に係る状態分析装置の構成を示す概略ブロック図である。
状態分析装置10は、電流取得部101、パラメータ算出部102、パラメータ記憶部103、履歴記憶部104、パラメータ予測部105、閾値記憶部106、相関係数記憶部107、相関特定部108、グラフ生成部109、表示制御部110を備える。
電流取得部101は、クランプ電流計60から電力線50を介して対象装置30に流れる電流信号を取得する。
パラメータ算出部102は、一定の周期に係るタイミングで、電流取得部101が取得した電流信号に基づいて、対象装置30の状態によって変動する複数のパラメータの値を算出する。以下、パラメータ算出部102によって算出されるパラメータを、電流パラメータとよぶ。具体的な電流パラメータの例については、後述する。パラメータ算出部102が算出する複数の電流パラメータのうち少なくとも2つは、互いに相関関係を有する。電流パラメータの値は、対象装置30に係る複数の状態量の値の一例である。
パラメータ記憶部103は、パラメータ算出部102が算出した複数の電流パラメータの値を算出時刻に関連付けて記憶する。
履歴記憶部104は、対象装置30と同種の他の装置(同じ型の装置など)の複数の電流パラメータの値の履歴を記憶する。
パラメータ予測部105は、履歴記憶部104が記憶する複数の電流パラメータの値の時系列と、パラメータ算出部102が算出した複数の電流パラメータの値とに基づいて、所定時間後のタイミングにおける複数の電流パラメータの値が取り得る範囲を予測する。
具体的には、パラメータ予測部105は、以下の手順で複数の電流パラメータの値が取り得る範囲を予測する。パラメータ予測部105は、履歴記憶部104が記憶する複数の電流パラメータの値の時系列の中から、各電流パラメータの値がパラメータ算出部102が算出した、あるタイミングにおける各電流パラメータの値と近似する複数のタイミング(例えば各電流パラメータの値の二乗平均誤差が所定の閾値以下となるタイミング)を特定する。次に、パラメータ予測部105は、各タイミングの所定時間後のタイミングにおける複数の電流パラメータの値を特定する。パラメータ予測部105は、電流パラメータごとの特定された複数の値の最小値から最大値までの範囲を、各電流パラメータの値が取り得る範囲と予測する。
閾値記憶部106は、各電流パラメータについて、対象装置30の状態の判断基準となる閾値を記憶する。第1の実施形態に係る対象装置30の状態の種別は、対象装置30が正常である正常状態、対象装置30が異常である異常状態、および対象装置30の状態が異常状態に遷移しうる状態である注意状態である。
相関係数記憶部107は、異なる2つの電流パラメータの組について、2つの電流パラメータの相関係数を記憶する。2つの電流パラメータの相関係数は、予め算出されたものである。電流パラメータの相関関係の詳細については、後述する。
相関特定部108は、相関係数記憶部107から、表示対象の電流パラメータの組に関連付けられた相関係数を特定する。
グラフ生成部109は、パラメータ算出部102が算出した電流パラメータの値およびパラメータ予測部105が算出した電流パラメータの予測値から、電流パラメータの予測変化量を表すグラフ画像を生成する。グラフ画像は、2つの電流パラメータを縦軸と横軸とに取ったグラフである。グラフ画像には、各電流パラメータに係る閾値を表す区分線と、パラメータ算出部102が算出した2つの電流パラメータの値を表すプロット(取得値図形)と、パラメータ予測部105が算出した2つの電流パラメータの予測値を表す円(予測値図形)と、変化量を表す矢印とが配置される。
表示制御部110は、グラフ生成部109が生成したグラフ画面に基づいて、表示装置20に出力する表示情報を生成する。表示制御部110は、表示情報生成部の一例である。
《電流パラメータ》
ここで、第1の実施形態に係るパラメータ算出部102が算出する電流パラメータについて説明する。
第1の実施形態に係るパラメータ算出部102は、KIパラメータ、Lpoleパラメータ、Lshaftパラメータ、Irmsパラメータ、THDパラメータ、IHDパラメータ、Lxパラメータ、Iubパラメータを算出する。
KIパラメータは、対象装置30の全般的な状態を表すパラメータである。KIパラメータは、電流信号から求められた点検時振幅確率密度関数ft(x)とモータの定格電流を示す基準正弦波信号波形の参照振幅確率密度変数fr(x)とに対するカルバックライブラー情報量である。具体的には、KIパラメータは、以下の式(1)により求められる。
Figure 2018195266
Lpoleパラメータは、対象装置30のロータの状態を表すパラメータである。Lpoleパラメータは、電流信号を周波数領域変換して得られる周波数スペクトルのうち、電流スペクトルピークを中心として、所定周波数分だけ離れた周波数位置における電流スペクトルの側帯波のピークの大きさである。Lpoleパラメータに係る側帯波は、モータのポール通過周波数に起因して変動する側帯波である。
Lshaftパラメータは、対象装置30のロータおよび補機のミスアラインメントの状態を表すパラメータである。Lshaftパラメータは、電流信号を周波数領域変換して得られる周波数スペクトルのうち、電流スペクトルピークを中心として、所定周波数分だけ離れた周波数位置における電流スペクトルの側帯波のピークの大きさによって求められる。Lshaftパラメータに係る側帯波は、モータの実回転周波数に起因して変動する側帯波である。
Irmsパラメータは、対象装置30の回転機械負荷および状態変動を監視するためのパラメータである。Irmsパラメータは、各サンプリングタイミングにおける電流値の二乗和をサンプリングタイミング数で除算し、その平方根を求めることで得ることができる、電流実効値である。
IHDパラメータは、電流信号の最大高調波成分と電源周波数成分の比率である。IHDパラメータは、電流信号から高調波成分を抽出し、高調波成分の予め設定した次数内にある最大値を、電源周波数実効値で除算することで得ることができる。
THDパラメータは、電流信号の全高調波成分と電源周波数成分の比率である。THDパラメータは、電流信号から高調波成分を抽出し、予め設定した次数内における各高調波成分の二乗和の平方根を、電流信号の電源周波数実効値で除算することで得ることができる。IHDパラメータおよびTHDパラメータは、いずれも三相交流電源40の品質を表すパラメータである。
Lxパラメータは、対象装置30の補機の状態を表すパラメータである。Lxパラメータは、電流信号を周波数領域変換して得られる周波数スペクトルのうち、電流スペクトルピークを中心として、所定周波数分だけ離れた周波数位置における電流スペクトルの側帯波のピークの大きさである。Lxパラメータに係る側帯波は、ポンプまたはブロワのブレード通過周波数に起因して変動する側帯波、歯車装置の噛合い周波数に起因して変動する側帯波、プーリベルトの回転周波数に起因して変動する側帯波、または回転子バーのすべり周波数に起因して変動する側帯波に起因して変動する側帯波である。
ポンプまたはブロワのブレード通過周波数に起因して変動する側帯波のピークの大きさが示すLxパラメータを、Lbpパラメータという。歯車装置の噛合い周波数に起因して変動する側帯波のピークの大きさが示すLxパラメータを、Lgzパラメータという。プーリベルトの回転周波数に起因して変動する側帯波のピークの大きさが示すLxパラメータを、Lbrパラメータという。および回転子バーのすべり周波数に起因して変動する側帯波のいずれか1つに起因して変動する側帯波のピークの大きさが示すLxパラメータを、Lrsパラメータという。ポンプ、ブロワ、歯車装置、プーリベルト、回転子バーは、対象装置30の補機の一例である。
