JP2018115786A - 採熱用管機構及びその製造方法、並びに空調装置 - Google Patents

採熱用管機構及びその製造方法、並びに空調装置 Download PDF

Info

Publication number
JP2018115786A
JP2018115786A JP2017005592A JP2017005592A JP2018115786A JP 2018115786 A JP2018115786 A JP 2018115786A JP 2017005592 A JP2017005592 A JP 2017005592A JP 2017005592 A JP2017005592 A JP 2017005592A JP 2018115786 A JP2018115786 A JP 2018115786A
Authority
JP
Japan
Prior art keywords
pipe
water
temperature
heat
pipe member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017005592A
Other languages
English (en)
Inventor
租 池田
Mitsugi Ikeda
租 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017005592A priority Critical patent/JP2018115786A/ja
Publication of JP2018115786A publication Critical patent/JP2018115786A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Central Air Conditioning (AREA)

Abstract

【課題】設置場所の事情によらず利用可能な空調装置を提供する。
【解決手段】空調装置は、地中に配される採熱用管機構と、外部空間から建物へ空気を供給する空気供給機構と、熱交換用の水の循環を行う水循環機構60と、温調用伝熱媒体を用いて、水の温度を調節する温度調節機構70を備える。採熱用管機構は、一方から他方へ空気を流す第1流路を有する管部材11と、一方から他方へ熱交換用の地下水を流す第2流路を有する螺旋管12と、給水機構15と、排水機構16とを備える。温度調節機構70は、地中GNDに設置される温調配管71と、温調配管71及び第2タンク61Bを繋ぐ温調循環経路とを有する。温調配管71は、管部材11、給水配管62や排水配管63の近傍にて、ほぼ水平方向に配される。
【選択図】図4

