JP2012246598A - Method for producing carbon fiber - Google Patents

Method for producing carbon fiber Download PDF

Info

Publication number
JP2012246598A
JP2012246598A JP2012181039A JP2012181039A JP2012246598A JP 2012246598 A JP2012246598 A JP 2012246598A JP 2012181039 A JP2012181039 A JP 2012181039A JP 2012181039 A JP2012181039 A JP 2012181039A JP 2012246598 A JP2012246598 A JP 2012246598A
Authority
JP
Japan
Prior art keywords
outside air
hot air
flameproofing
furnace
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012181039A
Other languages
Japanese (ja)
Other versions
JP5496286B2 (en
Inventor
Hiroshi Inagaki
博司 稲垣
Yoichi Kodama
陽一 小玉
Kazuyuki Machida
和之 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012181039A priority Critical patent/JP5496286B2/en
Publication of JP2012246598A publication Critical patent/JP2012246598A/en
Application granted granted Critical
Publication of JP5496286B2 publication Critical patent/JP5496286B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a carbon fiber that can stably perform a flameproof treatment to obtain a carbon fiber having a high quality, and can reduce a leakage of an oven gas around an apparatus.SOLUTION: The method for producing a carbon fiber includes: a flameproofing step for circulating hot air heated by hot air heating means to perform a flameproof treatment on a precursor fiber bundle; a carbonization step for carbonizing a flameproof fiber obtained by the flameproof treatment; a heat exchange step for heat exchanging a discharge gas discharged in the carbonization step with outside air; and a heated outside air feeding step for air-feeding heated outside air that is heated by the heat exchange step to hot air in the flameproofing step. A heat quantity per hour of the heated outside air fed during the start of air-feeding of the heated outside air to the hot air in the flameproofing step through the reaching to a steady operation is increased each time by 20-50% of a heat quantity of the heated outside air fed during the steady operation per hour.

Description

本発明は、炭素繊維の製造方法に関する。   The present invention relates to a method for producing carbon fiber.

炭素繊維は、比強度、比弾性率、比抵抗、耐薬品性などに優れることから、繊維強化樹脂の補強繊維などとして用いられている。炭素繊維は、例えば、前駆体繊維としてポリアクリロニトリル系繊維(以下、PAN系繊維と記す)を用いた場合、下記の工程を行う炭素繊維製造装置により製造される。
耐炎化炉にて、空気などの酸化性気体中、200〜300℃の温度で前駆体繊維束を耐炎化処理して耐炎化繊維束を得る耐炎化工程。
炭素化炉にて、不活性雰囲気中、300〜2000℃の温度で耐炎化繊維束を炭素化処理して炭素繊維束を得る炭素化工程。
Carbon fiber is excellent in specific strength, specific elastic modulus, specific resistance, chemical resistance and the like, and is therefore used as a reinforcing fiber for fiber-reinforced resin. For example, when a polyacrylonitrile fiber (hereinafter referred to as a PAN fiber) is used as the precursor fiber, the carbon fiber is manufactured by a carbon fiber manufacturing apparatus that performs the following steps.
A flameproofing step of obtaining a flameproofed fiber bundle by flameproofing a precursor fiber bundle at a temperature of 200 to 300 ° C. in an oxidizing gas such as air in a flameproof furnace.
A carbonization step of obtaining a carbon fiber bundle by carbonizing a flameproof fiber bundle at a temperature of 300 to 2000 ° C. in an inert atmosphere in a carbonization furnace.

該耐炎化工程では、通常、酸化性気体の熱風を循環させる熱風循環型の耐炎化炉が用いられている。この熱風循環型の耐炎化炉では、該耐炎化炉内に設けられた熱処理室内に前駆体繊維である多数の前駆体繊維束をシート状に引き揃えて走行させ、シート状に並列されたそれら前駆体繊維束を、熱処理室の外部で一方と他方とに夫々備えられる多数の各ロールに掛け回し、走行方向を一方と他方とに交互に変更させながら、多段に走行させる構成となっている。これら走行される連続した前駆体繊維束は、鉛直方向より200℃以上の熱風を吹き付けて加熱され、所望の耐炎化密度になるまで酸化反応されることで、耐炎化処理される。   In the flameproofing step, a hot air circulation type flameproofing furnace for circulating hot air of an oxidizing gas is usually used. In this hot air circulation type flameproofing furnace, a large number of precursor fiber bundles, which are precursor fibers, are arranged in a sheet and run in a heat treatment chamber provided in the flameproofing furnace, and these are arranged in parallel in a sheet. The precursor fiber bundle is configured to run in multiple stages while being wound around a number of rolls respectively provided on one and the other outside the heat treatment chamber, and alternately changing the running direction to one and the other. . These continuous precursor fiber bundles that are traveled are heated by blowing hot air of 200 ° C. or more from the vertical direction, and are subjected to an oxidation reaction until a desired flame resistance density is obtained, thereby being subjected to flame resistance treatment.

前記耐炎化工程においては、前駆体繊維束を構成する単繊維同士の膠着が発生しやすいため、前駆体繊維束にはあらかじめシリコン系油剤が塗布されている。
しかし、前駆体繊維束の耐炎化処理を長時間続けた場合、耐炎化炉内を循環する熱風(酸化性気体)中のシリコン系油剤に由来する揮発性珪素が高濃度となり、該揮発性珪素が珪素化合物などの粒子状物となって耐炎化炉内に蓄積する。前記珪素化合物などの粒子状物が耐炎化繊維に付着して、耐炎化繊維を汚染する恐れがある。また、耐炎化工程においては、前駆体繊維束の酸化反応によって、耐炎化炉内でシアン化合物、アンモニア、一酸化炭素、タール分などの各種化合物(以下「炉内ガス」と省略する)が発生し、耐炎化炉周辺の環境を汚染する恐れがある。
そのため、耐炎化炉内を循環する熱風を少しずつ排出しながら、新鮮な外気を耐炎化炉内に少しずつ給気して、熱風中の揮発性珪素や炉内ガス濃度を低減することが通常行われている。
ところが、温度の低い外気を耐炎化炉に給気した場合、耐炎化炉内の熱風に温度斑が生じて、前駆体繊維束の発火や糸切れが引き起こされるなど、耐炎化処理を安定して行えない場合がある。したがって、外気を加熱してから耐炎化炉に給気することが望まれる。
In the flameproofing step, since the single fibers constituting the precursor fiber bundle are likely to stick together, a silicon-based oil agent is applied to the precursor fiber bundle in advance.
However, when the flameproofing treatment of the precursor fiber bundle is continued for a long time, the volatile silicon derived from the silicon-based oil in the hot air (oxidizing gas) circulating in the flameproofing furnace has a high concentration, and the volatile silicon Accumulates in the flameproofing furnace as particulates such as silicon compounds. There is a possibility that particulate matter such as the silicon compound adheres to the flame resistant fiber and contaminates the flame resistant fiber. Also, in the flameproofing process, various compounds such as cyanide, ammonia, carbon monoxide and tar (hereinafter abbreviated as “furnace gas”) are generated in the flameproofing furnace due to the oxidation reaction of the precursor fiber bundle. In addition, the environment around the flameproofing furnace may be contaminated.
For this reason, it is usual to reduce the concentration of volatile silicon and furnace gas in the hot air by gradually discharging the hot air circulating in the flame resistant furnace while supplying fresh outside air to the flame resistant furnace little by little. Has been done.
However, when the low temperature outside air is supplied to the flameproofing furnace, temperature spots are generated in the hot air inside the flameproofing furnace, causing the precursor fiber bundles to ignite and break the yarn. It may not be possible. Therefore, it is desirable to supply the flameproofing furnace after heating the outside air.

ところで、一般に、炭素化工程を行う炭素化炉からも、炉内ガスの低減のために排出ガスが排気される。該排出ガスは、熱交換器を用いて所定温度まで冷却されてから、フィルターによって珪素化合物などの粒子状物が除去された後、系外に排出される。なお、該フィルターの実用耐熱限界は通常200℃程度であり、炭素化炉からの高温の排出ガスをそのままフィルターに送入させるとフィルターの機能が損なわれる恐れがある。また、前記排出ガスには、前駆体繊維の添加物に由来する硫黄酸化物が含まれるため、排出ガスを冷却しすぎると、排出路内に排出ガスが結露し、該排出路が腐食する恐れがある。したがって、熱交換器から送出される排出ガスは、熱交換によって160〜180℃の温度範囲になるように調整される。なお、前記熱交換器からは、温度調整された排出ガスとは別に、排出ガスとの熱交換によって加熱された外気(以下、加熱外気と称する。)が得られる。
そこで、特許文献1には、前記熱交換器から得られる加熱外気を、耐炎化炉に給気する加熱外気として利用する方法が提案されている。この方法によると、耐炎化炉内の熱風に温度斑を生じずに、該熱風中の揮発性珪素や炉内ガス濃度を低減できるとされている。また、前記熱交換器からの加熱外気の再利用が図れ、耐炎化炉内の熱風加熱器の負担を軽減できることから、省エネや製造コストの節減にも繋がる。
By the way, in general, exhaust gas is exhausted from a carbonization furnace that performs the carbonization process in order to reduce the gas in the furnace. The exhaust gas is cooled to a predetermined temperature using a heat exchanger, and after particulate matter such as a silicon compound is removed by a filter, the exhaust gas is discharged out of the system. The practical heat resistance limit of the filter is usually about 200 ° C., and if the high-temperature exhaust gas from the carbonization furnace is directly fed into the filter, the function of the filter may be impaired. Further, since the exhaust gas contains sulfur oxides derived from the precursor fiber additive, if the exhaust gas is cooled too much, the exhaust gas may condense in the exhaust passage and the exhaust passage may corrode. There is. Therefore, the exhaust gas delivered from the heat exchanger is adjusted to be in a temperature range of 160 to 180 ° C. by heat exchange. In addition to the exhaust gas whose temperature has been adjusted, outside air heated by heat exchange with the exhaust gas (hereinafter referred to as heated outside air) is obtained from the heat exchanger.
Therefore, Patent Document 1 proposes a method in which heated outside air obtained from the heat exchanger is used as heated outside air that is supplied to a flameproofing furnace. According to this method, it is said that the concentration of volatile silicon and the gas in the furnace in the hot air can be reduced without causing temperature spots in the hot air in the flameproofing furnace. In addition, since the heated outside air from the heat exchanger can be reused and the burden of the hot air heater in the flameproofing furnace can be reduced, it leads to energy saving and manufacturing cost saving.

