JP2018146486A - レーダ装置および物標高さ推定方法 - Google Patents

レーダ装置および物標高さ推定方法 Download PDF

Info

Publication number
JP2018146486A
JP2018146486A JP2017044023A JP2017044023A JP2018146486A JP 2018146486 A JP2018146486 A JP 2018146486A JP 2017044023 A JP2017044023 A JP 2017044023A JP 2017044023 A JP2017044023 A JP 2017044023A JP 2018146486 A JP2018146486 A JP 2018146486A
Authority
JP
Japan
Prior art keywords
target
unit
height
value
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017044023A
Other languages
English (en)
Other versions
JP6924046B2 (ja
Inventor
渉志 岡本
Shoji Okamoto
渉志 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2017044023A priority Critical patent/JP6924046B2/ja
Priority to US15/893,051 priority patent/US11002845B2/en
Priority to DE102018103031.2A priority patent/DE102018103031B4/de
Publication of JP2018146486A publication Critical patent/JP2018146486A/ja
Application granted granted Critical
Publication of JP6924046B2 publication Critical patent/JP6924046B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • G01S13/726Multiple target tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/462Indirect determination of position data using multipath signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/4034Antenna boresight in elevation, i.e. in the vertical plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】精度よく物標の高さを推定すること。【解決手段】実施形態に係るレーダ装置は、送信波と物標による送信波の反射波とに基づく信号処理を実行することによって物標を検出するレーダ装置であって、アンテナ部と、演算部と、推定部とを備える。アンテナ部は、垂直方向に沿って配設された複数のアンテナを有する。演算部は、アンテナからそれぞれ送信された送信波に対する反射波に基づいて物標の垂直方位を演算し、演算結果を蓄積する。推定部は、演算部により蓄積された演算結果に基づいて垂直方位の最大値の移動平均値を算出し、かかる最大値の移動平均値を物標の高さとして推定する。【選択図】図2A

