JP2016204563A - Fluorescent member, manufacturing method therefor and light emitting device - Google Patents

Fluorescent member, manufacturing method therefor and light emitting device Download PDF

Info

Publication number
JP2016204563A
JP2016204563A JP2015089782A JP2015089782A JP2016204563A JP 2016204563 A JP2016204563 A JP 2016204563A JP 2015089782 A JP2015089782 A JP 2015089782A JP 2015089782 A JP2015089782 A JP 2015089782A JP 2016204563 A JP2016204563 A JP 2016204563A
Authority
JP
Japan
Prior art keywords
fluorescent member
alumina
vol
yag
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015089782A
Other languages
Japanese (ja)
Inventor
梅津 基宏
Motohiro Umetsu
基宏 梅津
稲田 豊
Yutaka Inada
豊 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2015089782A priority Critical patent/JP2016204563A/en
Publication of JP2016204563A publication Critical patent/JP2016204563A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

PROBLEM TO BE SOLVED: To provide a fluorescent member high in light emitting efficiency without blackening, a manufacturing method therefor and a light emitting device.SOLUTION: There is provided a fluorescent member having a ceramic matrix of alumina and phosphor particles of YAG doped with Ce, dispersed in the ceramic matrix, where the content of phosphor particles of YAG is 20 to 90 vol.% and the content of ceramic matrix of alumina is 80 to 10 vol.% in total 100 vol.% and open porosity is 1 to 15%. As the open porosity is 1 to 15%, blacking of a fluorescent member can be prohibited while maintaining high heat conductivity and light emitting efficiency can be made high.SELECTED DRAWING: Figure 1

Description

本発明は、光の照射により蛍光する蛍光部材、その製造方法および発光装置に関する。   The present invention relates to a fluorescent member that fluoresces when irradiated with light, a manufacturing method thereof, and a light emitting device.

近年、白色照明のハイパワー化が進んでおり、その光源としてLD(Laser Diode)が注目されている。LDは、現在使用されているLED(Light Emitting Diode)よりも輝度や指向性が高いという特徴を有している。一方で、LDを白色照明に適用した場合、LEDよりも大きな温度上昇を伴い、高温下において発光効率が低下する。   In recent years, white illumination has been increased in power, and LD (Laser Diode) has attracted attention as its light source. The LD has a feature that its luminance and directivity are higher than those of currently used LEDs (Light Emitting Diodes). On the other hand, when the LD is applied to white illumination, the luminous efficiency is lowered at a high temperature with a temperature rise larger than that of the LED.

LED照明では、使用時の温度が100℃程度であるため、一般的に、蛍光体材料を樹脂マトリックス内に分散させた蛍光体プレートが用いられている。しかしながら、LD照明では、使用時の温度が300℃程度となるため、樹脂を用いることができない。したがって、LD照明では、高温耐久性に優れた無機マトリックス内に蛍光体材料を分散させた蛍光体プレートの開発が不可欠となっている。   In LED lighting, since the temperature at the time of use is about 100 ° C., a phosphor plate in which a phosphor material is dispersed in a resin matrix is generally used. However, in LD illumination, since the temperature during use is about 300 ° C., a resin cannot be used. Therefore, in LD illumination, it is indispensable to develop a phosphor plate in which a phosphor material is dispersed in an inorganic matrix excellent in high temperature durability.

このような背景において、特許文献1に記載されているように、蛍光体材料を無機バインダーで封止した蛍光体プレートが提案されている。この蛍光体プレートは、十分な耐熱性を有するものの、発光効率が低い。発光効率低下の原因は、蛍光体プレートが気孔を多く含む組織を有しており、熱伝導率が低く、熱拡散し難いため、同一の励起光量の照射下では、温度上昇が顕著となり、温度消光現象が発生するためである。   In such a background, as described in Patent Document 1, a phosphor plate in which a phosphor material is sealed with an inorganic binder has been proposed. Although this phosphor plate has sufficient heat resistance, its luminous efficiency is low. The cause of the decrease in luminous efficiency is that the phosphor plate has a structure containing many pores, the thermal conductivity is low, and it is difficult to diffuse the heat. This is because a quenching phenomenon occurs.

これに対し、特許文献2のように、蛍光体プレートをYAGとアルミナの複合セラミックスとする提案がなされている。しかしながら、蛍光体の発光効率は、蛍光体プレート内の構造により大きな影響を受けるはずであるところ、特許文献2では、このことに言及されていない。   On the other hand, as in Patent Document 2, a proposal has been made that the phosphor plate is a composite ceramic of YAG and alumina. However, the luminous efficiency of the phosphor should be greatly affected by the structure in the phosphor plate, and Patent Document 2 does not mention this.

特開2010−280877号公報JP 2010-280877 A 特開2011−012215号公報JP 2011-012215 A

上記のように、YAGとアルミナの複合セラミックスで構成された蛍光体プレートにおいては、蛍光体プレート内の気孔の大きさおよび存在量、蛍光体材料の粒子径により発光効率が低下しうる。また、YAGおよびアルミナのような金属酸化物は真空や不活性雰囲気中で焼成すると、その還元作用から格子中の酸素欠損が発生し、黒色化する。これにより、励起光が吸収され、発光効率が大幅に低下する。   As described above, in a phosphor plate composed of YAG and alumina composite ceramics, the luminous efficiency can be reduced depending on the size and abundance of pores in the phosphor plate and the particle diameter of the phosphor material. Further, when metal oxides such as YAG and alumina are baked in a vacuum or in an inert atmosphere, oxygen deficiency in the lattice is generated due to the reduction action, and blackening occurs. Thereby, excitation light is absorbed and luminous efficiency falls significantly.

本発明は、このような事情に鑑みてなされたものであり、黒色化せず発光効率の高い蛍光部材、その製造方法および発光装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a fluorescent member that is not blackened and has high luminous efficiency, a manufacturing method thereof, and a light emitting device.

