JP2018172770A - 強磁性材スパッタリングターゲット - Google Patents

強磁性材スパッタリングターゲット Download PDF

Info

Publication number
JP2018172770A
JP2018172770A JP2017073190A JP2017073190A JP2018172770A JP 2018172770 A JP2018172770 A JP 2018172770A JP 2017073190 A JP2017073190 A JP 2017073190A JP 2017073190 A JP2017073190 A JP 2017073190A JP 2018172770 A JP2018172770 A JP 2018172770A
Authority
JP
Japan
Prior art keywords
metal
mol
powder
sputtering target
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017073190A
Other languages
English (en)
Other versions
JP6728094B2 (ja
Inventor
真一 荻野
Shinichi Ogino
真一 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2017073190A priority Critical patent/JP6728094B2/ja
Publication of JP2018172770A publication Critical patent/JP2018172770A/ja
Application granted granted Critical
Publication of JP6728094B2 publication Critical patent/JP6728094B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】漏洩磁束が高く、スパッタリング時におけるパーティクルの発生も抑制可能なCo−Pt系強磁性材スパッタリングターゲットを提供する。【解決手段】Co:Pt=X:100−X(59≦X<100)のモル比で、金属Co及び金属Ptを合計で70mol%以上含有し、金属Crを0mol%以上20mol%以下含有する強磁性材スパッタリングターゲットであって、金属Coを90mol%以上含有し、平均粒径が30〜300μmのCo粒子相と、モル比でCo:Pt=Y:100−Y(20≦Y≦60.5)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有する平均粒径が7μm以下のCo−Pt合金粒子相を有する強磁性材スパッタリングターゲット。【選択図】図4