Iubパラメータは、電源品質またはモータの固定子およびインバータの劣化状況を表すパラメータである。Iubパラメータは、3相の電流信号の電流実効値の中の最大値と最小値の差を、その最大値と最小値の和で除算することで求めることができる。つまり、Iubパラメータは、電流信号の三相電流バランスを示すパラメータである。
KIパラメータは、ロータの状態が悪化すると増加し、Lpoleパラメータは、ロータの状態が悪化すると減少する。つまり、KIパラメータとLpoleパラメータとは、対象装置30のロータの状態について相関関係を有する。つまり、相関係数記憶部107は、KIパラメータとLpoleパラメータとの組に関連付けて、負値の相関係数を記憶する。
KIパラメータは、モータの軸系のアンバランスの状態が悪化すると増加し、Lshaftパラメータおよび各種Lxパラメータは、モータの軸系のアンバランスの状態が悪化すると減少する。つまり、KIパラメータとLshaftパラメータと各種Lxパラメータとは、対象装置30のモータの軸系のアンバランス状態について相関関係を有する。また、KIパラメータは、モータの軸系のミスアラインメントの状態が悪化すると増加し、Lshaftパラメータは、モータの軸系のミスアラインメントの状態が悪化すると減少する。つまり、KIパラメータとLshaftパラメータとは、対象装置30のモータの軸系のミスアラインメントの状態について相関関係を有する。つまり、相関係数記憶部107は、KIパラメータとLshaftパラメータとの組、およびKIパラメータと各種Lxパラメータとの組に関連付けて、負値の相関係数を記憶する。
KIパラメータとIrmsパラメータとは、いずれも負荷変動の状態が悪化すると増加する。つまり、KIパラメータとIrmsパラメータとは、対象装置30の負荷変動の状態について相関関係を有する。つまり、相関係数記憶部107は、KIパラメータとIrmsパラメータとの組に関連付けて、正値の相関係数を記憶する。
KIパラメータとTHDパラメータとIHDパラメータとIubパラメータとは、いずれもモータの固定子の状態、または電源品質が悪化すると増加する。つまり、KIパラメータとTHDパラメータとIHDパラメータとIubパラメータとは、対象装置30の固定子の状態または電源品質について相関関係を有する。つまり、相関係数記憶部107は、KIパラメータとTHDパラメータとの組、KIパラメータとIHDパラメータとの組、KIパラメータとIubパラメータとの組、THDパラメータとIHDパラメータとの組、THDパラメータとIubパラメータとの組、およびIHDパラメータとIubパラメータとの組に関連付けて、正値の相関係数を記憶する。
LpoleパラメータおよびLshaftパラメータは、いずれもモータの状態が悪化すると減少する。つまり、LpoleパラメータとLshaftパラメータとは、対象装置30のロータの状態について相関関係を有する。つまり、相関係数記憶部107は、LpoleパラメータとLshaftパラメータとの組に関連付けて、正値の相関係数を記憶する。
図3は、第1の実施形態に係るパラメータ記憶部が記憶する情報の例を示す図である。
パラメータ記憶部103は、図3に示すように、一定の周期(例えば、半日又は1日毎)に係るタイミングである測定時刻ごとに、当該測定時刻、KIパラメータ、Lpoleパラメータ、Lshaftパラメータ、Irmsパラメータ、THDパラメータ、IHDパラメータ、Lxパラメータ、およびIubパラメータを関連付けて記憶する。
図4は、第1の実施形態に係る閾値記憶部が記憶する情報の例を示す図である。
閾値記憶部106は、図4に示すように、KIパラメータ、Lpoleパラメータ、Lshaftパラメータ、Irmsパラメータ、THDパラメータ、IHDパラメータ、Lxパラメータ、およびIubパラメータのそれぞれについて、正常状態となる値の範囲、注意状態となる値の範囲、および異常状態となる値の範囲を記憶する。
第1の実施形態においては、各電流パラメータについての正常状態となる値の範囲、注意状態となる値の範囲、および異常状態となる値の範囲は、以下の通りである。なお、以下に示す範囲はあくまで一例であり、他の実施形態についてはこれに限られない。
正常状態となるKIパラメータの値の範囲は、1.0未満である。注意状態となるKIパラメータの値の範囲は、1.0以上かつ1.5未満である。異常状態となるKIパラメータの値の範囲は、1.5以上である。つまり、KIパラメータに係る第1の閾値は1.0であり、KIパラメータに係る第2の閾値は1.5である。
正常状態となるLpoleパラメータの値の範囲は、50dB超である。注意状態となるLpoleパラメータの値の範囲は、40dB超かつ50dB以下である。異常状態となるLpoleパラメータの値の範囲は、40dB以下である。つまり、Lpoleパラメータに係る第1の閾値は50dBであり、Lpoleパラメータに係る第2の閾値は40dBである。
正常状態となるLshaftパラメータの値の範囲は、50dB超である。注意状態となるLshaftパラメータの値の範囲は、40dB超かつ50dB以下である。異常状態となるLshaftパラメータの値の範囲は、40dB以下である。つまり、Lshaftパラメータに係る第1の閾値は50dBであり、Lshaftパラメータに係る第2の閾値は40dBである。
正常状態となるIrmsパラメータの値の範囲は、変動±10%未満である。注意状態となるIrmsパラメータの値の範囲は、変動±10%以上かつ変動±20%未満である。異常状態となるIrmsパラメータの値の範囲は、変動±20%以上である。つまり、Irmsパラメータに係る第1の閾値は変動±10%であり、Irmsパラメータに係る第2の閾値は変動±20%である。
正常状態となるTHDパラメータの値の範囲は、5%未満である。注意状態となるTHDパラメータの値の範囲は、5%以上かつ10%未満である。異常状態となるTHDパラメータの値の範囲は、10%以上である。つまり、THDパラメータに係る第1の閾値は5%であり、THDパラメータに係る第2の閾値は10%である。
正常状態となるIHDパラメータの値の範囲は、3%未満である。注意状態となるIHDパラメータの値の範囲は、3%以上かつ5%未満である。異常状態となるIHDパラメータの値の範囲は、5%以上である。つまり、IHDパラメータに係る第1の閾値は3%であり、IHDパラメータに係る第2の閾値は5%である。
正常状態となるLxパラメータの値の範囲は、50dB超である。注意状態となるLxパラメータの値の範囲は、40dB超かつ50dB以下である。異常状態となるLxパラメータの値の範囲は、40dB以下である。つまり、Lxパラメータに係る第1の閾値は50dBであり、Lxパラメータに係る第2の閾値は40dBである。
正常状態となるIubパラメータの値の範囲は、3%未満である。注意状態となるIubパラメータの値の範囲は、3%以上かつ5%未満である。異常状態となるIubパラメータの値の範囲は、5%以上である。つまり、Iubパラメータに係る第1の閾値は3%であり、Iubパラメータに係る第2の閾値は5%である。
《状態分析装置の動作》
ここで、第1の実施形態に係る状態分析装置10の動作について説明する。