特開2006−057223号公報JP 2006-057223 A

しかしながら、特許文献1に記載の方法では、熱交換器で加熱外気の送出量や温度が変動すると、それがそのまま耐炎化炉に給気されることになり、耐炎化炉外に熱風が漏れ出すことによる装置周囲の環境の汚損や、熱風の温度斑を生じることによる前駆体繊維束の発火や糸切れが引き起こされやすい。前駆体繊維束の発火や糸切れが引き起こされると、最終製造物である炭素繊維束の品質が低下することになる。特に、装置の運転開始後しばらくの間は、繊維が徐々にその走行速度を上げて定常走行速度に至る段階であり、定常速度に達した以降に比べて耐炎化繊維の炭素化が不安定であるため、排出ガス温度が変動しやすく、前記問題が顕著となる。   However, in the method described in Patent Document 1, when the amount and temperature of the heated outside air are changed by the heat exchanger, it is supplied to the flameproofing furnace as it is, and hot air leaks out of the flameproofing furnace. As a result, the surrounding environment of the apparatus is contaminated, and the precursor fiber bundle is ignited and yarn breakage is likely to occur due to hot air temperature spots. If the precursor fiber bundle is ignited or thread breakage occurs, the quality of the carbon fiber bundle that is the final product is degraded. In particular, for a while after the start of the operation of the apparatus, the fiber gradually increases its traveling speed to reach the steady traveling speed, and the carbonization of the flame resistant fiber is unstable compared to after reaching the steady speed. Therefore, the exhaust gas temperature is likely to fluctuate, and the above problem becomes remarkable.

本発明は、前記事情に鑑みてなされたものであって、耐炎化処理を安定して行え、高品質な炭素繊維を得ることができ、さらに装置周囲への炉内ガスの漏れ出しを低減できる炭素繊維の製造方法を目的とする。   The present invention has been made in view of the above circumstances, can stably perform flameproofing treatment, can obtain high-quality carbon fiber, and can further reduce leakage of in-furnace gas around the apparatus. It aims at the manufacturing method of carbon fiber.

上記課題を解決するため、本発明は以下の構成を採用した。
(1)熱風加熱手段で加熱された熱風を循環させて前駆体繊維束を耐炎化処理する耐炎化工程と、
該耐炎化処理により得られた耐炎化繊維を炭素化処理する炭素化工程と、
該炭素化工程で送出された排出ガスと外気とを熱交換させる熱交換工程と、
該熱交換工程で加熱された加熱外気を前記耐炎化工程の熱風に給気する加熱外気給気工程と、
を有する炭素繊維の製造方法であって、
耐炎化工程の熱風に加熱外気を給気開始してから、定常運転に至るまでの間に給気される該加熱外気の1時間当たりの熱量を、該定常運転時に給気される加熱外気の1時間当たりの熱量の20〜50%ずつ増加させることを特徴とする炭素繊維の製造方法。
(2)前記耐炎化工程の熱風に給気する加熱外気の有する熱量が、前記熱風加熱手段によって熱風に加えられる熱量の50%以下であることを特徴とする(1)に記載の炭素繊維の製造方法。
In order to solve the above problems, the present invention employs the following configuration.
(1) a flameproofing step of circulating the hot air heated by the hot air heating means to flameproof the precursor fiber bundle;
A carbonization step of carbonizing the flameproof fiber obtained by the flameproofing treatment;
A heat exchange step for exchanging heat between the exhaust gas sent in the carbonization step and the outside air;
A heated outside air supply step for supplying the heated outside air heated in the heat exchange step to the hot air in the flameproofing step;
A method for producing a carbon fiber having
The amount of heat per hour of the heated outside air supplied from the start of supplying the heated outside air to the hot air in the flameproofing process until the steady operation is obtained by the amount of the heated outside air supplied during the steady operation. A method for producing carbon fiber, characterized by increasing the amount of heat per hour by 20 to 50%.
(2) The amount of heat of the heated outside air supplied to the hot air in the flameproofing step is 50% or less of the amount of heat applied to the hot air by the hot air heating means. Production method.

本発明の炭素繊維製造装置を用いた炭素繊維の製造方法によれば、耐炎化処理を安定して行え、高品質な炭素繊維を得ることができ、さらに装置周囲への炉内ガスの漏れ出しを低減できる。   According to the carbon fiber production method using the carbon fiber production apparatus of the present invention, flameproofing treatment can be stably performed, high-quality carbon fiber can be obtained, and leakage of gas in the furnace around the apparatus is possible. Can be reduced.

本発明の一実施形態例の炭素繊維製造装置の構成を示す概略図である。It is the schematic which shows the structure of the carbon fiber manufacturing apparatus of one embodiment of this invention. 熱交換器を複数台備えた本発明の他の実施形態例の炭素繊維製造装置の構成を示す概略図である。It is the schematic which shows the structure of the carbon fiber manufacturing apparatus of the other embodiment of this invention provided with two or more heat exchangers. 耐炎化炉を複数台備えた本発明の他の実施形態例の炭素繊維製造装置の構成を示す概略図である。It is the schematic which shows the structure of the carbon fiber manufacturing apparatus of the other embodiment of this invention provided with two or more flameproofing furnaces.

図1に示すように、本発明の一実施形態例の炭素繊維製造装置は、熱風を循環させて前駆体繊維束Fを耐炎化処理する耐炎化炉1と、耐炎化炉1で耐炎化処理された耐炎化繊維を炭素化処理する炭素化炉12と、炭素化炉12から送出された排出ガスと外気との間で熱交換を行う熱交換器14と、熱交換器14から送出された加熱された外気(加熱外気)を耐炎化炉1に給気する加熱外気給気路18とを有する。
さらに、この炭素繊維製造装置は、加熱外気給気路18を流れる加熱外気の風量を検出する風量検出手段27と、加熱外気給気路18を流れる加熱外気の風量を調整する風量調整手段28と、風量検出手段27からの情報に基づいて、風量調整手段28を制御する制御手段21とを備える。
As shown in FIG. 1, a carbon fiber manufacturing apparatus according to an embodiment of the present invention includes a flameproofing furnace 1 that circulates hot air to flameproof the precursor fiber bundle F, and a flameproofing process in the flameproofing furnace 1. The carbonized furnace 12 for carbonizing the flame-resistant fiber, the heat exchanger 14 for exchanging heat between the exhaust gas sent from the carbonized furnace 12 and the outside air, and sent from the heat exchanger 14 A heated outside air supply passage 18 for supplying heated outside air (heated outside air) to the flameproofing furnace 1 is provided.
Further, the carbon fiber manufacturing apparatus includes an air volume detecting unit 27 that detects the air volume of the heated outside air flowing through the heated outside air supply path 18, and an air volume adjusting unit 28 that adjusts the air volume of the heated outside air flowing through the heated outside air supply path 18. And a control means 21 for controlling the air volume adjusting means 28 based on the information from the air volume detecting means 27.

耐炎化炉1には、前駆体繊維束Fに熱風を吹き付けて耐炎化処理するための熱処理室2が設けられている。熱処理室2内は、多数本の前駆体繊維束Fが水平面(本紙面に垂直方向の面)に並んだ前駆体繊維束群(以下「パス」と略する。)を形成して走行するように構成されている。これらのパスを形成している前駆体繊維束Fは、熱処理室2の外部に配設された所定組の折返しローラー(不図示)によって折り返されて熱処理室2に繰り返し供給され、複数段のパスを形成している。   The flameproofing furnace 1 is provided with a heat treatment chamber 2 for spraying hot air to the precursor fiber bundle F to perform flameproofing treatment. In the heat treatment chamber 2, a precursor fiber bundle group (hereinafter abbreviated as "pass") in which a large number of precursor fiber bundles F are arranged in a horizontal plane (a plane perpendicular to the paper surface) is formed to run. It is configured. The precursor fiber bundles F forming these passes are folded back by a predetermined set of folding rollers (not shown) disposed outside the heat treatment chamber 2 and repeatedly supplied to the heat treatment chamber 2, thereby providing a plurality of stages of passes. Is forming.

この耐炎化炉1において、熱処理室2の一方側には側壁19aが設けられ、熱処理室2の他方側には側壁19bが設けられている。また、熱処理室2の上方には熱風吹出し口3が設けられ、熱風吹出し口3の上方には上方流路7が設けられている。上方流路7の一方端には、ファン6が設けられている。熱処理室2の下方には熱風吸気口4が設けられ、熱風吸気口4の下方には下方流路8が設けられている。下方流路8には、熱風排出口11が設けられている。また、熱処理室2内には温度検出手段20が設けられている。
熱処理室2と側壁19aを隔てた一方側には、上方流路7と下方流路8とを連通する熱風循環路9が設けられている。熱風循環路9には熱風加熱手段5および加熱外気給気口10が設けられている。
耐炎化炉1内の熱風流路は、上方流路7、下方流路8、熱風循環路9により形成され、熱風は図1中の矢印Hに示すように循環する。
In the flameproofing furnace 1, a side wall 19 a is provided on one side of the heat treatment chamber 2, and a side wall 19 b is provided on the other side of the heat treatment chamber 2. A hot air outlet 3 is provided above the heat treatment chamber 2, and an upper flow path 7 is provided above the hot air outlet 3. A fan 6 is provided at one end of the upper flow path 7. A hot air inlet 4 is provided below the heat treatment chamber 2, and a lower flow path 8 is provided below the hot air inlet 4. A hot air discharge port 11 is provided in the lower flow path 8. A temperature detecting means 20 is provided in the heat treatment chamber 2.
On one side of the heat treatment chamber 2 and the side wall 19a, a hot air circulation path 9 that connects the upper flow path 7 and the lower flow path 8 is provided. The hot air circulation path 9 is provided with hot air heating means 5 and a heated outside air supply port 10.
The hot air flow path in the flameproofing furnace 1 is formed by the upper flow path 7, the lower flow path 8, and the hot air circulation path 9, and the hot air circulates as shown by an arrow H in FIG.

