JP2018111891A - Method for producing carbon fiber bundle - Google Patents

Method for producing carbon fiber bundle Download PDF

Info

Publication number
JP2018111891A
JP2018111891A JP2017001598A JP2017001598A JP2018111891A JP 2018111891 A JP2018111891 A JP 2018111891A JP 2017001598 A JP2017001598 A JP 2017001598A JP 2017001598 A JP2017001598 A JP 2017001598A JP 2018111891 A JP2018111891 A JP 2018111891A
Authority
JP
Japan
Prior art keywords
fiber bundle
carbon fiber
heat treatment
treatment chamber
flameproofing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017001598A
Other languages
Japanese (ja)
Other versions
JP6852405B2 (en
Inventor
陽帥 二星
Yosui Niboshi
陽帥 二星
義人 荒武
Yoshito Aratake
義人 荒武
将一 小寺
Masakazu Kodera
将一 小寺
裕介 浜辺
Yusuke Hamabe
裕介 浜辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2017001598A priority Critical patent/JP6852405B2/en
Publication of JP2018111891A publication Critical patent/JP2018111891A/en
Application granted granted Critical
Publication of JP6852405B2 publication Critical patent/JP6852405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a carbon fiber bundle which is excellent in a high quality and a high grade and has an excellent process stability by controlling the particle concentration near a flameproofing furnace.SOLUTION: A method for producing a carbon fiber bundle comprises at least a flameproofing step of subjecting a polyacrylonitrile fiber bundle to flameproofing treatment on predetermined conditions to obtain a flameproofed fiber bundle by using a flameproofing furnace having a heat treatment chamber for subjecting the polyacrylonitrile fiber bundle to flameproofing treatment in an oxidizing gas, rollers for changing an advancing direction of the polyacrylonitrile fiber bundle, a surrounding body surrounding the heat treatment chamber and the rollers, a gas supply line for supplying a gas to a region which is an inside of the surrounding body and does not include the heat treatment chamber via particle removal means, and a gas exhaust line for exhausting a gas in a region which is an inside of the surrounding body and does not include the heat treatment chamber to the outside, and a carbonization step of subjecting the flameproofed fiber bundle to a carbonizing treatment at a temperature of 300 to 2000°C to obtain a carbon fiber bundle.SELECTED DRAWING: Figure 1

Description

本発明は高品質、高品位に優れ、かつ工程安定性に優れた炭素繊維束の製造方法に関する。   The present invention relates to a method for producing a carbon fiber bundle excellent in high quality, high quality, and excellent in process stability.

炭素繊維は比強度、比弾性率に優れていることから、航空・宇宙産業をはじめ、釣竿、テニスラケットなどのスポーツ用途、風力発電のブレードや自動車など一般産業用途と幅広い分野で使用されている。   Since carbon fiber has excellent specific strength and specific modulus, it is used in a wide range of fields such as aerospace industry, sports applications such as fishing rods and tennis rackets, and general industrial applications such as wind power blades and automobiles. .

一般にポリアクリロニトリル系繊維を原料とする炭素繊維束は、ポリアクリロニトリル系重合体の単繊維を1000〜80000本束ねた前駆体繊維束を、200〜300℃の温度で耐炎化処理して耐炎化繊維束を得て、次いで不活性雰囲気中で、300〜2000℃の温度で加熱処理して得られる。また、必要に応じて更に高温で処理して弾性率を向上させることで黒鉛化糸を得ることも出来る。   In general, a carbon fiber bundle made of polyacrylonitrile fiber as a raw material is obtained by flame-treating a precursor fiber bundle obtained by bundling 1000 to 80000 polyacrylonitrile polymer single fibers at a temperature of 200 to 300 ° C. A bundle is obtained and then heat-treated at a temperature of 300 to 2000 ° C. in an inert atmosphere. Moreover, a graphitized thread | yarn can also be obtained by processing at higher temperature as needed and improving an elastic modulus.

このように得られる炭素繊維を高性能化し、しかも安定した品質を得るために、種々の検討がなされている。   Various studies have been made to improve the performance of the carbon fibers obtained in this way and to obtain stable quality.

ポリアクリロニトリル系繊維束の耐炎化処理においては、200〜300℃の酸化性気体が循環する熱処理室の入口と出口の両側面に複数のガイドローラーを配し、供給される繊維束をローラーで折り返しながら複数回熱処理室内を走行させて処理するのが一般的である。   In the flameproofing treatment of polyacrylonitrile fiber bundles, a plurality of guide rollers are arranged on both sides of the inlet and outlet of the heat treatment chamber where the oxidizing gas of 200 to 300 ° C circulates, and the supplied fiber bundle is folded back by the rollers. In general, however, the treatment is performed by running in the heat treatment chamber a plurality of times.

炭素繊維束の製造工程における耐炎化工程では、微粒子が繊維束に付着した場合、その微粒子が繊維束に傷をつけ、強度低下を引き起こすなどの悪影響を与えることが知られている。   In the flameproofing step in the production process of a carbon fiber bundle, it is known that when fine particles adhere to the fiber bundle, the fine particles damage the fiber bundle and cause an adverse effect such as a decrease in strength.

この問題を解決すべく、特許文献1では耐炎化炉の熱処理室内を循環する酸化雰囲気をフィルタで濾過することにより、繊維束への微粒子の付着を抑制して炭素繊維束の引張強度を改善させる方法が開示されている。   In order to solve this problem, Patent Literature 1 improves the tensile strength of the carbon fiber bundle by suppressing the adhesion of fine particles to the fiber bundle by filtering the oxidizing atmosphere circulating in the heat treatment chamber of the flameproofing furnace. A method is disclosed.

また、特許文献2では炭素繊維束製造工程雰囲気にクラス100のフィルタを介した気体を給気し、炭素繊維束製造工程全体の雰囲気をクリーン化することで炭素繊維束の引張強度を改善させる方法が開示されている。   Patent Document 2 discloses a method for improving the tensile strength of a carbon fiber bundle by supplying a gas through a class 100 filter to a carbon fiber bundle manufacturing process atmosphere and cleaning the atmosphere of the entire carbon fiber bundle manufacturing process. Is disclosed.

一方、特許文献3では耐炎化工程での熱処理量の均一化を目的として、耐炎化炉の炭素繊維前駆体繊維束の出入り口に囲い体を設け、囲い体内部の温度を制御することが提案されている。   On the other hand, Patent Document 3 proposes to provide an enclosure at the entrance and exit of the carbon fiber precursor fiber bundle of the flameproofing furnace and control the temperature inside the enclosure for the purpose of uniformizing the heat treatment amount in the flameproofing process. ing.

なお、炭素繊維前駆体繊維束の製造においては、焼成工程を経て得られる炭素繊維の単繊維の円相当断面積が小さく、表面が一定の粗さであることが好ましく、特許文献4では前駆体繊維束の繊度を調整するとともに、製糸・焼成の条件、特に製糸におけるエアギャップ紡糸や焼成での延伸と組み合わせてそのような特性の炭素繊維を製造することが開示されている。   In the production of the carbon fiber precursor fiber bundle, it is preferable that the equivalent cross-sectional area of the single fiber of the carbon fiber obtained through the firing step is small and the surface has a constant roughness. It is disclosed that the carbon fiber having such characteristics is produced by adjusting the fineness of the fiber bundle and combining it with the conditions of spinning and firing, in particular, air gap spinning in spinning and drawing in firing.

さらに製糸工程で使用する界面活性剤に関して、特許文献5では単糸繊度が特定の範囲の炭素繊維の製造工程において耐炎化・炭化における耐熱性を向上させるため、特定の方法で測定した熱安定性が高いシリコーン系の界面活性剤を使用することが好ましいことが開示されている。   Furthermore, regarding the surfactant used in the spinning process, in Patent Document 5, the heat stability measured by a specific method is used in order to improve the heat resistance in flameproofing and carbonization in the manufacturing process of carbon fibers having a single yarn fineness in a specific range. It is disclosed that it is preferable to use a silicone-based surfactant having a high viscosity.

特開2010−222723号公報JP 2010-222723 A 特開昭50−52323号公報Japanese Patent Laid-Open No. 50-52323 特開2008−138325号公報JP 2008-138325 A 特表2010−510406号公報Special table 2010-510406 gazette 特開2006−307407号公報JP 2006-307407 A

しかしながら特許文献1の方法では、外気に由来する異物が耐炎化炉周辺に滞留したり、耐炎化処理される際に前駆体繊維束から発生する微粒子成分が、熱処理室に糸が出入りするためのスリット部から炉外に漏れ出すことにより、耐炎化炉周辺雰囲気の微粒子濃度が高くなったりするため、熱処理室外を通過する繊維束への微粒子の付着は抑制できず、品質向上及び安定化の効果は限定的であった。   However, in the method of Patent Document 1, foreign matters derived from the outside air stay around the flame-proofing furnace, or fine particle components generated from the precursor fiber bundle when the flame-proofing treatment is performed are used for the yarn to enter and leave the heat treatment chamber. Leakage from the slit outside the furnace increases the concentration of fine particles in the atmosphere around the flameproofing furnace, so it is not possible to suppress the adhesion of fine particles to the fiber bundle passing outside the heat treatment chamber, and the effect of quality improvement and stabilization Was limited.