Description

本発明は、採熱用管機構及びその製造方法、並びに空調装置に関する。
近年、通年の温度変動が小さい地中熱を利用して建物の冷暖房等を行う空調装置が注目されている。かかる空調装置110の一例を、図1Aに示す。この装置110は、地中熱の採取用に、管軸方向C111を略水平方向に向けながら地中に埋設された採熱用管機構111を有している。そして、同装置110によれば、一方の管端部111eaから採熱用管機構111内に空調用の空気が取り込まれて同管部材111内を流れた後に、当該空気は他方の管端部111ebから取り出される。これにより、空気は、夏場には冷却され冬場には加温される。そして、冷却又は加温された空気は、畜舎等の農業施設、集合住宅や公共の体育館等の一般施設、工場等の工業施設の如き大きな空間を有する建屋120の空調等に供される。
ところで、地中における通年の温度変動は、図1Bに示すように、地表からの深さに応じて変化する。例えば深さ5m未満の浅い位置では、年間の温度変動は大きいが、深さ5m以上の深い位置では、年間の温度変動がほぼ無視できる程度に小さくなって、その略一定の温度値は、同位置の年間平均気温と概ね一致する。そのため、一般に採熱用管機構111の埋設深さを5m以上にすれば、地中熱との間で良好な熱交換性が担保される。これに対して、5m未満にした場合には、上記の5m以上の場合と比べて、夏場での空気の冷却能力及び冬場での空気の加温能力が劣ってしまう。
一方、採熱用管機構111を地中に埋設する際の掘削コストは高く、そして、同コストは、掘削深さが深くなるに連れて増大する。そのため、同管部材111の埋設深さを極力浅くしたいという要望がある。かかる要望に応えるべく、夏場の冷却能力及び冬場の加温能力の向上と、掘削コストの低減との両立を可能にする空調装置が提案されている(例えば、特許文献1)。
特許文献1に記載の空調装置は、採熱用管機構111に替えて、図1Cに示すような採熱用管機構111aを用いる。この採熱用管機構111aは、空気が通る中空部Xaを有する管状体111aaと、管状体111aaの周部において螺旋状に配された水路111awと、を備える。また、水路111awの両端部には、熱交換用の水を給水する給水管やこれを排水する排水管が設けられ、給水管や排水管としては、図1Dに示すように、管状体111aaの内周面から水路111awに向けて貫通するジョイント構造111ajを備える。このような水路111awに水を上記管部材111aの一方の管端部111aeaから他方の管端部111aebへと流すようにすれば、同管部材111aを地中の深さ5m未満の浅い位置に埋設した場合に生じ得る地中熱の夏場の冷却能力の低下分及び冬場の加温能力の低下分を、当該一方の管端部111aeaから他方の管端部111aebへと流れる水との熱交換によって補うことができる。
ここで、水路111aを流れる熱交換用の水として、年間ほぼ一定の温度である地下水を用いることにより、夏場における空気の冷却能力不足と、冬場における空気の加熱能力不足とを補うことができる。
特開2015−212606号公報
ところが、十分な量の地下水が存在していない場合や、取水制限が課されている場合等、地中熱利用空調装置の設置場所において、十分な地下水の量を確保できるとは限らない。
本発明は、斯かる実情に鑑み、設置場所の事情によらず利用可能な空調装置を提供しようとするものである。
本発明の採熱用管機構は、一方から他方へ第1物質を流す第1流路を有する第1管部材と、前記第1管部材に形成され、一方から他方へ第2物質を流す第2流路を有する第2管部材と、前記第2流路を含む第2物質循環経路において前記第2物質を循環させる第2物質循環機構と、前記第2物質循環経路における前記第2物質の温度調節を行うための第2物質温度調節機構と、を備え、前記第2管部材及び前記第1管部材を介して、前記第1物質及び前記第2物質の熱交換を行う採熱用管機構であって、前記第2物質温度調節機構は、第3物質が循環する第3物質循環路を形成する第3管部材と、前記第3管部材における前記第3物質を循環させるポンプと、前記第2物質循環路と前記第3物質循環路との間で熱交換を行う熱交換部と、を有することを特徴とする。
本発明によれば、設置場所の事情によらず利用可能な空調装置を提供することができる。
従来の空調装置の概要を示す側面図である。 地表からの深さと地中の温度との関係を月別に示すグラフである。 従来の採熱用管部材の概要を示す斜視図である。 従来の採熱用管部材の概要を示す断面図である。 空調装置の概要を示す側面図である。 空調装置の概要を示す斜視図である。 空調装置の概要を示す接続図である。 地中に配された配管の概要を示す断面図である。
図2に示すように、空調装置2は、地中GNDに配される採熱用管機構10と、外部空間GX及び採熱用管機構10を連通する第1ダクト機構20と、採熱用管機構10及び建物120を連通する第2ダクト機構30と、外部空間GXから建物120へ空気を供給する空気供給機構50と、熱交換用の水の循環を行う水循環機構60と、を備える。
図3に示すように、採熱用管機構10は、一方から他方へ空気(第1物質)を流す第1流路11Xを有する管部材11と、一方から他方へ熱交換用の地下水を流す第2流路(図示省略)を有する螺旋管12と、を備える。なお、管部材11と螺旋管12とは一体となっていることが好ましい。
管部材11は、円筒状に形成されるものであり、地中GNDにおいてほぼ水平方向に配される。採熱用管機構10として、管部材11が複数用いられる場合、隣り合う管部材11の第1流路11Xの端部の開口が正対するように配される。螺旋管12は、採熱用管機構10の管軸方向C1周りに螺旋状に延びるものであり、管部材11の外周面11Gにおいて外側へ突設される。