図5は、第1の実施形態に係る状態分析装置による電流パラメータ算出処理を示すフローチャートである。
状態分析装置10は、一定の周期に係るタイミングごとに、電流パラメータ算出処理を実行する。状態分析装置10の電流取得部101は、クランプ電流計60から電流信号を取得する(ステップS1)。なお電流取得部101は、サンプリングタイミングごとに電流信号を取得しているため、電流取得部101が取得する電流信号は、一定期間における電流の大きさの変化を示す。次に、パラメータ算出部102は、電流信号を周波数領域変換し、周波数領域波形を生成する(ステップS2)。周波数領域変換の手法としては、FFTが挙げられる。
パラメータ算出部102は、ステップS1で取得した電流信号とステップS2で生成した周波数領域波形とに基づいて複数の電流パラメータの値を算出する(ステップS3)。パラメータ算出部102は、算出した複数の電流パラメータの値を、現在時刻に関連付けてパラメータ記憶部103に記録する(ステップS4)。
状態分析装置10は、上述した電流パラメータ算出処理を一定の周期に係るタイミングごとに実行することで、パラメータ記憶部103に複数の電流パラメータの時系列を記録することができる。
図6は、第1の実施形態に係る状態分析装置による電流パラメータ表示処理を示すフローチャートである。
状態分析装置10は、対象装置30の管理者の操作により電流パラメータの表示指示がなされると、表示対象の電流パラメータの組の入力を受け付ける(ステップS11)。電流パラメータの組の入力は、状態分析装置10に予め設定された互いに相関関係を有するパラメータ対(例えば、LshaftパラメータとLpoleパラメータの対、THDパラメータとIHDパラメータの対、KIパラメータとLxパラメータの対など)のリストの中から管理者による選択を受け付けることでなされる。他の実施形態においては、電流パラメータの組の入力は、管理者による任意の2つのパラメータの入力によってなされてもよい。
次に、状態分析装置10のパラメータ予測部105は、パラメータ記憶部103から選択された対に係る各電流パラメータの値であって最後に記録されたものを読み出す(ステップS12)。次に、パラメータ予測部105は、履歴記憶部104から、選択された対に係る各電流パラメータの値が、ステップS12で読み出した値と近似する複数のタイミングを特定する(ステップS13)。これにより、パラメータ予測部105は、選択された対に係る各電流パラメータの値の推移と類似する複数のタイミングを特定する。パラメータ予測部105は、選択された対に係る各電流パラメータについて、特定した複数のタイミングに係る電流パラメータの値の最小値から最大値までの範囲を、電流パラメータの値の取り得る範囲と予測する(ステップS14)。相関特定部108は、選択された対に係る各電流パラメータに関連付けられた相関係数を、相関係数記憶部107から読み出す(ステップS15)。
次に、状態分析装置10のグラフ生成部109は、選択された対に係る各電流パラメータを軸G1とする座標空間を描画する(ステップS16)。つまり、グラフ生成部109は、対をなす電流パラメータを表す直交する軸G1を描画する。本実施形態において「描画する」とは、仮想空間(仮想平面)上に図形を配置することをいう。次に、グラフ生成部109は、閾値記憶部106から選択された対に係る各電流パラメータに関連付けられた第1閾値および第2閾値を読み出し、第1閾値を表す区分線G2および第2閾値を表す区分線G2を描画する(ステップS17)。一の電流パラメータに係る閾値を表す区分線G2は、当該一の電流パラメータを表す軸G1に平行な線である。次に、グラフ生成部109は、パラメータ記憶部103から選択された対に係る各電流パラメータの値であって最後に記録されたものを表すプロットG3を座標空間上に描画する(ステップS18)。
次に、グラフ生成部109は、相関特定部108が特定した相関係数に基づいて、座標空間のうち、パラメータ予測部105が予測した取り得る範囲に相当する四角形に内接するオーバルG4(楕円形、長円形、卵形)を座標空間上に描画する(ステップS19)。オーバルG4の形状は、相関係数の絶対値が大きいほど細長く、相関係数の絶対値が小さいほど丸い形状となる。つまり、オーバルG4の面積は、パラメータ予測部105が予測した取り得る範囲が広いほど、かつ相関係数の絶対値が小さいほど(相関が弱いほど)大きくなる。他方、オーバルG4の面積は、パラメータ予測部105が予測した取り得る範囲が狭いほど、かつ相関係数の絶対値が大きいほど(相関が強いほど)小さくなる。また、オーバルG4の傾きは、相関係数が正値である場合に、正の傾きとなり、相関係数が負値である場合に、負の傾きとなる。
また、グラフ生成部109は、プロットG3からオーバルG4の輪郭へ伸びる矢印G5を座標空間上に描画する(ステップS20)。
そして、表示制御部110は、グラフ生成部109が描画した図形に基づいて表示情報を生成し、当該表示情報を表示装置20に出力する(ステップS21)。これにより、表示装置20は、各電流パラメータの閾値を表す区分線G2と、一対の電流パラメータの値を表すプロットG3と、一対の電流パラメータが所定時間後に取り得る値の範囲を表すオーバルG4と、一対の電流パラメータの値の変化量を表す矢印G5とが配置されたグラフを表示する。
《表示例》
図7は、KIパラメータとLpoleパラメータとの関係を示す第1のグラフの例を示す図である。
ステップS11で対象装置30の管理者がKIパラメータとLpoleパラメータの対を選択した場合、表示装置20には、図7に示すようなグラフが表示される。図7に示すグラフによれば、KIパラメータとLpoleパラメータとに基づいて対象装置30の現在の状態および一定時間後の状態を判断することができる。図7に示すグラフによれば、プロットG3において、KIパラメータおよびLpoleパラメータはともに注意状態にある。一方でオーバルG4は、注意状態の領域と異常状態の領域とに亘っている。ここで、対象装置30の管理者は、オーバルG4が異常状態に重なっている面積は微小であるため、視覚的に一定時間後に対象装置が異常状態に陥る可能性がある一方で、異常状態に至る確率は低いと判断することができる。
また、KIパラメータとLpoleパラメータには負の相関があるため、オーバルG4は右下方向に長く描かれる。つまり、相関の強さによって予測のばらつきの範囲が小さく表示される。これにより、管理者は、相関の強さに応じた予測の精度を視覚的に認識することができる。
このように、第1の実施形態によれば、状態分析装置10は、複数の電流パラメータのそれぞれを軸とした座標空間に、所定時間後に一対の電流パラメータの値が取り得る範囲を表すオーバルG4を配置した表示情報を生成する。これにより、管理者は、オーバルG4の位置および大きさを視認することで、予測値および予測の不確かさを直感的に認識することができる。また、第1の実施形態によれば、状態分析装置10は、表示情報に現在時刻における電流パラメータの値を表すプロットG3を配置する。これにより、管理者は、プロットG3の位置とオーバルG4の位置との関係を視認することで、電流パラメータの値の変化の大きさを認識することができる。