Description

開示の実施形態は、レーダ装置および物標高さ推定方法に関する。
従来、車両などに搭載され、かかる車両から送信した送信波が物標に当たって反射した反射波を受信し、得られた受信信号に基づいて物標を検出するレーダ装置が知られている。
かかるレーダ装置には、物標の距離および水平方位を2次元スキャンするだけでなく、垂直方向に配設された複数のアンテナを有し、かかるアンテナそれぞれからの送信波に対する受信信号に基づいて、物標が存在すると推定される垂直方向の角度、すなわち物標の高さを推定可能なものもある(たとえば、特許文献1参照)。これにより、道路標識や看板といった上方物を検出することができる。
特開平9−288178号公報
しかしながら、上述した従来技術には、精度よく物標の高さを推定するうえで更なる改善の余地がある。
具体的には、上方物を検出しようとする場合、レーダ装置は、上方物からの直接の反射波と上方物からさらに路面などを経由した反射波とが干渉して、いわゆるマルチパスが発生し、その上方物に関しての信号レベルなどが不安定になりやすい。このため、上方物である物標の高さの推定精度を低下させてしまうおそれがあった。
実施形態の一態様は、上記に鑑みてなされたものであって、精度よく物標の高さを推定することができるレーダ装置および物標高さ推定方法を提供することを目的とする。
実施形態の一態様に係るレーダ装置は、送信波と物標による該送信波の反射波とに基づく信号処理を実行することによって前記物標を検出するレーダ装置であって、アンテナ部と、演算部と、推定部とを備える。前記アンテナ部は、垂直方向に沿って配設された複数のアンテナを有する。前記演算部は、前記アンテナからそれぞれ送信された前記送信波に対する前記反射波に基づいて前記物標の垂直方位を演算し、演算結果を蓄積する。前記推定部は、前記演算部により蓄積された前記演算結果に基づいて前記垂直方位の最大値の移動平均値を算出し、該最大値の移動平均値を前記物標の高さとして推定する。
実施形態の一態様によれば、精度よく物標の高さを推定することができる。
図1Aは、物標が上方物である場合の状況を示す図である。 図1Bは、上方物からの反射波に基づく物標の高さの演算結果を示す図である。 図1Cは、実施形態に係る物標高さ推定方法の概要説明図(その1)である。 図1Dは、実施形態に係る物標高さ推定方法の概要説明図(その2)である。 図2Aは、実施形態に係るレーダ装置のブロック図である。 図2Bは、アンテナ部の構成例を示す図である。 図2Cは、水平方位演算および垂直方位演算に際してのアンテナ部の動作説明図である。 図3は、信号処理部の前段処理から信号処理部におけるピーク抽出処理までの処理説明図である。 図4Aは、方位演算処理の処理説明図である。 図4Bは、ペアリング処理の処理説明図(その1)である。 図4Cは、ペアリング処理の処理説明図(その2)である。 図5Aは、連続性判定処理の処理説明図である。 図5Bは、水平フィルタ処理の処理説明図である。 図5Cは、物標分類処理の処理説明図(その1)である。 図5Dは、物標分類処理の処理説明図(その2)である。 図5Eは、不要物標判定処理の処理説明図である。 図5Fは、グループ化処理の処理説明図である。 図5Gは、出力物標選択処理の処理説明図である。 図6Aは、物標高さ推定処理におけるその他の処理の処理説明図(その1)である。 図6Bは、物標高さ推定処理におけるその他の処理の処理説明図(その2)である。 図6Cは、物標高さ推定処理におけるその他の処理の処理説明図(その3)である。 図7Aは、実施形態に係るレーダ装置の処理部が実行する処理手順を示すフローチャートである。 図7Bは、物標高さ推定処理の処理手順を示すフローチャートである。
以下、添付図面を参照して、本願の開示するレーダ装置および物標高さ推定方法の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
また、以下では、本実施形態に係る物標高さ推定方法の概要について図1Aおよび図1Bを用いて説明した後に、本実施形態に係る物標高さ推定方法を適用したレーダ装置1について、図2A〜図7Bを用いて説明することとする。
なお、以下では、レーダ装置1が、FM−CW(Frequency Modulated Continuous Wave)方式であり、自車両MCに搭載される場合を例に挙げる。
まず、本実施形態に係る物標高さ推定方法の概要について図1A〜図1Dを用いて説明する。図1Aは、物標TGが上方物である場合の状況を示す図である。また、図1Bは、上方物からの反射波に基づく物標TGの高さの演算結果を示す図である。また、図1Cおよび図1Dは、本実施形態に係る物標高さ推定方法の概要説明図(その1)および(その2)である。
まず、本実施形態に係るレーダ装置1は、複数のアンテナが垂直方向に配列された垂直方向アンテナ(以下、「垂直アンテナ」と言う)を備える。かかる垂直アンテナから送信された送信波が物標TGに当たって反射した反射波を受信し、得られた受信信号に基づいて反射波の到来方向を推定する演算を行うことによって、物標TGが存在すると推定される垂直方向の角度(以下、「垂直方位」と言う)を得ることができる。
ただし、図1Aに示すように、物標TGが上方物である場合、いわゆるマルチパスが発生し、レーダ装置1に対しては、物標TGから直接到来してくる反射波W1(以下、「直接波W1」と言う)と、物標TGから路面100を経由して到来してくる反射波W2(以下、「経由波W2」と言う)との合成波が入射する。
したがって、レーダ装置1は、かかる合成波から物標TGの垂直方位を演算する必要があるが、経由波W2に対応する物標TGの虚像Gの垂直方位が得られたり、自車両MCと物標TGとの距離に基づくSN(Signal-Noise)比の悪化の影響を受けたりすることによって、図1Bに示すように演算結果が不安定となる。
図1Bを見ると、自車両MCと物標TGとの距離が30m程度までは物標TGの高さは3m前後とほぼ安定した演算結果が得られるが、距離が30mから遠距離になるとバラツキが大きくなり、演算結果が不安定であることが分かる。
そこで、本実施形態に係る物標高さ推定方法では、電波の1スキャンに対応して周期的に実行される方位演算処理において得られる垂直方位の演算値を、今回分を含め過去一定周期分をバッファ33a(図2A参照)へ蓄えておき、瞬時値でなく、蓄えられた時系列データに基づいて物標TGの高さを推定する物標高さ推定処理を行うこととした。
具体的には、図1Cに示すように、物標高さ推定処理では、今回分を含む過去一定周期分の垂直方位をバッファ33aから取得する(ステップS1)。そして、取得したデータから有効分を抽出する(ステップS2)。