また、特許文献2の方法では、クラス100レベルの空気をどのように給気するか、すなわち、風量や換気回数についての条件が未開示であり、製造設備のコストやランニングコストを抑えて実質的に高い効果を得る方法は開示されていない。   Moreover, in the method of Patent Document 2, how to supply air of class 100 level, that is, conditions regarding the air volume and the number of ventilations is not disclosed, and the cost of manufacturing equipment and running cost are suppressed substantially. However, a method for obtaining a high effect is not disclosed.

さらに、特許文献3の方法でも、囲い体の大きさや空気の供給量や循環比、その内部の空気に存在する微粒子に関しては規定されておらず、単に温度を制御することを目的としており、耐炎化炉外での繊維束への異物付着を抑制することができず、高引張強度の炭素繊維束を得ることは困難であった。   Further, even in the method of Patent Document 3, the size of the enclosure, the supply amount of air and the circulation ratio, and the fine particles present in the air inside the enclosure are not defined, and the purpose is simply to control the temperature, and the flame resistance. It was difficult to obtain a carbon fiber bundle with high tensile strength because it was not possible to suppress adhesion of foreign matter to the fiber bundle outside the furnace.

一方、特許文献4によって前駆体の紡糸条件を調整し、焼成条件、特に特定の延伸倍率と組み合わせて、繊度が小さく特定の表面形態を有する炭素繊維を得、特許文献5に開示されているような耐熱性の良好な油剤を使用することによって高強度の炭素繊維を得ようとしても、耐炎化時に発生する微粒子の対策を考慮しない場合は、その品質を安定して得るには困難があった。   On the other hand, the spinning conditions of the precursor are adjusted according to Patent Document 4, and carbon fibers having a specific surface form with a small fineness are obtained in combination with firing conditions, in particular, a specific draw ratio, as disclosed in Patent Document 5. Even when trying to obtain high-strength carbon fiber by using an oil agent with good heat resistance, it was difficult to stably obtain the quality without taking measures against fine particles generated during flame resistance. .

そこで、本発明の目的は、上記従来技術の問題点を解決しようとするものであり、繊維束への異物付着を抑制し、高強度で繊度斑の小さい炭素繊維束を低コストで製造できる方法を提供するものである。   Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and a method capable of producing a carbon fiber bundle having high strength and small fineness at a low cost by suppressing foreign matter adhesion to the fiber bundle. Is to provide.

かかる課題を解決するための本発明は、以下の構成からなる。すなわち、酸化性気体中でポリアクリロニトリル系繊維束を耐炎化処理する熱処理室と、ポリアクリロニトリル系繊維束の進行方向を変えるためのローラーと、熱処理室とローラーとを囲う囲い体と、囲い体内部であって熱処理室を含まない領域に微粒子除去手段を介して気体を給気する給気ラインと、囲い体内部であって熱処理室を含まない領域の気体を外部に排気する排気ラインとを有する耐炎化炉を用い、(式1)、(式2)、(式3)を満たす条件下でポリアクリロニトリル系繊維束を耐炎化処理して耐炎化繊維束を得る耐炎化工程と、耐炎化繊維束を300〜2000℃の温度で炭素化処理して炭素繊維束を得る炭素化工程とを少なくとも有する炭素繊維束の製造方法である。
/F>1.00 ・・・(式1)
/V≧5.0 ・・・(式2)
/V>3.0 ・・・(式3)
(但し、F:囲い体への給気流量[m/hr]、F:囲い体からの排気流量[m/hr]、V:熱処理室体積[m]、V:囲い体内部であって熱処理室を含まない領域の体積[m]、である)。
The present invention for solving this problem has the following configuration. That is, a heat treatment chamber for flameproofing a polyacrylonitrile fiber bundle in an oxidizing gas, a roller for changing the advancing direction of the polyacrylonitrile fiber bundle, an enclosure that surrounds the heat treatment chamber and the roller, and an inside of the enclosure And an air supply line for supplying gas to the region not including the heat treatment chamber via the particulate removing means, and an exhaust line for exhausting the gas in the region not including the heat treatment chamber inside the enclosure. A flameproofing step of obtaining a flameproofed fiber bundle by flameproofing a polyacrylonitrile fiber bundle under conditions satisfying (Formula 1), (Formula 2), and (Formula 3) using a flameproof furnace, and a flameproof fiber And a carbonization step of carbonizing the bundle at a temperature of 300 to 2000 ° C. to obtain a carbon fiber bundle.
F 1 / F 2> 1.00 ··· ( Equation 1)
F 1 / V 2 ≧ 5.0 (Formula 2)
V 2 / V 1 > 3.0 (Expression 3)
(However, F 1 : Supply air flow rate to enclosure [m 3 / hr], F 2 : Exhaust flow rate from enclosure [m 3 / hr], V 1 : Heat treatment chamber volume [m 3 ], V 2 : The volume [m 3 ] of the region inside the enclosure and not including the heat treatment chamber).

また、本発明では、上記の耐炎化工程において、以下に規定する微粒子濃度が3000個/リットル以下でポリアクリロニトリル系繊維束を耐炎化処理することが好ましい。   Further, in the present invention, it is preferable that the polyacrylonitrile fiber bundle is flameproofed in the flameproofing step described above at a fine particle concentration specified below of 3000 particles / liter or less.

更に、本発明では、上記のポリアクリロニトリル系繊維束が、本文中に規定する界面活性剤の耐熱性が20%以上であるシリコーン油剤がポリアクリロニトリル系繊維束の質量に対して0.2〜3.0質量%付与されたものであることが好ましい。   Furthermore, in the present invention, the above-mentioned polyacrylonitrile-based fiber bundle has a silicone oil agent having a heat resistance of 20% or more of the surfactant specified in the text in an amount of 0.2 to 3 with respect to the mass of the polyacrylonitrile-based fiber bundle. It is preferable that 0.0 mass% is given.

ここで、本発明で規定する「微粒子濃度」および「界面活性剤の耐熱性」は以下のとおり定義される。   Here, “fine particle concentration” and “heat resistance of surfactant” defined in the present invention are defined as follows.

<微粒子濃度>
試料気体流量0.5リットル/分で34秒間(合計0.283リットル)気体を吸引し、0.283リットルに含まれる0.5μm以上1.0μm未満、1.0μm以上2.0μm未満、2.0μm以上5.0μm未満、5.0μm以上の4段階粒子数を同時に計測し、その値をD0.5、D1.0、D2.0、D5.0(個/0.283リットル)とするとき、以下の換算式によって各粒子の濃度を5.0μmの粒子数に換算した値を求める。ここで、微粒子濃度の測定場所は、熱処理室に糸が出入りする場所の最下部の炉外ローラー周囲10cmの場所とし、光散乱式パーティクルカウンタ(例えば、RION社 KC−01E)を用いて測定する。この測定を連続して3回実施し、その平均値を微粒子濃度とする。
<Concentration of fine particles>
Gas is sucked at a sample gas flow rate of 0.5 liters / minute for 34 seconds (total 0.283 liters), and contained in 0.283 liters, 0.5 μm or more and less than 1.0 μm, 1.0 μm or more and less than 2.0 μm. The number of four-stage particles of 0.0 μm or more and less than 5.0 μm and 5.0 μm or more was measured at the same time, and the values were D 0.5 , D 1.0 , D 2.0 , D 5.0 (pieces / 0.283 Liter), the value obtained by converting the concentration of each particle into the number of particles of 5.0 μm is obtained by the following conversion formula. Here, the fine particle concentration is measured at a location 10 cm around the lower outer roller where the yarn enters and exits the heat treatment chamber, and is measured using a light scattering particle counter (for example, RION KC-01E). . This measurement is performed three times in succession, and the average value is defined as the fine particle concentration.

5.0μmの粒子数への換算式=[{D0.5/(5.0/0.5)}+{D1.0/(5.0/1.0)}+{D2.0/(5.0/2.0)}+D5.0]/0.283(個/リットル)。 Conversion formula to the number of particles of 5.0 μm = [{D 0.5 /(5.0/0.5)}+{D 1.0 /(5.0/1.0)}+{D 2. 0 / ( 5.0 / 2.0)} + D5.0] /0.283 (pieces / liter).

<界面活性剤の耐熱性>
乳化状態にある界面活性剤を、予め105℃・5時間乾燥したときの質量を基準とし、熱天秤分析によって空気中昇温速度10℃/分で240℃まで昇温し、240℃・2時間保持し、雰囲気を窒素に切り替えて10℃/分で昇温して、到達温度450℃・30秒保持した時点での質量保持率(%)を耐熱性とする。
<Heat resistance of surfactant>
The surfactant in the emulsified state is heated to 240 ° C. at a heating rate of 10 ° C./min in the air by thermobalance analysis based on the mass when dried at 105 ° C. for 5 hours in advance, and 240 ° C. for 2 hours. The temperature is switched to nitrogen, the temperature is raised at 10 ° C./min, and the mass retention rate (%) at the time of holding the ultimate temperature of 450 ° C. for 30 seconds is defined as heat resistance.

