JP2018180271A - Wavelength conversion member, wavelength conversion element, and light-emitting device using the same - Google Patents

Wavelength conversion member, wavelength conversion element, and light-emitting device using the same Download PDF

Info

Publication number
JP2018180271A
JP2018180271A JP2017079488A JP2017079488A JP2018180271A JP 2018180271 A JP2018180271 A JP 2018180271A JP 2017079488 A JP2017079488 A JP 2017079488A JP 2017079488 A JP2017079488 A JP 2017079488A JP 2018180271 A JP2018180271 A JP 2018180271A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
magnesium oxide
particles
inorganic phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017079488A
Other languages
Japanese (ja)
Other versions
JP6802983B2 (en
Inventor
忠仁 古山
Tadahito Furuyama
忠仁 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2017079488A priority Critical patent/JP6802983B2/en
Priority to PCT/JP2018/005780 priority patent/WO2018189997A1/en
Priority to TW107106282A priority patent/TW201842154A/en
Priority to CN201820515641.4U priority patent/CN208507721U/en
Priority to CN201810325104.8A priority patent/CN108735877A/en
Publication of JP2018180271A publication Critical patent/JP2018180271A/en
Application granted granted Critical
Publication of JP6802983B2 publication Critical patent/JP6802983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)
  • Semiconductor Lasers (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength conversion member and wavelength conversion element capable of preventing temporal reduction in emission intensity and melting of constituting materials, which may be caused by light irradiation from a high power LED or LD, and to provide a light-emitting device using the same.SOLUTION: A wavelength conversion member contains inorganic phosphor particles and magnesium oxide particles, where the magnesium oxide particles are distributed among the inorganic phosphor particles, and the inorganic phosphor particles are bound by the magnesium oxide particles.SELECTED DRAWING: Figure 1

Description

本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材及び波長変換素子、並びにそれらを用いた発光装置に関する。   The present invention relates to a wavelength conversion member and a wavelength conversion element for converting the wavelength of light emitted from a light emitting diode (LED: Light Emitting Diode) or a laser diode (LD: Laser Diode) to another wavelength, and a light emitting device using them About.

近年、蛍光ランプや白熱灯に変わる次世代の発光装置として、低消費電力、小型軽量、容易な光量調節という観点から、LEDやLDを用いた発光装置に対する注目が高まってきている。そのような次世代発光装置の一例として、例えば特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された発光装置が開示されている。この発光装置は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。   In recent years, as a next-generation light emitting device replacing fluorescent lamps and incandescent lamps, attention has been focused on light emitting devices using LEDs or LDs from the viewpoint of low power consumption, small size, light weight, and easy light amount adjustment. As an example of such a next-generation light emitting device, for example, in Patent Document 1, a wavelength conversion member that absorbs a part of light from the LED and converts it into yellow light is disposed on the LED that emits blue light. A light emitting device is disclosed. The light emitting device emits white light which is a composite light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.

波長変換部材としては、従来、樹脂マトリクス中に無機蛍光体粒子を分散させたものが用いられている。しかしながら、当該波長変換部材を用いた場合、LEDからの光により樹脂マトリクスが変色したり、変形するという問題がある。そこで、樹脂に代えてガラスマトリクス中に蛍光体を分散固定した完全無機固体からなる波長変換部材が提案されている(例えば、特許文献2及び3参照)。当該波長変換部材は、母材となるガラスマトリクスがLEDからの熱や照射光により劣化しにくく、変色や変形といった問題が生じにくいという特徴を有している。   As the wavelength conversion member, conventionally, one in which inorganic phosphor particles are dispersed in a resin matrix is used. However, when the wavelength conversion member is used, there is a problem that the resin matrix is discolored or deformed by the light from the LED. Then, the wavelength conversion member which consists of a perfect inorganic solid which disperse | distributed and fixed fluorescent substance in glass matrix instead of resin is proposed (for example, refer patent documents 2 and 3). The said wavelength conversion member has the characteristics that the glass matrix used as a base material does not deteriorate easily with the heat and irradiation light from LED, and problems, such as discoloration and a deformation | transformation, do not arise easily.

特開2000−208815号公報JP, 2000-208815, A 特開2003−258308号公報Unexamined-Japanese-Patent No. 2003-258308 特許第4895541号公報Patent No. 4895541

近年、発光装置のハイパワー化を目的として、光源として用いるLEDやLDの出力が上昇している。それに伴い、光源の熱や、励起光を照射された蛍光体から発せられる熱により波長変換部材の温度が上昇し、その結果、発光強度が経時的に低下する(温度消光)という問題がある。また、場合によっては、波長変換部材の温度上昇が顕著となり、構成材料(ガラスマトリクス等)が溶解するおそれがある。   In recent years, the output of LEDs and LDs used as light sources has been rising for the purpose of increasing the power of light emitting devices. Along with that, the temperature of the wavelength conversion member rises due to the heat of the light source and the heat emitted from the phosphor irradiated with the excitation light, and as a result, there is a problem that the light emission intensity decreases with time (temperature quenching). Further, depending on the case, the temperature rise of the wavelength conversion member becomes remarkable, and there is a possibility that the constituent material (glass matrix or the like) may be dissolved.

以上に鑑み、本発明は、ハイパワーのLEDやLDの光を照射した場合に、経時的な発光強度の低下や構成材料の溶解を抑制することが可能な波長変換部材及び波長変換素子、並びにそれらを用いた発光装置を提供することを目的とする。   In view of the above, according to the present invention, a wavelength conversion member, a wavelength conversion element, and a wavelength conversion element capable of suppressing the temporal decrease in emission intensity and the dissolution of constituent materials when irradiated with high power LED and LD light An object of the present invention is to provide a light emitting device using them.