(1)上記の目的を達成するため、本発明の蛍光部材は、アルミナのセラミックスマトリックスと、前記セラミックスマトリックス中に分散された、CeがドープされたYAGの蛍光体粒子と、を備え、合計100vol%に対して、前記YAGの蛍光体粒子が20〜90vol%、前記アルミナのセラミックスマトリックスが80〜10vol%を占め、開気孔率が1〜15%であることを特徴としている。このように、開気孔率を1%以上とすることで、蛍光部材の黒色化を防止し、励起光の吸収を抑えて発光効率を高くすることができる。また、開気孔率を15%以下とすることで、熱伝導率を高く維持することができ、温度消光による発光効率の低下を防止できる。   (1) To achieve the above object, the fluorescent member of the present invention comprises an alumina ceramic matrix and Ce-doped YAG phosphor particles dispersed in the ceramic matrix, and a total of 100 vol. %, The YAG phosphor particles account for 20 to 90 vol%, the alumina ceramic matrix accounts for 80 to 10 vol%, and the open porosity is 1 to 15%. Thus, by setting the open porosity to 1% or more, it is possible to prevent blackening of the fluorescent member, suppress absorption of excitation light, and increase luminous efficiency. In addition, by setting the open porosity to 15% or less, the thermal conductivity can be maintained high, and a decrease in luminous efficiency due to temperature quenching can be prevented.

(2)また、本発明の蛍光部材は、熱伝導率が8W/m・K以上であることを特徴としている。これにより、熱拡散を促し、同一の励起光量の照射下での温度上昇を抑えて温度消光現象を防止して発光効率を高くすることができる。   (2) Further, the fluorescent member of the present invention is characterized in that the thermal conductivity is 8 W / m · K or more. Accordingly, it is possible to promote thermal diffusion, suppress a temperature rise under irradiation with the same amount of excitation light, prevent a temperature quenching phenomenon, and increase luminous efficiency.

(3)また、本発明の蛍光部材は、前記セラミックマトリックスを形成するアルミナの純度は99.99%以上であることを特徴としている。これにより、励起光が吸収されなくなり発光効率がさらに向上する。   (3) Moreover, the fluorescent member of the present invention is characterized in that the alumina forming the ceramic matrix has a purity of 99.99% or more. Thereby, excitation light is not absorbed and luminous efficiency is further improved.

(4)また、本発明の発光装置は、上記(1)〜(3)のいずれかに記載の蛍光部材と、前記蛍光部材上に設けられた発光素子と、前記発光素子に電力を供給する電力供給部と、を備えることを特徴としている。これにより、発光効率の高い発光装置を実現できる。   (4) Moreover, the light-emitting device of this invention supplies electric power to the fluorescent member in any one of said (1)-(3), the light-emitting element provided on the said fluorescent member, and the said light-emitting element. And a power supply unit. Thereby, a light emitting device with high luminous efficiency can be realized.

(5)また、本発明の蛍光部材の製造方法は、純度99.99%、平均粒径0.5μm以下のアルミナの粉末を準備する工程と、平均粒径10〜20μmのCeがドープされたYAGの粉末を準備する工程と、合計100vol%に対して、前記アルミナの粉末20〜90vol%、前記YAGの粉末80〜10vol%で構成されるように、前記アルミナの粉末と前記YAGの粉末とを混合して成形体を作製する工程と、前記成形体を、真空を含む不活性雰囲気下で、1500〜1750℃で焼成する工程と、を含むことを特徴としている。これにより、開気孔率が1〜15%で黒色化を防止した蛍光部材を生成でき、高い熱伝導率を維持しつつ蛍光部材において励起光の吸収を抑えて発光効率を高くすることができる。なお、「平均粒径」とは、JIS R 162「ファインセラミックス原料のレーザ回折・散乱法による粒子径分布測定方法」に準拠し、日機装社製マイクロトラック930−X100により測定したものをいう。   (5) Moreover, the manufacturing method of the fluorescent member of the present invention includes a step of preparing an alumina powder having a purity of 99.99% and an average particle size of 0.5 μm or less, and Ce having an average particle size of 10 to 20 μm was doped. A step of preparing a YAG powder, and the alumina powder and the YAG powder so as to be composed of 20 to 90 vol% of the alumina powder and 80 to 10 vol% of the YAG powder with respect to a total of 100 vol%. And a step of firing the molded body at 1500 to 1750 ° C. in an inert atmosphere including a vacuum. As a result, a fluorescent member that has an open porosity of 1 to 15% and has been prevented from being blackened can be generated, and while the high thermal conductivity is maintained, the absorption of excitation light can be suppressed in the fluorescent member and the luminous efficiency can be increased. The “average particle size” refers to a value measured with a Microtrack 930-X100 manufactured by Nikkiso Co., Ltd. in accordance with JIS R 162 “Method of measuring particle size distribution of fine ceramic raw material by laser diffraction / scattering method”.

本発明によれば、黒色化せず発光効率の高い蛍光部材を実現できる。   According to the present invention, a fluorescent member that is not blackened and has high luminous efficiency can be realized.

各実施例、比較例の実験条件および実験結果を示す表である。It is a table | surface which shows the experimental condition and experimental result of each Example and a comparative example.

YAGおよびアルミナの黒色化は、焼結時に緻密化する際に、顕著に発生する。本発明者らは、特に、YAGとアルミナの複合セラミックス構造体の開気孔率を1〜15%に制御することで、黒色化せずに、熱伝導率が8W/m・K以上を維持しつつ、十分な発光効率を有する蛍光部材の製造が可能であることを見出した。以下に、本発明の実施形態を説明する。   Blackening of YAG and alumina occurs remarkably when densifying during sintering. In particular, the inventors of the present invention maintain the thermal conductivity of 8 W / m · K or more without blackening by controlling the open porosity of the composite ceramic structure of YAG and alumina to 1 to 15%. However, it has been found that a fluorescent member having sufficient luminous efficiency can be produced. Hereinafter, embodiments of the present invention will be described.