Description

本発明は磁気記録媒体中の磁性薄膜の形成に適したCo−Pt系の強磁性材スパッタリングターゲットに関する。
ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCoをベースとした材料が用いられている。
磁性薄膜は、生産性の高さから、上記材料を成分とするスパッタリングターゲットをDCマグネトロンスパッタ装置でスパッタして作製されることが多い。ところが、マグネトロンスパッタ装置で強磁性材スパッタリングターゲットをスパッタ使用とすると、磁石からの磁束の多くは強磁性体であるターゲット内部を通過してしまうため、漏洩磁束が少なくなり、スパッタ時に放電が立たない、あるいは放電しても放電が安定しないという問題が生じる。この問題を解決するには、強磁性金属であるCoの含有割合を減らすことが考えられる。しかし、Coを減少させると、所望の磁気記録膜を得ることができないため本質的な解決策ではない。また、ターゲットの厚みを薄くすることで漏洩磁束を向上させることは可能だが、この場合はターゲットライフが短くなり、頻繁にターゲットを交換する必要が生じるのでコストアップの要因になる。
そこで、従来はCr比率を高めて部分的に非磁性にし、漏洩磁束を高めるという手法が採用されてきた。例えば、面内磁気記録方式を採用するハードディスクの記録層にはCoを主成分とするCo−Cr系やCo−Cr−Pt系の強磁性合金が用いられてきた。また、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo−Cr−Pt系の強磁性合金に酸化物や炭素等の非磁性粒子を分散させた複合材料が多く用いられている。しかし、最近の主流となっている組成は、Crが少ない、もしくは全く含まない組成であり、従来の方法では漏洩磁束を高める効果を十分に得ることが難しい。
このような背景から、WO2012/077665号においては、Ptが5mol%以上、Crが20mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットにおいて、金属素地(A)と、前記(A)の中に、Ptを40〜76mol%含有するCo−Pt合金相(B)とを有していることを特徴とする強磁性材スパッタリングターゲットが提案されている。当該文献によれば、Co−Pt合金相(B)の直径は小さすぎると、金属素地(A)と相(B)との間の拡散が進行して構成要素の違いが不明確になるため、10μm以上であることが好ましいとされる。また、当該文献によれば、Co−Pt合金相(B)の直径は大きすぎるとスパッタ時のパーティクルの問題が発生しやすくなることから、150μm以下であることが望ましいとされる。
また、WO2012/081669号においては、Crが20mol%以下、Ptが5mol%以上、残余がCoである組成の金属からなるスパッタリングターゲットにおいて、金属素地(A)と、前記(A)の中に、Ptを40〜76mol%含有するCo−Pt合金相(B)と前記相(B)とは異なるCo又はCoを主成分とする金属又は合金相(C)を有することを特徴とする強磁性材スパッタリングターゲットが提案されている。当該文献によれば、Co−Pt合金相(B)の直径は小さすぎると、金属素地(A)と相(B)との間の拡散が進行して構成要素の違いが不明確になるため、10μm以上であることが好ましいとされる。また、当該文献によれば、Co−Pt合金相(B)の直径は大きすぎるとスパッタ時のパーティクルの問題が発生しやすくなることから、150μm以下であることが望ましいとされる。
WO2012/077665号 WO2012/081669号
特許文献1及び特許文献2に記載されているように、金属素地中にCo−Pt合金相を有する強磁性材スパッタリングターゲットは漏洩磁束を高めることができるという利点が得られる。しかしながら、本発明者の検討結果によれば、当該スパッタリングターゲットはスパッタ時のパーティクルの抑制に関して未だ改善の余地が残されている。そこで、本発明は漏洩磁束が高く、スパッタリング時におけるパーティクルの発生も抑制可能なCo−Pt系強磁性材スパッタリングターゲットを提供することを課題の一つとする。
特許文献1及び特許文献2においては、Co−Pt合金相は10μm以上の直径を有する相とすべきことが教示されているが、このような粗大なCo−Pt合金相はスパッタ時のパーティクルの発生の原因になることが分かった。そこで、本発明者は漏洩磁束を高めることができるCo−Pt合金相の利点を活かしながらパーティクルの抑制に有効な手段を鋭意検討したところ、Co−Pt合金相を微細化しつつ、Co相を粗大化するという手法が有効であることを見出した。本発明は斯かる知見に基づいて完成したものである。
本発明は一側面において、
Co:Pt=X:100−X(59≦X<100)のモル比で、金属Co及び金属Ptを合計で70mol%以上含有し、金属Crを0mol%以上20mol%以下含有する強磁性材スパッタリングターゲットであって、
金属Coを90mol%以上含有し、平均粒径が30〜300μmのCo粒子相と、
モル比でCo:Pt=Y:100−Y(20≦Y≦60.5)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有する平均粒径が7μm以下のCo−Pt合金粒子相を有する強磁性材スパッタリングターゲットである。
本発明に係る強磁性材スパッタリングターゲットの一実施形態においては、B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Al、Si及びZnよりなる群から選択される一種又は二種以上の第三元素を合計で30mol%以下含有する。
本発明に係る強磁性材スパッタリングターゲットの別の一実施形態においては、炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料を合計で25mol%以下含有する。
本発明に係る強磁性材スパッタリングターゲットの更に別の一実施形態においては、2θの測定範囲を30°〜60°としたXRD測定において、33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有する。
本発明は別の一側面において、
金属Coを90mol%以上含有し、メジアン径が30〜300μmのCo粉末を用意する工程と、
モル比でCo:Pt=Y:100−Y(20≦Y≦60.5)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有する、メジアン径が7μm以下のCo−Pt合金粉末を用意する工程と、
Co−Pt合金粉末とCo粉末を混合し、モル比でCo:Pt=X:100−X(59≦X<100)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有し、金属Crを0mol%以上20mol%以下含有する混合粉末を得る工程と、
該混合粉末を焼成する工程と、
を含む強磁性材スパッタリングターゲットの製造方法である。
本発明に係る強磁性材スパッタリングターゲットの製造方法の一実施形態においては、前記混合粉末を得る工程は、更にB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Al、Si及びZnよりなる群から選択される一種又は二種以上の粉末を混合することを含む。