本発明の波長変換部材は、無機蛍光体粒子、及び、酸化マグネシウム粒子を含有する波長変換部材であって、無機蛍光体粒子間に酸化マグネシウム粒子が介在しており、かつ、無機蛍光体粒子が酸化マグネシウム粒子により結着されていることを特徴とする。   The wavelength conversion member of the present invention is a wavelength conversion member containing inorganic phosphor particles and magnesium oxide particles, wherein magnesium oxide particles are interposed between the inorganic phosphor particles, and the inorganic phosphor particles are It is characterized in that it is bound by magnesium oxide particles.

本発明の波長変換部材においては、無機蛍光体粒子間に酸化マグネシウム粒子が介在している。ここで、酸化マグネシウム粒子はガラス等と比較して熱伝導性に優れているため、無機蛍光体粒子で発生した熱を効率良く外部に放出することができる。その結果、波長変換部材の温度上昇が抑制され、温度消光が生じにくくなる。また、酸化マグネシウム粒子は耐熱性にも優れるため、ハイパワーのLEDやLDの光を照射した場合であっても溶解しにくい、あるいは、急激な温度上昇によるサーマルクラックといった不具合の発生を抑制することができるという利点もある。さらに、酸化マグネシウム粒子は、酸化アルミニウムや酸化ジルコニウム等のセラミック粒子と比較して低温で焼結可能であるという利点もある。そのため、波長変換部材作製時の焼成温度も低くすることができ、焼成時における無機蛍光体粉末の劣化を抑制することができる。   In the wavelength conversion member of the present invention, magnesium oxide particles are present between the inorganic phosphor particles. Here, since magnesium oxide particles are superior in thermal conductivity to glass and the like, heat generated by the inorganic phosphor particles can be efficiently released to the outside. As a result, the temperature rise of the wavelength conversion member is suppressed, and temperature quenching hardly occurs. In addition, since magnesium oxide particles are also excellent in heat resistance, they are difficult to be dissolved even when irradiated with light of high power LED or LD, or to suppress the occurrence of defects such as thermal cracks due to rapid temperature rise. There is also the advantage of being able to Furthermore, magnesium oxide particles have an advantage that they can be sintered at low temperature as compared with ceramic particles such as aluminum oxide and zirconium oxide. Therefore, the calcination temperature at the time of wavelength conversion member preparation can also be made low, and degradation of inorganic fluorescent substance powder at the time of calcination can be controlled.

本発明の波長変換部材は、質量%で、無機蛍光体粒子 3〜80%、及び、酸化マグネシウム粒子 20〜97%を含有することが好ましい。   The wavelength conversion member of the present invention preferably contains 3 to 80% of inorganic phosphor particles and 20 to 97% of magnesium oxide particles in mass%.

本発明の波長変換部材において、酸化マグネシウム粒子の平均粒子径が0.01〜10μmであることが好ましい。このようにすれば、波長変換部材の緻密性が向上して、熱伝導パスが形成されやすくなるため、無機蛍光体粒子で発生した熱をより一層効率良く外部に放出することができる。   In the wavelength conversion member of the present invention, the magnesium oxide particles preferably have an average particle size of 0.01 to 10 μm. In this way, the compactness of the wavelength conversion member is improved, and the heat conduction path is easily formed. Therefore, the heat generated by the inorganic phosphor particles can be released to the outside more efficiently.

本発明の波長変換部材において、酸化マグネシウム粒子の純度が99%以上であることが好ましい。このようにすれば、酸化マグネシウム粒子を比較的低温で焼結することが可能となる。   In the wavelength conversion member of the present invention, the purity of the magnesium oxide particles is preferably 99% or more. In this way, it is possible to sinter the magnesium oxide particles at a relatively low temperature.

本発明の波長変換部材において、無機蛍光体粒子の平均粒子径が1〜50μmであることが好ましい。   In the wavelength conversion member of the present invention, the average particle diameter of the inorganic phosphor particles is preferably 1 to 50 μm.

本発明の波長変換部材において、無機蛍光体粒子がガーネット構造を有する酸化物蛍光体からなることが好ましい。ガーネット構造を有する酸化物蛍光体は耐熱性に優れるため、ハイパワーのLEDやLDの光を照射した場合に、無機蛍光体粒子自体の劣化を抑制することができる。   In the wavelength conversion member of the present invention, the inorganic phosphor particles are preferably made of an oxide phosphor having a garnet structure. Since the oxide fluorescent substance which has a garnet structure is excellent in heat resistance, when irradiating the light of high power LED or LD, degradation of inorganic fluorescent substance particle itself can be suppressed.

本発明の波長変換部材において、(酸化マグネシウム粒子の平均粒子径)/(無機蛍光体粒子の平均粒子径)が0.5以下であることが好ましい。このようにすれば、波長変換部材の緻密性が向上して、熱伝導パスが形成されやすくなるため、無機蛍光体粒子で発生した熱をより一層効率良く外部に放出することができる。   In the wavelength conversion member of the present invention, (average particle diameter of magnesium oxide particles) / (average particle diameter of inorganic phosphor particles) is preferably 0.5 or less. In this way, the compactness of the wavelength conversion member is improved, and the heat conduction path is easily formed. Therefore, the heat generated by the inorganic phosphor particles can be released to the outside more efficiently.

本発明の波長変換素子は、上記の波長変換部材と、波長変換部材より高い熱伝導率を有する放熱層とが積層されてなる積層体からなることを特徴とする。このようにすれば、波長変換部材で発生した熱を放熱層に伝達することができるため、波長変換部材の温度上昇を抑制しやすくなる。   The wavelength conversion element of the present invention is characterized in that it is a laminated body formed by laminating the above-mentioned wavelength conversion member and a heat dissipation layer having a thermal conductivity higher than that of the wavelength conversion member. According to this configuration, the heat generated by the wavelength conversion member can be transmitted to the heat dissipation layer, so that the temperature rise of the wavelength conversion member can be easily suppressed.