[蛍光部材の構成]
本発明の蛍光部材は、アルミナのセラミックスマトリックスと、セラミックスマトリックス中に分散されたCeがドープされたYAG(イットリウム・アルミニウム・ガーネット)の蛍光体粒子とを備えており、多孔質のセラミックス構造を有する。なお、多孔質とは、緻密質に対する用語であり、後述のように開気孔率が1〜15%であることをいう。
[Configuration of fluorescent member]
The fluorescent member of the present invention comprises a ceramic matrix of alumina and phosphor particles of YAG (yttrium, aluminum, garnet) doped with Ce dispersed in the ceramic matrix, and has a porous ceramic structure. . The term “porous” refers to a dense substance, and means that the open porosity is 1 to 15% as described later.

蛍光部材を形成するYAGの蛍光体粒子およびアルミナのセラミックスマトリックスからなる合計100vol%の体積のうち、YAGの蛍光体粒子は20〜90vol%、アルミナのセラミックスマトリックスは80〜10vol%を占めている。下表に示すように、アルミナの熱伝導率は、YAGの熱伝導率の約3倍であり、アルミナが80〜10vol%を占めていることにより熱伝導率が向上するため、放熱特性が向上する。よって、使用時の冷却能力が向上し、温度消光による発光効率の低下を抑制できる。また、アルミナの純度は99.99%以上であることが好ましい。これにより、励起光が吸収されなくなり発光効率がさらに向上する。なお、アルミナの結晶粒子径は、10μm以下であることが好ましい。

Figure 2016204563
Of the total volume of 100 vol% consisting of YAG phosphor particles and alumina ceramic matrix forming the fluorescent member, YAG phosphor particles account for 20-90 vol% and alumina ceramic matrix account for 80-10 vol%. As shown in the table below, the thermal conductivity of alumina is about 3 times the thermal conductivity of YAG, and the thermal conductivity is improved by occupying 80 to 10 vol% of alumina, so the heat dissipation characteristics are improved. To do. Therefore, the cooling capacity at the time of use improves and it can suppress the fall of the luminous efficiency by temperature quenching. The purity of alumina is preferably 99.99% or higher. Thereby, excitation light is not absorbed and luminous efficiency is further improved. The crystal grain diameter of alumina is preferably 10 μm or less.
Figure 2016204563

YAGの蛍光体粒子の結晶粒子径は10〜20μmである。これにより発光に十分なYAGの蛍光体粒子の粒子径を確保し、蛍光部材の発光効率を向上させている。   The crystal particle diameter of the YAG phosphor particles is 10 to 20 μm. Thereby, the particle diameter of the phosphor particles of YAG sufficient for light emission is secured, and the light emission efficiency of the fluorescent member is improved.

蛍光部材の開気孔率は1〜15%である。このように、開気孔率が1%以上であることから、蛍光部材の黒色化を防止し、励起光の吸収を抑えて発光効率を高くすることができる。また、開気孔率が、15%以下であることから、熱伝導率を高く維持することができ、温度消光による発光効率の低下を防止できる。   The open porosity of the fluorescent member is 1 to 15%. Thus, since the open porosity is 1% or more, it is possible to prevent the fluorescent member from being blackened, suppress the excitation light absorption, and increase the luminous efficiency. In addition, since the open porosity is 15% or less, the thermal conductivity can be kept high, and the decrease in luminous efficiency due to temperature quenching can be prevented.

[蛍光部材の製造方法]
上記のように構成される蛍光部材の製造方法を説明する。まず、純度99.99%、平均粒径0.5μm以下のアルミナの粉末を準備する。次に、平均粒径10〜20μmのCeがドープされたYAGの粉末を準備する。
[Method for producing fluorescent member]
The manufacturing method of the fluorescent member comprised as mentioned above is demonstrated. First, alumina powder having a purity of 99.99% and an average particle size of 0.5 μm or less is prepared. Next, a YAG powder doped with Ce having an average particle size of 10 to 20 μm is prepared.

そして、アルミナの粉末とYAGの粉末を合わせた合計100vol%に対して、それぞれの比率がアルミナの粉末20〜90vol%、YAGの粉末80〜10vol%となるように、アルミナの粉末とYAGの粉末とを、エタノールを用いたボールミル混合等で混合する。そして、混合して得られた粉末材料により成形体を作製する。   And the alumina powder and the YAG powder so that the ratio of the alumina powder and the YAG powder is 100-vol% in total, the respective proportions being 20-90 vol% alumina powder and 80-10 vol% YAG powder. Are mixed by ball mill mixing using ethanol or the like. And a molded object is produced with the powder material obtained by mixing.

このようにして得られた成形体を、真空、アルゴン雰囲気等を含む不活性雰囲気下で、1500〜1750℃で焼成する。これにより、開気孔率が1〜15%で黒色化を防止した蛍光部材を生成でき、高い熱伝導率を維持しつつ蛍光部材において発光効率を高くすることができる。なお、蛍光部材中のYAGの結晶粒子径は、10〜20μmのままであり、アルミナの結晶粒子径は0.2〜10μm程度となる。   The molded body thus obtained is fired at 1500 to 1750 ° C. in an inert atmosphere including a vacuum and an argon atmosphere. Thereby, it is possible to generate a fluorescent member having an open porosity of 1 to 15% and preventing blackening, and it is possible to increase the luminous efficiency of the fluorescent member while maintaining high thermal conductivity. The crystal particle diameter of YAG in the fluorescent member remains 10 to 20 μm, and the crystal particle diameter of alumina is about 0.2 to 10 μm.

[発光装置]
上記のような蛍光部材は、白色照明の発光装置等の用途において、高温下の環境においても、広範囲の励起光量で高い発光効率を有する構成部材として提供できる。例えば、発光装置は、以下のように凹部を有する蛍光部材と、蛍光部材の凹部に設けられた発光素子と、蛍光部材が表面に実装された配線基板とで構成できる。
[Light emitting device]
The fluorescent member as described above can be provided as a structural member having high light emission efficiency with a wide range of excitation light quantity even in a high temperature environment in applications such as a light emitting device for white illumination. For example, the light emitting device can be configured by a fluorescent member having a recess as described below, a light emitting element provided in the recess of the fluorescent member, and a wiring board on which the fluorescent member is mounted.