本発明に係る強磁性材スパッタリングターゲットの製造方法の別の一実施形態においては、前記混合粉末を得る工程は、更に炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料を混合することを含む。
本発明に係る強磁性材スパッタリングターゲットの製造方法の更に別の一実施形態においては、メジアン径が10μm以下のCo−Pt合金粉末を用意する工程は、Co:Pt=Y:100−Y(20≦Y≦60.5)のモル比でCo粉及びPt粉を混合した粉末を、800℃〜1000℃の加熱温度で焼成し、2θの測定範囲を30°〜60°としたXRD測定において、2θ=33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有する第一の焼結体を得る工程と、第一の焼結体を粉砕する工程とを含む。
本発明は更に別の一側面において、本発明に係るスパッタリングターゲットを用いることを含む磁気記録膜の製造方法である。
本発明の強磁性材スパッタリングターゲットは、漏洩磁束の大きいターゲットとなり、マグネトロンスパッタ装置で使用したとき、不活性ガスの電離促進が効率的に進み、安定した放電が得られる。本発明によれば、ターゲットの厚みを厚くすることができるため、ターゲットの交換頻度が小さくなり、低コストで磁性体薄膜を製造できるというメリットがある。また、本発明の強磁性材スパッタリングターゲットは、スパッタ時のパーティクルが少なく、安定したスパッタリングが可能となる。
比較例1のXRDプロファイルを示す。 比較例2のXRDプロファイルを示す。 比較例3のXRDプロファイルを示す。 実施例1のXRDプロファイルを示す。 実施例2のXRDプロファイルを示す。 実施例3のXRDプロファイルを示す。 実施例5のXRDプロファイルを示す。 実施例7のXRDプロファイルを示す。
(1.全体組成)
本発明に係る強磁性材スパッタリングターゲットは一実施形態において、モル比でCo:Pt=X:100−X(59≦X<100)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有し、金属Crを0mol%以上20mol%以下含有する。当該組成は、強磁性材である金属Coの含有量が多く、また、漏洩磁束を増加させる効果のある金属Crの含有量が少ないため、一般には高い漏洩磁束が得られ難い組成である。本発明によれば、高い漏洩磁束が得られ難い組成のスパッタリングターゲットについて、ターゲットの組織に工夫を与えることによって、漏洩磁束を高め、更にはパーティクルを低減することができるようになる。
本発明に係る強磁性材スパッタリングターゲットは、ハードディスクメディア製造用途を考慮すると、一実施形態において70≦X≦90とすることができ、別の一実施形態においては80≦X≦85とすることができる。
本発明に係る強磁性材スパッタリングターゲットは、一実施形態において金属Co及び金属Ptを合計で75mol%以上含有することができ、別の一実施形態において金属Co及び金属Ptを合計で85mol%以上含有することができる。また、本発明に係る強磁性材スパッタリングターゲットは、一実施形態において金属Co及び金属Ptを合計で95mol%以下含有することができ、別の一実施形態において金属Co及び金属Ptを合計で90mol%以下含有することができる。金属Co及び金属Ptを合計で75〜95mol%含有する強磁性材スパッタリングターゲットは、垂直磁気記録膜用に好適である。
本発明に係る強磁性材スパッタリングターゲットは、一実施形態において金属Crを0mol%以上15mol%以下含有することができ、別の一実施形態において金属Crを0mol%以上10mol%以下含有することができ、更に別の一実施形態において金属Crを0mol%以上5mol%以下含有することができ、更に別の一実施形態において金属Crを0mol%以上1mol%以下含有することができ、更に別の一実施形態において金属Crを含有しない。
(2.Co−Pt合金粒子相)
このようなCoリッチな組成のスパッタリングターゲットにおいて漏洩磁束を高めるには、スパッタリングターゲットがCo:Pt=Y:100−Y(20≦Y≦60.5)のモル比で、金属Co及び金属Ptを合計で70mol%以上、好ましくは80mol%以上、より好ましくは90mol%以上、更により好ましくは99mol%以上含有するCo−Pt合金粒子相を有することが望ましい。当該Co−Pt合金粒子相はL10構造の規則相を形成して高い磁気異方性を示すことができるため、漏洩磁束の増加に寄与する。漏洩磁束を増加する観点から、好ましくは25≦Y≦55であり、より好ましくは34.5≦Y≦55であり、更により好ましくは40≦Y≦50である。当該Co−Pt合金粒子相はターゲット組織中で分散して存在することができる。
Co−Pt合金粒子相は、漏洩磁束の向上に寄与するものの、平均粒径が大きいとパーティクルの増加をもたらす要因となる。特許文献1及び特許文献2においては、Co−Pt合金粒子相によるスパッタ時のパーティクルの問題は150μmを超える直径のときに生じるとされているが、Co−Pt合金粒子相は出来る限り微細であることが望ましい。そこで、本発明に係る強磁性材スパッタリングターゲットにおいて、上記Co−Pt合金粒子相の平均粒径は7μm以下であることが好ましく、5μm以下であることがより好ましく、2μm以下であることが更により好ましい。但し、当該Co−Pt合金粒子相の平均粒径は、小さすぎると焼結中に他の相との拡散が促進されL10構造が失われる可能性が高くなることから、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.5μm以上であることが更により好ましい。
Co−Pt合金粒子相は、漏洩磁束を増加させる効果を高めるという観点から、スパッタリングターゲットの全体の質量に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更により好ましい。また、Co−Pt合金粒子相は、非磁性材料を微細に分散させるという観点から、スパッタリングターゲットの全体の質量に対して、70質量%以下であることが好ましく、65質量%以下であることがより好ましく、60質量%以下であることが更により好ましい。
(3.Co粒子相)
本発明に係るCoリッチな組成のスパッタリングターゲットは一実施形態において、Co−Pt合金粒子相に加えて、金属Coを90mol%以上含有するCo粒子相を有する。Co粒子相はターゲット中に含まれるCo−Pt合金粒子相の割合を高めるために、金属Coを95mol%以上含有することが好ましく、99.9mol%以上含有することがより好ましい。当該Co粒子相はターゲット組織中で分散して存在することができる。
Co−Pt合金粒子相を微細化した場合に、Co粒子相も微細化するとCo−Pt合金粒子相との接触点が増加し焼結中に構成元素の拡散が促進されL10構造が失われるという問題が生じる。そこで、Co粒子相は逆に粗大化することが望ましい。具体的には、金属Coを90mol%以上含有するCo粒子相の平均粒径は30μm以上であることが好ましく、50μm以上であることがより好ましく、100μm以上であることが更により好ましい。但し、当該Co粒子相の平均粒径は、大きすぎるとパーティクルの発生原因になってしまう懸念があることから、300μm以下であることが好ましく、200μm以下であることがより好ましく、150μm以下であることが更により好ましい。