なお、第1の実施形態によれば、パラメータ予測部105は、履歴記憶部104から、各電流パラメータの値が、最後にパラメータ記憶部103に記録された各値と近似するタイミングを特定するが、これに限られない。例えば、他の実施形態においては、パラメータ予測部105は、パラメータ記憶部103から、各電流パラメータの値が、最後にパラメータ記憶部103に記録されたタイミングを含む所定時間範囲内における電流パラメータの各値の時系列と近似する時系列を特定してもよい。この場合、パラメータ予測部105は、当該時系列の最後のタイミングに係る各電流パラメータの値に基づいて、電流パラメータの値の取り得る範囲を予測する。
図8は、KIパラメータとLpoleパラメータとの関係を示す第2のグラフの例を示す図である。
第1の実施形態によれば、グラフ生成部109は、一定時間後の一対の電流パラメータの値が取り得る範囲を表すオーバルG4を含む表示情報を生成するが、他の実施形態においては、時間毎に複数のオーバルG4を含む表示情報を生成してもよい。例えば、パラメータ予測部105は、現在時刻から時間Δt経過後のタイミングT1と、現在時刻から時間2Δt経過後のタイミングT2とのそれぞれについて一対の電流パラメータの値が取り得る範囲を推定し、グラフ生成部109は、図8に示すように各取り得る範囲についてオーバルG4を生成する。
《第2の実施形態》
第1の実施形態に係る状態分析装置10は、算出された対象装置30の電流パラメータと同種の他の装置の電流パラメータの履歴のうち対象装置30のあるタイミングにおける各電流パラメータの値と近似する同種の他の装置の各電流パラメータの値をとるタイミングに基づいて、対象装置30の各電流パラメータの値の取り得る範囲を予測する。これに対し、第2の実施形態に係る状態分析装置10は、同種の他の装置の電流パラメータの履歴のうち、各電流パラメータの値の変化量が近似するタイミングに基づいて、各電流パラメータの値の取り得る範囲を予測する。
具体的には、第2の実施形態に係るパラメータ予測部105は、履歴記憶部104が記憶する複数の電流パラメータの値の時系列の中から、各電流パラメータの値の変化量がパラメータ算出部102が算出した各電流パラメータの値の変化量と近似する複数のタイミング(例えば各電流パラメータの値の二乗平均誤差が所定の閾値以下となるタイミング)を特定する。次に、パラメータ予測部105は、特定した各タイミングの所定時間後のタイミングにおける複数の電流パラメータの値の変化量を特定する。これにより、パラメータ予測部105は、選択された対に係る各電流パラメータの値の推移と類似する複数のタイミングを特定する。パラメータ予測部105は、パラメータ算出部102が算出した各電流パラメータの値に、特定された変化量の最小値を加算した値から、特定された変化量の最大値を加算した値までの範囲を、各電流パラメータの値が取り得る範囲と予測する。
《第3の実施形態》
第1、第2の実施形態に係る状態分析装置10は、対象装置30の電流パラメータの算出と同種の他の装置の運用の履歴に基づいて、対象装置30の各電流パラメータの値が取り得る範囲を予測する。これに対し、第3の実施形態に係る状態分析装置10は、シミュレータのシミュレーション結果に基づいて各電流パラメータの値が取り得る範囲を予測する。
図9は、第3の実施形態に係る状態分析装置の構成を示す概略ブロック図である。
第3の実施形態に係る状態分析装置10は、第1の実施形態の履歴記憶部104に代えてシミュレータ111を備える。シミュレータ111は、対象装置30の動作を模擬する。パラメータ予測部105は、シミュレータ111の模擬結果に基づいて各電流パラメータの値を予測する。
図10は、第3の実施形態に係る状態分析装置による電流パラメータ表示処理を示すフローチャートである。なお、図10のフローチャートで示される各処理は、処理内容に矛盾を生じない範囲で任意に順番が変更され、または並列に実行されてもよい。
状態分析装置10は、対象装置30の管理者の操作により電流パラメータの表示指示がなされると、表示対象の電流パラメータの組の入力を受け付ける(ステップS101)。次に、シミュレータ111は、対象装置30の現在の状態量に基づいて、一定時間後の対象装置30の状態を模擬する。このとき、シミュレータ111は、シミュレーションの実行に用いられる外部パラメータ(大気温度など)を変化させながらシミュレーションを複数回実行することで、一定時間後のタイミングにおける各電流パラメータの値を複数個求める(ステップS102)。
パラメータ予測部105は、選択された対に係る各電流パラメータについて、シミュレータ111が算出した複数の値の最小値から最大値までの範囲を、各電流パラメータの値の取り得る範囲と予測する(ステップS103)。相関特定部108は、選択された対に係る各電流パラメータに関連付けられた相関係数を、相関係数記憶部107から読み出す(ステップS104)。
次に、状態分析装置10のグラフ生成部109は、選択された対に係る各電流パラメータを軸G1とする座標空間を描画する(ステップS105)。つまり、グラフ生成部109は、対をなす電流パラメータを表す直交する軸G1を描画する。本実施形態において「描画する」とは、仮想空間(仮想平面)上に図形を配置することをいう。次に、グラフ生成部109は、閾値記憶部106から選択された対に係る各電流パラメータに関連付けられた第1閾値および第2閾値を読み出し、第1閾値を表す区分線G2および第2閾値を表す区分線G2を描画する(ステップS106)。一の電流パラメータに係る閾値を表す区分線G2は、当該一の電流パラメータを表す軸G1に平行な線である。次に、グラフ生成部109は、パラメータ記憶部103から選択された対に係る各電流パラメータの値であって最後に記録されたものを表すプロットG3を座標空間上に描画する(ステップS107)。
次に、グラフ生成部109は、相関特定部108が特定した相関係数に基づいて、座標空間のうち、パラメータ予測部105が予測した取り得る範囲に相当する四角形に内接するオーバルG4を座標空間上に描画する(ステップS108)。また、グラフ生成部109は、プロットG3からオーバルG4の輪郭へ伸びる矢印G5を座標空間上に描画する(ステップS109)。
そして、表示制御部110は、グラフ生成部109が描画した図形に基づいて表示情報を生成し、当該表示情報を表示装置20に出力する(ステップS110)。これにより、表示装置20は、各電流パラメータの閾値を表す区分線G2と、一対の電流パラメータの値を表すプロットG3と、一対の電流パラメータが所定時間後に取り得る値の範囲を表すオーバルG4と、電流パラメータの値の変化量を表す矢印G5とが配置されたグラフを表示する。
《第4の実施形態》
第1から第3の実施形態に係る状態分析装置10は、算出された対象装置30の電流パラメータと同種の他の装置の運転の履歴や、対象装置30の動作を模擬するシミュレータ111の計算結果など、一の予測手段に基づいて一対の電流パラメータが所定時間後に取り得る値の範囲を求める。これに対し、第4の実施形態に係る状態分析装置10は、複数の予測手段に基づいて一対の電流パラメータが所定時間後に取り得る値の範囲を求める。
図11は、第4の実施形態に係る状態分析装置の構成を示す概略ブロック図である。
第4の実施形態に係る状態分析装置10は、第1の実施形態の構成に加え、さらにシミュレータ111と予測手段記憶部112とを備える。履歴記憶部104およびシミュレータ111は、予測手段の一例である。
予測手段記憶部112は、あるタイミングでの複数の電流パラメータの値の範囲に関連付けて、各電流パラメータが所定時間後に取り得る値の予測に用いる予測手段を記憶する。各電流パラメータが所定時間後に取り得る値の範囲と予測手段の関係は、例えば熟練の技術者の知識、シミュレータ111の適用条件、履歴記憶部104に記録された履歴の量などに基づいて設定される。