ここで、有効分とは、レーダ装置1のビーム範囲から外れているなど、明らかに無効である演算結果を除外したものを示す。図1Bを見ると、たとえば高さ10mなど、明らかにビーム範囲から外れていると判定可能な演算値が、演算結果に含まれる場合があることが分かる。ステップS2により、こうしたデータを除外することができる。
そして、図1Cに示すように、つづいて物標高さ推定処理では、有効分につき、最大値の移動平均値を算出する(ステップS3)。そして、算出した移動平均値を、物標高さ推定値とする(ステップS4)。したがって、物標高さ推定処理では、別の言い方をすれば、垂直方位の演算結果を正規化し、かつ、垂直方向および時間軸方向において最大値を平均化する処理を行う。
図1Dに物標高さ推定処理の処理結果の一例を示した。かかる図1Dを見ると、上方物である物標TGの高さが、バラツキのある従前の演算結果から最大値の移動平均値を求めることにより、安定した物標高さ推定値となることが分かる。
したがって、本実施形態に係る物標高さ推定方法によれば、精度よく物標の高さを推定することができる。なお、ここでは最大値の移動平均値を求める例を説明したが、最小値の移動平均値を求めてもよい。かかる最小値の移動平均値は、虚像Gの垂直方位である虚像高さ推定値に対応する。かかる虚像高さ推定値がバラツキなく得られることにより、後述する不要物標判定処理において、虚像Gを不要物標として精度よく判定することなどが可能となる。
また、物標高さ推定値と虚像高さ推定値との差に基づき、路面100に落ちている下方物を判定してもよい。これらの点については、図6A〜図6Cを用いた説明で後述する。
以下、上述した物標高さ推定方法を適用したレーダ装置1について、さらに具体的に説明する。
図2Aは、本実施形態に係るレーダ装置1のブロック図である。また、図2Bは、アンテナ部の構成例を示す図である。また、図2Cは、水平方位演算および垂直方位演算に際してのアンテナ部の動作説明図である。なお、図2Aでは、本実施形態の特徴を説明するために必要な構成要素のみを機能ブロックで表しており、一般的な構成要素についての記載を省略している。
換言すれば、図2Aに図示される各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。例えば、各機能ブロックの分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することが可能である。
図2Aに示すように、レーダ装置1は、送信部10と、受信部20と、処理部30とを備え、自車両MCの挙動を制御する車両制御装置2と接続される。
かかる車両制御装置2は、レーダ装置1による物標TGの検出結果に基づいて、PCS(Pre-crash Safety System)やAEB(Advanced Emergency Braking System)などの車両制御を行う。なお、レーダ装置1は、車載レーダ装置以外の各種用途(たとえば、飛行機や船舶の監視など)に用いられてもよい。
送信部10は、信号生成部11と、発振器12と、スイッチ13と、送信アンテナ14とを備える。信号生成部11は、後述する送受信制御部31の制御により、三角波で周波数変調されたミリ波を送信するための変調信号を生成する。
発振器12は、かかる信号生成部11によって生成された変調信号に基づいて送信信号を生成し、スイッチ13へ出力する。スイッチ13は、発振器12から入力された送信信号を複数の送信アンテナ14のいずれかへ出力する。
具体的には、スイッチ13は、送受信制御部31の制御に基づき、送信信号を入力する送信アンテナ14をたとえば任意の1個にしたり、時分割で順次切り替えたりすることができる。なお、図2Aに示すように、発振器12によって生成された送信信号は、後述するミキサ22に対しても分配される。
送信アンテナ14は、スイッチ13からの送信信号を送信波へ変換し、かかる送信波を自車両MCの外部へ出力する。送信アンテナ14が出力する送信波は、三角波で周波数変調された連続波である。送信アンテナ14から自車両MCの外部、たとえば前方へ送信された送信波は、他の車両などの物標TGで反射されて反射波となる。
受信部20は、アレーアンテナを形成する複数の受信アンテナ21と、複数のミキサ22と、複数のA/D変換部23とを備える。ミキサ22およびA/D変換部23は、受信アンテナ21ごとに設けられる。
各受信アンテナ21は、物標TGからの反射波を受信波として受信し、かかる受信波を受信信号へ変換してミキサ22へ出力する。なお、図2Aに示す受信アンテナ21の数は4つであるが、3つ以下または5つ以上であってもよい。
ここで、各送信アンテナ14および各受信アンテナ21が配設されるアンテナ部40の構成例について述べておく。図2Bに示すように、本実施形態に係るアンテナ部40ではたとえば、送信アンテナ14が垂直方向に沿って配設される。また、受信アンテナ21が水平方向に沿って配設される。
そして、図2Cに示すように、水平方位演算に際しては、たとえば送信アンテナ14のうちの任意の1個が送信波を送信し、各受信アンテナ21が受信波を受信する。
垂直方位演算に際しては、各送信アンテナ14が時分割で順次切り替えられつつ送信波を送信し、たとえば受信アンテナ21のうちの任意の1個が受信波を受信する。
図2Aの説明に戻る。受信アンテナ21から出力された受信信号は、図示略の増幅器(たとえば、ローノイズアンプ)で増幅された後にミキサ22へ入力される。ミキサ22は、分配された送信信号と、受信アンテナ21から入力される受信信号との一部をミキシングし不要な信号成分を除去してビート信号を生成し、A/D変換部23へ出力する。
ビート信号は、送信波と反射波との差分波であって、送信信号の周波数(以下、「送信周波数」と記載する)と受信信号の周波数(以下、「受信周波数」と記載する)との差となるビート周波数を有する。ミキサ22で生成されたビート信号は、A/D変換部23でデジタル信号に変換された後に、処理部30へ出力される。
処理部30は、送受信制御部31と、信号処理部32と、記憶部33とを備える。信号処理部32は、周波数解析部32aと、ピーク抽出部32bと、方位演算部32cと、ペアリング部32dと、連続性判定部32eと、水平フィルタ部32fと、物標高さ推定部32gと、物標分類部32hと、不要物標判定部32iと、グループ化部32jと、出力物標選択部32kとを備える。
記憶部33は、バッファ33aと、物標高さ推定値33bと、虚像高さ推定値33cとを有する。バッファ33aは、今回分を含む過去一定周期分の垂直方位が蓄えられる。物標高さ推定値33bおよび虚像高さ推定値33cは、物標高さ推定部32gにおける処理結果が格納される。