本発明の炭素繊維束の製造方法では、熱処理室周辺に囲い体を設け、囲い体内部で熱処理室を含まない領域の換気条件を規定することで、炭素繊維のストランド引張強度が高く、長手方向の繊度斑が小さい炭素繊維束を製造することができる。   In the method for producing a carbon fiber bundle of the present invention, the strand tensile strength of the carbon fiber is high and the longitudinal direction is provided by providing an enclosure around the heat treatment chamber and prescribing the ventilation condition of the region not including the heat treatment chamber inside the enclosure. A carbon fiber bundle with small fineness spots can be produced.

本発明の実施形態の一例である耐炎化炉の概略構成断面図である。It is a schematic structure sectional view of a flameproofing furnace which is an example of an embodiment of the present invention.

本発明において原料として用いられるポリアクリロニトリル系繊維束は、アクリルニトリルの単独重合体あるいは共重合体を、有機または無機溶媒を用いて紡糸することで得ることができる。   The polyacrylonitrile fiber bundle used as a raw material in the present invention can be obtained by spinning an acrylic nitrile homopolymer or copolymer using an organic or inorganic solvent.

本発明で使用されるポリアクリロニトリル系繊維束の製造方法には特に制限がないが、湿式紡糸または乾湿式紡糸が好ましく用いられ、その後、延伸、水洗、油剤付与、乾燥緻密化、必要あれば後延伸などの工程を経て得ることができる。   There is no particular limitation on the method for producing the polyacrylonitrile fiber bundle used in the present invention, but wet spinning or dry wet spinning is preferably used, and then stretching, washing with water, oiling, drying densification, and later if necessary. It can be obtained through a process such as stretching.

本発明で使用するポリアクリロニトリル系繊維束に付与される界面活性剤は、耐熱性の観点から、耐炎化、とくにその初期の耐熱性を確保して、油剤による微粒子の発生を出来るだけ抑制するために、シリコーン系油剤を乳化又は分散したものが好ましい。特に、少なくともその一部にアミノ変性シリコーンを含む場合、耐熱性が向上するので好ましい。アクリロニトリル系繊維束に付与するシリコーン系油剤の付着量は、好ましくはポリアクリロニトリル系繊維束の質量に対して0.2〜3.0質量%、より好ましくは0.3〜2.0質量%である。かかるシリコーン系油剤には、さらに界面活性剤、熱安定剤などが加えられていてもよい。   The surfactant imparted to the polyacrylonitrile-based fiber bundle used in the present invention is intended to suppress the generation of fine particles due to the oil as much as possible from the viewpoint of heat resistance, while ensuring flame resistance, particularly its initial heat resistance. Further, those obtained by emulsifying or dispersing silicone oil are preferable. In particular, when amino-modified silicone is contained in at least a part thereof, heat resistance is improved, which is preferable. The amount of silicone oil applied to the acrylonitrile fiber bundle is preferably 0.2 to 3.0% by mass, more preferably 0.3 to 2.0% by mass, based on the mass of the polyacrylonitrile fiber bundle. is there. Such silicone oil may further contain a surfactant, a heat stabilizer and the like.

また、シリコーン系油剤の種類としては、ジメチルシロキサンならびにそれらの官能基が変性されたものが好ましく用いられ、それらの例としては、アミノ基で変性したアミノ変性ジメチルシロキサンの他、ポリエーテル変性、エポキシ変性、チオエーテル変性などの一種又は2種以上の変性シリコーンが好ましく用いられ、またそれらの単独や混合、他の成分との混合を行い適用することが出来る。   In addition, as the type of the silicone-based oil agent, dimethylsiloxane and those whose functional groups are modified are preferably used. Examples thereof include amino-modified dimethylsiloxane modified with amino groups, polyether-modified, epoxy One or two or more kinds of modified silicones such as modified or thioether modified are preferably used, and can be applied alone or mixed or mixed with other components.

本発明においては、熱安定性が高いものが好ましく、上記のとおり定義される界面活性剤の耐熱性が20%以上のものを用いることが、耐炎化での微粒子発生の抑制と単糸同士の接着を防止する上で好ましく、50%以上のものであることがより好ましい。このような特性を有する界面活性剤は、例えばアミノ変性ジメチルシロキサンをノニオン界面活性剤で乳化したものと、ポリエーテル変性シリコーンを混合して調製することにより、上記耐熱性と乳化安定性が両立した界面活性剤を得ることが出来る。   In the present invention, those having high thermal stability are preferred, and the use of a surfactant having a heat resistance of 20% or more as defined above is effective in suppressing the generation of fine particles in flame resistance and between single yarns. It is preferable for preventing adhesion, and more preferably 50% or more. A surfactant having such characteristics is prepared by mixing, for example, an amino-modified dimethylsiloxane emulsified with a nonionic surfactant and a polyether-modified silicone, thereby achieving both the above heat resistance and emulsion stability. A surfactant can be obtained.

このようなシリコーン系油剤を付与することで、紡糸工程におけるポリアクリロニトリル系繊維束の収束性、柔軟性、工程安定性、及び帯電防止性が向上する。さらに耐炎化処理および炭素化処理における、通過性、収束性、および融着防止性が向上するとともに、本発明において、特に耐炎化工程で品質に悪影響を与える微粒子の発生を抑制することにより、強度の向上を達成することが出来る。   By providing such a silicone-based oil agent, the convergence, flexibility, process stability, and antistatic properties of the polyacrylonitrile fiber bundle in the spinning process are improved. Furthermore, in the flameproofing treatment and carbonization treatment, the permeability, convergence, and anti-fusing properties are improved, and in the present invention, by suppressing the generation of fine particles that adversely affect the quality particularly in the flameproofing process, Improvement can be achieved.

このようにして得られたポリアクリロニトリル系繊維束を、好ましくは200〜300℃の所定の温度で耐炎化処理を行う。ここで、耐炎化炉は図1に示されるように熱処理室7、ローラー14などから構成される。   The polyacrylonitrile fiber bundle thus obtained is preferably subjected to flameproofing treatment at a predetermined temperature of 200 to 300 ° C. Here, the flameproofing furnace is composed of a heat treatment chamber 7, a roller 14 and the like as shown in FIG.

このとき、繊維束はローラー14により進行方向を逆に変えて、熱処理室内の横断を繰り返すことが好ましい。具体的には、繊維束の横断を複数回繰り返すことで熱処理室の長手方向の機長が短くなり、耐炎化炉の小型化が可能となる。   At this time, it is preferable that the traveling direction of the fiber bundle is reversed by the roller 14 and the traversing in the heat treatment chamber is repeated. Specifically, by repeating the crossing of the fiber bundle a plurality of times, the machine length in the longitudinal direction of the heat treatment chamber is shortened, and the flameproofing furnace can be downsized.

また、折り返し部の少なくとも一部のローラーは完全に炉外に設置されていることが好ましい。炉外に設置されることによって、生産状態の確認が容易となるとともに、万一毛羽等の巻付きが発生した場合でも、作業者が熱処理室7内に直接入ることなく容易に処置することが可能となる。   Moreover, it is preferable that at least a part of the rollers of the folded portion is completely installed outside the furnace. By being installed outside the furnace, it is easy to check the production state, and even if winding such as fluff should occur, the operator can easily treat without entering the heat treatment chamber 7 directly. It becomes possible.

酸化性気体の循環方式としては酸化性気体が繊維束と垂直方向に循環する直交流と、水平方向に循環する平行流が用いられ、またローラーの配置としては、水平方向にローラー14が設置されている横型耐炎化炉と、垂直方向に設置されている縦型耐炎化炉が用いられるが、本発明では特にその熱風の循環方向、ローラーの配置に制限は無い。   As the method for circulating the oxidizing gas, a cross flow in which the oxidizing gas circulates in the direction perpendicular to the fiber bundle and a parallel flow in which the oxidizing gas circulates in the horizontal direction are used, and the rollers 14 are installed in the horizontal direction as the arrangement of the rollers. The horizontal flameproofing furnace and the vertical flameproofing furnace installed in the vertical direction are used, but in the present invention, the hot air circulation direction and the arrangement of the rollers are not particularly limited.

また、ローラー14と、熱処理室7の間にシール室12を設けることが好ましい。シール室12を設けることで、熱処理室7への雰囲気からの冷風の漏れ込みを防ぐことができ、エネルギー使用量の削減が可能となる。   Moreover, it is preferable to provide the seal chamber 12 between the roller 14 and the heat treatment chamber 7. By providing the seal chamber 12, it is possible to prevent the cool air from leaking into the heat treatment chamber 7 and to reduce the amount of energy used.