パラメータ予測部105は、履歴記憶部104が記憶する情報と、シミュレータ111のそれぞれを用いて一対の電流パラメータが所定時間後に取り得る値の範囲を求める。そして、グラフ生成部109は、最後にパラメータ記憶部103に記録された一対の電流パラメータの値が属する範囲に関連付けて予測手段記憶部112に記憶された予測手段に基づいてオーバルG4を配置することで、グラフを生成する。
なお、他の実施形態においては、予測手段記憶部112は、あるタイミングでの複数の電流パラメータの値の範囲に関連付けて、予測手段ごとに適用確率を記憶していてもよい。この場合、グラフ生成部109は、予測手段記憶部112に記憶された各予測手段に基づいてオーバルG4を配置し、各オーバルG4に適用確率を表示することができる。
以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
例えば、上述した実施形態に係る状態分析装置10は、電流パラメータの対に係るグラフを表示装置20に表示させるが、これに限られない。例えば、他の実施形態に係る状態分析装置10は、3つ以上の電流パラメータの組に係る高次元グラフを表示装置20に表示させてもよい。
また、上述した実施形態に係る状態分析装置10は、互いに相関関係を有する複数の電流パラメータのそれぞれを軸とした座標空間に、閾値を表す区分線G2を配置した表示情報を生成するが、これに限られない。例えば、他の実施形態に係る状態分析装置10は、区分線G2を含まない表示情報を生成してもよい。
また、上述した実施形態に係る状態分析装置10は、図8に示すように、時間毎(例えば、タイミングT1とタイミングT2)に複数のオーバルG4を含む表示情報を生成してもよい。ここで、時間の経過により現在時刻がタイミングT1になった場合、状態分析装置10は前回算出したタイミングT2のときの一対の電流パラメータの値が取り得る範囲を再計算せずにそのまま用いてオーバルG4を生成してもよいし、タイミングT2のときの一対の電流パラメータの値が取り得る範囲を再計算してオーバルG4を改めて生成してもよい。
また、上述した実施形態に係る状態分析装置10は、対象装置30の状態を正常状態、異常状態、注意状態の3つの区分に分類するが、これに限られない。例えば、他の実施形態に係る状態分析装置10は、正常状態と異常状態の2つの区分に分類してもよいし、4つ以上の区分に分類してもよい。
また、上述した実施形態に係る状態分析装置10は、一対の電流パラメータの取り得る範囲をオーバルG4で表すが、これに限られない。例えば状態分析装置10は、一対の電流パラメータの取り得る範囲を他の図形(例えば、矩形、円形、多角形など)で表してもよい。また、上述した実施形態に係る状態分析装置10は、電流パラメータどうしの相関の強さに基づいてオーバルG4の形状を決定したが、これに限られない。例えば、他の実施形態に係る状態分析装置10は、電流パラメータどうしの相関の強さに関わらず同じ形状の図形を配置してもよい。
また、上述した実施形態に係る状態分析装置10は、対象装置30の状態量として電流パラメータの値を用いて表示情報を生成するが、これに限られない。例えば、他の実施形態に係る状態分析装置10は、他の状態量(例えば、電流値、電圧値、温度、圧力、流量など)を用いて表示情報を生成してもよい。
また、上述した実施形態に係る状態分析装置10は、自身に直接接続された表示装置20に表示情報を出力することで表示制御を行うが、これに限られない。例えば、他の実施形態に係る状態分析装置10は、表示制御を行わずに、表示情報を記憶媒体に記録するものや、ネットワークを介して接続された他の表示装置20に表示情報を送信するものであってもよい。
また、上述した実施形態に係る状態分析装置10は、電流パラメータごとの特定された複数の値の最小値から最大値までの範囲を、電流パラメータの値が取り得る範囲と予測するが、これに限られない。例えば、他の実施形態に係る状態分析装置10は、電流パラメータごとの特定された複数の出現確率に基づいて電流パラメータの値が取り得る範囲を予測してもよい。具体的には、状態分析装置10は、電流パラメータの値の標準偏差σを求め、電流パラメータの平均値の±2σの範囲を、電流パラメータの値が取り得る範囲と予測してもよい。
なお、上述した第1の実施形態に係る状態分析装置10は、パラメータ予測部105が予測したパラメータの値を用いて表示情報を生成するが、これに限られない。例えば、他の実施形態に係る状態分析装置10は、第2の実施形態と同様に、あるタイミングに係る電流パラメータの値に、予測される電流パラメータの値の変化量を加算することで得られる予測値に基づいて表示情報を生成してもよい。
また、上述した実施形態に係る対象装置30は、モータと補機とが同軸で回転する回転機械システムであるが、これに限られない。例えば、他の実施形態に係る対象装置30は、モータと補機とが歯車装置などの機械系を介して接続されるものであってもよい。
図12は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
コンピュータ90は、CPU91、主記憶装置92、補助記憶装置93、インタフェース94を備える。
上述の状態分析装置10は、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置93に記憶されている。CPU91は、プログラムを補助記憶装置93から読み出して主記憶装置92に展開し、当該プログラムに従って上記処理を実行する。また、CPU91は、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置92に確保する。
補助記憶装置93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD−ROM(Compact Disc Read Only Memory)、DVD−ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。補助記憶装置93は、コンピュータ90のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ90に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ90に配信される場合、配信を受けたコンピュータ90が当該プログラムを主記憶装置92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、補助記憶装置93は、一時的でない有形の記憶媒体である。
また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能を補助記憶装置93に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
1 状態分析システム
10 状態分析装置
20 表示装置
30 対象装置
101 電流取得部
102 パラメータ算出部
103 パラメータ記憶部
104 履歴記憶部(状態量記憶部)
105 パラメータ予測部
106 閾値記憶部
107 相関係数記憶部
108 相関特定部
109 グラフ生成部
110 表示制御部
111 シミュレータ
112 予測手段記憶部