処理部30は、たとえば、CPU(Central Processing Unit)、記憶部33に対応するROM(Read Only Memory)やRAM(Random Access Memory)、レジスタ、その他の入出力ポート等を含むマイクロコンピュータであり、レーダ装置1全体を制御する。
かかるマイクロコンピュータのCPUがROMに記憶されたプログラムを読み出して実行することによって、送受信制御部31、信号処理部32などとして機能する。なお、送受信制御部31および信号処理部32は全部をASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等のハードウェアで構成することもできる。
送受信制御部31は、信号生成部11を含む送信部10、および、受信部20を制御する。信号処理部32は、一連の信号処理を周期的に実行する。つづいて信号処理部32の各構成要素について説明するが、かかる説明では、図3〜図5Gを適宜併用することとする。
図3は、信号処理部32の前段処理から信号処理部32におけるピーク抽出処理までの処理説明図である。図4Aは、方位演算処理の処理説明図である。図4Bおよび図4Cは、ペアリング処理の処理説明図(その1)および(その2)である。
図5Aは、連続性判定処理の処理説明図である。図5Bは、水平フィルタ処理の処理説明図である。図5Cおよび図5Dは、物標分類処理の処理説明図(その1)および(その2)である。図5Eは、不要物標判定処理の処理説明図である。図5Fは、グループ化処理の処理説明図である。図5Gは、出力物標選択処理の処理説明図である。
周波数解析部32aは、各A/D変換部23から入力されるビート信号に対して高速フーリエ変換(FFT:Fast Fourier Transform)処理(以下、「FFT処理」と記載する)を行い、結果をピーク抽出部32bへ出力する。かかるFFT処理の結果は、ビート信号の周波数スペクトルであり、ビート信号の周波数ごと(周波数分解能に応じた周波数間隔で設定された周波数ビンごと)のパワー値(信号レベル)である。
ピーク抽出部32bは、周波数解析部32aによるFFT処理の結果においてピークとなるピーク周波数を抽出して物標データに反映させ、方位演算部32cへ出力する。なお、ピーク抽出部32bは、後述するビート信号の「UP区間」および「DN区間」のそれぞれについてピーク周波数を抽出する。
方位演算部32cは、ピーク抽出部32bにおいて抽出されたピーク周波数のそれぞれに対応する反射波の到来方位とそのパワー値を算出する。この時点で、到来方位は、物標TGが存在すると推定される方位であることから、以下では「推定方位」と記載する場合がある。推定方位は、水平方位と、垂直方位とを含む。
また、方位演算部32cは、算出した垂直方位を、今回分を含めた過去一定周期分、バッファ33aへ蓄えておく。また、方位演算部32cは、算出した推定方位およびパワー値をペアリング部32dへ出力する。
ペアリング部32dは、方位演算部32cの算出結果に基づいて「UP区間」および「DN区間」それぞれのピーク周波数の正しい対応付けを判定し、その結果から各物標TGの距離および相対速度を算出する。また、ペアリング部32dは、各物標TGの推定方位、距離および相対速度を物標データに反映させ、連続性判定部32eへ出力する。
信号処理部32の前段処理から信号処理部32におけるここまでの処理の流れを図3〜図4Cに示す。なお、図3は、2つの太い下向きの白色矢印で3つの領域に区切られている。以下では、かかる各領域を順に、上段、中段、下段と記載する。
図3の上段に示すように、送信信号fs(t)は、送信アンテナ14から送信波として送出された後、物標TGにおいて反射されて反射波として到来し、受信アンテナ21において受信信号fr(t)として受信される。
このとき、図3の上段に示すように、受信信号fr(t)は、自車両MCと物標TGとの距離に応じて、送信信号fs(t)に対して時間差τだけ遅延している。この時間差τと、自車両MCおよび物標TGの相対速度に基づくドップラー効果とにより、ビート信号は、周波数が上昇する「UP区間」の周波数fupと、周波数が下降する「DN区間」の周波数fdnとが繰り返される信号として得られる(図3の中段参照)。
図3の下段には、かかるビート信号を周波数解析部32aにおいてFFT処理した結果を、「UP区間」側および「DN区間」側のそれぞれについて模式的に示している。
図3の下段に示すように、FFT処理後には、「UP区間」側および「DN区間」側のそれぞれの周波数領域における波形が得られる。ピーク抽出部32bは、かかる波形においてピークとなるピーク周波数を抽出する。
たとえば、図3の下段に示した例の場合、ピーク抽出閾値が用いられ、「UP区間」側においては、ピークPu1〜Pu3がそれぞれピークとして判定され、ピーク周波数fu1〜fu3がそれぞれ抽出される。
また、「DN区間」側においては、同じくピーク抽出閾値により、ピークPd1〜Pd3がそれぞれピークとして判定され、ピーク周波数fd1〜fd3がそれぞれ抽出される。
ここで、ピーク抽出部32bが抽出した各ピーク周波数の周波数成分には、複数の物標TGからの反射波が混成している場合がある。そこで、方位演算部32cは、各ピーク周波数のそれぞれについて方位演算を行い、ピーク周波数ごとに対応する物標TGの存在を解析する。
なお、方位演算部32cにおける方位演算は、たとえばESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)などの公知の到来方向推定手法を用いて行うことができる。
図4Aは、方位演算部32cが行った方位演算結果を模式的に示すものである。方位演算部32cは、かかる方位演算結果の各ピークPu1〜Pu3から、これらピークPu1〜Pu3にそれぞれ対応する各物標TGの推定方位を算出する。また、各ピークPu1〜Pu3の大きさがパワー値となる。方位演算部32cは、かかる方位演算処理を、図4Bに示すように、「UP区間」側および「DN区間」側のそれぞれについて行う。
また、図4Aは平面視の模式図であるので図には表れていないが、方位演算部32cが算出した各物標TGの推定方位に含まれる水平方位および垂直方位のうち同一物標に対応させる組合せを要するものについては、パワー値の差などに基づいて組合せる。
そして、ペアリング部32dは、図4Bに示すように、方位演算部32cの方位演算結果において、推定方位およびパワー値の近い各ピークを対応付けるペアリングを行う。また、ペアリング部32dは、対応付けられた各ピークに対応する各物標TGの距離および相対速度を算出する。