Co粒子相は、漏洩磁束を増加させるため、さらに焼結中におけるCo−Pt合金粒子相の拡散を抑制するという観点から、スパッタリングターゲットの全体の質量に対して、15質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることが更により好ましい。また、Co粒子相は、粗大な粒子であるため混合時に他の原料との分散性を高めるという観点から、スパッタリングターゲットの全体の質量に対して、50質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることが更により好ましい。
(4.第三元素)
本発明に係る強磁性材スパッタリングターゲットは、第三元素として、B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Al、Si及びZnよりなる群から選択される一種又は二種以上を単体金属又は合金として合計で30mol%以下、例えば0.01〜20mol%、典型的には0.05〜10mol%含有してもよい。これらは磁気記録媒体としての特性を向上させるために、必要に応じて添加される元素である。配合割合は上記範囲内で様々に調整でき、いずれも有効な磁気記録媒体としての特性を維持することができる。なお、本発明においてはBも金属として取り扱う。
上記第三元素は、Co−Pt合金粒子相中に存在してもよく、Co粒子相中に存在してもよく、Co−Pt合金粒子相及びCo粒子相とは区別可能な別の粒子相中に存在することができる。当該別の粒子相はターゲット組織中で分散して存在することができる。しかしながら、第三元素は、微細に分散している方がパーティクル低減に有利であるという理由により、上記第三元素はCo−Pt合金粒子相中に存在するか、又は微細な別の粒子相中に存在することが好ましい。なお、上記第三元素が単体金属又は合金の粒子相ではなく、酸化物、窒化物、炭化物又は炭窒化物として粒子相を形成している場合には第三元素の粒子相ではなく後述する非磁性材料の粒子相として取り扱う。
上記第三元素が別の粒子相中に存在する場合、当該別の粒子相はCo−Pt合金粒子相と相互に分散し合う複合相を形成することが好ましい。また、後述する非磁性材料の粒子相が更に存在する場合には、当該別の粒子相はCo−Pt合金粒子相及び非磁性材料の粒子相と相互に分散し合う複合相を形成することが好ましい。上記第三元素が別の粒子相を形成する場合には、当該第三元素の粒子相の平均粒径は20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることが更により好ましい。但し、当該第三元素の粒子相の平均粒径は、小さすぎると混合粉作製工程中に大気中の酸素によって酸化が進む懸念があることから、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることが更により好ましい。
(5.非磁性材料)
本発明に係る強磁性材スパッタリングターゲットは添加材料として、炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料を合計で25mol%以下、例えば5〜20mol%、典型的には5〜15mol%含有してもよい。この場合、スパッタリングターゲットは、グラニュラー構造をもつ磁気記録膜、特に垂直磁気記録方式を採用したハードディスクドライブの記録膜の材料に好適な特性を備えることができる。
炭化物の例としては、B、Ca、Nb、Si、Ta、Ti、W及びZrよりなる群から選択される元素の一種又は二種以上の炭化物が挙げられる。酸化物の例としては、Si、Al、B、Ba、Be、Co、Ca、Ce、Cr、Dy、Er、Eu、Ga、Gd、Ho、Li、Mg、Mn、Nb、Nd、Pr、Sc、Sm、Sr、Ta、Tb、Ti、V、Y、Zn及びZrよりなる群から選択される元素の一種又は二種以上の酸化物が挙げられる。酸化物の中でもSiO2はスパッタリングターゲットの高密度化に寄与する効果が大きいため、添加することが好ましい。窒化物の例としては、Al、Ca、Nb、Si、Ta、Ti及びZrよりなる群から選択される元素の一種又は二種以上の窒化物が挙げられる。これらの非磁性材料は要求される磁性薄膜の磁気特性に応じて適宜添加すればよい。なお、Cr酸化物及びCo酸化物は、金属として添加するCr及びCoとは異なるものとして認識される。
非磁性材料は、Co−Pt合金粒子相及びCo粒子相と区別可能な非磁性材料の粒子相としてターゲット組織中で分散して存在することができる。その場合、非磁性材料の粒子相の平均粒径は2μm以下であることが好ましく、1μm以下であることがより好ましく、0.5μm以下であることが更により好ましい。但し、当該非磁性材料の粒子相の平均粒径は、小さすぎると混合粉作製工程中に互いに凝集して塊(粗大な二次粒子)となる懸念があることから、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.2μm以上であることが更により好ましい。
(6.XRDのプロファイル)
本発明に係る強磁性材スパッタリングターゲットは一実施形態において、2θの測定範囲を30°〜60°としたXRD測定において、33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有する。スパッタリングターゲットがこのようなXRDのプロファイルを有することで、漏洩磁束をより大きくすることが可能となる。理論によって本発明が限定されることを意図するものではないが、上記各ピークはL10構造に由来しており、本発明に係るスパッタリングターゲットの組成からみて、Co−Pt合金粒子相がL10構造の規則相を形成している場合に、このようなピークが観察されると推察される。
2θ=33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有するというのは、各位置におけるピーク強度のバックグラウンド強度(2θ=37.0〜38.0°の強度の平均値)に対する比が2以上であることを意味し、一般には当該比は2〜200とすることができる。
とりわけ、漏洩磁束を高めるためにはL10構造がしっかりと形成されていることが必要であるとの理由から、XRD測定の2θの測定範囲が30°〜60°における最も強いピークが41.52±2°に存在することが好ましい。41.52±2°はCo−PtのL10構造の最強ピークである。
本発明においてスパッタリングターゲットのXRD測定は以下の条件で測定される。測定装置としてX線回折装置(実施例ではリガク社製UltimaIVを使用した。)を用い、管球はCu、測定条件は管電圧40kv、管電流30mA、スキャンスピード4°/min、ステップ0.02°とし、θ/2θ法でスパッタ面に水平な面に対して測定する。スパッタ面に水平な面であれば、表面でも切断面でも構わない。
(7.製法)
本発明に係る強磁性材スパッタリングターゲットは、粉末焼結法を用いて、例えば、以下の手順によって作製することができる。
純度が90mol%以上、好ましくは95mol%以上、より好ましくは99.9mol%以上のCo粉末を用意する。Co粉末は溶解鋳造した金属コバルトのインゴットを粉砕して作製してもよいし、ガスアトマイズ法により作製してもよい。当該Co粉末のメジアン径は30μm以上であることが好ましく、50μm以上であることがより好ましく、100μm以上であることが更により好ましい。但し、当該Co粉末のメジアン径は、大きすぎると他の粉末材料との均一に混合することが難しいことやスパッタリング中にパーティクルの原因となる懸念があることから、300μm以下であることが好ましく、200μm以下であることがより好ましく、150μm以下であることが更により好ましい。メジアン径は粉砕や篩別により調整可能である。