熱風吹出し口3および熱風吸気口4は、熱風を均一に前駆体繊維束Fへ分散したり、熱処理室2内の温度斑を解消するために設けられている。熱風吹出し口3および熱風吸気口4としては、例えばメッシュ板やパンチング板などの熱風透過性の板状部材が使用される。
熱風加熱手段5は、熱風を前駆体繊維束Fの耐炎化に必要な温度まで加熱するために設けられている。熱風加熱手段5としては、耐炎化炉1内の熱風を200〜300℃程度に加熱できるものであればよく、例えばガスヒーター、電気ヒーター、熱媒ヒーター等が挙げられる。
ファン6は、熱風を循環させるために設けられている。ファン6としては、熱風を所望の風速にすることのできるものであればよい。
The hot air outlet 3 and the hot air inlet 4 are provided in order to disperse the hot air uniformly into the precursor fiber bundle F and eliminate temperature spots in the heat treatment chamber 2. As the hot air outlet 3 and the hot air inlet 4, for example, a hot air permeable plate member such as a mesh plate or a punching plate is used.
The hot air heating means 5 is provided to heat the hot air to a temperature necessary for making the precursor fiber bundle F flame resistant. Any hot air heating means 5 may be used as long as it can heat the hot air in the flameproofing furnace 1 to about 200 to 300 ° C., and examples thereof include a gas heater, an electric heater, and a heat medium heater.
The fan 6 is provided for circulating hot air. The fan 6 may be any fan that can make hot air at a desired wind speed.

加熱外気給気口10は、耐炎化炉1内に加熱外気を給気するために設けられている。該加熱外気給気口10を設ける位置は熱処理室2の入口部にあたる熱風吹出し口3付近で温度がより均一になるようにファン6の上流部、すなわちこの実施形態例のように熱風循環路9に設けることが好ましいが、これに限定されることはなく、熱風流路内のいずれの位置に設けられていても構わない。また、加熱外気給気口10から給気される加熱外気の温度は、熱処理室2の設定温度(200℃以上)から400℃までの間が好ましい。   The heated outside air supply port 10 is provided to supply heated outside air into the flameproofing furnace 1. The position where the heated outside air supply port 10 is provided is upstream of the fan 6, that is, the hot air circulation path 9 as in this embodiment so that the temperature becomes more uniform near the hot air outlet 3 corresponding to the inlet of the heat treatment chamber 2. However, the present invention is not limited to this, and it may be provided at any position in the hot air flow path. The temperature of the heated outside air supplied from the heated outside air supply port 10 is preferably between the set temperature (200 ° C. or higher) of the heat treatment chamber 2 and 400 ° C.

熱風排出口11は、耐炎化炉1内の熱風の一部を系外に排出するために設けられている。熱風排出口11から揮発性珪素を含む熱風が排出されることで、熱風流路内の揮発性珪素の濃度が低減され、前駆体繊維束Fのケバ発生や異物の付着を低減できる。熱風排出口11は、熱処理室2で発生した揮発性珪素を速やかに耐炎化炉1外に排出するため、この実施形態例のように下方流路8に設けるのが好ましいが、これに限定されることはなく、前記熱風流路の何れの位置に設けても構わない。なお、熱風排出口11には、前記排出ガスを系外に排出するための排出路(不図示)が取り付けられている。該排出路には、必要に応じて、炉内ガスを燃焼して分解する排出ガス処理装置や、珪素化合物などの粒子状物を除去するためのフィルターなどが設けられる。   The hot air discharge port 11 is provided for discharging a part of the hot air in the flameproofing furnace 1 out of the system. By discharging hot air containing volatile silicon from the hot air discharge port 11, the concentration of volatile silicon in the hot air flow path is reduced, and the occurrence of flaking of the precursor fiber bundle F and the adhesion of foreign matters can be reduced. The hot air discharge port 11 is preferably provided in the lower flow path 8 as in this embodiment in order to quickly discharge volatile silicon generated in the heat treatment chamber 2 to the outside of the flameproofing furnace 1, but is limited to this. However, it may be provided at any position of the hot air flow path. The hot air outlet 11 is provided with a discharge path (not shown) for discharging the exhaust gas out of the system. If necessary, the exhaust path is provided with an exhaust gas treatment device that burns and decomposes the in-furnace gas, a filter for removing particulate matters such as silicon compounds, and the like.

温度検出手段20は、耐炎化炉1外に設けられている制御手段21に電気的に接続され、制御手段21は熱風加熱手段5と電気的に接続されている。制御手段21は、温度検出手段20からの温度検出信号に基づいて、熱風加熱手段5に温度制御信号を送ることで、熱風加熱手段5の出力を制御可能に構成されている。これにより前記加熱外気の風量や温度が変動した場合にも、熱処理室2内の温度が一定に保たれやすくなる。温度検出手段20としては、熱電対、測温抵抗体などの温度計が挙げられる。   The temperature detection means 20 is electrically connected to the control means 21 provided outside the flameproofing furnace 1, and the control means 21 is electrically connected to the hot air heating means 5. The control means 21 is configured to be able to control the output of the hot air heating means 5 by sending a temperature control signal to the hot air heating means 5 based on the temperature detection signal from the temperature detection means 20. Thereby, even when the air volume and temperature of the heated outside air fluctuate, the temperature in the heat treatment chamber 2 is easily kept constant. Examples of the temperature detection means 20 include thermometers such as thermocouples and resistance temperature detectors.

制御手段21は、市販品にて構成してもよく、また専用のハードウエア、ソフトウエアにて構成してもよい。
また、制御手段21には、必要に応じて、入力装置、表示装置などの周辺装置が接続される。該入力装置としては、ディスプレイタッチパネル、スイッチパネル、キーボードなどの入力デバイスが挙げられ、該表示装置としては、CRT、液晶表示装置などが挙げられる。
The control means 21 may be composed of a commercially available product, or may be composed of dedicated hardware or software.
In addition, peripheral devices such as an input device and a display device are connected to the control means 21 as necessary. Examples of the input device include input devices such as a display touch panel, a switch panel, and a keyboard. Examples of the display device include a CRT and a liquid crystal display device.

次に、耐炎化炉1の後段に設けられる炭素化炉12および炭素化炉12からの排出ガスが通過する各種手段について説明する。
炭素化炉12は、耐炎化工程の後工程である炭素化工程を行うための装置である。炭素化炉12としては特に限定されず、公知の炭素化炉を用いることができる。
炭素化炉12からは、炭素化炉12からの排出ガスを流す炭素化炉排気路17が延びている。炭素化炉排気路17は、炭素化炉12から近い順に、燃焼用外気導入口16、炭素化炉排出ガス処理装置13、熱交換器14、温度検出手段26、フィルター24、送風機25を連通して、最終的に排出ガスが系外に排出されるように設けられている。
本発明の炭素繊維製造装置において、炭素化炉12は炭素化処理を行う炭素化炉であってもよく、該炭素化処理の前段階として、炭素化処理より低い温度で前炭素化処理を行う前炭素化炉であってもよい。また、炭素化炉12は単数とは限らず、複数設けられていてもよい。
Next, the carbonization furnace 12 provided in the subsequent stage of the flameproofing furnace 1 and various means through which the exhaust gas from the carbonization furnace 12 passes will be described.
The carbonization furnace 12 is an apparatus for performing a carbonization process that is a subsequent process of the flameproofing process. The carbonization furnace 12 is not particularly limited, and a known carbonization furnace can be used.
A carbonization furnace exhaust passage 17 through which the exhaust gas from the carbonization furnace 12 flows is extended from the carbonization furnace 12. The carbonization furnace exhaust passage 17 communicates the combustion external air introduction port 16, the carbonization furnace exhaust gas treatment device 13, the heat exchanger 14, the temperature detection means 26, the filter 24, and the blower 25 in the order from the carbonization furnace 12. The exhaust gas is finally discharged out of the system.
In the carbon fiber production apparatus of the present invention, the carbonization furnace 12 may be a carbonization furnace that performs a carbonization process, and performs a pre-carbonization process at a lower temperature than the carbonization process as a pre-stage of the carbonization process. It may be a pre-carbonization furnace. Further, the carbonization furnace 12 is not limited to a single one, and a plurality of carbonization furnaces 12 may be provided.

炭素化炉排出ガス処理装置13は、炭素化炉12からの排出ガスを燃焼させ、排出ガスに含まれるシアン、アンモニア、一酸化炭素、タール分などを分解処理する装置である。具体的には、炭素化炉排出ガス処理装置13に燃料および空気を給気し、燃料を燃焼させることで発生した高温部(図示略)に、排出ガスを接触させることによって、排出ガスを燃焼処理する装置である。なお、前記燃料には、LNG(液化天然ガス)、LPG(液化石油ガス)などの気体燃料、または灯油、軽油などの液体燃料を用いることができる。   The carbonization furnace exhaust gas treatment apparatus 13 is an apparatus that burns the exhaust gas from the carbonization furnace 12 and decomposes cyan, ammonia, carbon monoxide, tar, and the like contained in the exhaust gas. Specifically, the exhaust gas is combusted by bringing the exhaust gas into contact with a high temperature portion (not shown) generated by supplying fuel and air to the carbonization furnace exhaust gas treatment device 13 and combusting the fuel. It is a device for processing. In addition, gaseous fuels, such as LNG (liquefied natural gas) and LPG (liquefied petroleum gas), or liquid fuels, such as kerosene and light oil, can be used for the said fuel.