本発明の波長変換素子において、放熱層として透光性セラミックスからなるものを使用することができる。   In the wavelength conversion element of the present invention, a material made of translucent ceramics can be used as a heat dissipation layer.

本発明の波長変換素子において、透光性セラミックスとして、酸化アルミニウム系セラミックス、窒化アルミニウム系セラミックス、炭化ケイ素系セラミックス、窒化ホウ素系セラミックス、酸化マグネシウム系セラミックス、酸化チタン系セラミックス、酸化ニオビウム系セラミックス、酸化亜鉛系セラミックス及び酸化イットリウム系セラミックスから選択される少なくとも1種を使用することができる。   In the wavelength conversion element of the present invention, aluminum oxide ceramics, aluminum nitride ceramics, silicon carbide ceramics, boron nitride ceramics, magnesium oxide ceramics, titanium oxide ceramics, niobium oxide ceramics, oxide oxides are used as translucent ceramics. At least one selected from zinc-based ceramics and yttrium oxide-based ceramics can be used.

本発明の発光装置は、上記の波長変換部材と、波長変換部材に励起光を照射する光源とを備えてなることを特徴とする。   A light emitting device according to the present invention is characterized by including the above-described wavelength conversion member and a light source for irradiating the wavelength conversion member with excitation light.

本発明の発光装置は、上記の波長変換素子と、波長変換素子に励起光を照射する光源とを備えてなることを特徴とする。   A light emitting device of the present invention is characterized by including the above-described wavelength conversion element, and a light source for irradiating the wavelength conversion element with excitation light.

本発明の発光装置において、光源がレーザーダイオードであることが好ましい。本発明の波長変換部材及び波長変換素子は耐熱性及び放熱性に優れるため、光源として比較的ハイパワーであるレーザーダイオードを使用した場合に発明の効果を享受しやすい。   In the light emitting device of the present invention, the light source is preferably a laser diode. Since the wavelength conversion member and the wavelength conversion element of the present invention are excellent in heat resistance and heat dissipation, it is easy to receive the effects of the invention when a laser diode with relatively high power is used as a light source.

本発明によれば、ハイパワーのLEDやLDの光を照射した場合に、経時的な発光強度の低下や構成材料の溶解を抑制することが可能な波長変換部材及び波長変換素子、並びにそれらを用いた発光装置を提供することができる。   According to the present invention, there is provided a wavelength conversion member and a wavelength conversion element capable of suppressing the decrease in emission intensity and the dissolution of constituent materials with time when light of high power LED or LD is irradiated. The light emitting device used can be provided.

本発明の波長変換部材の一実施形態を示す模式的断面図である。It is a typical sectional view showing one embodiment of a wavelength conversion member of the present invention. 本発明の波長変換素子の一実施形態を示す模式的断面図である。It is a typical sectional view showing one embodiment of a wavelength conversion element of the present invention. 本発明の発光装置の一実施形態を示す模式的側面図である。It is a typical side view showing one embodiment of a light emitting device of the present invention.

以下、本発明の実施形態を図面を用いて説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the following embodiments are merely illustrative, and the present invention is not limited to the following embodiments.

(波長変換部材)
図1は、本発明の波長変換部材の一実施形態を示す模式的断面図である。波長変換部材10は無機蛍光体粒子1と酸化マグネシウム粒子2を含有している。ここで、無機蛍光体粒子1間に酸化マグネシウム粒子2が介在しており、無機蛍光体粒子1が酸化マグネシウム粒子2により結着されている。
(Wavelength conversion member)
FIG. 1 is a schematic cross-sectional view showing an embodiment of the wavelength conversion member of the present invention. The wavelength conversion member 10 contains inorganic phosphor particles 1 and magnesium oxide particles 2. Here, magnesium oxide particles 2 intervene between the inorganic phosphor particles 1, and the inorganic phosphor particles 1 are bound by the magnesium oxide particles 2.

無機蛍光体粒子1は、励起光の入射により蛍光を出射するものであれば、特に限定されるものではない。無機蛍光体粒子1の具体例としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体等が挙げられる。これらは単独または2種以上を混合して使用することができる。なお後述するように、波長変換部材10は無機蛍光体粒子1と酸化マグネシウム粒子2の混合粒子を焼結することにより作製されるため、無機蛍光体粒子1としては焼結時に熱劣化しないように耐熱性に優れるものが好ましい。そのような観点からは、無機蛍光体粒子1は酸化物蛍光体、特にガーネット構造を有する酸化物蛍光体(YAl12:Ce3+、LuAl12:Ce3+等)であることが好ましい。 The inorganic phosphor particles 1 are not particularly limited as long as they emit fluorescence upon incidence of excitation light. Specific examples of the inorganic phosphor particles 1 include, for example, oxide phosphors, nitride phosphors, oxynitride phosphors, chloride phosphors, acid chloride phosphors, sulfide phosphors, and acid sulfide phosphors. And halide phosphors, chalcogenide phosphors, aluminate phosphors, halophosphate chloride phosphors and the like. These may be used alone or in combination of two or more. As described later, since the wavelength conversion member 10 is produced by sintering mixed particles of the inorganic phosphor particles 1 and the magnesium oxide particles 2, the inorganic phosphor particles 1 should not be thermally deteriorated at the time of sintering. Those having excellent heat resistance are preferred. From such a point of view, the inorganic phosphor particle 1 is an oxide phosphor, particularly an oxide phosphor having a garnet structure (Y 3 Al 5 O 12 : Ce 3 + , Lu 3 Al 5 O 12 : Ce 3 +, etc.) Is preferred.