本発明は、上述の熱処理室7を覆う囲い体1、囲い体内部で熱処理室7を含まない領域(以下、領域Aと記述する)中に気体を給気する給気ライン2ならびに給気ファン3、領域A中の気体を外部に排気する排気ライン4ならびに排気ファン5などで構成される耐炎化炉を用いて耐炎化処理をするに際し、その給排気条件を規定するものである。具体的には、囲い体への給気流量をF[m/hr]、囲い体からの排気流量をF[m/hr]、囲い体1の内部で、熱処理室7の体積をV[m]、囲い体1の内部で、熱処理室7を含まない領域(領域A)の体積をV[m]とするとき、
/F>1.00 ・・・(式1)
/V≧5.0 ・・・(式2)
/V>3.0 ・・・(式3)
を満たす条件下で炭素繊維前駆体繊維束を耐炎化処理する必要がある。
The present invention includes an enclosure 1 that covers the heat treatment chamber 7 described above, an air supply line 2 that supplies gas into an area (hereinafter referred to as area A) that does not include the heat treatment chamber 7 inside the enclosure, and an air supply fan. 3. When performing flameproofing treatment using a flameproofing furnace composed of an exhaust line 4 for exhausting the gas in the region A to the outside, an exhaust fan 5 and the like, supply and exhaust conditions are defined. Specifically, the supply air flow rate to the enclosure is F 1 [m 3 / hr], the exhaust flow rate from the enclosure is F 2 [m 3 / hr], and the volume of the heat treatment chamber 7 is within the enclosure 1. V 1 [m 3 ], and the volume of the region (region A) not including the heat treatment chamber 7 inside the enclosure 1 is V 2 [m 3 ],
F 1 / F 2> 1.00 ··· ( Equation 1)
F 1 / V 2 ≧ 5.0 (Formula 2)
V 2 / V 1 > 3.0 (Expression 3)
It is necessary to flameproof the carbon fiber precursor fiber bundle under conditions that satisfy the above conditions.

(式1)〜(式3)を満たすことで、高品質な炭素繊維束の製造を行うことが可能となる。   By satisfying (Expression 1) to (Expression 3), it is possible to manufacture a high-quality carbon fiber bundle.

具体的には、F/F>1.00を満たすことが必須であり、1.50>F/F≧1.05であることが好ましい。耐炎化工程周辺を給気過多で加圧状態にすることで、他工程で発生した微粒子が耐炎化工程に流入することを抑制し、耐炎化繊維素束に付着する微粒子の個数や、耐炎化繊維束の単糸表面の傷の個数を減少させることができる。一方、F/Fはかかる設備ないし運転コストの兼ね合いから1.50未満とすることが好ましい。 Specifically, it is essential to satisfy F 1 / F 2 > 1.00, and preferably 1.50> F 1 / F 2 ≧ 1.05. By making the area around the flameproofing process excessively pressurized and pressurized, the fine particles generated in other processes are prevented from flowing into the flameproofing process, and the number of fine particles adhering to the flameproofing fiber bundle and the flame resistance The number of scratches on the surface of the single yarn of the fiber bundle can be reduced. On the other hand, it is preferable that F 1 / F 2 is less than 1.50 in view of such facilities and operating costs.

次に、F/V≧5.0を満たすことが必須であり、好ましくはF/V≧10、より好ましくはF/V≧15である。F/Vをかかる範囲とすることで、領域A中の体積に対する囲い体への給気流量が十分に大きくなるため、熱処理室から炉外へと漏れ出した微粒子や、他工程で発生した微粒子が耐炎化工程に流入することによる、汚染された領域A中の雰囲気を囲い体外部に排気することができ、耐炎化繊維束に付着する微粒子の個数や、耐炎化繊維束の単糸表面の傷の個数を減少させることができる。 Next, it is essential to satisfy F 1 / V 2 ≧ 5.0, preferably F 1 / V 2 ≧ 10, and more preferably F 1 / V 2 ≧ 15. By setting F 1 / V 2 in such a range, the supply air flow rate to the enclosure relative to the volume in region A becomes sufficiently large, so that fine particles leaking out of the furnace from the heat treatment chamber or generated in other processes The contaminated atmosphere in the region A due to the flow of the fine particles into the flameproofing process can be exhausted to the outside of the enclosure, and the number of fine particles adhering to the flameproof fiber bundle or the single yarn of the flameproof fiber bundle The number of scratches on the surface can be reduced.

さらに、本発明では、高品質と低コストを維持しつつ炭素繊維束の製造を行うためにV/V>3.0を満たすことが必要である。V/V≦3.0であると人が出入りした際、領域A中の温度変動が生じ、繊維束長手方向の繊度斑の原因となる。一方で、V/V≧20であると給排気に必要な給排気流量が増大するため一般的に設備費やランニングコスト面に難がある。したがって、V/Vの好ましい範囲としては、20.0>V/V>3.0であり、より好ましくは20.0>V/V>5.0、更に好ましくは20.0>V/V>9.0である。 Furthermore, in the present invention, it is necessary to satisfy V 2 / V 1 > 3.0 in order to produce a carbon fiber bundle while maintaining high quality and low cost. When a person enters and exits when V 2 / V 1 ≦ 3.0, a temperature fluctuation in the region A occurs, which causes fineness spots in the longitudinal direction of the fiber bundle. On the other hand, if V 2 / V 1 ≧ 20, the supply / exhaust flow rate required for supply / exhaust increases, so there is generally difficulty in equipment costs and running costs. Therefore, a preferable range of V 2 / V 1 is 20.0> V 2 / V 1 > 3.0, more preferably 20.0> V 2 / V 1 > 5.0, and still more preferably 20 0.0> V 2 / V 1 > 9.0.

また、領域Aへの給気は粒子除去装置6を介して給気することが必須である。ここで、用いられる粒子除去装置6に特に限定はなく、遠心力集塵機、電気集塵機、フィルタ集塵機などがあげられるが、設備費、ランニングコスト、メンテナンス性などの観点からフィルタ集塵機を用いることが好ましく、さらに好ましくは、粗塵用フィルタ、中高性能フィルタ、HEPAフィルタ、ULPAフィルタのいずれか1つもしくは複数を用いることが好ましい。   In addition, it is essential to supply air to the region A through the particle removing device 6. Here, the particle removing device 6 to be used is not particularly limited, and examples thereof include a centrifugal dust collector, an electric dust collector, a filter dust collector, etc., but it is preferable to use a filter dust collector from the viewpoint of equipment cost, running cost, maintainability, More preferably, it is preferable to use one or a plurality of coarse dust filters, medium-high performance filters, HEPA filters, and ULPA filters.

領域Aからの排気を行うことで、熱処理室内にて発生した後、炉外に漏れ出した微粒子を囲い体外部に排気することができる。   By exhausting from the region A, the fine particles that have been generated inside the heat treatment chamber and then leaked out of the furnace can be exhausted outside the enclosure.

図1に示す形態においては、熱処理室7とローラー14の周辺を囲い体1で囲み、給気ファン3を介して領域Aに気体が給気し、排気ファン5を介して領域A中の気体が排気されている。気体が給気もしくは排気される位置に特に限定はないが、気体温度が低い場所から給気し、高いところから排気することが好ましい。   In the form shown in FIG. 1, the surroundings of the heat treatment chamber 7 and the roller 14 are surrounded by the enclosure 1, the gas is supplied to the area A through the air supply fan 3, and the gas in the area A is supplied through the exhaust fan 5. Has been exhausted. The position at which the gas is supplied or exhausted is not particularly limited, but it is preferable to supply air from a place where the gas temperature is low and exhaust from a high place.

本発明における微粒子濃度とは、上記の定義のとおり、領域A中の、雰囲気中の下記する方法で測定された粒径0.5μm以上の粒子を、5.0μm相当に換算したときの1リットルあたりの個数のことを意味し、微粒子濃度が3000個/リットル以下となることが好ましい。   The fine particle concentration in the present invention is, as defined above, 1 liter when particles having a particle diameter of 0.5 μm or more measured in the atmosphere in the region A by the following method are converted to equivalent to 5.0 μm. This means that the fine particle concentration is 3000 particles / liter or less.

微粒子濃度を3000個/リットル以下とすることで、その微粒子がローラー上で繊維束を傷つけることを予防でき、高強度炭素繊維を得ることができる。微粒子濃度はF/FとF/VとV/Vおよび領域A給気ラインの粒子除去装置性能やポリアクリロニトリル系繊維束に付与される界面活性剤の耐熱性等によって制御可能である。 By setting the fine particle concentration to 3000 particles / liter or less, it is possible to prevent the fine particles from damaging the fiber bundle on the roller and to obtain high-strength carbon fibers. The fine particle concentration is controlled by F 1 / F 2 , F 1 / V 2 , V 2 / V 1 and the performance of the particle removal device in the area A supply line, the heat resistance of the surfactant applied to the polyacrylonitrile fiber bundle, and the like. Is possible.