図2に戻って、採熱用管機構10は、さらに、第2流路の一方の開口端部に設けられた給水機構15と、第2流路の他方の開口端部に設けられた排水機構16と、を備える。
空気供給機構50は、ダクト機構20に設けられるポンプと、ダクト機構20に設けられる各種センサと、各部と接続するコントローラとを備える。コントローラは、各種センサからのセンシング信号を読み取り、各種ポンプの制御を行う。空気供給機構50より、外部空間の空気を地中の採熱用管機構10へ送るとともに、地中で熱交換された空気を建物120へ送ることができる。
図4〜5に示すように、水循環機構60は、水を収容するタンクユニット61と、タンクユニット61から給水機構15へ水を送るための給水配管62と、排水機構16からタンクユニット61へ水を送るための排水配管63と、給水配管62に設けられたポンプ64Pと、各配管62〜63に設けられた弁64Bと、各部に配された各種センサ64Sと、各部を制御するコントローラと、を備える。
コントローラの制御の下、水循環機構60は、タンクユニット61、給水配管62、給水機構15、第2配管12、排水機構16、排水配管63、そしてタンクユニット61へと、水を循環させる。
タンクユニット61は、第1タンク61Aと、第2タンク61Bと、第1タンク61A及び第2タンク61Bを連通する連通管61Pと、を備える。連通管61Pは、第2タンク61Bの比較的高い位置に開口するものであり、第2タンク61Bの水位が高くなると、第2タンク61Bの水が第1タンク61Aへ流れるオーバフロー回路として機能する。
コントローラによる弁64Bの制御により、タンクユニット61は、給水配管62に向けて第1タンク61Aに貯留する水を送り出す状態と、給水配管62に向けて第2タンク61Bに貯留する水を送り出す状態との間で切替自在となる。同様にして、コントローラの制御の下、タンクユニット61は、排水配管63からの水が第1タンク61Aに貯留する状態と、排水配管63からの水が第2タンク61Bに貯留する状態との間で切替自在となる。
さらに、空調装置2は、温調用伝熱媒体を用いて、水の温度を調節するための温度調節機構70を備える。
温度調節機構70は、地中GNDに設置される温調配管71と、第2タンク61Bから温調配管71へ温調用伝熱媒体を送る温調側送り配管72と、温調配管71から第2タンク61Bへ温調用伝熱媒体を戻す温調側戻り配管73と、温調側送り配管72に設けられた弁74B及びポンプ74Pと、を備える。温調配管71は、管部材11、給水配管62や排水配管63の近傍にて、ほぼ水平方向に配されることが好ましい。また、管部材11、螺旋管12、給水配管62や排水配管63から温調配管71までの間隔は、管部材11、螺旋管12、給水配管62や排水配管63からの熱の影響を受けない程度に離れていることが好ましい。なお、温調配管71の設置深さとしては、管部材11や螺旋管12の場合と同様に、基準値Tm(図1B)を用いた以下条件を少なくとも1つ満たすことが好ましい。
(条件1)地表の温度が基準値Tmよりも高い場合には基準値Tmよりも低温の範囲であること。
(条件2)地表の温度が基準値Tmよりも低い場合には基準値Tmよりも高温の範囲であること。
ここで、基準値Tmとは、年間を通じてほぼ一定となる地中の温度(図1B)である。また、「地表の温度が基準値Tmよりも高い場合」としては、夏の場合を考慮してもよい。同様に、「地表の温度が基準値Tmよりも低い場合」としては、冬の場合を考慮してもよい。
そして、温調配管71の設置深さとしては、管部材11の下側半分の位置であることが好ましく、実際の施工コストを鑑みると、温調配管71の設置深さとしては、所望の温度差が得られる程度であればよく、例えば、1.5m以上4m以下の深さであることが好ましく、2m以上3m以下の深さであることがより好ましい。
ここで、管部材11、螺旋管12、給水配管62、排水配管63、温調配管71、送り配管72や戻し配管73の材料としては、金属や合成樹脂等を用いることができるが、中でも、合成樹脂を用いることが好ましい。合成樹脂の中では、ポリエチレン等が用いられることが好ましく、中でも高密度ポリエチレンが用いられることが好ましい。
このように、コントローラによるポンプ74P及び弁74Bの制御により、温度調節機構70は、第2タンク61B、送り配管72、戻し配管73、そして第2タンク61Bへと、温調用伝熱媒体を循環させる。
加えて、空調装置2は、水を加温するための加温機構80を備える。
加温機構80は、伝熱媒体が貯留する加温タンク81と、第1タンク61Aから加温タンク81へ水を送る加温用送り配管82と、加温タンク81から第1タンク61Aへ水を戻す加温用戻し配管83と、加温用送り配管82に設けられたポンプ84Pと、加温用送り配管82に設けられ水を加熱するヒータ84Hと、加温タンク81にて伝熱媒体中に配された熱交換機86と、を備える。なお、熱交換機86は省略してもよい。
伝熱媒体としては、水等を用いることができる。
コントローラによるポンプ84Pの制御により、加温機構80は、第1タンク61A、加温用送り配管82、加温用戻し配管83、そして、第1タンク61Aへと、水を循環させる。
次に、空調装置2の使用方法について説明する。
図4に示すように、水循環機構60は、コントローラの制御の下、タンクユニット61、給水配管62、給水機構15、螺旋管12、排水機構16、排水配管63、そしてタンクユニット61へと、水を循環させる。
空気供給機構50は、採熱用管機構10の第1流路11X(図2)を介して、外部空間の空気を建物120へ送る。水循環機構60及び空気供給機構50によって、第1流路11Xを通過する空気は、管部材11周りの地中GNDと第2流路を通過する水との間で熱交換が行われる。この結果、地中GNDと、水と、第1流路11Xを通過する空気と、の間で熱交換を効率よく行うことができる。