無機蛍光体粒子1の平均粒子径(D50)は1〜50μm、特に5〜25μmであることが好ましい。無機蛍光体粒子1の平均粒子径が小さすぎると、発光強度が低下しやすくなる。一方、無機蛍光体粒子1の平均粒子径が大きすぎると、発光色が不均一になる傾向がある。 The average particle size (D 50 ) of the inorganic phosphor particles 1 is preferably 1 to 50 μm, particularly 5 to 25 μm. When the average particle size of the inorganic phosphor particles 1 is too small, the emission intensity tends to be reduced. On the other hand, when the average particle size of the inorganic phosphor particles 1 is too large, the luminescent color tends to be nonuniform.

酸化マグネシウム粒子2の平均粒子径(D50)は0.01〜10μm、特に0.05〜5μm、特に0.08〜1μmであることが好ましい。平均粒子径を上記範囲とすることにより、酸化マグネシウム粒子2を比較的低温で焼結することが可能となる。 The average particle size (D 50 ) of the magnesium oxide particles 2 is preferably 0.01 to 10 μm, more preferably 0.05 to 5 μm, and particularly preferably 0.08 to 1 μm. By setting the average particle size in the above range, it is possible to sinter the magnesium oxide particles 2 at a relatively low temperature.

酸化マグネシウム粒子2の純度は99%以上、99.9%以上、特に99.98%以上であることが好ましい。酸化マグネシウム粒子2の純度を上記範囲とすることにより、酸化マグネシウム粒子2を比較的低温で焼結することが可能となる。   The purity of the magnesium oxide particles 2 is preferably 99% or more, 99.9% or more, particularly 99.98% or more. By setting the purity of the magnesium oxide particles 2 in the above range, it is possible to sinter the magnesium oxide particles 2 at a relatively low temperature.

上記の通り、酸化マグネシウム粒子2の平均粒子径や純度を適宜調整することにより、焼結温度を低くすることが可能となる。具体的には、1000〜1400℃、1020〜1250℃、さらには1050〜1100℃未満の比較的低温で焼成しても緻密に焼結することができる。   As described above, by appropriately adjusting the average particle size and purity of the magnesium oxide particles 2, it is possible to lower the sintering temperature. Specifically, it can be densely sintered even if it is fired at a relatively low temperature of 1000 to 1400 ° C., 1020-1250 ° C., and further 1050 to 1100 ° C.

酸化マグネシウム粒子2の作製方法としては、気相酸化反応による合成法や、水中火花放電法等が挙げられる。なかでも、気相酸化反応による合成法は、高純度の酸化マグネシウム粒子が得られやすいため好ましい。なお、酸化マグネシウム粒子の市販品としては、宇部マテリアルズ製の50Aや2000A等を用いることができる。   Examples of the method for producing the magnesium oxide particles 2 include a synthesis method by gas phase oxidation reaction, an underwater spark discharge method, and the like. Among them, a synthesis method by gas phase oxidation reaction is preferable because magnesium oxide particles with high purity can be easily obtained. In addition, 50A, 2000A etc. made from Ube Materials can be used as a commercial item of magnesium oxide particle | grains.

なお、(酸化マグネシウム粒子2の平均粒子径)/(無機蛍光体粒子1の平均粒子径)は0.5以下、0.2以下、0.1以下、特に0.05以下であることが好ましい。このようにすれば、波長変換部材10の緻密性が向上して、熱伝導パスが形成されやすくなるため、無機蛍光体粒子1で発生した熱をより一層効率良く外部に放出することができる。   The (average particle diameter of magnesium oxide particles 2) / (average particle diameter of inorganic phosphor particles 1) is preferably 0.5 or less, 0.2 or less, 0.1 or less, and particularly preferably 0.05 or less. . In this way, the compactness of the wavelength conversion member 10 is improved, and the heat conduction path is easily formed. Therefore, the heat generated by the inorganic phosphor particles 1 can be released to the outside more efficiently.

波長変換部材10における無機蛍光体粒子1及び酸化マグネシウム粒子2の割合は、質量%で、無機蛍光体粒子1 3〜80%、酸化マグネシウム粒子2 20〜97%であることが好ましく、無機蛍光体粒子1 15〜75%、酸化マグネシウム粒子2 25〜95%であることがより好ましく、無機蛍光体粒子1 8〜70%、酸化マグネシウム粒子2 30〜92%であることがさらに好ましい。無機蛍光体粒子1の含有量が少なすぎる(酸化マグネシウム粒子2の含有量が多すぎる)と、波長変換部材10の発光強度が低下しやすくなる。一方、無機蛍光体粒子1の含有量が多すぎる(酸化マグネシウム粒子2の含有量が少なすぎる)と、波長変換部材10において酸化マグネシウム粒子2からなる熱伝導パスが形成されにくくなるため、無機蛍光体粒子1で発生した熱が外部に放出されにくくなる。また、無機蛍光体粒子1の結着性が低下して、波長変換部材10の機械的強度が低下しやすくなる。   The ratio of the inorganic phosphor particles 1 and the magnesium oxide particles 2 in the wavelength conversion member 10 is preferably 3 to 80% of the inorganic phosphor particles 13 and 20 to 97% of the magnesium oxide particles in mass%, and the inorganic phosphors The particle number is preferably 15 to 75%, and the magnesium oxide particles 2 is preferably 25 to 95%, and more preferably, the inorganic phosphor particles 18 to 70%, and the magnesium oxide particles 2 to 30 to 92%. If the content of the inorganic phosphor particles 1 is too small (the content of the magnesium oxide particles 2 is too large), the emission intensity of the wavelength conversion member 10 tends to be reduced. On the other hand, if the content of the inorganic phosphor particles 1 is too large (the content of the magnesium oxide particles 2 is too small), it becomes difficult to form a heat conduction path consisting of the magnesium oxide particles 2 in the wavelength conversion member 10. The heat generated by the body particle 1 is less likely to be released to the outside. In addition, the binding property of the inorganic phosphor particles 1 is reduced, and the mechanical strength of the wavelength conversion member 10 is easily reduced.