蛍光部材は、上記の通り、例えばプレート状に形成されている。そして、蛍光部材の表面には凹部が形成され、凹部の底面は平坦面となっている。この平坦な底面に発光素子が設置される。また、凹部の内周面および中心部を除き、蛍光部材の表面には配線パターンが形成される。   As described above, the fluorescent member is formed in a plate shape, for example. A concave portion is formed on the surface of the fluorescent member, and the bottom surface of the concave portion is a flat surface. A light emitting element is installed on the flat bottom surface. In addition, a wiring pattern is formed on the surface of the fluorescent member except for the inner peripheral surface and the central portion of the recess.

発光素子は、例えば青色発光ダイオードであって、各層には電極部が接合される。そして、各電極部が配線パターンと電気的に接続され、配線パターンを介して発光素子に電力が供給される。その結果、青色光が発生し、蛍光部材内の蛍光体粒子により青色光の一部が黄色光に変換され、青色光と黄色光の混色により白色光が得られる。このような発光装置に上記の蛍光部材を用いることで放熱特性が高く、発光効率の高い発光装置を実現できる。   The light emitting element is, for example, a blue light emitting diode, and an electrode portion is bonded to each layer. And each electrode part is electrically connected with a wiring pattern, and electric power is supplied to a light emitting element via a wiring pattern. As a result, blue light is generated, part of the blue light is converted into yellow light by the phosphor particles in the fluorescent member, and white light is obtained by mixing the blue light and the yellow light. By using the above-described fluorescent member for such a light emitting device, a light emitting device with high heat dissipation characteristics and high light emission efficiency can be realized.

配線基板は平板状であって、表面には配線パターンが形成される。そして、凹部の底面と背向する蛍光部材の裏面を配線基板に対向させ、裏面端部に設けられた配線パターンが配線基板上の配線パターンに接合される。   The wiring board has a flat plate shape, and a wiring pattern is formed on the surface. Then, the back surface of the fluorescent member facing away from the bottom surface of the concave portion is opposed to the wiring substrate, and the wiring pattern provided on the end portion of the back surface is bonded to the wiring pattern on the wiring substrate.

[実施例、比較例]
(実験条件)
蛍光部材について、以下の通り、実験を行った。図1は、各実施例、比較例の実験条件および実験結果を示す表である。
[Examples and Comparative Examples]
(Experimental conditions)
The experiment was performed on the fluorescent member as follows. FIG. 1 is a table showing experimental conditions and experimental results of each example and comparative example.

まず、アルミナ原料として、純度99.9〜99.99%、平均粒径0.2μmの粉末を準備した。YAG原料として、平均粒径15μmのCeがドープされたYAGの粉末を準備した。   First, a powder having a purity of 99.9 to 99.99% and an average particle size of 0.2 μm was prepared as an alumina raw material. As a YAG raw material, a YAG powder doped with Ce having an average particle diameter of 15 μm was prepared.

ボールミルを用いて、これらの原料をエタノール中で16時間混合し、ロータリーエバポレーターでエタノールを乾燥させ、混合粉末を作製した。アルミナ、YAGの各原料の配合は、図1に示す体積比の通りである。   These raw materials were mixed in ethanol for 16 hours using a ball mill, and ethanol was dried by a rotary evaporator to prepare a mixed powder. The blending of each raw material of alumina and YAG is as shown in the volume ratio shown in FIG.

混合粉末に対し、10MPaで一軸加圧成形を行った後、100MPaで冷間静水圧成形を行って、φ15mm、厚さ10mmの成形体を作製した。得られた成形体を、アルゴン雰囲気下で、1500〜1750℃で焼結し、複合セラミックス焼結体を作製した。   The mixed powder was subjected to uniaxial pressure molding at 10 MPa and then cold isostatic pressing at 100 MPa to produce a molded body having a diameter of 15 mm and a thickness of 10 mm. The obtained molded body was sintered at 1500 to 1750 ° C. in an argon atmosphere to prepare a composite ceramic sintered body.

複合セラミックス焼結体については、JISR 1634に従い、アルキメデス法によりかさ密度、開気孔率を測定した。このときYAG、アルミナの真密度は、それぞれ4.56、3.99×10kg/mとして、体積比に応じて理論密度を計算し、相対密度(かさ密度÷理論密度)を算出した。 The composite ceramic sintered body was measured for bulk density and open porosity by Archimedes method according to JIS R 1634. At this time, the true density of YAG and alumina was 4.56, 3.99 × 10 3 kg / m 3 , respectively, the theoretical density was calculated according to the volume ratio, and the relative density (bulk density / theoretical density) was calculated. .

また、レーザーフラッシュ法により、京都電子工業社製LFA−502を用いて複合セラミックス焼結体の熱伝導率を測定した。発光効率として、日本分光社製FP−8500を用いて、試料裏面に水冷機能を付与し、300℃に加熱時の励起光量1.5Wにおける内部量子効率を測定した。比較として、YAG粉末を石英ガラスで充填した試料についても同様に評価を行った。   Moreover, the thermal conductivity of the composite ceramic sintered body was measured by a laser flash method using LFA-502 manufactured by Kyoto Electronics Industry Co., Ltd. Using FP-8500 manufactured by JASCO Corporation as the luminous efficiency, a water cooling function was imparted to the back surface of the sample, and the internal quantum efficiency at an excitation light amount of 1.5 W when heated to 300 ° C. was measured. As a comparison, a sample filled with YAG powder with quartz glass was similarly evaluated.

結晶粒子径は、インターセプト法により測定した粒径(平均粒径)であり、具体的には、例えば、以下のようにして測定する。すなわち、まず、蛍光部材の表面を研削加工により平面を得る。その後、ダイヤモンドディスク等を用いて平面の鏡面研磨を行う。その後、サーマルエッチングを行う。次に、SEM観察により、1000倍の倍率で、組織面像を得る。この組織の面像上に直線を数本ランダムに引く。そして、直線が横切る粒子数を数えて、画像上での直線長さを粒子数で除した値を結晶粒子径とする。測定の結果、蛍光部材中のYAGの結晶粒子径は、混合時の平均粒径と同一であり、15μmのままであり、アルミナの結晶粒子径は0.2〜10μm程度であった。   The crystal particle diameter is a particle diameter (average particle diameter) measured by the intercept method. Specifically, for example, the crystal particle diameter is measured as follows. That is, first, a flat surface is obtained by grinding the surface of the fluorescent member. Thereafter, planar mirror polishing is performed using a diamond disk or the like. Thereafter, thermal etching is performed. Next, a tissue plane image is obtained at a magnification of 1000 times by SEM observation. Several lines are randomly drawn on the surface image of the tissue. Then, the number of particles crossed by the straight line is counted, and the value obtained by dividing the straight line length on the image by the number of particles is defined as the crystal particle diameter. As a result of the measurement, the crystal particle diameter of YAG in the fluorescent member was the same as the average particle diameter at the time of mixing and remained 15 μm, and the crystal particle diameter of alumina was about 0.2 to 10 μm.