熱交換器14は、外装を形成する筐体23と、熱交換器14内を貫通する熱交換路22とにより構成され、熱交換路22を流れる外気と、炭素化炉排気路17から熱交換器14内に送入された排出ガスとの間で熱交換を行うために設けられている。また、本発明において、熱交換器14は耐炎化炉1に給気する外気を加熱する手段としても機能する。熱交換器14としては、チューブ式熱交換器、多管式熱交換器、プレート式熱交換器などが挙げられ、Si化合物等の粒子状物に起因する閉塞防止のため、閉塞防止機構を備えたものであれば特に限定されないが、チューブ式熱交換器が最も好ましく用いられる。また、熱交換路22の一端には、外気を熱交換路22に送入するための送風機15が連結されている。
熱交換路22の他端には、加熱された外気を耐炎化炉1に給気するための加熱外気給気路18が連結されている。加熱外気給気路18の熱交換路22が連結されていない他端は、耐炎化炉1の加熱外気給気口10に連結されている。
熱交換器14は図1のように単数であってもよく、図2に示すように、複数設けられていてもよい。一般に、炭素化炉排出ガス処理装置13から送出される排出ガス温度は800℃以上であり、熱交換器14を複数設けることで、高温での耐熱が必要な部分を小さくすることができ、トータルでの設備費を安くすることが可能であり、また、余剰熱を廃熱ボイラ等の他の熱源に活用し易い、などの利点がある。
送風機15は、熱交換器14内外に設けられた熱交換路22に外気を送り込むために設けられている。送風機15としては特に限定されず、設置場所、外気の送入風量などを考慮し、適宜選定される。
The heat exchanger 14 includes a housing 23 that forms an exterior and a heat exchange path 22 that penetrates the heat exchanger 14, and exchanges heat between the outside air flowing through the heat exchange path 22 and the carbonization furnace exhaust path 17. It is provided for exchanging heat with the exhaust gas fed into the vessel 14. In the present invention, the heat exchanger 14 also functions as means for heating the outside air supplied to the flameproofing furnace 1. Examples of the heat exchanger 14 include a tube heat exchanger, a multi-tubular heat exchanger, a plate heat exchanger, and the like, and a clogging prevention mechanism is provided to prevent clogging caused by particulate matters such as Si compounds. However, a tube heat exchanger is most preferably used. A blower 15 for sending outside air into the heat exchange path 22 is connected to one end of the heat exchange path 22.
The other end of the heat exchange path 22 is connected to a heated outside air supply path 18 for supplying the heated outside air to the flameproofing furnace 1. The other end of the heated outside air supply path 18 that is not connected to the heat exchange path 22 is connected to the heated outside air supply port 10 of the flameproofing furnace 1.
One heat exchanger 14 may be provided as shown in FIG. 1, or a plurality of heat exchangers 14 may be provided as shown in FIG. Generally, the exhaust gas temperature delivered from the carbonization furnace exhaust gas treatment device 13 is 800 ° C. or higher, and by providing a plurality of heat exchangers 14, it is possible to reduce the portion that requires heat resistance at a high temperature. The facility cost can be reduced, and there is an advantage that surplus heat can be easily used for other heat sources such as a waste heat boiler.
The blower 15 is provided to send outside air into a heat exchange path 22 provided inside and outside the heat exchanger 14. It does not specifically limit as the air blower 15, It considers an installation place, the inflow volume of external air, etc., and is selected suitably.

熱交換路22は、図1において、熱交換器14内に3回貫通(3パス)されて構成されているが、本発明はこれに限らず、1パスでもよく、2パス以上でもよい。
フィルター24は、珪素化合物などの粒子状物を除去するために設置される。フィルター24としては、捕捉粒子径、圧損、耐熱温度、耐久性等を考慮し適宜選定されるが、フッ素樹脂、ガラス繊維、ポリイミド、ポリフェニレンサルファイド等を含有する耐熱バグフィルターが好ましく用いられる。
送風機25は、炭素化炉排気路17を流れる排出ガスを系外に排出するために設けられている。送風機25としては特に限定されず、熱交換器14内の圧損、設置場所、排出ガスの風量などを考慮し、適宜選定される。
温度検出手段26は、フィルター24に送入される排出ガスの温度を検出するために設けられている。温度検出手段26としては、熱電対、測温抵抗体などの温度計が挙げられる。
温度検出手段26と送風機15とは、インバーターなどの制御手段(不図示)を介して接続され、温度検出手段26で検出された温度検出信号により、送風機15が制御されるように構成される。
In FIG. 1, the heat exchange path 22 is configured to pass through the heat exchanger 14 three times (three passes), but the present invention is not limited to this and may be one pass or two or more passes.
The filter 24 is installed to remove particulate matters such as silicon compounds. The filter 24 is appropriately selected in consideration of the trapped particle diameter, pressure loss, heat resistant temperature, durability, and the like, but a heat resistant bag filter containing a fluororesin, glass fiber, polyimide, polyphenylene sulfide or the like is preferably used.
The blower 25 is provided to discharge exhaust gas flowing through the carbonization furnace exhaust passage 17 out of the system. The blower 25 is not particularly limited, and is appropriately selected in consideration of the pressure loss in the heat exchanger 14, the installation location, the air volume of the exhaust gas, and the like.
The temperature detection means 26 is provided for detecting the temperature of the exhaust gas fed into the filter 24. Examples of the temperature detection means 26 include thermometers such as thermocouples and resistance temperature detectors.
The temperature detection unit 26 and the blower 15 are connected via a control unit (not shown) such as an inverter, and the blower 15 is configured to be controlled by a temperature detection signal detected by the temperature detection unit 26.

次に、加熱外気の風量調整に用いられる各種手段について説明する。
加熱外気が流れる加熱外気給気路18からは、加熱外気を系外に排出する加熱外気排出路29が分岐されている。加熱外気排出路29には、加熱外気の風量を調整する風量調整手段28が設けられている。また、加熱外気給気路18には、加熱外気排出路29の分岐位置より後流側に、加熱外気の風量を検出する風量検出手段27が設けられている。風量検出手段27は制御手段21に電気的に接続され、制御手段21は風量調整手段28と電気的に接続されている。制御手段21は、風量検出手段27からの風量検出信号を受け、風量調整手段28を制御可能に構成されている。加熱外気の風量が調整されることにより、耐炎化処理を安定して行え、高品質な炭素繊維を得ることができ、さらには装置周囲への炉内ガスの漏れ出しを低減できる。
風量検出手段27としては、各種風速計、ピトー管、差圧流量計、超音波流量計、渦流量計などが挙げられる。
風量調整手段28としては、制御信号を受けて風量調整を行う自動弁、インバーター制御ファンなどが挙げられる。
Next, various means used for adjusting the air volume of the heated outside air will be described.
A heated outside air discharge path 29 for discharging the heated outside air to the outside of the system is branched from the heated outside air supply path 18 through which the heated outside air flows. The heated outside air discharge passage 29 is provided with an air volume adjusting means 28 for adjusting the air volume of the heated outside air. The heated outside air supply path 18 is provided with an air volume detecting means 27 for detecting the volume of the heated outside air downstream from the branch position of the heated outside air discharge path 29. The air volume detecting means 27 is electrically connected to the control means 21, and the control means 21 is electrically connected to the air volume adjusting means 28. The control means 21 is configured to receive the air volume detection signal from the air volume detection means 27 and to control the air volume adjustment means 28. By adjusting the air volume of the heated outside air, flameproofing treatment can be performed stably, high quality carbon fibers can be obtained, and leakage of furnace gas to the periphery of the apparatus can be reduced.
Examples of the air volume detection means 27 include various anemometers, pitot tubes, differential pressure flow meters, ultrasonic flow meters, vortex flow meters, and the like.
Examples of the air volume adjusting means 28 include an automatic valve that adjusts the air volume in response to a control signal, an inverter control fan, and the like.

本発明の炭素繊維製造装置において、耐炎化炉1は図1に示すように単数でもよく、図3に示すように複数設けられていてもよい。この実施形態例では、第1耐炎化炉1a,第2耐炎化炉1b,第3耐炎化炉1cを用いて、前駆体繊維束Fを段階的に耐炎化処理できるように、温度条件を違えるなどの設定が行われる。前駆体繊維束Fは、例えば第1耐炎化炉1a,第2耐炎化炉1b,第3耐炎化炉1cの順に通過した後、炭素化炉12に送られる。この実施形態例の炭素繊維製造装置では、第1耐炎化炉1a,第2耐炎化炉1bに加熱外気を給気できるように加熱外気給気路18が設けられており、風量調整手段30を用いて、各耐炎化炉に加熱外気を給気する風量を調整および/または切り替えできる。   In the carbon fiber production apparatus of the present invention, the flameproofing furnace 1 may be a single one as shown in FIG. 1 or a plurality of flameproofing furnaces 1 as shown in FIG. In this embodiment, using the first flameproofing furnace 1a, the second flameproofing furnace 1b, and the third flameproofing furnace 1c, the temperature conditions are changed so that the precursor fiber bundle F can be flameproofed stepwise. Etc. are set. For example, the precursor fiber bundle F passes through the first flameproofing furnace 1a, the second flameproofing furnace 1b, and the third flameproofing furnace 1c in this order, and then is sent to the carbonization furnace 12. In the carbon fiber manufacturing apparatus of this embodiment, the heated outside air supply passage 18 is provided so that the heated outside air can be supplied to the first flameproofing furnace 1a and the second flameproofing furnace 1b, and the air volume adjusting means 30 is provided. It is possible to adjust and / or switch the amount of air supplied to each flameproofing furnace with heated outside air.