ところで、地表の温度が地中の温度よりも高い場合(例えば、夏場)において一定期間、採熱用管機構10を運転し続けると、螺旋管12を含む循環経路を流れる水の温度は次第に上昇していく。この場合において、循環経路を流れる水の温度上昇は、採熱用管機構10の冷却効率の低下につながる。
ここで、コントローラが、タンクユニット61に設けた温度センサを読み取り、タンクユニット61における水温が所定の範囲から外れたと検知した場合には、温度調節機構70は、コントローラの制御の下、第2タンク61B及び温調配管71を介した温調循環経路において、水を循環させる。温調配管71を水が通過すると、温調配管71を介して、水と地中GNDとの間で熱交換が行われる。この熱交換により、水は冷却され、第2タンク61Bへ戻る。この結果、水循環機構60は、螺旋管12を含む循環経路において、冷却された水を循環させることができる。したがって、水の温度上昇に起因する冷却効率の低下を抑えることができる。
同様に、地表の温度が地中の温度よりも低い場合(例えば、冬場)において一定期間、採熱用管機構10を運転し続けると、螺旋管12を含む循環経路を流れる水の温度は次第に低下していく。この場合において、循環経路を流れる水の温度低下は、採熱用管機構10の暖房効率の低下につながる。
ここで、コントローラが、タンクユニット61に設けた温度センサを読み取り、タンクユニット61における水温が所定の範囲よりも低いと検知した場合には、温機構80は、コントローラの制御の下、第1タンク61A及び加温タンク81を介した加温循環経路において、水を循環させる。ヒータ85Hを水が通過すると、水は加熱され、第1タンク61Aへ戻る。この結果、水循環機構60は、螺旋管12を含む循環経路において、加温された水を循環させることができる。したがって、水の温度低下に起因する暖房効率の低下を抑えることができる。
なお、地表の温度が地中の温度よりも高い場合(例えば、夏場)において、以下のような制御を行ってもよい。コントローラが、第2タンク62Aに設けた温度センサを読み取り、第2タンク62Aにおける水温が所定の範囲よりも高いと検知した場合には、水循環機構60が第1タンク61Aを介した第1循環路において水を循環させる一方、コントローラが、第1タンク61Aに設けた温度センサを読み取り、第1タンク61Aにおける水温が所定の範囲よりも高いと検知した場合には、水循環機構60が第2タンク62Aを介した第2循環路において水を循環させてもよい。また、コントローラが、第1タンク61Aに設けた温度センサ及び第2タンク62Aに設けた温度センサを読み取り、両方の水温のうち一方の水温が低いと検知した場合には、水温が低いと検知されたほうの水の循環を行ってもよい。あるいは、所定のタイミングで、第1循環路における水の循環と、第2循環路における水の循環と、を交互に行ってもよい。
上記実施形態では、温度調節機構70による温調循環経路における水の循環を行うか否かについて、検知した水温に基づいて行ったが、本発明はこれに限られず、地中熱利用空調装置2の運転に追従して温調循環経路における水の循環を行ってもよい。
また、上記実施形態では、第2タンク61Bを含む温調循環経路を形成させたが、本発明はこれに限られず、第1タンク61Aを含む温調循環経路を併せて形成させて、2つの温調循環経路を適宜切り替えて用いてもよい。例えば、水循環機構60が水を第1循環路で循環させている間、温調機構70は、第2タンク61B及び温調配管72を含む温調循環経路において水を循環させる一方、水循環機構60が水を第2循環路で循環させている間、温調機構70は、第1タンク61A及び温調配管72を含む温調循環経路において水を循環させてもよい。
上記実施形態では、水循環機構60によって循環路を流れる水と、温調機構70による温調循環経路を流れる水とを第2タンク61Bで合流させたが、本発明はこれに限られない。温調循環経路として、第2タンク61Bを含めずに、第2タンク61Bに設けた熱交換器を設けてもよい。これにより、
水循環機構60によって循環路を流れる水と、温調機構70による温調循環経路を流れる温調用伝熱媒体とを個別の物質としてもよい。
上記実施形態では、採熱用管機構10を地中GNDに配したが、本発明はこれに限られず、採熱用管機構10を地上に配してもよい。採熱用管機構10を地上に配する場合には、管部材11と螺旋管12とが一体となった管ユニットを覆う囲い部材と、管ユニットと囲い部材との隙間に充填された充填材と、を備えることが好ましい。また、熱伝導率は、囲い部材、充填材、管ユニットの順に高くなることが好ましい。囲い部材は、3層構造となっており、断熱層と、断熱層の外側に位置する外層と、断熱層の内側に位置する内層と、を備えることが好ましい。断熱層は硬質ウレタンフォーム(硬質ポリウレタン発泡体)からなり、その熱伝導率は、充填材及び管ユニットよりも低い。外層は鋼板であり、内層はアルミシートである。充填材としては、水、砂(川砂、山砂、珪砂など)、土等を用いてもよい。砂を用いる場合には、熱伝導率を高める目的から、含水状態の砂を用いることが好ましい。またさらに、熱伝導率を高める目的から、砂や土に対して、1〜20%の容積含有率で、酸化ケイ素、アルミナ及び高炉スラグのうち少なくとも1つからなる粒状物を混入させてもよい。
上記実施形態では、管部材11の周りに螺旋状の第2流路12Xを設けたが、本発明はこれに限られず、管部材11の周りに直線上の第2流路12Xを設けてもよい。
尚、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
2 空調装置
10 採熱用管機構
15 給水機構
16 排水機構
20 第1ダクト機構
30 第2ダクト機構
50 空気供給機構
60 水循環機構
70 温度調節機構
80 加温機構