用いられる囲い体1の材質に特に限定はないが、不燃性の観点からコンクリート、モルタル、石膏ボードなどを用いることが好ましい。また、図1に示すように、炭素繊維束の連続的な生産を可能とするため、被処理繊維束は入側糸道開口部10を通過した後、囲い体内部に設けられた熱処理室にて耐炎化処理を行い、最後に出側糸道開口部11を通過することが好ましい。また、シール性を向上させるために、糸道開口部10、11は繊維束の形状に合わせ、繊維束との接触が起こらない範囲で最小化することが好ましい。   The material of the enclosure 1 to be used is not particularly limited, but concrete, mortar, gypsum board and the like are preferably used from the viewpoint of nonflammability. Further, as shown in FIG. 1, in order to enable continuous production of carbon fiber bundles, the fiber bundles to be treated pass through the entry-side yarn path opening 10 and then enter the heat treatment chamber provided inside the enclosure. It is preferable to perform the flameproofing treatment and finally pass through the exit side thread passage opening 11. Further, in order to improve the sealing performance, it is preferable to minimize the yarn path openings 10 and 11 within a range in which contact with the fiber bundle does not occur in accordance with the shape of the fiber bundle.

上記の実施形態においては、作業者が出入りするための出入り口の記載を省略しているが、トラブル時に迅速な処置が可能となるよう、作業者が出入りするための扉を設けることが好しく、作業者が出入りした際の温度変動を抑制するため、通常開閉できる扉の面積は作業者出入りできる範囲で最小化することが好ましい。   In the above embodiment, the description of the doorway for the operator to enter and exit is omitted, but it is preferable to provide a door for the operator to enter and exit so that a quick action can be taken at the time of trouble, In order to suppress temperature fluctuation when an operator enters and exits, it is preferable to minimize the area of the door that can be normally opened and closed within a range in which the operator can enter and exit.

このようにして得られた耐炎化繊維束を、不活性雰囲気下で、好ましくは最高温度を300〜800℃の温度範囲内で予備炭化処理を行う。このように予備炭化処理を施した後、不活性雰囲気下で最高温度が1000〜2000℃の範囲で炭化処理することによって高強度な炭素繊維束を得ることができる。   The flame-resistant fiber bundle thus obtained is subjected to preliminary carbonization treatment in an inert atmosphere, preferably at a maximum temperature in the temperature range of 300 to 800 ° C. Thus, after performing a preliminary carbonization process, a carbon fiber bundle with high strength can be obtained by performing a carbonization process in a range of a maximum temperature of 1000 to 2000 ° C. in an inert atmosphere.

ここで、予備炭化処理および炭化処理は不活性雰囲気中で行われるが、用いられる不活性ガスとしては、例えば、窒素、アルゴンおよびキセノンなどが好ましく例示され、ランニングコストの観点からは窒素が好ましく用いられる。   Here, the preliminary carbonization treatment and the carbonization treatment are performed in an inert atmosphere, and as the inert gas used, for example, nitrogen, argon, xenon and the like are preferably exemplified, and nitrogen is preferably used from the viewpoint of running cost. It is done.

さらに、炭素繊維束は、その表面改質のため、電解処理することができる。かかる電解処理により、得られる複合材料において炭素繊維束とマトリックスとの接着性が適正化でき、繊維軸方向と非繊維軸方向の両方向にバランスのとれた強度特性が発現されるようになる。   Furthermore, the carbon fiber bundle can be electrolytically treated for its surface modification. By such electrolytic treatment, the adhesive property between the carbon fiber bundle and the matrix can be optimized in the obtained composite material, and strength characteristics balanced in both the fiber axis direction and the non-fiber axis direction can be expressed.

次いで、得られる炭素繊維束に収束性を付与するため、サイジング処理をして、サイジング剤を付与することも好ましい。   Next, in order to impart convergence to the obtained carbon fiber bundle, it is also preferable to apply a sizing agent by sizing treatment.

最後に、これらの工程を経た炭素繊維束をボビンに巻き取ることにより、炭素繊維束を得ることができる。   Finally, a carbon fiber bundle can be obtained by winding the carbon fiber bundle that has undergone these steps onto a bobbin.

本発明は、使用するアクリロニトリル系繊維束の単繊維繊度が0.5〜1.3dtexであり、炭化したときの単繊維の直径が3.8〜8.5μmであることが好ましい。1.3dtex以下および8.5μm以下とすることによって、繊維のプロセス通過性を一定の水準に保持し、又得られる炭素繊維強の特性も維持することが出来る。又、0.5dtex以上および3.8μm以上とすることによって、単糸の切断等によって生じるプロセス通過性の低下を防ぎ、生産性の低下も防ぐことが出来る。なおアクリロニトリル系単繊維の繊度と、炭素繊維単繊維の繊度は独立して変更できるわけではないが、用いる炭素繊維製造工程の条件によって変動するので、それぞれの値を上記の範囲とすることが好ましい。   In the present invention, the single fiber fineness of the acrylonitrile fiber bundle to be used is preferably 0.5 to 1.3 dtex, and the diameter of the single fiber when carbonized is preferably 3.8 to 8.5 μm. By setting it to 1.3 dtex or less and 8.5 μm or less, the process passability of the fiber can be maintained at a certain level, and the characteristics of the obtained carbon fiber strength can be maintained. Moreover, by setting it as 0.5 dtex or more and 3.8 micrometers or more, the fall of the process passability produced by the cutting | disconnection of a single yarn etc. can be prevented, and the fall of productivity can also be prevented. Although the fineness of the acrylonitrile-based single fiber and the fineness of the carbon fiber single fiber cannot be changed independently, it varies depending on the conditions of the carbon fiber production process to be used, so each value is preferably in the above range. .

本発明の炭素繊維束は、その断面の真円度が1.01〜1.07であるものが好ましく、1.02〜1.05であるものが更に好ましい。ここで真円度とは、炭素繊維束を常温硬化型エポキシ樹脂に包埋し、硬化後表面を研磨して走査型電子顕微鏡にて求めた。ここで、繊維束は弛みがない状態で研磨面に垂直となるようにして硬化させる。また電子顕微鏡の画像は、任意に選定した25本の単糸について、倍率3000倍で求めて、繊維断面を楕円として近似したときの最短距離を短径、最長距離を長径として真円度を長径/短径の値として定義する。   The carbon fiber bundle of the present invention preferably has a roundness of a cross section of 1.01 to 1.07, and more preferably 1.02 to 1.05. Here, the roundness was obtained by embedding a carbon fiber bundle in a room temperature curable epoxy resin, polishing the surface after curing, and using a scanning electron microscope. Here, the fiber bundle is cured so as to be perpendicular to the polishing surface in a state without slack. Also, the image of the electron microscope is obtained for a randomly selected 25 single yarn at a magnification of 3000 times, and when the fiber cross section is approximated as an ellipse, the shortest distance is the short diameter, the longest distance is the long diameter, and the roundness is the long diameter. / Defined as the minor axis value.

本発明の炭素繊維束の単糸の表面平滑性は、算術平均粗さRaで表したとき、好ましくは1.0nm〜15nm、さらに好ましくは2.0〜10nmである。これらは使用するアクリロニトリル系繊維束を紡糸するときに、原液のポリマ温度を可能な範囲で高く設定するとともに、湿式紡糸であれば、口金条件や紡糸浴の引取条件を組み合わせて得ることが出来、乾湿式紡糸であれば、やはり紡糸条件と、延伸条件などとを組み合わせ、それらを炭化することにより、ほぼ同程度の表面平滑性の炭素繊維を得ることが出来る。   The surface smoothness of the single yarn of the carbon fiber bundle of the present invention is preferably 1.0 nm to 15 nm, more preferably 2.0 to 10 nm, when expressed by arithmetic average roughness Ra. When spinning the acrylonitrile fiber bundle to be used, the polymer temperature of the stock solution is set as high as possible, and if it is wet spinning, it can be obtained by combining the die conditions and the spinning bath take-up conditions, In the case of dry-wet spinning, carbon fibers having substantially the same surface smoothness can be obtained by combining spinning conditions and stretching conditions and carbonizing them.

以下に本発明を実施例および比較例によりさらに具体的に説明する。表1には各種条件および微粒子濃度、評価結果の一覧を示す。なお、各特性の評価方法・測定方法は下記のとおりとした。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. Table 1 shows a list of various conditions, fine particle concentrations, and evaluation results. In addition, the evaluation method and measurement method of each characteristic were as follows.

<界面活性剤(シリコーン油剤)の耐熱性>
乳化状態にある界面活性剤を、予め105℃・5時間乾燥したときの質量を基準とし、熱天秤分析によって空気中昇温速度10℃/分で240℃まで昇温し、240℃・2時間保持し、雰囲気を窒素に切り替えて10℃/分で昇温して、到達温度450℃・30秒保持した時点での質量保持率(%)を耐熱性とした。
<Heat resistance of surfactant (silicone oil)>
The surfactant in the emulsified state is heated to 240 ° C. at a heating rate of 10 ° C./min in the air by thermobalance analysis based on the mass when dried at 105 ° C. for 5 hours in advance, and 240 ° C. for 2 hours. The atmosphere was switched to nitrogen, the temperature was raised at 10 ° C./min, and the mass retention rate (%) when the temperature reached 450 ° C. for 30 seconds was defined as heat resistance.