距離は、「距離∝(fup+fdn)」の関係に基づいて算出することができる。相対速度は、「速度∝(fup−fdn)」の関係に基づいて算出することができる。その結果、図4Cに示すように、自車両MCに対する、各物標TGの推定方位、距離および相対速度を示すペアリング処理結果が得られる。
つづいて連続性判定部32eについて説明する。連続性判定部32eは、前回のスキャンまで検出していた物標データと、最新の周期(今回のスキャン)分の物標データとの時間的な連続性を判定し、結果を物標データに反映させ、水平フィルタ部32fへ出力する。
具体的には、図5Aに示すように、連続性判定部32eは、前回のスキャンまで検出していた物標TG1’に対応する前回値、たとえば前回位置や前回速度に基づいて今回予測位置LPを算出する。そして、連続性判定部32eは、今回のスキャンにおいて判定中の物標TGのうち、今回予測位置LPに最も近い物標TGを、前回までの物標TG1’に時間的に連続する物標TG1と判定する(図中のM1部参照)。
つづいて水平フィルタ部32fについて説明する。水平フィルタ部32fは、物標データを水平方向かつ時間軸方向に平滑化する水平フィルタ処理を行い、結果を物標データに反映させ、物標分類部32hへ出力する。
図5Bは、水平フィルタ部32fが行う水平フィルタ処理を模式的に示すものである。すなわち、図5Bに示すように、フィルタ処理では、連続性ある前回までの物標TG’に基づく今回予測の物標と今回の物標TGとを平滑化、すなわち複数回の瞬時値データの平均化処理を行い、瞬時値データのバラツキを抑え、物標TGの検出精度を高めている。
つづいて物標高さ推定部32gについて説明する。物標高さ推定部32gは、上述したステップS1〜S4(図1C参照)を含む物標高さ推定処理を実行する。すなわち、物標高さ推定部32gは、今回分を含む過去一定周期分の垂直方位をバッファ33aから取得する。また、物標高さ推定部32gは、バッファ33aから取得したデータから無効分を除外することによって有効分を抽出する。
また、物標高さ推定部32gは、抽出した有効分につき、最大値の移動平均値を算出し、算出した移動平均値を物標高さ推定値33bとして記憶部33に記憶させる。ここで、物標高さ推定処理に含まれるその他の処理について図6A〜図6Cを用いて説明しておく。図6A〜図6Cは、物標高さ推定処理におけるその他の処理の処理説明図(その1)〜(その3)である。
図6Aに示すように、物標高さ推定部32gは、抽出済みの有効分につき、最小値の移動平均値を算出する(ステップS5)。また、物標高さ推定部32gは、算出した最小値の移動平均値を虚像高さ推定値33cとして(ステップS6)、記憶部33に記憶させる。
図6Bにかかる最小値の移動平均値の算出処理結果の一例を示した。かかる図6Bを見ると、虚像Gの垂直方位である虚像高さ推定値33cが、垂直方向かつ時間軸方向において平滑化され、バラツキを抑えられていることが分かる。
かかる虚像高さ推定値33cがバラツキなく得られることにより、後述する不要物標判定処理において、虚像Gを不要物標として精度よく判定することが可能となる。
また、図6Cに示すように、物標高さ推定部32gは、物標高さ推定値33bと虚像高さ推定値33cとの差を比較し、差が所定値以下である場合に(ステップS7)、該当の物標TGを下方物と判定のうえ、その高さとしては虚像高さ推定値33cを採用する(ステップS8)。
これは、物標TGが路面100に落ちている下方物である場合、マルチパスが発生しないことから物標高さ推定値33bと虚像高さ推定値33cとの差が小さくなることを判定材料とするものである。虚像高さ推定値33cを採用するのは、物標高さ推定値33bは最大値の移動平均値であり、虚像高さ推定値33cは最小値の移動平均値であるため、路面100に落ちている下方物の高さとしては虚像高さ推定値33cの方が確度が高いと考えられるためである。
このように下方物およびその高さを調べることにより、後述する不要物標判定処理において、物標TGを下方物として精度よく判定することが可能となる。
図2Aの説明に戻り、つづいて物標分類部32hについて説明する。物標分類部32hは、物標データの種別を分類する物標分類処理を行い、結果を物標データに反映させ、不要物標判定部32iへ出力する。
図5Cおよび図5Dは、物標分類部32hが行う分類例を模式的に示すものである。図5Cに示すように、物標分類部32hは、たとえば物標TGを先行車LCや対向車OCなどの移動物に分類することができる。
具体的には、物標分類部32hは、自車両MCの自車速度の逆向きよりも大きな相対速度を持つ物標TGを、先行車LCとして分類する。また、物標分類部32hは、自車両MCの自車速度の逆向きよりも小さな相対速度を持つ物標TGを、対向車OCとして分類する。
また、図5Dに示すように、物標分類部32hは、たとえば物標TGを静止物Sに分類することができる。具体的には、物標分類部32hは、自車両MCの自車速度とほぼ逆向きの相対速度を持つ物標TGを、静止物Sとして分類する。
つづいて不要物標判定部32iについて説明する。不要物標判定部32iは、システム制御上、不要となる物標TGであるか否かを判定する不要物標判定処理を行い、結果を物標データに反映させ、グループ化部32jへ出力する。
図5Eは、不要物標判定部32iが不要物標と判定する物標例を模式的に示すものである。図5Eに示すように、不要物標判定部32iは、たとえば道路標識のような「上方物」や、「雨」、自車両MCの走行には支障のない「下方物」を不要物標として判定する。
かかる判定に際しては、物標高さ推定部32gによって出力された、記憶部33の物標高さ推定値33bや虚像高さ推定値33cを用いることができる。不要物標には、その他にも、たとえば構造物や路面反射、壁反射、折り返しゴースト、虚像Gなどがある。不要物標と判定された物標TGは、基本的にはレーダ装置1の出力対象とならない。
つづいてグループ化部32jについて説明する。グループ化部32jは、同一物に基づく複数の物標データを1つに集約するグループ化処理を行い、結果を物標データに反映させ、出力物標選択部32kへ出力する。
図5Fは、グループ化部32jが行うグループ化処理を模式的に示すものである。すなわち、図5Fに示すように、グループ化部32jは、検出されている複数の物標のうち、同一物(たとえばトラックTR)からの反射点であると推定されるものについては割れ物標TDであるとみなし、1つの物標TGとして集約する。かかるグループ化は、たとえば検出位置が近い、速度が近いといった条件に基づいて行われる。
つづいて出力物標選択部32kについて説明する。出力物標選択部32kは、システム制御上、車両制御装置2へ出力することが必要となる物標TGを選択する出力物標選択処理を行い、選択した物標TGの物標データを車両制御装置2へ出力する。