また、Co:Pt=Y:100−Y(20≦Y≦60.5)のモル比となる条件で、金属Co及び金属Ptを合計で70mol%以上、好ましくは80mol%以上、より好ましくは90mol%以上、更により好ましくは99mol%以上含有するCo−Pt合金粉末を用意する。L10構造を発達させるという観点から、当該Co−Pt合金粉末のメジアン径は7μm以下であることが好ましく、6μm以下であることがより好ましく、5μm以下であることが更により好ましい。但し、当該Co−Pt合金粉末のメジアン径は、小さすぎると混合工程中に大気中の酸素で酸化してしまう懸念があるであることから、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、1μm以上であることが更により好ましい。
このようなCo−Pt合金粉末を作製する方法としては、Co:Pt=Y:100−Y(20≦Y≦60.5)のモル比でCo粉末及びPt粉末を混合した粉末を、不活性雰囲気下、800℃〜1000℃の加熱温度で焼成する方法がある。当該焼成方法により、2θの測定範囲を30°〜60°としたXRD測定において、2θ=33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有するCo−Pt合金のスポンジを得ることができる。不活性雰囲気としては、例えば、真空雰囲気、Arガス雰囲気等の希ガス雰囲気、及び、窒素ガス雰囲気が挙げられる。得られたスポンジを粉砕することで得られた粉末を篩別することによりメジアン径を調整可能である。
次いで、Co−Pt合金粉末とCo粉末を混合し、Co:Pt=X:100−X(59≦X<100)のモル比で、金属Co及び金属Ptを合計で70mol%以上含有する混合粉末を得る。
必要に応じて、B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Al、Si及びZnよりなる群から選択される一種又は二種以上の第三元素の粉末を用意する。第三元素の粉末は、混合粉末中の合計濃度が先述したスパッタリングターゲット中の所定濃度となるように添加することが好ましい。第三元素の粉末のメジアン径は20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることが更により好ましい。但し、第三元素の粉末のメジアン径は、小さすぎると混合粉作製工程中に大気中の酸素によって酸化が進む懸念があるであることから、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることが更により好ましい。
必要に応じて、炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料の粉末を用意する。非磁性材料の粉末は、混合粉末中の合計濃度が先述したスパッタリングターゲット中の所定濃度となるように添加することが好ましい。非磁性材料の粉末のメジアン径は2μm以下であることが好ましく、1μm以下であることがより好ましく、0.5μm以下であることが更により好ましい。但し、当該非磁性材料の粉末のメジアン径は、小さすぎると混合粉作製工程中に大気中の酸素によって酸化が進む懸念があることから、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.2μm以上であることが更により好ましい。
必要に応じて、更にCr粉末を用意する。Cr粉末を添加する場合は、混合粉末中の金属Crの合計濃度が先述したスパッタリングターゲット中の所定濃度範囲内となるように留意する。Cr粉末のメジアン径は10μm以下であることが好ましく、5μm以下であることがより好ましく、3μm以下であることが更により好ましい。但し、Cr粉末のメジアン径は、小さすぎると混合粉作製工程中に大気中の酸素によって酸化が進む懸念があることから、1μm以上であることが好ましく、1.5μm以上であることがより好ましく、2μm以上であることが更により好ましい。
なお、上記の各原料粉におけるメジアン径は、レーザー回折・散乱法によって求めた粒度分布における体積値基準での積算値50%(D50)での粒径を意味する。実施例においては、HORIBA社製の型式LA−920の粒度分布測定装置を使用し、粉末をエタノールの溶媒中に分散させて湿式法にて測定した。屈折率は金属コバルトの値を使用した。
上記原料粉を所望の組成となるように秤量し、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。このとき、粉砕容器内に不活性ガスを封入して原料粉の酸化をできるかぎり抑制することが望ましい。不活性ガスとしては、Ar、N2ガスが挙げられる。
このようにして得られた混合粉末をホットプレス法で真空雰囲気又は不活性ガス雰囲気下において成形・焼結する。また、前記ホットプレス法以外にも、プラズマ放電焼結法など様々な加圧焼結方法を使用することができる。特に、熱間等方加圧加工法(HIP)は、焼結体の密度向上に有効であり、ホットプレス法と熱間等方加圧加工法をこの順に実施することが焼結体の密度向上の観点から好ましい。
焼結時の保持温度は、ターゲットが十分緻密化する温度域のうち最も低い温度に設定するのが好ましい。ターゲットの組成にもよるが、多くの場合、700〜1200℃の温度範囲で保持すればよい。当該温度範囲の中でも、L10構造の規則相を多くするという観点からは、焼結時の保持温度は1050℃以下とすることが好ましく、1000℃以下とすることがより好ましく、950℃以下とすることがさらにより好ましい。また、焼結時の圧力は300〜500kg/cm2であることが好ましい。熱間等方加圧加工時の保持温度は焼結体の組成にもよるが、多くの場合、700〜1200℃の温度範囲である。当該温度範囲の中でも、L10構造の規則相を多くするという観点からは、1050℃以下とすることが好ましく、1000℃以下とすることがより好ましく、950℃以下とすることがさらにより好ましい。また、加圧力は100MPa以上に設定することが好ましい。
焼結時間は、焼結体の密度向上のために0.3時間以上とすることが好ましく、0.5時間以上とすることがより好ましく、1.0時間以上とすることが更により好ましい。また、焼結時間は、結晶粒の粗大化を防止するために3.0時間以下とすることが好ましく、2.0時間以下とすることがより好ましく、1.5時間以下とすることが更により好ましい。
得られた焼結体を、旋盤等を用いて所望の形状に成形加工することにより、本発明に係るスパッタリングターゲットを作製することができる。ターゲット形状には特に制限はないが、例えば平板状(円盤状や矩形板状を含む)及び円筒状が挙げられる。本発明に係るスパッタリングターゲットは、磁気記録膜の成膜に使用するスパッタリングターゲットとして特に有用である。
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、本発明が限定されることを意図するものではない。
(1.スパッタリングターゲットの作製)