<微粒子濃度>
試料気体流量0.5リットル/分で34秒間(合計0.283リットル)気体を吸引し、0.283リットルに含まれる0.5μm以上1.0μm未満、1.0μm以上2.0μm未満、2.0μm以上5.0μm未満、5.0μm以上の4段階粒子数を同時に計測し、その値をD0.5、D1.0、D2.0、D5.0(個/0.283リットル)とするとき、以下の換算式によって各粒子の濃度を5.0μmの粒子数に換算した値を求めた。ここで、微粒子濃度の測定場所は、熱処理室に糸が出入りする場所の最下部の炉外ローラー周囲10cmの場所とし、光散乱式パーティクルカウンタ(例えば、RION社 KC−01E)を用いて測定した。この測定を連続して3回実施し、その平均値を微粒子濃度とした。
<Concentration of fine particles>
Gas is sucked at a sample gas flow rate of 0.5 liters / minute for 34 seconds (total 0.283 liters), and contained in 0.283 liters, 0.5 μm or more and less than 1.0 μm, 1.0 μm or more and less than 2.0 μm. The number of four-stage particles of 0.0 μm or more and less than 5.0 μm and 5.0 μm or more was measured at the same time, and the values were D 0.5 , D 1.0 , D 2.0 , D 5.0 (pieces / 0.283 Liter), the value obtained by converting the concentration of each particle into the number of particles of 5.0 μm was determined by the following conversion formula. Here, the fine particle concentration was measured at a location 10 cm around the lower outer roller where the yarn enters and exits the heat treatment chamber, and was measured using a light scattering particle counter (for example, RION KC-01E). . This measurement was carried out three times in succession, and the average value was taken as the fine particle concentration.

5.0μmの粒子数への換算式=[{D0.5/(5.0/0.5)}+{D1.0/(5.0/1.0)}+{D2.0/(5.0/2.0)}+D5.0]/0.283(個/リットル)。 Conversion formula to the number of particles of 5.0 μm = [{D 0.5 /(5.0/0.5)}+{D 1.0 /(5.0/1.0)}+{D 2. 0 / ( 5.0 / 2.0)} + D5.0] /0.283 (pieces / liter).

<界面活性剤の耐熱性>
<相対ストランド引張強度>
JIS R 7601:1986の「樹脂含浸ストランド試験法」に従いストランド引張強度を測定し、以下の換算式によって比較例1のストランド引張強度に対する相対ストランド引張強度を使用した。
<Heat resistance of surfactant>
<Relative strand tensile strength>
The strand tensile strength was measured according to “Resin-impregnated strand test method” of JIS R 7601: 1986, and the relative strand tensile strength relative to the strand tensile strength of Comparative Example 1 was used according to the following conversion formula.

相対ストランド引張強度への換算式=T/T
ここで、Tは各実施例、比較例におけるストランド引張強度、Tは比較例1のストランド引張強度である。
Conversion formula to relative strand tensile strength = T / T 0
Here, T is the strand tensile strength in each Example and Comparative Example, and T 0 is the strand tensile strength of Comparative Example 1.

<炭素繊維束の長手方向の繊度斑>
炭素繊維束を20分おきにボビンに1分間巻き取った。これを24時間繰り返し、計72本のボビンを採取した。これらのボビンを温度23±5℃、相対湿度60±20%の雰囲気中に24時間以上放置したのち、同雰囲気中でそれぞれのボビンから長手方向に1m、撚りが入らないように切断したものを電子天秤で測定し、次式に基づいて長手方向の繊度斑を求めた。
<Fineness unevenness in the longitudinal direction of the carbon fiber bundle>
The carbon fiber bundle was wound around a bobbin for 1 minute every 20 minutes. This was repeated for 24 hours, and a total of 72 bobbins were collected. After leaving these bobbins in an atmosphere at a temperature of 23 ± 5 ° C. and a relative humidity of 60 ± 20% for 24 hours or more, the bobbins were cut from each bobbin in the longitudinal direction so as not to be twisted in the longitudinal direction. It measured with the electronic balance and calculated | required the fineness unevenness of the longitudinal direction based on following Formula.

長手方向繊度斑(%)=(σ/X)×100
ここで、σ:測定繊度全データの標準偏差、Xは測定繊度全データの平均値である。
Longitudinal fineness unevenness (%) = (σ / X) × 100
Here, σ: standard deviation of all measured fineness data, and X is an average value of all measured fineness data.

なお、耐炎化工程では、作業者が運転状態の定期的な点検や、巻付きトラブルが発生したときなど領域Aに立ち入る。本実施例・比較例における炭素繊維束の長手方向の繊度斑は、必要時に人が領域Aに出入りして点検や巻付きトラブル対応を行った状況下において求められた。   In the flameproofing process, the operator enters the area A when the operator periodically checks the operating state or when a winding trouble occurs. The fineness unevenness in the longitudinal direction of the carbon fiber bundles in this example and the comparative example was obtained under the situation where a person entered and exited the area A when necessary to perform inspection and winding trouble handling.

<単糸表面粗さ測定>
炭素繊維単糸表面上の形態は、原子間力顕微鏡を用いた算術平均粗さとして求めた。測定方法は、Veeco社Digital Instruments製 NanoScopeIIIa AFM Dimennsion 3000 ステージシステムを使用し、タッピングモードで測定する。サンプルは、単糸を1.5cmにカットし、銀ペーストでSiウェハに固定した。探針にシリコンカンチレバーを用いて、走査範囲2.5μm×2.5μmの範囲を走査速度0.33Hzで測定を行った。3視野から測定を行った表面粗さを定量的に評価するために、3次元表面粗さ評価を行い、中心線からの偏差の絶対値の平均値を算術平均粗さRaとして示した。なお、サイジング剤が付着している炭素繊維については、脱サイジングを行った後測定を実施した。
<Single yarn surface roughness measurement>
The form on the surface of the carbon fiber single yarn was determined as an arithmetic average roughness using an atomic force microscope. The measurement method uses NanoScopeIIIa AFM Dimension 3000 stage system manufactured by Veeco Digital Instruments and performs measurement in a tapping mode. In the sample, a single yarn was cut to 1.5 cm and fixed to a Si wafer with a silver paste. Using a silicon cantilever as a probe, a scanning range of 2.5 μm × 2.5 μm was measured at a scanning speed of 0.33 Hz. In order to quantitatively evaluate the surface roughness measured from three fields of view, a three-dimensional surface roughness evaluation was performed, and the average value of the absolute values of deviations from the center line was indicated as the arithmetic average roughness Ra. In addition, about the carbon fiber to which the sizing agent adhered, it measured after de-sizing.

(比較例1)
アクリロニトリルとイタコン酸からなる共重合体を、ジメチルスルホキシドを溶媒とする溶液重合法により製造し、アクリル系共重合体の含有率が22質量%である紡糸原液を得た。この紡糸原液を、40℃で、孔数4,000の紡糸口金を用いて一旦空気中に吐出した後、10℃にコントロールした35質量%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固させた。得られた凝固糸を、水洗、延伸、油剤付与した後、乾燥させ、スチーム延伸し、単糸繊度1.1dtex、単糸本数12,000本のポリアクリロニトリル系繊維束を得た。
(Comparative Example 1)
A copolymer composed of acrylonitrile and itaconic acid was produced by a solution polymerization method using dimethyl sulfoxide as a solvent to obtain a spinning dope with an acrylic copolymer content of 22% by mass. The spinning dope is discharged into air at 40 ° C. using a spinneret having a hole number of 4,000, and then introduced into a coagulation bath composed of an aqueous solution of 35 mass% dimethyl sulfoxide controlled at 10 ° C. It was solidified by the method. The obtained coagulated yarn was washed with water, drawn and oiled, and then dried and steam drawn to obtain a polyacrylonitrile fiber bundle having a single yarn fineness of 1.1 dtex and a single yarn number of 12,000.

ここで、油剤は、アミノ変性されたジメチルシロキサン油剤成分を、ノニオン系界面活性剤を用いて水分散系としたものと、ジメチルポリシロキサンをポリエチレングリコールで変性して水溶性にした油剤を純分で等量混合したものを用い、その耐熱性が56%のものを用いた。   Here, the oil agent is a pure component of an amino-modified dimethylsiloxane oil component made into a water dispersion using a nonionic surfactant and an oil agent modified with polyethylene glycol to make it water-soluble. A mixture having an equal heat resistance of 56% was used.