波長変換部材10の形状は特に限定されないが、通常は板状(矩形板状、円盤状等)である。波長変換部材10の厚みは、目的とする色合いの光が得られるよう適宜選択することが好ましい。具体的には、波長変換部材10の厚みは2mm以下、1mm以下、特に0.8mm以下であることが好ましい。但し、波長変換部材10の厚みが小さすぎると機械的強度が低下しやすくなるため、0.03mm以上であることが好ましい。   The shape of the wavelength conversion member 10 is not particularly limited, but is usually plate-like (rectangular plate-like, disk-like, etc.). It is preferable that the thickness of the wavelength conversion member 10 be appropriately selected so as to obtain light of a target color. Specifically, the thickness of the wavelength conversion member 10 is preferably 2 mm or less, 1 mm or less, and particularly 0.8 mm or less. However, if the thickness of the wavelength conversion member 10 is too small, the mechanical strength is likely to be reduced, so the thickness is preferably 0.03 mm or more.

波長変換部材10は、無機蛍光体粒子1と酸化マグネシウム粒子2を所定の割合で混合した原料粉末を予備成型した後、焼成することにより製造することができる。ここで、原料粉末に結合剤や溶剤等の有機成分を添加してペースト状にした後、焼成してもよい。このようにすれば、グリーンシート成形等の方法を利用して、所望の形状の予備成型体が形成しやすくなる。この際、まず脱脂工程(600℃程度)で有機成分を除去した後、酸化マグネシウム粒子2の焼結温度で焼成することにより、緻密な焼結体が得られやすくなる。また、1次焼成後に焼成温度±150℃でHIP(熱間静水圧プレス)処理を施しても良い。そうすることによって、波長変換部材10内の空孔を収縮させて消滅させることができ、過剰な光の散乱を抑制することができる。   The wavelength conversion member 10 can be manufactured by pre-forming a raw material powder in which the inorganic phosphor particles 1 and the magnesium oxide particles 2 are mixed in a predetermined ratio, and then firing the raw material powder. Here, an organic component such as a binder or a solvent may be added to the raw material powder to form a paste, which may then be fired. In this way, a preformed body having a desired shape can be easily formed using a method such as green sheet molding. Under the present circumstances, after removing an organic component at a degreasing process (about 600 degreeC) first, by baking at the sintering temperature of the magnesium oxide particle 2, a precise | minute sintered compact becomes is easy to be obtained. Moreover, you may perform a HIP (hot isostatic press) process with the calcination temperature +/- 150 degreeC after primary baking. By doing so, the holes in the wavelength conversion member 10 can be shrunk and eliminated, and excessive light scattering can be suppressed.

結合剤としては、ポリプロピレンカーボネート、ポリブチルメタクリレート、ポリビニルブチラール、ポリメチルメタクリレート、ポリエチルメタクリレート、エチルセルロース、ニトロセルロース、ポリエステルカーボネート等が使用可能であり、これらを単独あるいは混合して使用することができる。   As the binder, polypropylene carbonate, polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate, ethyl cellulose, nitrocellulose, polyester carbonate and the like can be used, and these can be used alone or in combination.

溶剤としては、テルピネオール、酢酸イソアミル、トルエン、メチルエチルケトン、ジエチレングリコールモノブチルエーテルアセテート、2,2,4−トリメチル−1,3−ペンタジオールモノイソブチレート等を単独または混合して使用することができる。   As a solvent, terpineol, isoamyl acetate, toluene, methyl ethyl ketone, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate etc. can be used alone or in combination.

ペースト中には、焼結助剤が含有されていてもよい。焼結助剤としては、例えば、リン酸マグネシウム、リン酸ジルコニウム、酸化マンガン、酸化バリウム、酸化イットリウム、酸化ケイ素等の晶質粉末や、ケイ酸系やリン酸系等の酸化物非晶質粉末を用いることができる。   The paste may contain a sintering aid. As a sintering aid, for example, crystalline powder such as magnesium phosphate, zirconium phosphate, manganese oxide, barium oxide, yttrium oxide, silicon oxide, etc., oxide amorphous powder such as silicic acid type or phosphoric acid type Can be used.

(波長変換素子)
図2は、本発明の波長変換素子の一実施形態を示す模式的断面図である。波長変換素子20は波長変換部材10と、波長変換部材10より高い熱伝導率を有する放熱層3とを積層させた積層体から構成されている。本実施形態では、波長変換部材10に励起光が照射されることにより発生した熱は、放熱層3を通じて外部に効率良く放出される。よって、波長変換部材10の温度が過度に上昇することを抑制することができる。
(Wavelength conversion element)
FIG. 2 is a schematic cross-sectional view showing an embodiment of the wavelength conversion element of the present invention. The wavelength conversion element 20 is formed of a laminated body in which the wavelength conversion member 10 and the heat dissipation layer 3 having a thermal conductivity higher than that of the wavelength conversion member 10 are laminated. In the present embodiment, the heat generated by irradiating the wavelength conversion member 10 with the excitation light is efficiently released to the outside through the heat dissipation layer 3. Therefore, it can suppress that the temperature of the wavelength conversion member 10 rises too much.