次に、本発明の炭素繊維製造装置を用いた炭素繊維の製造方法について説明する。
(耐炎化工程)
耐炎化工程においては、熱風加熱手段5で加熱された熱風が、ファン6によって上方流路7から熱風吹出し口3を通過し、熱処理室2内へと送られる。そして、前記熱風が、熱処理室2を連続して走行する前駆体繊維束Fに鉛直方向から吹き付けられることで、前駆体繊維束Fが耐炎化処理される。
次いで、熱風は熱処理室2から熱風吸気口4を通過して下方流路8へ送られ、下方流路から熱風循環路9に配設される熱風加熱手段5へと戻される。熱風加熱手段5で加熱された熱風は、連続して走行する前駆体繊維束Fに耐炎化処理を施すため、再び熱処理室2へと送られる。このようにして、熱風の循環による前駆体繊維束Fへの連続した耐炎化処理が行われる。
Next, the manufacturing method of the carbon fiber using the carbon fiber manufacturing apparatus of this invention is demonstrated.
(Flame resistance process)
In the flameproofing process, the hot air heated by the hot air heating means 5 passes through the hot air outlet 3 from the upper flow path 7 by the fan 6 and is sent into the heat treatment chamber 2. And the precursor fiber bundle F is flame-proofed by the said hot air being sprayed from the perpendicular direction to the precursor fiber bundle F which drive | works the heat processing chamber 2 continuously.
Next, the hot air passes from the heat treatment chamber 2 through the hot air inlet 4 and is sent to the lower flow path 8, and is returned from the lower flow path to the hot air heating means 5 disposed in the hot air circulation path 9. The hot air heated by the hot air heating means 5 is sent again to the heat treatment chamber 2 in order to subject the precursor fiber bundle F that continuously travels to flame resistance treatment. In this way, a continuous flameproofing treatment is performed on the precursor fiber bundle F by circulating hot air.

加熱外気給気口10より加熱外気が給気されると、耐炎化炉1の内部は加圧される。そのため、炉内ガスを含む熱風が、前駆体繊維束Fの走行方向の一方と他方とに配設される前駆体繊維束Fの出入り口(不図示)から、耐炎化炉1外へ漏れ出しやすくなる。熱風の漏れ出しを抑制するには、熱風排出口11から排気される排ガスの風量を、加熱外気給気口10より給気される加熱外気の風量と同量以上とすることが好ましい。   When heated outside air is supplied from the heated outside air supply port 10, the inside of the flameproofing furnace 1 is pressurized. Therefore, the hot air containing the gas in the furnace easily leaks out of the flameproofing furnace 1 from the entrance / exit (not shown) of the precursor fiber bundle F disposed on one side and the other side of the precursor fiber bundle F in the traveling direction. Become. In order to suppress the leakage of hot air, it is preferable that the air volume of the exhaust gas exhausted from the hot air discharge port 11 is equal to or greater than the air volume of the heated outside air supplied from the heated outside air supply port 10.

耐炎化工程に用いられる前駆体繊維束Fは、単繊維が数千〜数十万本束ねられたトウである。単繊維としては、PAN系、ピッチ系繊維などが挙げられる。
耐炎化工程で前駆体繊維束Fに吹き付けられる熱風(酸化性気体)としては、空気などの含酸素気体などが挙げられる。工業的には空気が好ましい。
熱風の加熱温度は、通常、200〜300℃である。また、前駆体繊維束Fに吹き付けられる熱風の風速は、0.2〜1.5m/秒の範囲であることが多いが、この範囲に限定されることなく、前駆体繊維束Fの張力および投入ピッチなどを考慮して適宜決定される。
なお、前記耐炎化処理は、単数の耐炎化炉で行ってもよく、複数台の耐炎化炉を用い、同時および/または段階的に行ってもよい。
The precursor fiber bundle F used in the flameproofing process is a tow in which thousands to hundreds of thousands of single fibers are bundled. Examples of the single fiber include PAN-based and pitch-based fibers.
Examples of the hot air (oxidizing gas) blown to the precursor fiber bundle F in the flameproofing process include oxygen-containing gas such as air. Industrially, air is preferable.
The heating temperature of the hot air is usually 200 to 300 ° C. Moreover, the wind speed of the hot air blown onto the precursor fiber bundle F is often in the range of 0.2 to 1.5 m / second, but is not limited to this range, and the tension of the precursor fiber bundle F and It is determined appropriately in consideration of the charging pitch.
The flameproofing treatment may be performed in a single flameproofing furnace, or may be performed simultaneously and / or stepwise using a plurality of flameproofing furnaces.

(炭素化工程)
前駆体繊維束Fを耐炎化処理して得られた耐炎化繊維束は、次いで、炭素化炉12に導入され、窒素などの不活性雰囲気中で、300〜2000℃の温度で炭素化処理されることで、炭素繊維束となる。
炭素化炉としては公知のものが用いられる。炭素化処理は、単数の炭素化炉で行ってもよく、複数台の耐炎化炉を用い、耐炎化処理を同時および/または段階的に行ってもよい。
(Carbonization process)
The flame-resistant fiber bundle obtained by flame-proofing the precursor fiber bundle F is then introduced into the carbonization furnace 12 and carbonized at a temperature of 300 to 2000 ° C. in an inert atmosphere such as nitrogen. By doing so, it becomes a carbon fiber bundle.
A well-known thing is used as a carbonization furnace. The carbonization treatment may be performed in a single carbonization furnace, or a plurality of flameproofing furnaces may be used and the flameproofing treatment may be performed simultaneously and / or stepwise.

炭素化工程により得られた炭素繊維束には、さらに必要に応じて、樹脂との接着性を付与するために表面処理が施される。表面処理の方法としては、樹脂との接着性を付与できる方法であれば特に限定されないが、例えば、オゾン酸化などの乾式法や、電解液中で電解表面処理する湿式法が挙げられる。
表面処理された炭素繊維束には、さらに、必要に応じてサイジング剤が付与される。サイジング剤には、炭素繊維束の取り扱い性や、樹脂との親和性を向上させる働きがある。サイジング剤の種類としては、所望の特性を得ることができれば特に限定されないが、例えば、エポキシ樹脂、ポリエーテル樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂を主成分としたサイジング剤が挙げられる。
The carbon fiber bundle obtained by the carbonization step is further subjected to a surface treatment as needed to impart adhesiveness to the resin. The surface treatment method is not particularly limited as long as it is a method capable of imparting adhesiveness to a resin, and examples thereof include a dry method such as ozone oxidation and a wet method in which an electrolytic surface treatment is performed in an electrolytic solution.
A sizing agent is further applied to the surface-treated carbon fiber bundle as necessary. The sizing agent has a function of improving the handleability of the carbon fiber bundle and the affinity with the resin. The type of the sizing agent is not particularly limited as long as desired characteristics can be obtained, and examples thereof include a sizing agent mainly composed of an epoxy resin, a polyether resin, an epoxy-modified polyurethane resin, and a polyester resin.

(熱交換工程)
炭素化炉12からは、前記不活性雰囲気中の炉内ガス濃度を低減させるため、炉内ガスを含んだ排出ガスが排出される。炭素化炉12から排出された排出ガスは、炭素化炉排気路17を通り、以下に述べる種々の処理が施された後、系外へ排出される。
まず、排出ガスは炭素化炉排気路17に設けられた燃焼用外気導入口16から給気される燃焼用外気と混合された後、さらに炭素化炉排気路17を流れ、炭素化炉排出ガス処理装置13に送入される。該排出ガスは、燃焼路排出ガス処理装置13内で燃焼処理される。燃焼処理された排出ガスは、次いで、熱交換器14へと送入される。
(Heat exchange process)
From the carbonization furnace 12, in order to reduce the in-furnace gas concentration in the inert atmosphere, exhaust gas containing the in-furnace gas is discharged. The exhaust gas discharged from the carbonization furnace 12 passes through the carbonization furnace exhaust passage 17 and is subjected to various treatments described below, and is then discharged out of the system.
First, after the exhaust gas is mixed with the combustion outside air supplied from the combustion outside air inlet 16 provided in the carbonization furnace exhaust passage 17, it further flows through the carbonization furnace exhaust passage 17, and the carbonization furnace exhaust gas. It is sent to the processing device 13. The exhaust gas is combusted in the combustion path exhaust gas processing device 13. The combustion-treated exhaust gas is then sent to the heat exchanger 14.

熱交換器14に送入された排出ガスは、熱交換路22を流れる外気と熱交換された後、熱交換器14から送出される。ここで、熱交換器14から送り出される前記排出ガスは、160〜180℃の温度範囲とされる。これは、フィルター24に好適に用いられる耐熱バグフィルターの実用耐熱限界は約200℃であり、前記排出ガスの温度が180℃以上では、フィルター24の機能が損なわれる恐れがあるためである。また、前記排出ガスが160℃未満では、排ガスが炭素化炉排気路17の内壁に結露し、前記排出ガスに含まれる硫黄酸化物によって炭素化炉排気路17が腐食する恐れがあるためである。
そこで、熱交換器14の後段に設けられた温度検出手段26で排出ガスの温度を検出し、この温度検出信号に基づいて、インバーター制御などによって送風機15を制御することで、熱交換路22に送り込まれる外気の風量が調整され、前記熱交換器14から送出される排出ガスの温度が160〜180℃の範囲に調整される。排出ガスの温度を前記範囲に調整することで、炭素化炉排気路17の腐食やフィルター24の機能損失を防止できる。
このようにして温度調整された排出ガスは、次いで、フィルター24に送入され、珪素化合物などの粒子状物を除去された後、送風機25により系外へ排出される。
The exhaust gas sent to the heat exchanger 14 is sent from the heat exchanger 14 after heat exchange with the outside air flowing through the heat exchange path 22. Here, the said exhaust gas sent out from the heat exchanger 14 is made into the temperature range of 160-180 degreeC. This is because the practical heat resistance limit of the heat resistant bag filter suitably used for the filter 24 is about 200 ° C., and if the temperature of the exhaust gas is 180 ° C. or higher, the function of the filter 24 may be impaired. Further, when the exhaust gas is less than 160 ° C., the exhaust gas is condensed on the inner wall of the carbonization furnace exhaust passage 17, and the carbonization furnace exhaust passage 17 may be corroded by sulfur oxide contained in the exhaust gas. .
Accordingly, the temperature of the exhaust gas is detected by the temperature detection means 26 provided at the subsequent stage of the heat exchanger 14, and the blower 15 is controlled by inverter control or the like based on this temperature detection signal, so that the heat exchange path 22 The air volume of the outside air sent in is adjusted, and the temperature of the exhaust gas sent out from the heat exchanger 14 is adjusted in the range of 160 to 180 ° C. By adjusting the temperature of the exhaust gas within the above range, corrosion of the carbonization furnace exhaust passage 17 and functional loss of the filter 24 can be prevented.
The exhaust gas whose temperature has been adjusted in this manner is then fed into the filter 24, where particulate matter such as a silicon compound is removed, and then exhausted out of the system by the blower 25.