(実験結果)
焼成温度1500〜1800℃、YAG蛍光体15〜100vol%、アルミナ85〜0vol%の体積比率の各組み合わせで複合セラミックス焼結体を作製したところ(実施例1〜9、比較例1〜7)、YAG蛍光体15vol%の試料(比較例1)は、色調は薄黄であり、適当な開気孔率を有するが、熱伝導率は高く、発光効率も高いが、YAG蛍光体そのものの体積割合が低いため、発光強度(外部量子効率)が低く、蛍光部材として機能しなかった。また、アルミナ5vol%および0vol%の試料(比較例6、7)は、いずれも色調は濃黄であり、適当な開気孔率を有するが、熱伝導率が低い値となり、発光効率も低くなった。
(Experimental result)
When the composite ceramic sintered body was produced with each combination of a firing temperature of 1500 to 1800 ° C., a volume ratio of YAG phosphor of 15 to 100 vol%, and alumina of 85 to 0 vol% (Examples 1 to 9, Comparative Examples 1 to 7), The YAG phosphor 15 vol% sample (Comparative Example 1) has a light yellow color and an appropriate open porosity, but has a high thermal conductivity and a high luminous efficiency, but the volume ratio of the YAG phosphor itself is high. Since it was low, the light emission intensity (external quantum efficiency) was low, and it did not function as a fluorescent member. Further, the samples of 5 vol% alumina and 0 vol% (Comparative Examples 6 and 7) are both dark yellow in color and have an appropriate open porosity, but have a low thermal conductivity and low luminous efficiency. It was.

YAG蛍光体20vol%、アルミナ80vol%の体積比率の場合、焼成温度が1600℃の試料(比較例2)は、熱伝導率は高いものの、開気孔率が低く、色調が灰となり、発光効率が18.5%の低い値となった。一方、焼成温度が1500℃の試料(実施例1)は、適当な開気孔率を有し、熱伝導率が高く、色調が薄黄であり、発光効率が93.2%の高い値となった。   In the case of a volume ratio of 20 vol% YAG phosphor and 80 vol% alumina, the sample with a firing temperature of 1600 ° C. (Comparative Example 2) has a high thermal conductivity, but has a low open porosity, a color tone of ash, and a luminous efficiency. The value was as low as 18.5%. On the other hand, a sample having a firing temperature of 1500 ° C. (Example 1) has an appropriate open porosity, high thermal conductivity, light yellow color, and high luminous efficiency of 93.2%. It was.

YAG蛍光体40vol%、アルミナ60vol%の体積比率の場合、焼成温度が1700℃の試料(比較例3)は、熱伝導率は高いものの、開気孔率が低く、色調が灰となり、発光効率が19.5%の低い値をとった。一方、焼成温度が1550〜1650℃の試料(実施例2〜4)は、適当な開気孔率を有し、熱伝導率が高く、色調が黄であり、発光効率が90%以上の高い値となった。   In the case of a volume ratio of YAG phosphor 40 vol% and alumina 60 vol%, the sample with a firing temperature of 1700 ° C. (Comparative Example 3) has a high thermal conductivity, but has a low open porosity, a color tone of ash, and a luminous efficiency. The value was as low as 19.5%. On the other hand, the samples (Examples 2 to 4) having a firing temperature of 1550 to 1650 ° C. have an appropriate open porosity, high thermal conductivity, yellow color, and a high luminous efficiency of 90% or more. It became.

YAG蛍光体70vol%、アルミナ30vol%の体積比率の場合、焼成温度が1750℃の試料(比較例4)は、熱伝導率は高いものの、開気孔率が低く、色調が深緑となり、発光効率が18.2%の低い値をとった。また、焼成温度が1500℃の試料(比較例5)は、色調は濃黄であるが、開気孔率が高すぎ、熱伝導率が低くなり、発光効率が65.4%の不十分な値となった。一方、焼成温度が1550〜1700℃の試料(実施例5〜8)は、適当な開気孔率を有し、熱伝導率も十分であり、色調が濃黄であり、発光効率が85%以上の高い値となった。   In the case of a volume ratio of 70% by volume of YAG phosphor and 30% by volume of alumina, a sample having a firing temperature of 1750 ° C. (Comparative Example 4) has a high thermal conductivity, but has a low open porosity, a dark tone, and a luminous efficiency. A low value of 18.2% was taken. In addition, the sample having the firing temperature of 1500 ° C. (Comparative Example 5) has a deep yellow color, but the open porosity is too high, the thermal conductivity is low, and the luminous efficiency is 65.4%. It became. On the other hand, samples (Examples 5 to 8) having a firing temperature of 1550 to 1700 ° C. have an appropriate open porosity, sufficient thermal conductivity, a deep color, and a luminous efficiency of 85% or more. The value was high.

YAG蛍光体90vol%、アルミナ10vol%の体積比率で、焼成温度が1750℃の試料(実施例9)は、適当な開気孔率を有し、熱伝導率も十分であり、色調が濃黄であり、発光効率が85%以上の高い値となった。   A sample having a volume ratio of 90% by volume of YAG phosphor and 10% by volume of alumina and having a firing temperature of 1750 ° C. (Example 9) has an appropriate open porosity, sufficient thermal conductivity, and has a deep yellow color tone. Yes, the luminous efficiency was a high value of 85% or more.