放熱層3は、波長変換部材10より高い熱伝導率を有している。具体的には、放熱層3の熱伝導率は5W/m・K以上、10W/m・K以上、特に20W/m・K以上であることが好ましい。   The heat dissipation layer 3 has a thermal conductivity higher than that of the wavelength conversion member 10. Specifically, the thermal conductivity of the heat dissipation layer 3 is preferably 5 W / m · K or more, 10 W / m · K or more, particularly 20 W / m · K or more.

放熱層3の厚みは0.05〜1mm、0.07〜0.8mm、特に0.1〜0.5mmであることが好ましい。放熱層3の厚みが小さすぎると、機械的強度が低下する傾向がある。一方、放熱層3の厚みが大きすぎると、波長変換素子が大型化する傾向がある。   The thickness of the heat dissipation layer 3 is preferably 0.05 to 1 mm, 0.07 to 0.8 mm, and particularly 0.1 to 0.5 mm. If the thickness of the heat dissipation layer 3 is too small, the mechanical strength tends to decrease. On the other hand, when the thickness of the heat dissipation layer 3 is too large, the wavelength conversion element tends to be large.

放熱層3としては透光性セラミックスからなるものを使用することができる。このようにすれば、励起光または蛍光を透過させることができるため、透過型の波長変換素子として使用することができる。透光性セラミックスからなる放熱層の波長400〜800nmにおける全光線透過率は10%以上、20%以上、30%以上、40%、特に50%以上であることが好ましい。   The heat dissipating layer 3 may be made of translucent ceramic. In this way, excitation light or fluorescence can be transmitted, so that it can be used as a transmission type wavelength conversion element. The total light transmittance at a wavelength of 400 to 800 nm of the heat dissipation layer made of translucent ceramic is preferably 10% or more, 20% or more, 30% or more, 40%, particularly 50% or more.

透光性セラミックスとしては、酸化アルミニウム系セラミックス、窒化アルミニウム系セラミックス、炭化ケイ素系セラミックス、窒化ホウ素系セラミックス、酸化マグネシウム系セラミックス、酸化チタン系セラミックス、酸化ニオビウム系セラミックス、酸化亜鉛系セラミックス及び酸化イットリウム系セラミックスから選択される少なくとも1種を使用することができる。   As translucent ceramics, aluminum oxide ceramics, aluminum nitride ceramics, silicon carbide ceramics, boron nitride ceramics, magnesium oxide ceramics, titanium oxide ceramics, niobium oxide ceramics, zinc oxide ceramics, yttrium oxide ceramics At least one selected from ceramics can be used.

本実施形態の波長変換素子20は、波長変換部材10の一方の主面のみに放熱層3が形成されているが、波長変換部材10の両主面に放熱層3を形成してもよい。このようにすれば、波長変換部材10で発生した熱をより一層効率よく外部に放出することができる。さらに、波長変換部材10と放熱層3とを交互に積層させた4層以上の積層体であってもよい。   Although the heat dissipation layer 3 is formed only on one main surface of the wavelength conversion member 10 in the wavelength conversion element 20 of the present embodiment, the heat dissipation layer 3 may be formed on both main surfaces of the wavelength conversion member 10. In this way, the heat generated by the wavelength conversion member 10 can be released to the outside more efficiently. Furthermore, the laminated body of 4 or more layers which laminated | stacked the wavelength conversion member 10 and the thermal radiation layer 3 alternately may be sufficient.

なお、放熱層3としては透光性セラミックスからなるもの以外にも、Cu、Al、Ag等の金属からなる層であってもよい。このようにすれば、反射型の波長変換素子として使用することができる。   Note that the heat dissipation layer 3 may be a layer made of a metal such as Cu, Al, Ag or the like other than the one made of translucent ceramic. In this way, it can be used as a reflection type wavelength conversion element.

(発光装置)
図3は、本発明の発光装置の一実施形態を示す模式的側面図である。本実施形態に係る発光装置は、透過型の波長変換部材を用いた発光装置である。図3に示すように、発光装置30は、波長変換部材10と光源4を備えている。光源4から出射された励起光L0は、波長変換部材10により、励起光L0よりも波長の長い蛍光L1に波長変換される。また、励起光L0の一部は波長変換部材10を透過する。このため、波長変換部材10からは、励起光L0と蛍光L1との合成光L2が出射する。例えば、励起光L0が青色光であり、蛍光L1が黄色光である場合、白色の合成光L2を得ることができる。なお、波長変換部材10の代わりに、上記で説明した波長変換素子20を使用してもよい。
(Light-emitting device)
FIG. 3 is a schematic side view showing an embodiment of the light emitting device of the present invention. The light emitting device according to the present embodiment is a light emitting device using a transmission type wavelength conversion member. As shown in FIG. 3, the light emitting device 30 includes the wavelength conversion member 10 and the light source 4. The excitation light L0 emitted from the light source 4 is wavelength converted by the wavelength conversion member 10 into fluorescence L1 having a longer wavelength than the excitation light L0. Further, part of the excitation light L0 passes through the wavelength conversion member 10. For this reason, from the wavelength conversion member 10, the combined light L2 of the excitation light L0 and the fluorescence L1 is emitted. For example, when the excitation light L0 is blue light and the fluorescence L1 is yellow light, white synthetic light L2 can be obtained. The wavelength conversion element 20 described above may be used instead of the wavelength conversion member 10.

光源4としては、LEDやLDが挙げられる。発光装置30の発光強度を高める観点からは、光源4は高強度の光を出射できるLDを用いることが好ましい。   Examples of the light source 4 include LEDs and LDs. From the viewpoint of increasing the light emission intensity of the light emitting device 30, it is preferable that the light source 4 be an LD capable of emitting high-intensity light.