Claims (4)

  1. 一方から他方へ第1物質を流す第1流路を有する第1管部材と、
    前記第1管部材に形成され、一方から他方へ第2物質を流す第2流路を有する第2管部材と、
    前記第2流路を含む第2物質循環経路において前記第2物質を循環させる第2物質循環機構と、
    前記第2物質循環経路における前記第2物質の温度調節を行うための第2物質温度調節機構と、を備え、
    前記第2管部材及び前記第1管部材を介して、前記第1物質及び前記第2物質の熱交換を行う採熱用管機構であって、
    前記第2物質温度調節機構は、
    第3物質が循環する第3物質循環路を形成する第3管部材と、
    前記第3管部材における前記第3物質を循環させるポンプと、
    前記第2物質循環路と前記第3物質循環路との間で熱交換を行う熱交換部と、を有することを特徴とする採熱用管機構。
  2. 前記第3管部材は、地中において、前記第1管部材又は前記第2管部材とほぼ同じ深さの位置、又は前記第1管部材又は前記第2管部材よりも深い位置に配されたことを特徴とする請求項1記載の採熱用管機構。
  3. 前記第2物質循環路と前記第3物質循環路とは、共通の流路を有し、前記共通の流路が前記熱交換部を兼ねることを特徴とする請求項1または2記載の採熱用管機構。
  4. 前記熱交換部は、前記第2物質及び前記第3物質が収容されるタンクが設けられたことを特徴とする請求項3記載の採熱用管機構。

JP2017005592A 2017-01-17 2017-01-17 採熱用管機構及びその製造方法、並びに空調装置 Pending JP2018115786A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017005592A JP2018115786A (ja) 2017-01-17 2017-01-17 採熱用管機構及びその製造方法、並びに空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005592A JP2018115786A (ja) 2017-01-17 2017-01-17 採熱用管機構及びその製造方法、並びに空調装置

Publications (1)

Publication Number Publication Date
JP2018115786A true JP2018115786A (ja) 2018-07-26

Family

ID=62984952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005592A Pending JP2018115786A (ja) 2017-01-17 2017-01-17 採熱用管機構及びその製造方法、並びに空調装置

Country Status (1)

Country Link
JP (1) JP2018115786A (ja)

Similar Documents

Publication Publication Date Title
JP3927593B1 (ja) 二重管式地熱水循環装置
JP5963790B2 (ja) 地下水循環型地中熱採熱システム及び地中熱利用冷暖房又は給湯システム
JP2007183023A (ja) 地熱利用冷暖房方法および装置
JP4869145B2 (ja) 地中熱交換システム
JP2011149690A (ja) 地中熱交換器埋設構造
JP2012137211A (ja) 熱交換システム
JP6442712B2 (ja) 熱利用装置
JP2003021360A (ja) 土壌熱を利用した空調システム及び土壌内熱交換装置
JP2008196834A (ja) 地熱利用装置
JP2020176745A (ja) ジオ ハイブリッド システム(Geo Hybrid System)
JP2011102676A (ja) 地下水熱を利用した空調システム
US20110083384A1 (en) Changing the temperature of a thermal load
JP2015055365A (ja) 地中熱ヒートポンプシステム用採熱管
JP5690960B1 (ja) 熱交換システム
US20100251710A1 (en) System for utilizing renewable geothermal energy
JP2018115786A (ja) 採熱用管機構及びその製造方法、並びに空調装置
JP2014098535A (ja) 地中熱及びヒートポンプ利用の建物用空調システム
US7337838B2 (en) Plant for tempering of a building
KR101551911B1 (ko) 해변여과정을 이용한 건물용 냉난방 시스템
CN110017624A (zh) 具有不同焓的双同心管的***
JP2007127397A (ja) 寒冷な地域における住宅の地中熱利用システム
JP6913449B2 (ja) 地中熱利用システム
JP5028638B1 (ja) 地熱利用構造および地熱熱交換器埋設構造
JP6273053B1 (ja) 採熱用管機構及びその製造方法、並びに空調装置
JP2006152670A (ja) 外断熱システム