YAG蛍光体70vol%、アルミナ(純度99.99%)30vol%の試料(実施例7)に対して他の条件を同一にし、アルミナ純度のみ99.9%とした試料(比較例8)では、相対密度および熱伝導率は高いが、発光効率が18.7%と低い値となった。これは励起光がアルミナ内で吸収されたためと考えられる。   In a sample (Comparative Example 8) in which the YAG phosphor was 70 vol%, alumina (purity 99.99%) was 30 vol% (Example 7), the other conditions were the same, and only the alumina purity was 99.9%. Although the relative density and thermal conductivity were high, the luminous efficiency was a low value of 18.7%. This is considered because excitation light was absorbed in alumina.

YAGの第二粒子と第一粒子の体積比を0から0.35まで変えた試料(比較例5〜6、実施例6、9〜11)については、YAGの第二粒子と第一粒子の体積比が0、0.35の試料(比較例5、6)では、相対密度および熱伝導率が低くなり、温度消光の影響により発光効率が90%より低くなった。YAGの第二粒子と第一粒子の体積比が0.06〜0.30の試料(実施例9〜11)は、適当な相対密度および十分な熱伝導率を有するが、色調が黄で、発光効率が18.9%と低くなった。   For samples in which the volume ratio of the second YAG particles to the first particles was changed from 0 to 0.35 (Comparative Examples 5 to 6, Examples 6 and 9 to 11), the YAG second particles and the first particles In the samples with the volume ratio of 0 and 0.35 (Comparative Examples 5 and 6), the relative density and thermal conductivity were low, and the luminous efficiency was lower than 90% due to the influence of temperature quenching. Samples with a YAG second particle to first particle volume ratio of 0.06 to 0.30 (Examples 9 to 11) have a suitable relative density and sufficient thermal conductivity, but the color tone is yellow, The luminous efficiency was as low as 18.9%.

YAG粉末を石英ガラスで充填した試料(比較例9)は、熱伝導率が2W/m・Kで、発光効率も15.4%であり、アルミナをセラミックスマトリックスとし、充填性を高めた蛍光部材と比べて低くなった。   A sample (Comparative Example 9) in which YAG powder is filled with quartz glass has a thermal conductivity of 2 W / m · K, a luminous efficiency of 15.4%, and a fluorescent member in which alumina is used as a ceramic matrix and has improved filling properties. It became low compared with.

Claims (5)

アルミナのセラミックスマトリックスと、前記セラミックスマトリックス中に分散された、CeがドープされたYAGの蛍光体粒子と、を備え、
合計100vol%に対して、前記YAGの蛍光体粒子が20〜90vol%、前記アルミナのセラミックスマトリックスが80〜10vol%を占め、
開気孔率が1〜15%であることを特徴とする蛍光部材。
A ceramic matrix of alumina, and phosphor particles of YAG doped with Ce and dispersed in the ceramic matrix;
For a total of 100 vol%, the phosphor particles of YAG account for 20 to 90 vol%, and the ceramic matrix of alumina accounts for 80 to 10 vol%,
A fluorescent member having an open porosity of 1 to 15%.
熱伝導率が8W/m・K以上であることを特徴とする請求項1記載の蛍光部材。   The fluorescent member according to claim 1, wherein the thermal conductivity is 8 W / m · K or more. 前記セラミックマトリックスを形成するアルミナの純度は99.99%以上であることを特徴とする請求項1または請求項2記載の蛍光部材。   The fluorescent member according to claim 1 or 2, wherein the alumina forming the ceramic matrix has a purity of 99.99% or more. 請求項1から請求項3のいずれかに記載の蛍光部材と、
前記蛍光部材上に設けられた発光素子と、
前記発光素子に電力を供給する電力供給部と、を備えることを特徴とする発光装置。
The fluorescent member according to any one of claims 1 to 3,
A light emitting device provided on the fluorescent member;
And a power supply unit for supplying power to the light emitting element.
純度99.99%、平均粒径0.5μm以下のアルミナの粉末を準備する工程と、
平均粒径10〜20μmのCeがドープされたYAGの混合粉末を準備する工程と、
合計100vol%に対して、前記アルミナの粉末20〜90vol%、前記YAGの混合粉末80〜10vol%で構成されるように、前記アルミナの粉末と前記YAGの混合粉末とを混合して成形体を作製する工程と、
前記成形体を、真空を含む不活性雰囲気下で、1500〜1750℃で焼成する工程と、を含むことを特徴とする蛍光部材の製造方法。
Preparing an alumina powder having a purity of 99.99% and an average particle size of 0.5 μm or less;
Preparing a mixed powder of YAG doped with Ce having an average particle size of 10 to 20 μm;
The alumina powder and the YAG mixed powder are mixed so as to be composed of 20 to 90 vol% of the alumina powder and 80 to 10 vol% of the mixed powder of YAG with respect to 100 vol% in total. A manufacturing process;
And baking the molded body at 1500 to 1750 ° C. in an inert atmosphere including vacuum.
JP2015089782A 2015-04-24 2015-04-24 Fluorescent member, manufacturing method therefor and light emitting device Pending JP2016204563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015089782A JP2016204563A (en) 2015-04-24 2015-04-24 Fluorescent member, manufacturing method therefor and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089782A JP2016204563A (en) 2015-04-24 2015-04-24 Fluorescent member, manufacturing method therefor and light emitting device

Publications (1)

Publication Number Publication Date
JP2016204563A true JP2016204563A (en) 2016-12-08

Family

ID=57487752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089782A Pending JP2016204563A (en) 2015-04-24 2015-04-24 Fluorescent member, manufacturing method therefor and light emitting device

Country Status (1)