1 無機蛍光体粒子
2 酸化マグネシウム粒子
3 放熱層
4 光源
10 波長変換部材
20 波長変換素子
30 発光装置
DESCRIPTION OF SYMBOLS 1 inorganic fluorescent substance particle 2 magnesium oxide particle 3 heat dissipation layer 4 light source 10 wavelength conversion member 20 wavelength conversion element 30 light emitting device

Claims (13)

無機蛍光体粒子、及び、酸化マグネシウム粒子を含有する波長変換部材であって、
無機蛍光体粒子間に酸化マグネシウム粒子が介在しており、かつ、無機蛍光体粒子が酸化マグネシウム粒子により結着されていることを特徴とする波長変換部材。
It is a wavelength conversion member containing inorganic phosphor particles and magnesium oxide particles,
A wavelength conversion member characterized in that magnesium oxide particles intervene between inorganic phosphor particles, and the inorganic phosphor particles are bound by magnesium oxide particles.
質量%で、無機蛍光体粒子 3〜80%、及び、酸化マグネシウム粒子 20〜97%を含有することを特徴とする請求項1に記載の波長変換部材。   The wavelength conversion member according to claim 1, containing 3 to 80% of inorganic phosphor particles and 20 to 97% of magnesium oxide particles in mass%. 酸化マグネシウム粒子の平均粒子径が0.01〜10μmであることを特徴とする請求項1または2に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein an average particle diameter of the magnesium oxide particles is 0.01 to 10 μm. 酸化マグネシウム粒子の純度が99%以上であることを特徴とする請求項1〜3のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 3, wherein the purity of the magnesium oxide particles is 99% or more. 無機蛍光体粒子の平均粒子径が1〜50μmであることを特徴とする請求項1〜4のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 4, wherein the average particle diameter of the inorganic phosphor particles is 1 to 50 μm. 無機蛍光体粒子がガーネット構造を有する酸化物蛍光体からなることを特徴とする請求項1〜5のいずれか一項に記載のセラミックス波長変換部材。   The ceramic wavelength conversion member according to any one of claims 1 to 5, wherein the inorganic phosphor particles are made of an oxide phosphor having a garnet structure. (酸化マグネシウム粒子の平均粒子径)/(無機蛍光体粒子の平均粒子径)が0.5以下であることを特徴とする請求項1〜6のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 6, wherein (average particle diameter of magnesium oxide particles) / (average particle diameter of inorganic phosphor particles) is 0.5 or less. 請求項1〜7のいずれか一項に記載の波長変換部材と、波長変換部材より高い熱伝導率を有する放熱層とが積層されてなる積層体からなることを特徴とする波長変換素子。   A wavelength conversion element comprising a laminate formed by laminating the wavelength conversion member according to any one of claims 1 to 7 and a heat dissipation layer having a thermal conductivity higher than that of the wavelength conversion member. 放熱層が透光性セラミックスからなることを特徴とする請求項8に記載の波長変換素子。   The wavelength conversion element according to claim 8, wherein the heat dissipation layer is made of a translucent ceramic. 透光性セラミックスが、酸化アルミニウム系セラミックス、窒化アルミニウム系セラミックス、炭化ケイ素系セラミックス、窒化ホウ素系セラミックス、酸化マグネシウム系セラミックス、酸化チタン系セラミックス、酸化ニオビウム系セラミックス、酸化亜鉛系セラミックス及び酸化イットリウム系セラミックスから選択される少なくとも1種であることを特徴とする請求項9に記載の波長変換素子。   Translucent ceramics include aluminum oxide based ceramics, aluminum nitride based ceramics, silicon carbide based ceramics, boron nitride based ceramics, magnesium oxide based ceramics, titanium oxide based ceramics, niobium oxide based ceramics, zinc oxide based ceramics and yttrium oxide based ceramics The wavelength conversion element according to claim 9, which is at least one selected from the group consisting of 請求項1〜7のいずれか一項に記載の波長変換部材と、波長変換部材に励起光を照射する光源とを備えてなることを特徴とする発光装置。   A light emitting device comprising the wavelength conversion member according to any one of claims 1 to 7 and a light source for irradiating the wavelength conversion member with excitation light. 請求項8〜10のいずれか一項に記載の波長変換素子と、波長変換素子に励起光を照射する光源とを備えてなることを特徴とする発光装置。   A light emitting device comprising the wavelength conversion element according to any one of claims 8 to 10, and a light source for irradiating the wavelength conversion element with excitation light. 光源がレーザーダイオードであることを特徴とする請求項11または12に記載の発光装置。   The light emitting device according to claim 11 or 12, wherein the light source is a laser diode.
JP2017079488A 2017-04-13 2017-04-13 Wavelength conversion member and wavelength conversion element, and light emitting device using them Active JP6802983B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017079488A JP6802983B2 (en) 2017-04-13 2017-04-13 Wavelength conversion member and wavelength conversion element, and light emitting device using them
PCT/JP2018/005780 WO2018189997A1 (en) 2017-04-13 2018-02-19 Wavelength conversion member and wavelength conversion element, and light-emitting device using same
TW107106282A TW201842154A (en) 2017-04-13 2018-02-26 Wavelength conversion member and wavelength conversion element, and light-emitting device using same
CN201820515641.4U CN208507721U (en) 2017-04-13 2018-04-12 Wavelength convert component and Wavelength changing element and the light emitting device for using them
CN201810325104.8A CN108735877A (en) 2017-04-13 2018-04-12 Wavelength convert component and Wavelength changing element and use their light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017079488A JP6802983B2 (en) 2017-04-13 2017-04-13 Wavelength conversion member and wavelength conversion element, and light emitting device using them

Publications (2)

Publication Number Publication Date
JP2018180271A true JP2018180271A (en) 2018-11-15
JP6802983B2 JP6802983B2 (en) 2020-12-23