Claims (13)

  1. 対象装置に係るあるタイミングにおける複数の状態量の値を取得する状態量取得部と、
    取得した前記複数の状態量の値に基づいて、前記複数の状態量の値が所定時間後に取り得る範囲を予測する状態量予測部と、
    前記複数の状態量のそれぞれを軸とした座標空間に、前記複数の状態量の値が取り得る範囲に応じた形状の図形である予測値図形を配置した情報を生成する表示情報生成部と
    を備える状態分析装置。
  2. 前記表示情報生成部は、前記座標空間に、前記状態量取得部が取得した前記複数の状態量の値を表す図形である取得値図形をさらに配置した前記情報を生成する
    請求項1に記載の状態分析装置。
  3. 前記複数の状態量の相関の強さを特定する相関特定部をさらに備え、
    前記表示情報生成部は、前記相関の強さに応じた形状を有する前記予測値図形を配置した前記情報を生成する
    請求項1または請求項2に記載の状態分析装置。
  4. 前記対象装置と同種の装置の前記複数の状態量の値の履歴を記憶する状態量記憶部をさらに備え、
    前記状態量予測部は、前記状態量記憶部が記憶する前記履歴のうち、取得した前記複数の状態量の値の推移と類似する複数の部分を特定し、当該複数の部分に基づいて前記取り得る範囲を予測する
    請求項1から請求項3の何れか1項に記載の状態分析装置。
  5. 前記状態量予測部は、前記状態量記憶部が記憶する前記履歴のうち、取得した前記複数の状態量の値と近似する値を有する複数のタイミングを特定し、当該複数のタイミングの前記所定時間後における前記状態量記憶部が記憶する前記複数の状態量の値に基づいて前記取り得る範囲を予測する
    請求項4に記載の状態分析装置。
  6. 前記状態量予測部は、前記状態量記憶部が記憶する前記履歴のうち、取得した前記複数の状態量の値の変化量と類似する変化量を有する複数のタイミングを特定し、当該複数のタイミングの前記所定時間後における前記状態量記憶部が記憶する前記複数の状態量の変化量に基づいて前記取り得る範囲を予測する
    請求項4に記載の状態分析装置。
  7. 前記対象装置の動作を模擬するシミュレータをさらに備え、
    前記状態量予測部は、前記シミュレータの外部パラメータを変化させて得られる複数の前記複数の状態量の値に基づいて前記取り得る範囲を予測する
    請求項1から請求項6の何れか1項に記載の状態分析装置。
  8. 前記表示情報生成部は、前記取り得る範囲のうち発生確率が所定値以上の値を包含する形状の前記予測値図形を配置した前記情報を生成する
    請求項1から請求項7の何れか1項に記載の状態分析装置。
  9. 前記状態量予測部は、複数の予測手段ごとに前記取り得る範囲を予測する
    請求項1から請求項8の何れか1項に記載の状態分析装置。
  10. 前記状態量予測部は、取得した前記複数の状態量の値に基づいて前記複数の予測手段の中から前記取り得る範囲の予測に用いる予測手段を決定し、当該予測手段に基づいて前記取り得る範囲を予測する
    請求項9に記載の状態分析装置。
  11. 前記表示情報生成部は、複数の予測手段ごとに前記予測値図形を生成し、各予測値図形を配置した前記情報を生成する
    請求項9または請求項10に記載の状態分析装置。
  12. 対象装置に係るあるタイミングにおける複数の状態量の値を取得するステップと、
    取得した前記複数の状態量の値に基づいて、前記複数の状態量の値が所定時間後に取り得る範囲を予測するステップと、
    前記複数の状態量のそれぞれを軸とした座標空間に、前記複数の状態量の値が取り得る範囲に応じた形状の図形である予測値図形を配置した情報を生成するステップと
    を有する状態分析方法。
  13. コンピュータに、
    対象装置に係るあるタイミングにおける複数の状態量の値を取得するステップと、
    取得した前記複数の状態量の値に基づいて、前記複数の状態量の値が所定時間後に取り得る範囲を予測するステップと、
    前記複数の状態量のそれぞれを軸とした座標空間に、前記複数の状態量の値が取り得る範囲に応じた形状の図形である予測値図形を配置した情報を生成するステップと
    を実行させるためのプログラム。
JP2017101117A 2017-05-22 2017-05-22 状態分析装置、状態分析方法、およびプログラム Active JP6976080B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2017101117A JP6976080B2 (ja) 2017-05-22 2017-05-22 状態分析装置、状態分析方法、およびプログラム
EP18805569.3A EP3633397A4 (en) 2017-05-22 2018-05-18 CONDITION ANALYSIS DEVICE, CONDITION ANALYSIS METHOD AND PROGRAM
PCT/JP2018/019323 WO2018216620A1 (ja) 2017-05-22 2018-05-18 状態分析装置、状態分析方法、およびプログラム
CN201880033156.6A CN110651192B (zh) 2017-05-22 2018-05-18 状态分析装置、状态分析方法以及计算机可读取的记录介质
US16/614,918 US11488034B2 (en) 2017-05-22 2018-05-18 State analysis apparatus, state analysis method, and program
KR1020197033837A KR102467129B1 (ko) 2017-05-22 2018-05-18 상태 분석 장치, 상태 분석 방법, 및 프로그램
TW107117373A TWI687699B (zh) 2017-05-22 2018-05-22 狀態分析裝置、狀態分析方法、及記錄程式的記憶媒體
PH12019502592A PH12019502592A1 (en) 2017-05-22 2019-11-19 State analysis apparatus, state analysis method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017101117A JP6976080B2 (ja) 2017-05-22 2017-05-22 状態分析装置、状態分析方法、およびプログラム