Country Link
JP (1) JP2016204563A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179654A1 (en) * 2017-03-29 2018-10-04 マクセル株式会社 Phosphor film and light source apparatus
WO2018189997A1 (en) * 2017-04-13 2018-10-18 日本電気硝子株式会社 Wavelength conversion member and wavelength conversion element, and light-emitting device using same
WO2019008869A1 (en) * 2017-07-07 2019-01-10 マクセル株式会社 Phosphor member and light source device
WO2019008872A1 (en) * 2017-07-07 2019-01-10 マクセル株式会社 Phosphor member and light source device
JP2019006967A (en) * 2016-07-08 2019-01-17 クアーズテック株式会社 Ceramic composite, and fluophor for projector and light emitting device containing the same
CN109467453A (en) * 2017-09-07 2019-03-15 中国科学院上海硅酸盐研究所 A kind of fluorescence ceramics and its preparation method and application with feature microstructure
JP2019045844A (en) * 2017-08-31 2019-03-22 日亜化学工業株式会社 Fluorescent member, optical component, and light-emitting device
WO2019078299A1 (en) * 2017-10-19 2019-04-25 パナソニックIpマネジメント株式会社 Wavelength converter
JP2019164302A (en) * 2018-03-20 2019-09-26 株式会社タムラ製作所 Wavelength conversion member and wavelength conversion element
JP2019182730A (en) * 2018-04-05 2019-10-24 日亜化学工業株式会社 Ceramic composite, projector, and manufacturing of ceramic composite
JP2020033451A (en) * 2018-08-29 2020-03-05 日亜化学工業株式会社 Ceramic composite and method for producing the same
CN111072374A (en) * 2018-10-18 2020-04-28 深圳光峰科技股份有限公司 Fluorescent ceramic and preparation method thereof
JP2020090424A (en) * 2018-12-07 2020-06-11 日亜化学工業株式会社 Ceramic composite, light emitting divice using the same, and method for producing the same
US20200324342A1 (en) * 2019-04-11 2020-10-15 Nichia Corporation Method for producing rare earth aluminate sintered body
WO2020213455A1 (en) * 2019-04-18 2020-10-22 日本電気硝子株式会社 Wavelength conversion member, method for manufacturing same, and light emission device
CN112441817A (en) * 2019-08-29 2021-03-05 深圳市中光工业技术研究院 Fluorescent ceramic, preparation method thereof and light source device
CN113056540A (en) * 2018-11-21 2021-06-29 欧司朗光电半导体有限公司 Method for producing a ceramic converter element, ceramic converter element and optoelectronic component
WO2021132212A1 (en) * 2019-12-23 2021-07-01 日本電気硝子株式会社 Wavelength conversion member, light-emitting element, and light-emitting device
US11220632B2 (en) 2018-04-05 2022-01-11 Nichia Corporation Ceramic complex, light source for projector, and method for producing ceramic complex
US11326071B2 (en) * 2016-12-07 2022-05-10 Nec Corporation Coating material and solidified body of coating material
US11597878B2 (en) 2018-12-20 2023-03-07 Nichia Corporation Method for producing rare earth aluminate fluorescent material, rare earth aluminate fluorescent material, and light emitting device
US11920068B2 (en) 2020-07-13 2024-03-05 Nichia Corporation Method of manufacturing wavelength conversion member and wavelength conversion member
RU2818556C1 (en) * 2023-08-18 2024-05-02 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Method of producing luminescent oxide composition for radiation converter in white light sources