Family

ID=63792459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017079488A Active JP6802983B2 (en) 2017-04-13 2017-04-13 Wavelength conversion member and wavelength conversion element, and light emitting device using them

Country Status (4)

Country Link
JP (1) JP6802983B2 (en)
CN (2) CN108735877A (en)
TW (1) TW201842154A (en)
WO (1) WO2018189997A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020213456A1 (en) * 2019-04-18 2020-10-22
WO2021015261A1 (en) 2019-07-22 2021-01-28 地方独立行政法人神奈川県立産業技術総合研究所 Fluorescent member, method for producing same, and light-emitting device
WO2021132212A1 (en) * 2019-12-23 2021-07-01 日本電気硝子株式会社 Wavelength conversion member, light-emitting element, and light-emitting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544236A (en) * 2019-04-18 2021-10-22 日本电气硝子株式会社 Wavelength conversion member, method for manufacturing same, and light-emitting device
CN112174646A (en) * 2020-09-28 2021-01-05 东北大学 High-thermal-conductivity fluorescent ceramic for laser illumination and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195428A (en) * 1997-01-16 1998-07-28 Toshiba Corp Fluorescent particle, its production and plasma display panel
JP2006059629A (en) * 2004-08-19 2006-03-02 Matsushita Electric Ind Co Ltd Plasma display device
JP2009013412A (en) * 2007-07-06 2009-01-22 Samsung Sdi Co Ltd Nano fluorescent film stabilized and hybridized with metal compound, its application, and its manufacturing method
JP2015088636A (en) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 Fluorescent light-emitting element, light source device, and projector
JP2016138020A (en) * 2015-01-28 2016-08-04 日本電気硝子株式会社 Crystallized glass phosphor and wavelength conversion member prepared therewith
JP2016204563A (en) * 2015-04-24 2016-12-08 太平洋セメント株式会社 Fluorescent member, manufacturing method therefor and light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195428A (en) * 1997-01-16 1998-07-28 Toshiba Corp Fluorescent particle, its production and plasma display panel
JP2006059629A (en) * 2004-08-19 2006-03-02 Matsushita Electric Ind Co Ltd Plasma display device
JP2009013412A (en) * 2007-07-06 2009-01-22 Samsung Sdi Co Ltd Nano fluorescent film stabilized and hybridized with metal compound, its application, and its manufacturing method
JP2015088636A (en) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 Fluorescent light-emitting element, light source device, and projector
JP2016138020A (en) * 2015-01-28 2016-08-04 日本電気硝子株式会社 Crystallized glass phosphor and wavelength conversion member prepared therewith
JP2016204563A (en) * 2015-04-24 2016-12-08 太平洋セメント株式会社 Fluorescent member, manufacturing method therefor and light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020213456A1 (en) * 2019-04-18 2020-10-22
WO2020213456A1 (en) * 2019-04-18 2020-10-22 日本電気硝子株式会社 Wavelength conversion member, production method therefor, and light-emitting device
WO2021015261A1 (en) 2019-07-22 2021-01-28 地方独立行政法人神奈川県立産業技術総合研究所 Fluorescent member, method for producing same, and light-emitting device
US11447696B2 (en) 2019-07-22 2022-09-20 Kanagawa Institute Of Industrial Science And Technology Fluorescent member, its manufacturing method, and light-emitting apparatus
WO2021132212A1 (en) * 2019-12-23 2021-07-01 日本電気硝子株式会社 Wavelength conversion member, light-emitting element, and light-emitting device

Also Published As

Publication number Publication date
TW201842154A (en) 2018-12-01
WO2018189997A1 (en) 2018-10-18
CN108735877A (en) 2018-11-02
CN208507721U (en) 2019-02-15
JP6802983B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
WO2017098963A1 (en) Wavelength conversion member, wavelength conversion element, and light emitting apparatus using those
WO2018189997A1 (en) Wavelength conversion member and wavelength conversion element, and light-emitting device using same
TWI497747B (en) Semiconductor light emitting apparatus and light source apparatus using the same
WO2015178223A1 (en) Wavelength conversion member and light emitting device using same
JP5549539B2 (en) Wavelength conversion element, light source including the same, and manufacturing method thereof
JP2012185980A (en) Wavelength conversion element, light source including the same and manufacturing method of the same
JP2007191702A (en) Light emission color converting material
JP6512067B2 (en) Method of manufacturing wavelength conversion element
CN108026442A (en) Wavelength conversion member and luminaire
JP2007023267A (en) Emission color-converting material
JP7268315B2 (en) WAVELENGTH CONVERSION MEMBER, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE
JP2016225581A (en) Wavelength conversion member and light-emitting device including the same
JP6597964B2 (en) Wavelength conversion member, wavelength conversion element, and light emitting device using the same
JP2014112696A (en) Wavelength conversion element, and light source with the same
WO2019116916A1 (en) Wavelength conversion member and method for manufacturing same, and light-emitting device
JP6500744B2 (en) Method of manufacturing wavelength conversion element
JP6656580B2 (en) Manufacturing method of wavelength conversion member
WO2020213456A1 (en) Wavelength conversion member, production method therefor, and light-emitting device
CN114497326A (en) Fluorescence conversion composite layer, preparation method thereof and white light emitting device
JP6582907B2 (en) Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device
WO2021132212A1 (en) Wavelength conversion member, light-emitting element, and light-emitting device
CN216818372U (en) Fluorescence conversion composite layer and white light emitting device
KR101860852B1 (en) Metal-Phosphor Functionally Graded Composites having High Heat Radiation and Energy Circulation Laser Lighting System with High Efficiency using the same
JP6561777B2 (en) Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device
JP6902373B2 (en) Wavelength conversion member and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201111

R150 Certificate of patent or registration of utility model

Ref document number: 6802983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150