(加熱外気給気工程)
送風機15により熱交換器14に送入された外気は、熱交換路22を流れるうちに、炭素化炉排気路17から送入された排出ガスの熱交換に使用され、加熱された外気(加熱外気)となって熱交換器14から送出され、加熱外気給気路18を流れる。
(Heating outside air supply process)
The outside air sent to the heat exchanger 14 by the blower 15 is used for heat exchange of the exhaust gas sent from the carbonization furnace exhaust passage 17 while flowing through the heat exchange passage 22, and heated outside air (heating It is sent from the heat exchanger 14 and flows through the heated outside air supply passage 18.

加熱外気給気路18を流れる加熱外気の風量は、以下のように調整された後、耐炎化炉1に給気される。
加熱外気給気路18を流れる加熱外気の風量を風量検出手段27が検出し、風量検出手段27は風量検出信号を制御手段21に送る。次いで、制御手段21は、該風量検出信号に基づいた風量制御信号を風量調整手段28に送る。次いで、風量調整手段28は、前記風量制御信号に基づいて加熱外気排出路29を流れる加熱外気の風量を制御し、余剰な加熱外気を系外に排出する。このようにして加熱外気給気路18を流れる加熱外気は、風量調整された後、加熱外気給気口10から耐炎化炉1内に給気される。
The air volume of the heated outside air flowing through the heated outside air supply passage 18 is adjusted as follows, and then supplied to the flameproofing furnace 1.
The air volume detection means 27 detects the air volume of the heated outside air flowing through the heated outside air supply passage 18, and the air volume detection means 27 sends an air volume detection signal to the control means 21. Next, the control means 21 sends an air volume control signal based on the air volume detection signal to the air volume adjustment means 28. Next, the air volume adjusting means 28 controls the air volume of the heated outside air flowing through the heated outside air discharge passage 29 based on the air volume control signal, and discharges excess heated outside air to the outside of the system. In this way, the heated outside air flowing through the heated outside air supply passage 18 is supplied to the flameproofing furnace 1 from the heated outside air supply port 10 after the air volume is adjusted.

次に、耐炎化工程の熱風に加熱外気を導入開始してから、定常運転に至る運転初期における加熱外気の風量調整方法について述べる。
本発明の炭素繊維の製造方法においては、耐炎化工程の熱風に加熱外気を導入開始してから、定常運転に至るまでの間に給気される1時間当たりの該加熱外気の熱量を、該定常運転時に給気される加熱外気の熱量の20〜50%ずつ増加させるように、耐炎化炉1に給気する加熱外気の風量調整を行う。その理由は次のようなものである。炭素繊維製造装置の運転初期は、繊維が徐々にその走行速度を上げて定常走行速度に至る段階であり、炭素化炉12からの排出ガス量が不安定で、かつ熱交換器14に送入される排出ガス温度が変動しやすい。そこで、耐炎化炉1に給気する加熱外気の風量を前述のように徐々に増加させることで、加熱外気の混合によって耐炎化炉1内を循環する熱風に温度斑が生じることを防止できる。これにより、前駆体繊維束Fの耐炎化を安定して行うことができ、均一に耐炎化された耐炎化繊維束を得ることができる。この耐炎化繊維束を後段の炭素化炉で炭素化処理することで、高品質な炭素繊維を得ることができる。
また、本発明の炭素繊維の製造方法によれば、加熱外気給気路18に過剰な風量の加熱外気が流れてきても、加熱外気を風量調整した上で耐炎化炉1内に給気できるので、耐炎化炉1外への熱風の漏れ出しによる装置周囲の環境汚損を防止できる。
ここで、本発明における加熱外気の熱量とは、加熱外気の給気によって、熱風加熱手段5によって熱風に加えられる熱量(加熱負荷量)が軽減される量のことをいい、本発明では電力(単位:kW)で表される。熱風加熱手段5によって熱風に加えられる熱量とは、熱風加熱手段5による熱風の加熱に要する加熱負荷の量のことをいい、本発明では熱風加熱手段5が消費する電力(単位:kW)で表される。
Next, a method for adjusting the air volume of the heated outside air at the initial stage of operation from the start of introduction of the heated outside air to the hot air in the flameproofing process until the steady operation will be described.
In the carbon fiber production method of the present invention, the amount of heat of the heated outside air per hour supplied from the start of introduction of the heated outside air to the hot air in the flameproofing process until the steady operation is obtained, The air volume of the heated outside air to be supplied to the flameproofing furnace 1 is adjusted so as to increase by 20 to 50% of the amount of heat of the heated outside air supplied during the steady operation. The reason is as follows. The initial stage of the operation of the carbon fiber production apparatus is a stage where the fiber gradually increases its traveling speed to reach a steady traveling speed, the amount of exhaust gas from the carbonization furnace 12 is unstable, and it is fed to the heat exchanger 14. The exhaust gas temperature is easily fluctuated. Therefore, by gradually increasing the amount of heated outside air supplied to the flameproofing furnace 1 as described above, it is possible to prevent temperature spots from being generated in the hot air circulating in the flameproofing furnace 1 due to mixing of the heated outside air. Thereby, the flame resistance of the precursor fiber bundle F can be stably performed, and a flame resistant fiber bundle that is uniformly flame resistant can be obtained. A high-quality carbon fiber can be obtained by carbonizing this flame-resistant fiber bundle in a subsequent carbonization furnace.
Further, according to the carbon fiber manufacturing method of the present invention, even if an excessive amount of heated outside air flows through the heated outside air supply passage 18, the heated outside air can be supplied into the flameproofing furnace 1 after adjusting the amount of air. Therefore, environmental pollution around the apparatus due to leakage of hot air to the outside of the flameproofing furnace 1 can be prevented.
Here, the amount of heat of the heated outside air in the present invention means an amount by which the amount of heat (heating load amount) applied to the hot air by the hot air heating means 5 is reduced by the supply of the heated outside air. (Unit: kW). The amount of heat applied to the hot air by the hot air heating means 5 refers to the amount of heating load required for heating the hot air by the hot air heating means 5, and in the present invention, it is represented by the power consumed by the hot air heating means 5 (unit: kW). Is done.

本発明では、熱風に混合される前記加熱外気の有する熱量を、前記熱風加熱手段5によって熱風に加えられる熱量(加熱負荷量)の50%以下とすることが好ましい。すなわち、熱交換器に珪素化合物などの粒子状物が堆積すると、熱交換器の熱交換効率が徐々に低下していく。この熱交換効率の低下を補うためには、熱交換器に送られる外気の風量を徐々に増加させることになるが、それに伴い、熱交換器から送出される加熱外気の温度は徐々に低下することになる。そこで、前記熱風加熱手段5による熱風の加熱を主とし、加熱外気による熱風の加熱を従とすることで、運転後半においても支障なく熱風の加熱が行うことができる。一方、熱風の加熱に要する熱風加熱手段5の加熱の割合が小さく、加熱外気による熱風の加熱への依存が大きい場合、運転後半における熱風の温度制御が困難となる可能性がある。   In the present invention, the amount of heat of the heated outside air mixed with hot air is preferably 50% or less of the amount of heat (heating load amount) applied to the hot air by the hot air heating means 5. That is, when particulate matter such as a silicon compound is deposited on the heat exchanger, the heat exchange efficiency of the heat exchanger gradually decreases. In order to compensate for this decrease in heat exchange efficiency, the air volume of the outside air sent to the heat exchanger is gradually increased, and accordingly, the temperature of the heated outside air sent from the heat exchanger gradually decreases. It will be. Therefore, by mainly heating the hot air by the hot air heating means 5 and subordinately heating the hot air by the heated outside air, the hot air can be heated without any trouble even in the latter half of the operation. On the other hand, when the heating rate of the hot air heating means 5 required for heating the hot air is small and the dependence on the heating of the hot air by the heated outside air is large, temperature control of the hot air in the latter half of the operation may be difficult.

本発明の炭素繊維製造装置を用いた炭素繊維の製造方法によれば、耐炎化処理を安定して行え、高品質な炭素繊維を得ることができ、さらに装置周囲への炉内ガスの漏れ出しを低減できる。   According to the carbon fiber production method using the carbon fiber production apparatus of the present invention, flameproofing treatment can be stably performed, high-quality carbon fiber can be obtained, and leakage of gas in the furnace around the apparatus is possible. Can be reduced.