図5Gは、出力物標選択部32kが行う出力物標選択処理を模式的に示すものである。出力物標選択部32kは、基本的には、自レーンに近い位置に検出した物標TGを優先的に選択する。
したがって、図5Gに示すように、たとえば自レーンに物標TG1が、対向レーン(隣接レーンでも可)に物標TG2が、自レーンから大きく外れた位置に物標TG3が、それぞれ検出されていた場合、出力物標選択部32kは、たとえば物標TG3を選択しない(図中のM2部参照)。
かかる場合、出力物標選択部32kは、PCSやAEBに必要となると考えられる物標TG1および物標TG2を選択する(図中の枠FR参照)。
次に、本実施形態に係るレーダ装置1の処理部30が実行する処理手順について、図7Aおよび図7Bを用いて説明する。図7Aは、本実施形態に係るレーダ装置1の処理部30が実行する処理手順を示すフローチャートである。また、図7Bは、物標高さ推定処理の処理手順を示すフローチャートである。なお、ここでは、スキャン1回分に対応する一連の信号処理の処理手順を示している。
図7Aに示すように、まず周波数解析部32aが、周波数解析処理を実行する(ステップS101)。つづいて、ピーク抽出部32bが、ピーク抽出処理を実行する(ステップS102)。
そして、方位演算部32cが、方位演算処理を実行し(ステップS103)、その結果に基づいてペアリング部32dがペアリング処理を実行する(ステップS104)。
そして、連続性判定部32eが連続性判定処理を実行し(ステップS105)、水平フィルタ部32fが水平フィルタ処理を実行する(ステップS106)。
そして、物標高さ推定部32gが、物標高さ推定処理を実行する(ステップS107)。物標高さ推定処理では、図7Bに示すように、物標高さ推定部32gが、今回分を含む過去一定周期分の垂直方位をバッファ33aから取得する(ステップS201)。
そして、物標高さ推定部32gは、取得したデータのうちの無効分を除外することによって、有効分を抽出する(ステップS202)。そして、物標高さ推定部32gは、抽出した有効分につき、最大値の移動平均値を算出する(ステップS203)。
そして、物標高さ推定部32gは、算出した移動平均値を物標高さ推定値33bとする(ステップS204)。次に、物標高さ推定部32gは、抽出済みの有効分につき、最小値の移動平均値を算出する(ステップS205)。
そして、物標高さ推定部32gは、算出した移動平均値を虚像高さ推定値33cとする(ステップS206)。なお、ここでは図示していないが、物標高さ推定部32gはつづいて、物標高さ推定値33bと虚像高さ推定値33cとの差に基づき、下方物であるか否かを判定する処理および下方物であればその高さを決定する処理を実行することができる(図6CのステップS7およびステップS8参照)。
そして、物標高さ推定部32gは、物標高さ推定処理を終了する。図7Aの説明に戻る。つづいて、物標分類部32hが物標分類処理を実行する(ステップS108)。
そして、不要物標判定部32iが不要物標判定処理を実行し(ステップS109)、グループ化部32jがグループ化処理を実行する(ステップS110)。そして、出力物標選択部32kが出力物標選択処理を実行し(ステップS111)、スキャン1回分に対応する一連の信号処理が終了する。
上述してきたように、実施形態に係るレーダ装置1は、送信波と物標TGによる送信波の反射波とに基づく信号処理を実行することによって物標TGを検出するレーダ装置1であって、アンテナ部40と、方位演算部32c(「演算部」の一例に相当)と、物標高さ推定部32g(「推定部」の一例に相当)とを備える。
アンテナ部40は、垂直方向に沿って配設された複数の送信アンテナ14(「アンテナ」の一例に相当)を有する。方位演算部32cは、送信アンテナ14からそれぞれ送信された送信波に対する反射波に基づいて物標TGの垂直方位を演算し、演算結果を蓄積する。
物標高さ推定部32gは、方位演算部32cにより蓄積された演算結果に基づいて垂直方位の最大値の移動平均値を算出し、かかる最大値の移動平均値を物標TGの高さとして推定する。
したがって、本実施形態に係るレーダ装置1によれば、精度よく物標TGの高さを推定することができる。
また、物標高さ推定部32gは、方位演算部32cにより蓄積された演算結果から無効分を除外した有効分につき、最大値の移動平均値を算出する。
したがって、本実施形態に係るレーダ装置1によれば、正規化したデータに基づいて物標TGの高さを推定するので、推定される物標TGの高さの精度をより高めることができる。
また、物標高さ推定部32gは、上記演算結果に基づいて垂直方位の最小値の移動平均値を算出し、かかる最小値の移動平均値を物標TGに対応する虚像Gの高さとして推定する。
したがって、本実施形態に係るレーダ装置1によれば、物標TGに対応する虚像Gの高さをも精度よく推定することができる。
また、物標高さ推定部32gは、推定した物標TGの高さと虚像Gの高さとの差が所定値以下である場合に、かかる物標TGが下方物であると判定し、かかる下方物の高さに虚像Gの高さを採用する。
したがって、本実施形態に係るレーダ装置1によれば、路面100に落ちており、不要物標として判定されるべき下方物およびその高さを精度よく推定することができる。
なお、上述した実施形態では、レーダ装置1が、FM−CW方式であることとしたが、方式を限定するものではなく、たとえばFCM(Fast Chirp Modulation)方式であってもよい。なお、FCM方式である場合、上述のペアリング処理は不要であるので、ペアリング部32dを構成要素から外すことができる。
また、上述した実施形態では、レーダ装置1の用いる到来方向推定手法の例にESPRITを挙げたが、これに限られるものではない。たとえばDBF(Digital Beam Forming)や、PRISM(Propagator method based on an Improved Spatial-smoothing Matrix)、MUSIC(Multiple Signal Classification)等を用いてもよい。
また、上述した実施形態では、レーダ装置1は自車両MCに設けられることとしたが、無論、車両以外の移動体、たとえば船舶や航空機等に設けられてもよい。
さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
1 レーダ装置
32g 物標高さ推定部
33a バッファ
33b 物標高さ推定値
33c 虚像高さ推定値
100 路面
G 虚像
MC 自車両
TG 物標