Publications (2)

Publication Number Publication Date
JP2018195266A true JP2018195266A (ja) 2018-12-06
JP6976080B2 JP6976080B2 (ja) 2021-12-01

Family

ID=64395631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017101117A Active JP6976080B2 (ja) 2017-05-22 2017-05-22 状態分析装置、状態分析方法、およびプログラム

Country Status (8)

Country Link
US (1) US11488034B2 (ja)
EP (1) EP3633397A4 (ja)
JP (1) JP6976080B2 (ja)
KR (1) KR102467129B1 (ja)
CN (1) CN110651192B (ja)
PH (1) PH12019502592A1 (ja)
TW (1) TWI687699B (ja)
WO (1) WO2018216620A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020148838A1 (ja) * 2019-01-16 2020-07-23 日本電気株式会社 推定装置、推定方法、及びコンピュータ読み取り可能な記録媒体
WO2024150359A1 (ja) * 2023-01-12 2024-07-18 三菱電機株式会社 診断装置および診断システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11579600B2 (en) 2018-12-28 2023-02-14 Nec Corporation Estimation apparatus, estimation method, and computer-readable storage medium
US11316452B2 (en) * 2020-01-15 2022-04-26 Delta Electronics, Inc. Electronic device and control method thereof
CN112199418B (zh) * 2020-09-30 2023-03-03 深圳市智物联网络有限公司 一种工业对象的状态识别方法、装置及设备
CN112524014B (zh) * 2020-11-04 2022-08-09 衢州市质量技术监督检测中心 一种变频空压机检测***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129232A (ja) * 1993-11-08 1995-05-19 Toshiba Corp プラント監視装置
JP2008225564A (ja) * 2007-03-08 2008-09-25 Central Res Inst Of Electric Power Ind 被害関数作成方法、装置およびプログラム並びに台風の風速・風向予測方法、装置およびプログラム並びに台風被害予測方法、装置およびプログラム