原料粉末として、表1に記載の各メジアン径のCo粉末、Pt粉末、Co−Pt合金粉末、Cr粉末、B23粉末、TiO2粉末、SiO2粉末、Co34粉末、Cr23粉末、B粉末、Ru粉末、Ta粉末、Ta25粉末、CoO粉末、Si34粉末、SiC粉末を用意した。何れも高純度品であり、不可避的不純物以外は含まない。これらの粉末のメジアン径は篩別して適宜調整した。
上記の原料粉末のうち、Co−Pt合金粉末は以下の手順で用意した。Co−Pt合金粉末中のCoモル比(Y)が表3に記載の値になるように、メジアン径が3μmのCo粉末及びメジアン径が2μmのPt粉末を自動乳鉢を用いて2時間回転させて混合した。次いで、得られた混合粉末を試験番号に応じて表5に記載の事前熱処理温度として真空雰囲気で2時間焼成した。次いで、得られたスポンジを粉砕することで得られた粉末を篩別することにより表1に記載の各種メジアン径を有するCo−Pt合金粉末を得た。ただし、比較例3におけるCo−Pt粉はガスアトマイズ法により作製したものを篩別して使用した。
Figure 2018172770
次に、上記の各原料粉末を試験番号に応じて表3の組成欄に記載のモル比となるように、表2に示す質量比で、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。次いで、得られた混合粉末をカーボン製の型に充填し、真空雰囲気中で表5に示す温度で、保持時間2時間、加圧力30MPaの条件下でホットプレスして、焼結体を得た。次に、ホットプレスから取り出した焼結体に、表5に示す温度で熱間等方加圧加工を施した。また、加圧力は100〜200MPaの範囲に設定した。さらにこれを、汎用旋盤および平面研削盤を用いて研削加工して直径が180mm、厚さが5mmの円盤状のスパッタリングターゲットを得た。原料粉末の混合割合から計算した各試験番号におけるターゲット組成、及びターゲット中の金属Co及び金属Ptの合計に対する金属Coのモル比(X)(%)を表3に示す。また、Co−Pt合金粒子相中の金属Co及び金属Ptの合計に対する金属Coのモル比(Co−Pt合金粉末の組成に等しい)(Y)(%)を表3に示す。
Figure 2018172770
Figure 2018172770
(2.ターゲット組織の分析)
上記手順により得られた各スパッタリングターゲットについて、下記に示す手順により観察し、Co粒子相、Co−Pt合金粒子相、第三元素の粒子相、及び非磁性材料の相の平均粒径を求めた。なお、Co粒子相、Co−Pt合金粒子相、第三元素の粒子相および非磁性材料の相はFE−EPMAの元素マッピング画像を用いて特定した。結果を表4に示す。
(2−1 Co−Pt合金粒子相)
本発明において、Co−Pt合金粒子相の平均粒径は、以下の方法により算出する。スパッタリングターゲットのスパッタリング面に対して水平となる面の切断面を鏡面研磨したものを用いて、3000倍で撮影した縦70μm×横95μmのSEM写真上において、横方向に水平な二本の切断線によって写真を縦方向に等間隔で3分割し、各切断線によって切断されるCo−Pt合金粒子相の切断長さを測定し、その切断長さの平均値(μm)を視野毎に求める。なお、切断線の太さは写真の縦方向の長さの400分の1の太さとする。これを任意の10視野において実施し、10視野の平均値を測定値とする。なお、視野に一部分のみ含まれるCo−Pt合金粒子相は測定対象から除く。
(2−2 Co粒子相)
本発明において、Co粒子相の平均粒径は、以下の方法により算出する。Co粒子相の大きさの測定は、スパッタリングターゲットのスパッタリング面に対して水平となる面の切断面を鏡面研磨したものを用いて、220倍で撮影した縦1120μm×横1500μmのSEM写真上において、横方向に水平な二本の切断線によって写真を縦方向に等間隔で3分割し、各切断線によって切断されるCo粒子相の切断長さを測定し、その切断長さの平均値(μm)を視野毎に求める。なお、切断線の太さは写真の縦方向の長さの400分の1の太さとする。これを任意の10視野において実施し、10視野の平均値を測定値とする。なお、視野に一部分のみ含まれるCo粒子相は測定対象から除く。
(2−3 第三元素の粒子相)
本発明において、第三元素が独立した粒子相を形成する場合の、第三元素の粒子相の平均粒径は、以下の方法により算出する。スパッタリングターゲットのスパッタリング面に対して水平となる面の切断面を鏡面研磨したものを用いて、1000倍で撮影した縦215μm×横290μmのSEM写真上において、横方向に水平な二本の切断線によって写真を縦方向に等間隔で3分割し、各切断線によって切断される第三元素の粒子相の切断長さを測定し、その切断長さの平均値(μm)を視野毎に求める。なお、切断線の太さは写真の縦方向の長さの400分の1の太さとする。これを任意の10視野において実施し、10視野の平均値を測定値とする。なお、視野に一部分のみ含まれる第三元素の粒子相は測定対象から除く。
(2−4 非磁性材料の粒子相)
本発明において、非磁性材料の粒子相の平均粒径は、以下の方法により算出する。スパッタリングターゲットのスパッタリング面に対して水平となる面の切断面を鏡面研磨したものを用いて、3000倍で撮影した縦70μm×横95μmのSEM写真上において、横方向に水平な二本の切断線によって写真を縦方向に等間隔で3分割し、各切断線によって切断される非磁性材料の粒子相の切断長さを測定し、その切断長さの平均値(μm)を視野毎に求める。なお、切断線の太さは写真の縦方向の長さの400分の1の太さとする。これを任意の10視野において実施し、10視野の平均値を測定値とする。なお、視野に一部分のみ含まれる非磁性材料の粒子相は測定対象から除く。
Figure 2018172770
(3.漏洩磁束の測定)
上記手順により得られた各スパッタリングターゲットについて、漏洩磁束の測定をASTM F2086−01(Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets, Method 2)に則して実施した。ターゲットの中心を固定し、0°、30°、60°、90°、120°と回転させて測定した漏洩磁束密度(PTF)を、ASTMで定義されているreference fieldの値で割り返し、100を掛けてパーセントで表した。そしてこれら5点について平均した結果を、平均漏洩磁束密度(PTF(%))として表5に記載した。
(4.パーティクルの測定)
上記手順により得られた各スパッタリングターゲットを、マグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒子径が0.07μm以上のパーティクルの個数を表面異物検査装置(Candela CS920、KLA−Tencor社製)で測定した。結果を表5に示す。
(5.XRD測定)
上記手順により得られた各スパッタリングターゲットのスパッタ面に対して水平となる面の切断面を鏡面研磨したものに対してX線回折装置(リガク社製UltimaIV)を使用して先述した測定条件でXRD測定を行った。XRD測定においては、2θの測定範囲を30°〜60°とし、33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各回折角(2θ)におけるピーク強度のバックグラウンド強度(2θ=37.0〜38.0°の強度の平均値)に対する比を調査した。結果を表5に示す。また、比較例1、比較例2、比較例3、実施例1、実施例2、実施例3、実施例5及び実施例7のXRDプロファイルを図1〜図8にそれぞれ掲載する。
Figure 2018172770

Claims (9)

  1. Co:Pt=X:100−X(59≦X<100)のモル比で、金属Co及び金属Ptを合計で70mol%以上含有し、金属Crを0mol%以上20mol%以下含有する強磁性材スパッタリングターゲットであって、
    金属Coを90mol%以上含有し、平均粒径が30〜300μmのCo粒子相と、
    モル比でCo:Pt=Y:100−Y(20≦Y≦60.5)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有する平均粒径が7μm以下のCo−Pt合金粒子相を有する強磁性材スパッタリングターゲット。
  2. B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Al、Si及びZnよりなる群から選択される一種又は二種以上の第三元素を合計で30mol%以下含有する請求項1に記載の強磁性材スパッタリングターゲット。
  3. 炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料を合計で25mol%以下含有する請求項1又は2に記載の強磁性材スパッタリングターゲット。
  4. 2θの測定範囲を30°〜60°としたXRD測定において、33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有する請求項1〜3の何れか一項に記載の強磁性材スパッタリングターゲット。
  5. 金属Coを90mol%以上含有し、メジアン径が30〜300μmのCo粉末を用意する工程と、
    モル比でCo:Pt=Y:100−Y(20≦Y≦60.5)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有する、メジアン径が7μm以下のCo−Pt合金粉末を用意する工程と、
    Co−Pt合金粉末とCo粉末を混合し、モル比でCo:Pt=X:100−X(59≦X<100)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有し、金属Crを0mol%以上20mol%以下含有する混合粉末を得る工程と、
    該混合粉末を焼成する工程と、
    を含む請求項1〜4の何れか一項に記載の強磁性材スパッタリングターゲットの製造方法。
  6. 前記混合粉末を得る工程は、更にB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Al、Si及びZnよりなる群から選択される一種又は二種以上の粉末を混合することを含む請求項5に記載の製造方法。
  7. 前記混合粉末を得る工程は、更に炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料を混合することを含む請求項5又は6に記載の製造方法。
  8. メジアン径が10μm以下のCo−Pt合金粉末を用意する工程は、Co:Pt=Y:100−Y(20≦Y≦60.5)のモル比でCo粉及びPt粉を混合した粉末を、800℃〜1000℃の加熱温度で焼成し、2θの測定範囲を30°〜60°としたXRD測定において、2θ=33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有する第一の焼結体を得る工程と、第一の焼結体を粉砕する工程とを含む請求項5〜7の何れか一項に記載の製造方法。
  9. 請求項1〜4の何れか一項に記載のスパッタリングターゲットを用いることを含む磁気記録膜の製造方法。
JP2017073190A 2017-03-31 2017-03-31 強磁性材スパッタリングターゲット Active JP6728094B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017073190A JP6728094B2 (ja) 2017-03-31 2017-03-31 強磁性材スパッタリングターゲット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017073190A JP6728094B2 (ja) 2017-03-31 2017-03-31 強磁性材スパッタリングターゲット

Publications (2)

Publication Number Publication Date
JP2018172770A true JP2018172770A (ja) 2018-11-08
JP6728094B2 JP6728094B2 (ja) 2020-07-22

Family

ID=64107757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017073190A Active JP6728094B2 (ja) 2017-03-31 2017-03-31 強磁性材スパッタリングターゲット

Country Status (1)

Country Link
JP (1) JP6728094B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023079856A1 (ja) * 2021-11-05 2023-05-11 Jx金属株式会社 スパッタリングターゲット部材、スパッタリングターゲット組立品、及び成膜方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130008784A1 (en) * 2011-07-08 2013-01-10 Solar Applied Materials Technology Corp. Cocrpt-based alloy sputtering targets with cobalt oxide and non-magnetic oxide and manufacturing methods thereof
WO2013073323A1 (ja) * 2011-11-17 2013-05-23 田中貴金属工業株式会社 マグネトロンスパッタリング用ターゲットおよびその製造方法
JP2014074219A (ja) * 2012-10-05 2014-04-24 Tanaka Kikinzoku Kogyo Kk マグネトロンスパッタリング用ターゲットおよびその製造方法
WO2016009926A1 (ja) * 2014-07-17 2016-01-21 国立大学法人東京大学 磁性合金粒子が担持された磁性材料及び該磁性材料の製造方法
JP2016160530A (ja) * 2015-03-05 2016-09-05 光洋應用材料科技股▲分▼有限公司 磁気合金スパッタリングターゲット及び磁気記録媒体用記録層

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130008784A1 (en) * 2011-07-08 2013-01-10 Solar Applied Materials Technology Corp. Cocrpt-based alloy sputtering targets with cobalt oxide and non-magnetic oxide and manufacturing methods thereof
WO2013073323A1 (ja) * 2011-11-17 2013-05-23 田中貴金属工業株式会社 マグネトロンスパッタリング用ターゲットおよびその製造方法
JP2014074219A (ja) * 2012-10-05 2014-04-24 Tanaka Kikinzoku Kogyo Kk マグネトロンスパッタリング用ターゲットおよびその製造方法
WO2016009926A1 (ja) * 2014-07-17 2016-01-21 国立大学法人東京大学 磁性合金粒子が担持された磁性材料及び該磁性材料の製造方法
JP2016160530A (ja) * 2015-03-05 2016-09-05 光洋應用材料科技股▲分▼有限公司 磁気合金スパッタリングターゲット及び磁気記録媒体用記録層

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023079856A1 (ja) * 2021-11-05 2023-05-11 Jx金属株式会社 スパッタリングターゲット部材、スパッタリングターゲット組立品、及び成膜方法
JPWO2023079856A1 (ja) * 2021-11-05 2023-05-11
JP7412659B2 (ja) 2021-11-05 2024-01-12 Jx金属株式会社 スパッタリングターゲット部材、スパッタリングターゲット組立品、及び成膜方法

Also Published As

Publication number Publication date
JP6728094B2 (ja) 2020-07-22

Similar Documents

Publication Publication Date Title
JP6526837B2 (ja) 強磁性材スパッタリングターゲット
JP5763178B2 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP5394576B2 (ja) 強磁性材スパッタリングターゲット
WO2012011294A1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
TWI509096B (zh) Strong magnetic sputtering target
JP5705993B2 (ja) C粒子が分散したFe−Pt−Ag−C系スパッタリングターゲット及びその製造方法
JP6692724B2 (ja) 非磁性材料分散型Fe−Pt系スパッタリングターゲット
TWI583813B (zh) Sintered body sputtering target
JP2017137570A (ja) Co又はFeを含有するスパッタリングターゲット
JPWO2011089760A1 (ja) 強磁性材スパッタリングターゲット
JP5801496B2 (ja) スパッタリングターゲット
JP6305881B2 (ja) 磁気記録媒体用スパッタリングターゲット
WO2020053973A1 (ja) 強磁性材スパッタリングターゲット
JP6728094B2 (ja) 強磁性材スパッタリングターゲット
JP5944580B2 (ja) スパッタリングターゲット
JPWO2018123500A1 (ja) 磁性材スパッタリングターゲット及びその製造方法
TWI680198B (zh) 強磁性材料濺射靶及其製造方法與磁記錄膜的製造方法
JP6553755B2 (ja) 磁気記録媒体用スパッタリングターゲット及び磁性薄膜
JP7412659B2 (ja) スパッタリングターゲット部材、スパッタリングターゲット組立品、及び成膜方法
JP4819199B1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
WO2023153264A1 (ja) Co-Cr-Pt-B系強磁性体スパッタリングターゲット
JP2022166726A (ja) スパッタリングターゲット部材、スパッタリングターゲット組立品、及び成膜方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200701

R151 Written notification of patent or utility model registration

Ref document number: 6728094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250