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006967A (en) * 2016-07-08 2019-01-17 クアーズテック株式会社 Ceramic composite, and fluophor for projector and light emitting device containing the same
US11326071B2 (en) * 2016-12-07 2022-05-10 Nec Corporation Coating material and solidified body of coating material
WO2018179654A1 (en) * 2017-03-29 2018-10-04 マクセル株式会社 Phosphor film and light source apparatus
WO2018189997A1 (en) * 2017-04-13 2018-10-18 日本電気硝子株式会社 Wavelength conversion member and wavelength conversion element, and light-emitting device using same
JP2018180271A (en) * 2017-04-13 2018-11-15 日本電気硝子株式会社 Wavelength conversion member, wavelength conversion element, and light-emitting device using the same
WO2019008869A1 (en) * 2017-07-07 2019-01-10 マクセル株式会社 Phosphor member and light source device
WO2019008872A1 (en) * 2017-07-07 2019-01-10 マクセル株式会社 Phosphor member and light source device
JP2019045844A (en) * 2017-08-31 2019-03-22 日亜化学工業株式会社 Fluorescent member, optical component, and light-emitting device
CN109467453A (en) * 2017-09-07 2019-03-15 中国科学院上海硅酸盐研究所 A kind of fluorescence ceramics and its preparation method and application with feature microstructure
CN109467453B (en) * 2017-09-07 2021-12-07 中国科学院上海硅酸盐研究所 Fluorescent ceramic with characteristic microstructure and preparation method and application thereof
CN111279228A (en) * 2017-10-19 2020-06-12 松下知识产权经营株式会社 Wavelength conversion body
US11597875B2 (en) 2017-10-19 2023-03-07 Panasonic Intellectual Property Management Co., Ltd. Wavelength converter
CN111279228B (en) * 2017-10-19 2022-01-07 松下知识产权经营株式会社 Wavelength conversion body
WO2019078299A1 (en) * 2017-10-19 2019-04-25 パナソニックIpマネジメント株式会社 Wavelength converter
JP7178074B2 (en) 2018-03-20 2022-11-25 国立研究開発法人物質・材料研究機構 WAVELENGTH CONVERSION MEMBER, WAVELENGTH CONVERSION ELEMENT AND METHOD FOR MANUFACTURING WAVELENGTH CONVERSION MEMBER
WO2019181478A1 (en) * 2018-03-20 2019-09-26 株式会社タムラ製作所 Wavelength conversion member and wavelength conversion element
JP2019164302A (en) * 2018-03-20 2019-09-26 株式会社タムラ製作所 Wavelength conversion member and wavelength conversion element
JP2019182730A (en) * 2018-04-05 2019-10-24 日亜化学工業株式会社 Ceramic composite, projector, and manufacturing of ceramic composite
JP7140968B2 (en) 2018-04-05 2022-09-22 日亜化学工業株式会社 CERAMIC COMPOSITE, LIGHT SOURCE FOR PROJECTOR, AND METHOD FOR MANUFACTURING CERAMIC COMPOSITE
US11220632B2 (en) 2018-04-05 2022-01-11 Nichia Corporation Ceramic complex, light source for projector, and method for producing ceramic complex
US11084977B2 (en) 2018-08-29 2021-08-10 Nichia Corporation Ceramic complex and method for producing the same
JP2020033451A (en) * 2018-08-29 2020-03-05 日亜化学工業株式会社 Ceramic composite and method for producing the same
JP7094183B2 (en) 2018-08-29 2022-07-01 日亜化学工業株式会社 Ceramic complex and its manufacturing method
CN111072374A (en) * 2018-10-18 2020-04-28 深圳光峰科技股份有限公司 Fluorescent ceramic and preparation method thereof
JP2022510594A (en) * 2018-11-21 2022-01-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of ceramic transformant element, ceramic transformant element, and optoelectronic component
KR20210093979A (en) * 2018-11-21 2021-07-28 오스람 옵토 세미컨덕터스 게엠베하 Method of manufacturing ceramic converter element, ceramic converter element, and optoelectronic component
CN113056540A (en) * 2018-11-21 2021-06-29 欧司朗光电半导体有限公司 Method for producing a ceramic converter element, ceramic converter element and optoelectronic component
KR102641930B1 (en) * 2018-11-21 2024-02-28 에이엠에스-오스람 인터내셔널 게엠베하 Method for manufacturing ceramic converter elements, ceramic converter elements, and optoelectronic components
JP7244644B2 (en) 2018-11-21 2023-03-22 エイエムエス-オスラム インターナショナル ゲーエムベーハー Manufacturing method of ceramic converter element, ceramic converter element, and optoelectronic component
JP7260740B2 (en) 2018-12-07 2023-04-19 日亜化学工業株式会社 CERAMIC COMPOSITE, LIGHT-EMITTING DEVICE USING THE SAME, AND METHOD FOR MANUFACTURING CERAMIC COMPOSITE
JP2020090424A (en) * 2018-12-07 2020-06-11 日亜化学工業株式会社 Ceramic composite, light emitting divice using the same, and method for producing the same
US11597878B2 (en) 2018-12-20 2023-03-07 Nichia Corporation Method for producing rare earth aluminate fluorescent material, rare earth aluminate fluorescent material, and light emitting device
US20200324342A1 (en) * 2019-04-11 2020-10-15 Nichia Corporation Method for producing rare earth aluminate sintered body
US11920072B2 (en) * 2019-04-11 2024-03-05 Nichia Corporation Method for producing rare earth aluminate sintered body
WO2020213455A1 (en) * 2019-04-18 2020-10-22 日本電気硝子株式会社 Wavelength conversion member, method for manufacturing same, and light emission device
US11530798B2 (en) 2019-04-18 2022-12-20 Nippon Electric Glass Co., Ltd. Wavelength conversion member, method for manufacturing same, and light emission device
CN113544236A (en) * 2019-04-18 2021-10-22 日本电气硝子株式会社 Wavelength conversion member, method for manufacturing same, and light-emitting device
CN112441817A (en) * 2019-08-29 2021-03-05 深圳市中光工业技术研究院 Fluorescent ceramic, preparation method thereof and light source device
CN112441817B (en) * 2019-08-29 2023-12-29 深圳市绎立锐光科技开发有限公司 Fluorescent ceramic, preparation method thereof and light source device
US20220376146A1 (en) * 2019-12-23 2022-11-24 Nippon Electric Glass Co., Ltd. Wavelength conversion member, light-emitting element, and light-emitting device
EP4083666A4 (en) * 2019-12-23 2024-01-17 Nippon Electric Glass Co Wavelength conversion member, light-emitting element, and light-emitting device
WO2021132212A1 (en) * 2019-12-23 2021-07-01 日本電気硝子株式会社 Wavelength conversion member, light-emitting element, and light-emitting device
US11920068B2 (en) 2020-07-13 2024-03-05 Nichia Corporation Method of manufacturing wavelength conversion member and wavelength conversion member
RU2818556C1 (en) * 2023-08-18 2024-05-02 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Method of producing luminescent oxide composition for radiation converter in white light sources

Similar Documents

Publication Publication Date Title
JP2016204563A (en) Fluorescent member, manufacturing method therefor and light emitting device
Li et al. CaAlSiN 3: Eu 2+ translucent ceramic: a promising robust and efficient red color converter for solid state laser displays and lighting
Li et al. Al 2 O 3–YAG: Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting
JP2016204561A (en) Fluorescent member, manufacturing method therefor and light emitting device
JP5454473B2 (en) Phosphor ceramics, method for producing the same, and light emitting device
CN101605866B (en) Illumination system comprising composite monolithic ceramic luminescence converter
JP4937738B2 (en) Nitride sintered body and manufacturing method thereof
TW200840404A (en) Illumination system comprising monolithic ceramic luminescence converter
TWI453277B (en) Light emitting device comprising a multiphase sialon-based ceramic material
KR102059425B1 (en) Oxide Ceramic Fluorescent Material Having Rare Earth Diffused Therein
CN107200588B (en) Preparation method of aluminum nitride matrix fluorescent ceramic and related fluorescent ceramic
CN208507721U (en) Wavelength convert component and Wavelength changing element and the light emitting device for using them
JP6449963B2 (en) Light wavelength conversion member and light emitting device
JP6500172B2 (en) Nitride phosphor particle dispersion type sialon ceramics, fluorescent member
JP2014172940A (en) Fluophor dispersion ceramic plate
Cheng et al. Composition and luminescence properties of highly robust green-emitting LuAG: Ce/Al 2 O 3 composite phosphor ceramics for high-power solid-state lighting.
CN112441817A (en) Fluorescent ceramic, preparation method thereof and light source device
CN110903088A (en) Porous fluorescent ceramic, preparation method thereof, light-emitting device and projection device
CN109987932B (en) Complex phase fluorescent ceramic for white light illumination, preparation method and light source device
JP2009215495A (en) Fluorescent material
TW201638297A (en) Light emitting material composite ceramic and process for its production
KR102318473B1 (en) Method for producing optical wavelength conversion member, optical wavelength conversion member, optical wavelength conversion component, and light-emitting device
JP2011213780A (en) Method of producing ceramic composite for light conversion
CN116768605B (en) Silicate orange complex-phase fluorescent ceramic and preparation method thereof
WO2022168879A1 (en) Fluorescent material, fluorescent member, and light-emitting module