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827426B2 (ja) 1979-07-18 1983-06-09 松下電器産業株式会社 密封装置
JP3392526B2 (ja) * 1994-07-29 2003-03-31 株式会社東芝 機器の保守管理支援装置
EP1298511B2 (en) * 2001-09-27 2009-11-18 Reliance Electric Technologies, LLC Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US7254775B2 (en) * 2001-10-03 2007-08-07 3M Innovative Properties Company Touch panel system and method for distinguishing multiple touch inputs
EP2472277A3 (en) * 2003-06-27 2012-10-17 The Furukawa Electric Co., Ltd. Method and device for measuring secondary cell internal impedance and judging deterioration
JP4258412B2 (ja) 2004-03-25 2009-04-30 トヨタ自動車株式会社 回転電機の検査装置および検査方法
JP3968356B2 (ja) * 2004-04-29 2007-08-29 株式会社コナミデジタルエンタテインメント 表示装置、表示方法、ならびに、プログラム
KR100786703B1 (ko) * 2004-07-24 2007-12-21 삼성전자주식회사 가속도 센서를 이용한 운동량 측정장치 및 방법
US7254514B2 (en) * 2005-05-12 2007-08-07 General Electric Company Method and system for predicting remaining life for motors featuring on-line insulation condition monitor
EP2998894B1 (en) * 2005-07-11 2021-09-08 Brooks Automation, Inc. Intelligent condition monitoring and fault diagnostic system
CN101331381B (zh) * 2005-12-16 2011-08-24 株式会社Ihi 三维形状数据的位置对准方法和装置
US20070208520A1 (en) * 2006-03-01 2007-09-06 Siemens Energy & Automation, Inc. Systems, devices, and methods for arc fault management
JP2007257444A (ja) 2006-03-24 2007-10-04 Yokogawa Electric Corp 機器管理システム
US7499250B2 (en) * 2006-04-19 2009-03-03 Siemens Energy & Automation, Inc. Systems, devices, and methods for temperature compensation in arc fault detection systems
US7492163B2 (en) * 2006-04-27 2009-02-17 Siemens Energy & Automation, Inc. Systems, devices, and methods for arc fault detection
US7666004B2 (en) * 2006-06-29 2010-02-23 Siemens Industry, Inc. Devices, systems, and/or methods regarding a programmable logic controller
US7368918B2 (en) * 2006-07-27 2008-05-06 Siemens Energy & Automation Devices, systems, and methods for adaptive RF sensing in arc fault detection
JP5301310B2 (ja) 2009-02-17 2013-09-25 株式会社日立製作所 異常検知方法及び異常検知システム
JP5363238B2 (ja) 2009-08-11 2013-12-11 株式会社神戸製鋼所 出力値予測方法、該装置および該方法のプログラム
CN102043138B (zh) * 2009-10-23 2014-03-26 鸿富锦精密工业(深圳)有限公司 示波器的通道校准***及方法
JP6078951B2 (ja) * 2011-04-07 2017-02-15 横河電機株式会社 トレンドグラフ表示装置
JP5780387B2 (ja) * 2011-04-07 2015-09-16 横河電機株式会社 フィールドデータ表示装置
JP5579139B2 (ja) * 2011-09-02 2014-08-27 三菱電機株式会社 制御データ収集評価装置および制御データ収集評価方法
JP5447466B2 (ja) * 2011-09-13 2014-03-19 株式会社デンソー 回転機の制御装置
CN104047879B (zh) * 2013-03-13 2017-09-05 北京康吉森自动化设备技术有限责任公司 透平压缩机组诊断控制***及方法
JP2014208245A (ja) 2014-06-03 2014-11-06 タイヨーエレック株式会社 遊技機
JP6474564B2 (ja) 2014-08-25 2019-02-27 東日本旅客鉄道株式会社 設備の劣化状態判定システムおよび設備の劣化状態判定方法
JP2016095751A (ja) 2014-11-17 2016-05-26 富士通株式会社 異常機器特定プログラム、異常機器特定方法、及び、異常機器特定装置
JP5827426B1 (ja) 2015-01-09 2015-12-02 株式会社日立パワーソリューションズ 予兆診断システム及び予兆診断方法
US9465387B2 (en) 2015-01-09 2016-10-11 Hitachi Power Solutions Co., Ltd. Anomaly diagnosis system and anomaly diagnosis method
JP6564696B2 (ja) 2015-11-30 2019-08-21 バンドー化学株式会社 両面粘着テープ包装体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129232A (ja) * 1993-11-08 1995-05-19 Toshiba Corp プラント監視装置
JP2008225564A (ja) * 2007-03-08 2008-09-25 Central Res Inst Of Electric Power Ind 被害関数作成方法、装置およびプログラム並びに台風の風速・風向予測方法、装置およびプログラム並びに台風被害予測方法、装置およびプログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020148838A1 (ja) * 2019-01-16 2020-07-23 日本電気株式会社 推定装置、推定方法、及びコンピュータ読み取り可能な記録媒体
JPWO2020148838A1 (ja) * 2019-01-16 2021-11-04 日本電気株式会社 推定装置、推定方法、及びプログラム
JP7180692B2 (ja) 2019-01-16 2022-11-30 日本電気株式会社 推定装置、推定方法、及びプログラム
US11983072B2 (en) 2019-01-16 2024-05-14 Nec Corporation Estimation apparatus, estimation method, and computer-readable storage medium
WO2024150359A1 (ja) * 2023-01-12 2024-07-18 三菱電機株式会社 診断装置および診断システム

Also Published As

Publication number Publication date
EP3633397A1 (en) 2020-04-08
TWI687699B (zh) 2020-03-11
KR20190139975A (ko) 2019-12-18
KR102467129B1 (ko) 2022-11-14
JP6976080B2 (ja) 2021-12-01
CN110651192B (zh) 2022-09-30
EP3633397A4 (en) 2021-04-14
TW201908758A (zh) 2019-03-01
US20200193307A1 (en) 2020-06-18
CN110651192A (zh) 2020-01-03
PH12019502592A1 (en) 2020-07-13
US11488034B2 (en) 2022-11-01
WO2018216620A1 (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2018216620A1 (ja) 状態分析装置、状態分析方法、およびプログラム
Ayhan et al. On the use of a lower sampling rate for broken rotor bar detection with DTFT and AR-based spectrum methods
JP5260343B2 (ja) プラント運転状態監視方法
RU2613584C2 (ru) Способ и устройство анализа качества электрической энергии в трехфазной электрической сети
EP3147681B1 (en) Rotary machine diagnostic system
EP2761315B1 (en) A method of determining stationary signals for the diagnostics of an electromechanical system
JP2018153081A (ja) 電気的シグネチャ解析に基づく機械の監視と診断のための自律的手順
US8326556B2 (en) Stray flux processing method and system
Khelfi et al. Induction motor rotor fault diagnosis using three-phase current intersection signal
WO2018143404A1 (ja) 状態分析装置、表示方法、およびプログラム
CN114140034A (zh) 基于工况的质量监控方法及相关装置
EP4174601A1 (en) System, apparatus and method for monitoring condition of an asset in technical installation
JP2018146436A (ja) 振動診断システム、振動診断方法及びパラメータ設定方法
Gomez et al. Motor current signature analysis apply for external mechanical fault and cage asymmetry in induction motors
CN114136530B (zh) 确定变流器进出口空气压力差的方法及装置
Belahcen et al. Condition monitoring of electrical machines and its relation to industrial internet
JP7246051B2 (ja) 脱調判定装置及び脱調判定方法
JP2015146701A (ja) インバータ試験システム
WO2022176730A1 (ja) 診断システム、診断方法およびプログラム
Edomwandekhoe Modeling and fault diagnosis of broken rotor bar faults in induction motors
CN118090175A (zh) 叶片故障检测方法、***、装置、电子设备及存储介质
CN114838844A (zh) 发电机电刷故障在线监测与判断方法和***
CN116930751A (zh) 电机运行效率测试方法和车辆
JPWO2020075436A1 (ja) 予測状況可視化装置、予測状況可視化方法および予測状況可視化プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210628

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210707

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211109

R150 Certificate of patent or registration of utility model

Ref document number: 6976080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150