次いで、熱処理室周辺に囲いを設けていない横型熱風循環式の耐炎化炉にて220〜270℃で耐炎化処理を行った。その後、窒素雰囲気中300〜800℃の温度領域で予備炭化処理した後、1000〜1500℃の温度領域で炭化処理して単糸直径が6.9μm、密度1.80g/cm、単糸の真円度が1.03、算術平均粗さRaが3.2nmの炭素繊維束を得た。熱処理室に糸が出入りする場所の最下部の炉外ローラー周囲10cmの微粒子濃度は10000個/リットルであり、また繊度斑は1.2%であった。比較例1で得られた炭素繊維束のストランド引張強度を基準として1.00とした。 Next, flameproofing treatment was performed at 220 to 270 ° C. in a horizontal hot air circulation type flameproofing furnace without an enclosure around the heat treatment chamber. Then, after preliminary carbonization treatment in a temperature range of 300 to 800 ° C. in a nitrogen atmosphere, carbonization treatment was performed in a temperature range of 1000 to 1500 ° C. to obtain a single yarn diameter of 6.9 μm, a density of 1.80 g / cm 3 , A carbon fiber bundle having a roundness of 1.03 and an arithmetic average roughness Ra of 3.2 nm was obtained. The fine particle concentration around 10 cm around the outer roller at the bottom of the place where the yarn enters and exits the heat treatment chamber was 10000 particles / liter, and the fineness unevenness was 1.2%. The strand tensile strength of the carbon fiber bundle obtained in Comparative Example 1 was set to 1.00.

(実施例1)
比較例1と同様に作製したポリアクリロニトリル繊維束を、熱処理室周辺に囲いが設けられた横型熱風循環式の耐炎化炉にて220〜270℃で耐炎化処理を行い、次いで同様に予備炭化、炭化を行って単糸直径が6.9μm、密度1.80g/cm、単糸の真円度が1.04、算術平均粗さRaが2.9nmの炭素繊維束を得た。このとき、F/F=1.03、F/V=5.0、V/V=6.0とし、領域Aへの給気ラインの粒子除去装置6内のフィルタスペックは粒子除去性能が中程度のものを使用した。相対ストランド引張強度は1.08、繊度斑も0.8%であった。また、熱処理室に糸が出入りする場所の最下部のローラー周囲10cmの微粒子濃度は3400個/リットルと減少した。
Example 1
The polyacrylonitrile fiber bundle produced in the same manner as in Comparative Example 1 was subjected to flame resistance treatment at 220 to 270 ° C. in a horizontal hot air circulation type flame resistance furnace provided with an enclosure around the heat treatment chamber. Carbonization was performed to obtain a carbon fiber bundle having a single yarn diameter of 6.9 μm, a density of 1.80 g / cm 3 , a single yarn roundness of 1.04, and an arithmetic average roughness Ra of 2.9 nm. At this time, F 1 / F 2 = 1.03, F 1 / V 2 = 5.0, V 2 / V 1 = 6.0, and the filter specifications in the particle removal device 6 for the air supply line to the region A are set. Used a medium particle removal performance. The relative strand tensile strength was 1.08, and the fineness unevenness was 0.8%. In addition, the fine particle concentration around 10 cm around the lowermost roller where the yarn enters and exits the heat treatment chamber was reduced to 3400 particles / liter.

(実施例2、4)
/Fがそれぞれ1.05、1.10であること以外はすべて実施例1と同様にして炭素繊維束を得た。その結果、炭素繊維束の相対ストランド引張強度はそれぞれ1.09、1.12であり、繊度斑はそれぞれ0.7%、0.6%と良好な結果となった。
(Examples 2 and 4)
Carbon fiber bundles were obtained in the same manner as in Example 1 except that F 1 / F 2 were 1.05 and 1.10, respectively. As a result, the relative strand tensile strengths of the carbon fiber bundles were 1.09 and 1.12, respectively, and fineness unevenness was 0.7% and 0.6%, respectively.

(実施例3)
粒子除去装置6内のフィルタを粒子除去性能の高いものに交換した以外は実施例1と同様の方法で炭素繊維束を得た。熱処理室に糸が出入りする場所の最下部のローラー周辺の微粒子濃度は2900個/リットルであった。また、炭素繊維束の相対ストランド引張強度は1.12であり、繊度斑は0.7%と良好な結果となった。
(Example 3)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the filter in the particle removing device 6 was replaced with one having a high particle removing performance. The fine particle concentration around the lowermost roller at the place where the yarn enters and exits the heat treatment chamber was 2900 particles / liter. Further, the relative strand tensile strength of the carbon fiber bundle was 1.12, and the fineness unevenness was 0.7%, which was a favorable result.

(実施例5、6)
/Fが1.05、F/Vがそれぞれ10.0、15.0であること以外はすべて実施例1と同様にして炭素繊維束を得た。その結果、炭素繊維束の相対ストランド引張強度はそれぞれ1.12、1.13であり、繊度斑も0.7%と良好な結果となった。
(Examples 5 and 6)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that F 1 / F 2 was 1.05 and F 1 / V 2 was 10.0 and 15.0, respectively. As a result, the relative strand tensile strength of the carbon fiber bundle was 1.12 and 1.13, respectively, and the fineness unevenness was 0.7%, which was a favorable result.

(実施例7)
/Fが1.05、F/Vが15.0、V/Vが10.0であること以外はすべて実施例1と同様にして炭素繊維束を得た。その結果、炭素繊維束の相対ストランド引張強度は1.13であり、繊度斑は0.5%と良好な結果となった。
(Example 7)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that F 1 / F 2 was 1.05, F 1 / V 2 was 15.0, and V 2 / V 1 was 10.0. As a result, the relative strand tensile strength of the carbon fiber bundle was 1.13, and the fineness unevenness was as good as 0.5%.

(実施例8)
/Vが3.5であること以外はすべて実施例2と同様にして炭素繊維束を得た。その結果繊度斑は0.9%とやや悪化したが、相対ストランド引張強度は1.09と良好な結果であった。
(Example 8)
A carbon fiber bundle was obtained in the same manner as in Example 2 except that V 2 / V 1 was 3.5. As a result, the fineness unevenness slightly deteriorated to 0.9%, but the relative strand tensile strength was 1.09, which was a good result.

(実施例9)
油剤の成分の割合を調整することにより、耐熱性が35%の油剤を作製して用いた以外は、実施例3と同様の条件で炭素繊維を得た。その結果相対ストランド引張強度は1.07とやや低下したが、繊度斑は0.8%と良好な結果であった。
Example 9
Carbon fibers were obtained under the same conditions as in Example 3 except that an oil agent having a heat resistance of 35% was prepared and used by adjusting the ratio of the oil agent components. As a result, the relative strand tensile strength slightly decreased to 1.07, but the fineness unevenness was a good result of 0.8%.

(実施例10)
油剤の成分の割合を調整することにより、耐熱性が18%の油剤を作製して用いた以外は、実施例9と同様の条件で炭素繊維を得た。その結果相対ストランド引張強度は1.05と低下したが、繊度斑は0.8%を保持することが出来た。
(Example 10)
Carbon fibers were obtained under the same conditions as in Example 9 except that an oil agent having a heat resistance of 18% was prepared and used by adjusting the ratio of the oil agent components. As a result, the relative strand tensile strength decreased to 1.05, but the fineness unevenness was able to maintain 0.8%.

(比較例2)
/Fが0.95、F/Vが3.0であること以外は実施例1と同様にして炭素繊維束を得た。炭素繊維束の相対ストランド引張強度は1.03と実施例1〜9に比べて発現しなかった。
(Comparative Example 2)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that F 1 / F 2 was 0.95 and F 1 / V 2 was 3.0. The relative strand tensile strength of the carbon fiber bundle was 1.03, which was not expressed as compared with Examples 1-9.

(比較例3)
/Vが3.0であること以外は実施例1と同様にして炭素繊維束を得た。炭素繊維束の相対ストランド引張強度は1.04と実施例1〜9に比べて発現しなかった。
(Comparative Example 3)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that F 1 / V 2 was 3.0. The relative strand tensile strength of the carbon fiber bundle was 1.04, which was not expressed as compared with Examples 1-9.

(比較例4)
/Fが0.95であること以外は実施例1と同様にして炭素繊維束を得た。炭素繊維束の相対ストランド引張強度は1.03と実施例1〜9に比べて発現しなかった。
(Comparative Example 4)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that F 1 / F 2 was 0.95. The relative strand tensile strength of the carbon fiber bundle was 1.03, which was not expressed as compared with Examples 1-9.

(比較例5)
/Vが2.0であること以外はすべて実施例2と同様にして炭素繊維束を得た。その結果、相対ストランド引張強度が1.05と若干低下し、繊度斑が1.3%と大きく悪化した。作業員の出入りが繊度斑に影響したと考えられる。
(Comparative Example 5)
A carbon fiber bundle was obtained in the same manner as in Example 2 except that V 2 / V 1 was 2.0. As a result, the relative strand tensile strength slightly decreased to 1.05, and the fineness unevenness greatly deteriorated to 1.3%. It is thought that the entry and exit of workers affected the fineness spots.

(比較例6)
領域Aへの給気ラインの粒子除去装置を経由せずに給気した以外はすべて実施例1と同様にして炭素繊維を得た。炭素繊維束の相対ストランド引張強度は1.02と実施例1〜9に比べて発現しなかった。
(Comparative Example 6)
Carbon fibers were obtained in the same manner as in Example 1 except that air was supplied without going through the particle removing device of the air supply line to the region A. The relative strand tensile strength of the carbon fiber bundle was 1.02, which was not expressed as compared with Examples 1-9.