Claims (5)

  1. 送信波と物標による該送信波の反射波とに基づく信号処理を実行することによって前記物標を検出するレーダ装置であって、
    垂直方向に沿って配設された複数のアンテナを有するアンテナ部と、
    前記アンテナからそれぞれ送信された前記送信波に対する前記反射波に基づいて前記物標の垂直方位を演算し、演算結果を蓄積する演算部と、
    前記演算部により蓄積された前記演算結果に基づいて前記垂直方位の最大値の移動平均値を算出し、該最大値の移動平均値を前記物標の高さとして推定する推定部と
    を備えることを特徴とするレーダ装置。
  2. 前記推定部は、
    前記演算部により蓄積された前記演算結果から無効分を除外した有効分につき、前記最大値の移動平均値を算出すること
    を特徴とする請求項1に記載のレーダ装置。
  3. 前記推定部は、
    前記演算結果に基づいて前記垂直方位の最小値の移動平均値を算出し、該最小値の移動平均値を前記物標に対応する虚像の高さとして推定すること
    を特徴とする請求項1または2に記載のレーダ装置。
  4. 前記推定部は、
    推定した前記物標の高さと前記虚像の高さとの差が所定値以下である場合に、当該物標が下方物であると判定し、該下方物の高さに前記虚像の高さを採用すること
    を特徴とする請求項3に記載のレーダ装置。
  5. 垂直方向に沿って配設された複数のアンテナを有するアンテナ部を備え、送信波と物標による該送信波の反射波とに基づく信号処理を実行することによって前記物標を検出するレーダ装置を用いた物標高さ推定方法であって、
    前記アンテナからそれぞれ送信された前記送信波に対する前記反射波に基づいて前記物標の垂直方位を演算し、演算結果を蓄積する演算工程と、
    前記演算工程により蓄積された前記演算結果に基づいて前記垂直方位の最大値の移動平均値を算出し、該最大値の移動平均値を前記物標の高さとして推定する推定工程と
    を含むことを特徴とする物標高さ推定方法。
JP2017044023A 2017-03-08 2017-03-08 レーダ装置および物標高さ推定方法 Active JP6924046B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017044023A JP6924046B2 (ja) 2017-03-08 2017-03-08 レーダ装置および物標高さ推定方法
US15/893,051 US11002845B2 (en) 2017-03-08 2018-02-09 Radar device and target height estimation method
DE102018103031.2A DE102018103031B4 (de) 2017-03-08 2018-02-12 Radarvorrichtung und zielhöhenabschätzungsverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044023A JP6924046B2 (ja) 2017-03-08 2017-03-08 レーダ装置および物標高さ推定方法