以下、本発明について、実施例を用いてさらに詳しく説明する。
この実施例では、図3に示すように、第1耐炎化炉1a,第2耐炎化炉1b,第3耐炎化炉1cを備え、加熱外気を第1耐炎化炉1a、第2耐炎化炉1bに給気できるように構成された炭素繊維製造装置を使用した。なお、第1耐炎化炉1a,第2耐炎化炉1b,第3耐炎化炉1cは以下の3つの炉内温度に設定された。また、この炭素繊維製造装置では、第3耐炎化炉の後段に前炭素化炉12を設け、設定温度は以下の通りとした。また、排出ガスに含まれる炉内ガスを無害化する炭素化炉排出ガス処理装置13、排出ガスの熱交換を行う熱交換器14、排出ガスから珪素化合物などの異物を除去するフィルター24、排出ガスを系外に排出する送風機25、排出ガスの温度を検出する温度検出手段26には、それぞれ下記に示すものを用いた。また、熱交換路22に、破線で表されるバイパス31を設け、さらに不図示の切り替え手段を用いて、熱交換器14への熱交換路22のパスを3パスまたは2パスに切り替えられるようにした。また、前駆体繊維束Fとしては、単繊維数12000本のPAN系繊維を用いた。
第1耐炎化炉:炉内の熱風温度240℃。
第2耐炎化炉:炉内の熱風温度246℃。
第3耐炎化炉:炉内の熱風温度258℃。
前炭素化炉12:炉内の最高温度700℃。
炭素化炉排出ガス処理装置13:燃料LNGによる燃焼式。
熱交換器14:チューブ式。
フィルター24:ガラス繊維とフッ素樹脂との組合せ。
送風機25:インバーター制御ファン。
温度検出手段26:熱電対温度計。
Hereinafter, the present invention will be described in more detail with reference to examples.
In this embodiment, as shown in FIG. 3, a first flameproofing furnace 1a, a second flameproofing furnace 1b, and a third flameproofing furnace 1c are provided, and heated outside air is supplied to the first flameproofing furnace 1a and the second flameproofing furnace. The carbon fiber manufacturing apparatus comprised so that air could be supplied to 1b was used. In addition, the 1st flameproofing furnace 1a, the 2nd flameproofing furnace 1b, and the 3rd flameproofing furnace 1c were set to the following three furnace temperatures. Moreover, in this carbon fiber manufacturing apparatus, the pre-carbonization furnace 12 was provided in the back | latter stage of the 3rd flameproofing furnace, and set temperature was as follows. Also, a carbonization furnace exhaust gas treatment device 13 that renders the furnace gas contained in the exhaust gas harmless, a heat exchanger 14 that performs heat exchange of the exhaust gas, a filter 24 that removes foreign substances such as silicon compounds from the exhaust gas, and exhaust The blower 25 that discharges the gas out of the system and the temperature detection means 26 that detects the temperature of the exhaust gas are as follows. Further, a bypass 31 represented by a broken line is provided in the heat exchange path 22, and the path of the heat exchange path 22 to the heat exchanger 14 can be switched to 3 paths or 2 paths by using a switching unit (not shown). I made it. As the precursor fiber bundle F, a PAN-based fiber having 12,000 single fibers was used.
First flameproofing furnace: hot air temperature in the furnace is 240 ° C.
Second flameproofing furnace: hot air temperature in the furnace is 246 ° C.
Third flameproofing furnace: hot air temperature in the furnace is 258 ° C.
Pre-carbonization furnace 12: Maximum temperature in the furnace 700 ° C.
Carbonization furnace exhaust gas treatment device 13: combustion type using fuel LNG.
Heat exchanger 14: Tube type.
Filter 24: Combination of glass fiber and fluororesin.
Blower 25: Inverter control fan.
Temperature detection means 26: thermocouple thermometer.

(実施例1)
バイパス31を選択して、熱交換器14に貫通する熱交換路22を2パス設定とした。また、風量調整手段30により加熱外気を第1耐炎化炉1aに給気するように設定した。前駆体繊維束Fの導入は、まず、第1耐炎化炉1a,第2耐炎化炉1b,第3耐炎化炉1cの順に前駆体繊維束Fを導入して走行させつつ、第1耐炎化炉1a,第2耐炎化炉1b,第3耐炎化炉1cの酸化性気体をファン6により循環させ、かつそれぞれの耐炎化炉内に設けられた熱風加熱手段5(ヒーター)により酸化性気体を前記の熱風温度まで上昇させた。また、炭素化炉12の炉内温度を、設定温度に昇温、安定させた。
各耐炎化炉内の熱風温度を前記の熱風温度で安定させた後、第3耐炎化炉1cから導出される耐炎化繊維を前記前炭素化炉12に導入開始して炭素繊維の製造を開始し、かつ炭素化炉12からの排出ガスを炭素化炉排気路17に送出開始した。
前記排出ガスを、炭素化炉排出ガス処理装置13に送入し、前記排出ガス中に含まれる炉内ガスを燃焼処理した後、前記排出ガスの温度を熱交換器14で160〜180℃に調整し、さらにフィルター24に通過させて珪素化合物などの粒子状物を除去し、送風機25を介して系外に排出した。
前炭素化炉12への耐炎化繊維の導入開始の1時間後に、第1耐炎化炉1aへの加熱外気の給気を開始し、約3時間かけて給気の風量を徐々に定常状態に上げた。これは、耐炎化工程の熱風に加熱外気を給気開始してから、定常運転に至るまでの間に給気される該加熱外気の1時間当たりの熱量を、該定常運転時に給気される加熱外気と、給気開始時における加熱外気との熱量差の33%ずつ増加させることに相当する。なお、給気開始時における加熱外気の給気の風量は33Nm/hr、定常状態における加熱外気の給気の風量は90Nm/hrに設定した。なお、実施例1における耐炎化炉1aに給気される加熱外気の風量・温度・熱量(いずれも定常状態における値)、ヒーター負荷量(熱風加熱手段5による加熱負荷量)などは表1に示すとおりであった。
Example 1
The bypass 31 was selected, and the heat exchange path 22 penetrating the heat exchanger 14 was set to two paths. Moreover, it set so that heating external air might be supplied to the 1st flame-proofing furnace 1a by the air volume adjustment means 30. FIG. First, the precursor fiber bundle F is introduced into the first flameproofing furnace 1a, the second flameproofing furnace 1b, and the third flameproofing furnace 1c in the order of introduction of the precursor fiber bundle F and running. The oxidizing gas in the furnace 1a, the second flameproofing furnace 1b, and the third flameproofing furnace 1c is circulated by the fan 6, and the oxidizing gas is supplied by the hot air heating means 5 (heater) provided in each flameproofing furnace. The temperature was raised to the hot air temperature. Further, the temperature inside the carbonization furnace 12 was raised to a set temperature and stabilized.
After stabilizing the hot air temperature in each flameproofing furnace at the hot air temperature, the introduction of the flameproofing fiber derived from the third flameproofing furnace 1c into the pre-carbonizing furnace 12 is started and the production of carbon fiber is started. The exhaust gas from the carbonization furnace 12 was started to be sent to the carbonization furnace exhaust passage 17.
The exhaust gas is fed into the carbonization furnace exhaust gas treatment device 13 and the furnace gas contained in the exhaust gas is combusted, and then the temperature of the exhaust gas is increased to 160 to 180 ° C. by the heat exchanger 14. Then, the particulate matter such as a silicon compound was removed by passing through the filter 24 and discharged out of the system through the blower 25.
One hour after the start of introduction of the flameproofing fiber into the pre-carbonization furnace 12, the supply of heated outside air to the first flameproofing furnace 1a is started, and the air volume of the supply air is gradually brought to a steady state over about three hours. Raised. This is because the amount of heat per hour of the heated outside air supplied from the start of supplying the heated outside air to the hot air in the flameproofing process until the steady operation is supplied during the steady operation. This corresponds to increasing 33% of the difference in heat quantity between the heated outside air and the heated outside air at the start of air supply. Incidentally, the air volume of supply air heating outside air at the air supply start 33 nm 3 / hr, air flow rate of the supply air heating outside air in the steady state was set to 90 Nm 3 / hr. Table 1 shows the air volume, temperature, and heat volume of the heated outside air supplied to the flameproofing furnace 1a in Example 1 (all values in a steady state), heater load volume (heating load volume by the hot air heating means 5), and the like. It was as shown.

(実施例2)
バイパス31を選択せずに、熱交換器14に貫通する熱交換路22を3パス設定とした以外は、実施例1と同様にした。(1時間当たりの熱量の増加は、実施例1と同様に33%。)なお、実施例2における耐炎化炉1aに給気される加熱外気の風量・温度・熱量(いずれも定常状態における値)、ヒーター負荷量(熱風加熱手段5による加熱負荷量)などは表1に示すとおりであった。
(実施例3)
加熱外気を第2耐炎化炉1bに給気するように設定した以外は、実施例1と同様にした。(1時間当たりの熱量の増加は、実施例1と同様に33%。)なお、実施例3における耐炎化炉1bに給気される加熱外気の風量・温度・熱量(いずれも定常状態における値)、ヒーター負荷量(熱風加熱手段5による加熱負荷量)などは表1に示すとおりであった。
(実施例4)
バイパス31を選択せずに、熱交換器14に貫通する熱交換路22を3パス設定とし、かつ風量調整手段30により加熱外気を第2耐炎化炉1bに給気するように設定した以外は、実施例1と同様にした。(1時間当たりの熱量の増加は、実施例1と同様に33%。)なお、実施例4における耐炎化炉1bに給気される加熱外気の風量・温度・熱量(いずれも定常状態における値)、ヒーター負荷量(熱風加熱手段5による加熱負荷量)などは表1に示すとおりであった。
(実施例5)
給気開始時の加熱外気の風量を50Nm/hrとし、加熱外気の給気を2時間かけて風量を徐々に定常状態に上げたこと以外は、実施例4と同様にした。これは、耐炎化工程の熱風に加熱外気を給気開始してから、定常運転に至るまでの間に給気される該加熱外気の1時間当たりの熱量を、該定常運転時に給気される加熱外気と、給気開始時における加熱外気との熱量差の50%ずつ増加させることに相当する。なお、実施例5における耐炎化炉1bに給気される加熱外気の風量・温度・熱量(いずれも定常状態における値)、ヒーター負荷量(熱風加熱手段5による加熱負荷量)などは表1に示すとおりであった。
(比較例1)
風量調整手段28を自動から手動に切替え、加熱外気の給気の風量を、給気開始時から90Nm/hrで給気するように設定変更した以外は、実施例4と同様にした。なお、比較例1における耐炎化炉1bに給気される加熱外気の風量・温度(いずれも定常状態における値)は表1に示すとおりであった。
(Example 2)
The same procedure as in Example 1 was performed except that the bypass 31 was not selected and the heat exchange path 22 penetrating the heat exchanger 14 was set to three paths. (The increase in the amount of heat per hour is 33% as in Example 1.) Note that the air volume, temperature, and heat quantity of the heated outside air supplied to the flameproof furnace 1a in Example 2 (all values in a steady state) ), Heater load amount (heating load amount by the hot air heating means 5) and the like were as shown in Table 1.
(Example 3)
The procedure was the same as in Example 1 except that the heated outside air was set to be supplied to the second flameproofing furnace 1b. (The increase in the amount of heat per hour is 33% as in Example 1.) Note that the air volume / temperature / heat quantity of the heated outside air supplied to the flameproofing furnace 1b in Example 3 (all values in a steady state) ), Heater load amount (heating load amount by the hot air heating means 5) and the like were as shown in Table 1.
Example 4
The heat exchange path 22 penetrating the heat exchanger 14 is set to three passes without selecting the bypass 31 and the heated air is set to be supplied to the second flame resistant furnace 1b by the air volume adjusting means 30. In the same manner as in Example 1. (The increase in the amount of heat per hour is 33% as in Example 1.) Note that the air volume, temperature, and heat quantity of the heated outside air supplied to the flameproofing furnace 1b in Example 4 (all values in steady state) ), Heater load amount (heating load amount by the hot air heating means 5) and the like were as shown in Table 1.
(Example 5)
The same procedure as in Example 4 was performed except that the air volume of the heated outside air at the start of air supply was 50 Nm 3 / hr and the air volume of the heated outside air was gradually raised to a steady state over 2 hours. This is because the amount of heat per hour of the heated outside air supplied from the start of supplying the heated outside air to the hot air in the flameproofing process until the steady operation is supplied during the steady operation. This corresponds to increasing 50% of the difference in heat between the heated outside air and the heated outside air at the start of supply. The air volume / temperature / heat quantity (all values in a steady state), heater load quantity (heating load quantity by the hot air heating means 5), etc., supplied to the flameproofing furnace 1b in Example 5 are shown in Table 1. It was as shown.
(Comparative Example 1)
The air volume adjusting means 28 was switched from automatic to manual, and the same procedure as in Example 4 was performed except that the setting was made so that the air volume of the heated outside air was supplied at 90 Nm 3 / hr from the start of supply. In addition, the air volume and temperature (both values in a steady state) of the heated outside air supplied to the flameproofing furnace 1b in Comparative Example 1 are as shown in Table 1.