Figure 2018111891
Figure 2018111891

1:囲い体
2:給気ライン
3:給気ファン
4:排気ライン
5:排気ファン
6:粒子除去装置
7:熱処理室
8:ポリアクリロニトリル系繊維束
9:炭素繊維束生産設備建屋
10:入側糸道開口部
11:出側糸道開口部
12:シール室
13:循環ライン
14:ローラー
1: Enclosure 2: Air supply line 3: Air supply fan 4: Exhaust line 5: Exhaust fan 6: Particle removal device 7: Heat treatment chamber 8: Polyacrylonitrile fiber bundle 9: Carbon fiber bundle production facility building 10: Entrance Yarn path opening 11: Exit side thread path opening 12: Sealing chamber 13: Circulation line 14: Roller

Claims (3)

酸化性気体中でポリアクリロニトリル系繊維束を耐炎化処理する熱処理室と、ポリアクリロニトリル系繊維束の進行方向を変えるためのローラーと、熱処理室とローラーとを囲う囲い体と、囲い体内部であって熱処理室を含まない領域に微粒子除去手段を介して気体を給気する給気ラインと、囲い体内部であって熱処理室を含まない領域の気体を外部に排気する排気ラインとを有する耐炎化炉を用い、(式1)、(式2)、(式3)を満たす条件下でポリアクリロニトリル系繊維束を耐炎化処理して耐炎化繊維束を得る耐炎化工程と、耐炎化繊維束を300〜2000℃の温度で炭素化処理して炭素繊維束を得る炭素化工程とを少なくとも有する炭素繊維束の製造方法。
/F>1.00 ・・・(式1)
/V≧5.0 ・・・(式2)
/V>3.0 ・・・(式3)
(但し、F:囲い体への給気流量[m/hr]、F:囲い体からの排気流量[m/hr]、V:熱処理室体積[m]、V:囲い体内部であって熱処理室を含まない領域の体積[m]、である。)
A heat treatment chamber for flameproofing a polyacrylonitrile fiber bundle in an oxidizing gas, a roller for changing the traveling direction of the polyacrylonitrile fiber bundle, an enclosure for enclosing the heat treatment chamber and the roller, and an inside of the enclosure Flame-proofing having an air supply line for supplying gas to the area not including the heat treatment chamber via the particulate removing means and an exhaust line for exhausting the gas in the area not including the heat treatment chamber to the outside inside the enclosure Using a furnace, a flameproofing step of obtaining a flameproofed fiber bundle by flameproofing a polyacrylonitrile fiber bundle under conditions satisfying (Formula 1), (Formula 2), and (Formula 3), and a flameproof fiber bundle The carbon fiber bundle manufacturing method which has at least the carbonization process which carbonizes at the temperature of 300-2000 degreeC, and obtains a carbon fiber bundle.
F 1 / F 2> 1.00 ··· ( Equation 1)
F 1 / V 2 ≧ 5.0 (Formula 2)
V 2 / V 1 > 3.0 (Expression 3)
(However, F 1 : Supply air flow rate to enclosure [m 3 / hr], F 2 : Exhaust flow rate from enclosure [m 3 / hr], V 1 : Heat treatment chamber volume [m 3 ], V 2 : The volume [m 3 ] of the area inside the enclosure and not including the heat treatment chamber.)
耐炎化工程において、本文中に規定する微粒子濃度が3000個/リットル以下でポリアクリロニトリル系繊維束を耐炎化処理する、請求項1に記載の炭素繊維束の製造方法。 The method for producing a carbon fiber bundle according to claim 1, wherein in the flameproofing step, the polyacrylonitrile fiber bundle is flameproofed at a fine particle concentration specified in the text of 3000 particles / liter or less. ポリアクリロニトリル系繊維束は、本文中に規定する界面活性剤の耐熱性が20%以上であるシリコーン油剤がポリアクリロニトリル系繊維束の質量に対して0.2〜3.0質量%付与されたものである、請求項1又は2の炭素繊維束の製造方法。 The polyacrylonitrile fiber bundle is provided with 0.2 to 3.0% by mass of a silicone oil whose heat resistance of the surfactant specified in the text is 20% or more with respect to the mass of the polyacrylonitrile fiber bundle. The method for producing a carbon fiber bundle according to claim 1 or 2, wherein
JP2017001598A 2017-01-10 2017-01-10 Manufacturing method of carbon fiber bundle Active JP6852405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001598A JP6852405B2 (en) 2017-01-10 2017-01-10 Manufacturing method of carbon fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001598A JP6852405B2 (en) 2017-01-10 2017-01-10 Manufacturing method of carbon fiber bundle

Publications (2)

Publication Number Publication Date
JP2018111891A true JP2018111891A (en) 2018-07-19
JP6852405B2 JP6852405B2 (en) 2021-03-31

Family

ID=62911798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001598A Active JP6852405B2 (en) 2017-01-10 2017-01-10 Manufacturing method of carbon fiber bundle

Country Status (1)

Country Link
JP (1) JP6852405B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112730A (en) * 2017-12-21 2019-07-11 東レ株式会社 Carbon fiber bundle and method for producing the same
WO2020203531A1 (en) * 2019-04-03 2020-10-08 東レ株式会社 Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057222A (en) * 2004-08-24 2006-03-02 Toho Tenax Co Ltd Flame resisting treatment furnace and method for flame resisting treatment
JP2007217835A (en) * 2006-02-17 2007-08-30 Toho Tenax Co Ltd Flameproofing treatment oven
JP2008095221A (en) * 2006-10-10 2008-04-24 Toray Ind Inc Method and apparatus for producing carbon fiber bundle
JP2008138325A (en) * 2006-12-04 2008-06-19 Toray Ind Inc Flame resistant furnace and method for producing flame resistant fiber bundle, and method for producing carbon fiber bundle
JP2012246598A (en) * 2012-08-17 2012-12-13 Mitsubishi Rayon Co Ltd Method for producing carbon fiber
JP2014025167A (en) * 2012-07-27 2014-02-06 Toray Ind Inc Flame-resistant fiber bundle and carbon fiber bundle, and methods for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057222A (en) * 2004-08-24 2006-03-02 Toho Tenax Co Ltd Flame resisting treatment furnace and method for flame resisting treatment
JP2007217835A (en) * 2006-02-17 2007-08-30 Toho Tenax Co Ltd Flameproofing treatment oven
JP2008095221A (en) * 2006-10-10 2008-04-24 Toray Ind Inc Method and apparatus for producing carbon fiber bundle
JP2008138325A (en) * 2006-12-04 2008-06-19 Toray Ind Inc Flame resistant furnace and method for producing flame resistant fiber bundle, and method for producing carbon fiber bundle
JP2014025167A (en) * 2012-07-27 2014-02-06 Toray Ind Inc Flame-resistant fiber bundle and carbon fiber bundle, and methods for producing the same
JP2012246598A (en) * 2012-08-17 2012-12-13 Mitsubishi Rayon Co Ltd Method for producing carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112730A (en) * 2017-12-21 2019-07-11 東レ株式会社 Carbon fiber bundle and method for producing the same
WO2020203531A1 (en) * 2019-04-03 2020-10-08 東レ株式会社 Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle

Also Published As

Publication number Publication date
JP6852405B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP6885109B2 (en) Carbon fiber bundle and its manufacturing method
JP5834917B2 (en) Method for producing carbon fiber prepreg, method for producing carbon fiber reinforced composite material
JP2018145540A (en) Method for production of carbon fiber bundle
US8129017B2 (en) Carbon fiber strand and process for producing the same
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
AU2015355369B2 (en) Continuous carbonization process and system for producing carbon fibers
JPH11241230A (en) Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP5161604B2 (en) Carbon fiber manufacturing method
JP6852405B2 (en) Manufacturing method of carbon fiber bundle
TWI769513B (en) Carbon fiber manufacturing method and carbon fiber using the same
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP2010133059A (en) Flameproofing furnace, and method for producing carbon fiber using the same
CN110168154B (en) Method for cleaning refractor oven and method for producing refractory fiber, carbon fiber, and graphitized fiber
JP6064409B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JPS6052206B2 (en) Method for manufacturing acrylic carbon fiber
JP2016160560A (en) Method for manufacturing carbon fiber bundle
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP2016037689A (en) Method for producing carbon fiber
JP7468343B2 (en) Method for producing flame-retardant fiber bundle and method for producing carbon fiber bundle
JP6520787B2 (en) Method for producing acrylic precursor fiber bundle and method for producing carbon fiber
JP2008190056A (en) Method for producing flameproof fiber bundle
WO2023140212A1 (en) Carbon fiber bundle
JP2001248025A (en) Method for producing carbon fiber
JPS58220821A (en) Acrylic carbon fiber bundle with high strength and elongation and its production
JP7155577B2 (en) Carbon fiber precursor Acrylic fiber Carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R151 Written notification of patent or utility model registration

Ref document number: 6852405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151