Publications (2)

Publication Number Publication Date
JP2018146486A true JP2018146486A (ja) 2018-09-20
JP6924046B2 JP6924046B2 (ja) 2021-08-25

Family

ID=63259113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044023A Active JP6924046B2 (ja) 2017-03-08 2017-03-08 レーダ装置および物標高さ推定方法

Country Status (3)

Country Link
US (1) US11002845B2 (ja)
JP (1) JP6924046B2 (ja)
DE (1) DE102018103031B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175954A (ja) * 2020-05-01 2021-11-04 株式会社デンソー 上方構造物認識装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018104808A1 (de) * 2018-03-02 2019-09-05 Jenoptik Robot Gmbh Verfahren und Vorrichtung zur Schätzung der Höhe eines Reflektors eines Fahrzeugs
JP7092529B2 (ja) * 2018-03-16 2022-06-28 株式会社デンソーテン レーダ装置およびレーダ装置の制御方法
JP7188894B2 (ja) * 2018-03-16 2022-12-13 株式会社デンソーテン レーダ装置及び信号処理方法
US11454705B2 (en) * 2019-02-22 2022-09-27 Veoneer Us, Llc Tracking system and method for characterizing target height using percentage of range bins
US11327170B2 (en) * 2019-04-22 2022-05-10 GM Global Technology Operations LLC Azimuth and elevation radar imaging with single-dimension antenna arrays of radar system
CN111862631B (zh) * 2019-05-24 2022-07-29 北京骑胜科技有限公司 交通工具行驶检测方法、装置、电子设备及可读存储介质
US11294031B2 (en) * 2019-07-16 2022-04-05 Nxp B.V. Method and system for height estimation in ultra-short-range radar
US20220390582A1 (en) * 2021-06-03 2022-12-08 Qualcomm Incorporated Object detection and ranging using one-dimensional radar arrays
JP2024021637A (ja) * 2022-08-04 2024-02-16 三菱電機株式会社 レーダ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377205B1 (en) * 1997-11-21 2002-04-23 Celsiustech Electronics A.B. Method and device for classifying overhead objects
JP2013002927A (ja) * 2011-06-15 2013-01-07 Honda Elesys Co Ltd 障害物検知装置及びコンピュータプログラム
JP2014052187A (ja) * 2012-09-04 2014-03-20 Fujitsu Ten Ltd レーダ装置および物標高算出方法
JP2014126497A (ja) * 2012-12-27 2014-07-07 Denso Corp 車載レーダ装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108175A (ja) * 1985-11-06 1987-05-19 Mitsubishi Electric Corp レ−ダ装置
US5140329A (en) * 1991-04-24 1992-08-18 Lear Astronics Corporation Trajectory analysis radar system for artillery piece
US5638462A (en) * 1993-12-24 1997-06-10 Nec Corporation Method and apparatus for recognizing graphic forms on the basis of elevation angle data associated with sequence of points constituting the graphic form
US5959571A (en) * 1996-04-22 1999-09-28 The Furukawa Electric Co., Ltd. Radar device
JPH09288178A (ja) 1996-04-23 1997-11-04 Toyota Motor Corp 車載モノパルスレーダ装置
US6333713B1 (en) * 1999-08-24 2001-12-25 Matsushita Electric Industrial Co., Ltd. Direction estimating apparatus, directivity controlling antenna apparatus, and direction estimating method
US7183995B2 (en) * 2001-08-16 2007-02-27 Raytheon Company Antenna configurations for reduced radar complexity
US20060082501A1 (en) * 2004-10-15 2006-04-20 Interdigital Technology Corporation Method and apparatus for direction finding using phase comparison
JP2011002425A (ja) * 2009-06-22 2011-01-06 Furuno Electric Co Ltd レーダ装置
KR20140089307A (ko) * 2011-02-08 2014-07-14 헨리 쿠퍼 제거 가능 접속 컴포넌트를 갖는 적층 안테나 어셈블리
DE102013216970A1 (de) * 2013-08-27 2015-03-05 Robert Bosch Gmbh Radarsensor für Kraftfahrzeuge
JP2016206158A (ja) 2015-04-28 2016-12-08 富士通テン株式会社 レーダ装置、車両制御システムおよびレーダ装置の制御方法
US9739881B1 (en) * 2016-03-24 2017-08-22 RFNAV, Inc. Low cost 3D radar imaging and 3D association method from low count linear arrays for all weather autonomous vehicle navigation
WO2018051288A1 (en) * 2016-09-16 2018-03-22 Uhnder, Inc. Virtual radar configuration for 2d array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377205B1 (en) * 1997-11-21 2002-04-23 Celsiustech Electronics A.B. Method and device for classifying overhead objects
JP2013002927A (ja) * 2011-06-15 2013-01-07 Honda Elesys Co Ltd 障害物検知装置及びコンピュータプログラム
JP2014052187A (ja) * 2012-09-04 2014-03-20 Fujitsu Ten Ltd レーダ装置および物標高算出方法
JP2014126497A (ja) * 2012-12-27 2014-07-07 Denso Corp 車載レーダ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175954A (ja) * 2020-05-01 2021-11-04 株式会社デンソー 上方構造物認識装置
WO2021221146A1 (ja) * 2020-05-01 2021-11-04 株式会社デンソー 上方構造物認識装置
JP7484395B2 (ja) 2020-05-01 2024-05-16 株式会社デンソー 上方構造物認識装置

Also Published As

Publication number Publication date
JP6924046B2 (ja) 2021-08-25
US20180259634A1 (en) 2018-09-13
DE102018103031B4 (de) 2023-12-28
US11002845B2 (en) 2021-05-11
DE102018103031A1 (de) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6924046B2 (ja) レーダ装置および物標高さ推定方法
US9575170B2 (en) Radar device and target height calculation method
US20180095173A1 (en) Radar device and target detecting method
US10234541B2 (en) FMCW radar device
JP4045043B2 (ja) レーダ装置
CN108885254B (zh) 物体检测装置
JP6853047B2 (ja) レーダ装置および物標検出方法
US10718862B2 (en) Radar device and target detecting method
JP7103767B2 (ja) レーダ装置および物標検出方法
US10712428B2 (en) Radar device and target detecting method
JP6993136B2 (ja) レーダ装置および物標検知方法
Bocquel et al. Multitarget particle filter addressing ambiguous radar data in TBD
US11061130B2 (en) Radar apparatus and target detecting method
JP2019215281A (ja) レーダ装置および物標データ出力方法
JP6824761B2 (ja) レーダ装置および路面検出方法
JP2010237087A (ja) レーダ装置及びそれを用いた電波到来方向の計測方法
JP2020003333A (ja) 到来方向推定装置及び到来方向推定方法
WO2021075331A1 (ja) 物体追跡装置
JP2018151327A (ja) レーダ装置および方位組合せ方法
JP2008304329A (ja) 測定装置
CN114594466A (zh) 用于确定目标的自有速度估计值和角度估计值的方法
JP7067974B2 (ja) レーダ装置およびレーダ装置の制御方法
JP6161311B2 (ja) レーダ装置及び目標検出方法
JP2019039750A (ja) レーダ装置および物標検出方法
JP7168353B2 (ja) レーダ装置および物標データ割当方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210730

R150 Certificate of patent or registration of utility model

Ref document number: 6924046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150