Figure 2012246598
Figure 2012246598

(評価)
実施例1〜5は、いずれも前駆体繊維束Fの糸切れがなく、安定的に定常運転の状態にすることができた。
一方、比較例1は、加熱外気の風量の振れが大きく、この風量変動により、耐炎化炉1の前駆体繊維束Fの出入り口から炉内ガスが漏れ出たため、直ちに運転を停止させた。
(Evaluation)
In each of Examples 1 to 5, there was no yarn breakage of the precursor fiber bundle F, and it was possible to stably achieve a steady operation state.
On the other hand, in Comparative Example 1, the fluctuation of the air volume of the heated outside air was large, and the gas in the furnace leaked from the entrance / exit of the precursor fiber bundle F of the flameproofing furnace 1 due to the fluctuation of the air volume, so the operation was immediately stopped.

1 耐炎化炉
2 熱処理室
5 熱風加熱手段
7 上方流路
8 下方流路
9 熱風循環路
10 加熱外気給気口
11 熱風排出口
12 炭素化炉
13 炭素化炉排出ガス処理装置
14 熱交換器
15、25 送風機
18 加熱外気給気路
20、26 温度検出手段
22 熱交換路
24 フィルター
27 風量検出手段
28 風量調整手段
29 加熱外気排出路
F 前駆体繊維束
DESCRIPTION OF SYMBOLS 1 Flame proofing furnace 2 Heat processing chamber 5 Hot air heating means 7 Upper flow path 8 Lower flow path 9 Hot air circulation path 10 Heating external air supply port 11 Hot air discharge port 12 Carbonization furnace 13 Carbonization furnace exhaust gas processing apparatus 14 Heat exchanger 15 , 25 Blower 18 Heated outside air supply path 20, 26 Temperature detection means 22 Heat exchange path 24 Filter 27 Air volume detection means 28 Air volume adjustment means 29 Heated outside air discharge path F Precursor fiber bundle

Claims (2)

熱風加熱手段で加熱された熱風を循環させて前駆体繊維束を耐炎化処理する耐炎化工程と、
該耐炎化処理により得られた耐炎化繊維を炭素化処理する炭素化工程と、
該炭素化工程で送出された排出ガスと外気とを熱交換させる熱交換工程と、
該熱交換工程で加熱された加熱外気を前記耐炎化工程の熱風に給気する加熱外気給気工程と、
を有する炭素繊維の製造方法であって、
耐炎化工程の熱風に加熱外気を給気開始してから、定常運転に至るまでの間に給気される該加熱外気の1時間当たりの熱量を、該定常運転時に給気される加熱外気の1時間当たりの熱量の20〜50%ずつ増加させることを特徴とする炭素繊維の製造方法。
A flameproofing step of circulating the hot air heated by the hot air heating means to flameproof the precursor fiber bundle;
A carbonization step of carbonizing the flameproof fiber obtained by the flameproofing treatment;
A heat exchange step for exchanging heat between the exhaust gas sent in the carbonization step and the outside air;
A heated outside air supply step for supplying the heated outside air heated in the heat exchange step to the hot air in the flameproofing step;
A method for producing a carbon fiber having
The amount of heat per hour of the heated outside air supplied from the start of supplying the heated outside air to the hot air in the flameproofing process until the steady operation is obtained by the amount of the heated outside air supplied during the steady operation. A method for producing carbon fiber, characterized by increasing the amount of heat per hour by 20 to 50%.
前記耐炎化工程の熱風に給気する加熱外気の有する熱量が、前記熱風加熱手段によって熱風に加えられる熱量の50%以下であることを特徴とする請求項1に記載の炭素繊維の製造方法。   The method for producing carbon fiber according to claim 1, wherein the amount of heat of the heated outside air supplied to the hot air in the flameproofing step is 50% or less of the amount of heat applied to the hot air by the hot air heating means.
JP2012181039A 2012-08-17 2012-08-17 Carbon fiber manufacturing method Expired - Fee Related JP5496286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012181039A JP5496286B2 (en) 2012-08-17 2012-08-17 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012181039A JP5496286B2 (en) 2012-08-17 2012-08-17 Carbon fiber manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008013000A Division JP5097564B2 (en) 2008-01-23 2008-01-23 Carbon fiber production equipment

Publications (2)

Publication Number Publication Date
JP2012246598A true JP2012246598A (en) 2012-12-13
JP5496286B2 JP5496286B2 (en) 2014-05-21

Family

ID=47467316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012181039A Expired - Fee Related JP5496286B2 (en) 2012-08-17 2012-08-17 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP5496286B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018111891A (en) * 2017-01-10 2018-07-19 東レ株式会社 Method for producing carbon fiber bundle
WO2018230055A1 (en) * 2017-06-13 2018-12-20 東レ株式会社 Carbon fiber production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264311A (en) * 1993-03-08 1994-09-20 Sumika Hercules Kk Production of high-performance carbon fiber and/or graphite fiber
JP2006057223A (en) * 2004-08-24 2006-03-02 Toho Tenax Co Ltd Flame resisting treatment furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264311A (en) * 1993-03-08 1994-09-20 Sumika Hercules Kk Production of high-performance carbon fiber and/or graphite fiber
JP2006057223A (en) * 2004-08-24 2006-03-02 Toho Tenax Co Ltd Flame resisting treatment furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018111891A (en) * 2017-01-10 2018-07-19 東レ株式会社 Method for producing carbon fiber bundle
WO2018230055A1 (en) * 2017-06-13 2018-12-20 東レ株式会社 Carbon fiber production method
CN110709542A (en) * 2017-06-13 2020-01-17 东丽株式会社 Method for producing carbon fiber
US11261545B2 (en) 2017-06-13 2022-03-01 Toray Industries, Inc. Carbon fiber production method

Also Published As

Publication number Publication date
JP5496286B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5097564B2 (en) Carbon fiber production equipment
JP2013032608A (en) Method for processing exhaust gas
JP5075654B2 (en) Carbon fiber manufacturing apparatus and carbon fiber manufacturing method
KR101973957B1 (en) Exhaust gas treatment method and exhaust gas treatment device
JP5351397B2 (en) Flameproof device
JP5496286B2 (en) Carbon fiber manufacturing method
JP5487662B2 (en) Heat treatment furnace, flameproof fiber bundle, and method for producing carbon fiber
KR20180034478A (en) Method and apparatus for producing crosslinked glass fiber
JP4961235B2 (en) Carbon fiber manufacturing apparatus and carbon fiber manufacturing method
US4552743A (en) Process for producing carbon fiber
CN107848866B (en) Method for manufacturing glass fibre materials comprising a sizing step and a desizing step, and installation suitable for implementing said method
CN86101184A (en) Apparatus for treating flue gas
US11261545B2 (en) Carbon fiber production method
JP2012067419A (en) Exhaust gas treatment apparatus for carbonization furnace
JP5965098B2 (en) Carbon fiber manufacturing method
JP5740887B2 (en) Flame resistant furnace heating medium heating system
JP2007101128A (en) Heat storage type burner device and its operation method
JP6150721B2 (en) Heavy oil combustion method, heavy oil fired boiler and control device
Sosin et al. Increasing the Efficiency and Increasing the Resource of the Plasma-Ignition System by Its Modernization at Gusinoozerskaya TPP
JP5762109B2 (en) Tar decomposition method and tar decomposition equipment
CN117039080B (en) Fuel cell system with carbon removal function and carbon removal method
JPH068685B2 (en) Control method of catalytic combustion heating furnace
Gaba AIR POLLUTION REDUCTION BY USING OF LOW NOx BURNERS FOR FURNACES AND BOILERS.
CN107848867B (en) Method and installation for producing glass fibre material
US20190284728A1 (en) Exhaust gas treatment method, exhaust gas treatment device, and carbon fiber manufacturing system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees