JP2018054578A - 磁気検出装置 - Google Patents

磁気検出装置 Download PDF

Info

Publication number
JP2018054578A
JP2018054578A JP2016194475A JP2016194475A JP2018054578A JP 2018054578 A JP2018054578 A JP 2018054578A JP 2016194475 A JP2016194475 A JP 2016194475A JP 2016194475 A JP2016194475 A JP 2016194475A JP 2018054578 A JP2018054578 A JP 2018054578A
Authority
JP
Japan
Prior art keywords
magnetic field
resistance element
magnetic
output voltage
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016194475A
Other languages
English (en)
Other versions
JP6723630B2 (ja
Inventor
井出 洋介
Yosuke Ide
洋介 井出
隆洋 田岡
Takahiro Taoka
隆洋 田岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2016194475A priority Critical patent/JP6723630B2/ja
Publication of JP2018054578A publication Critical patent/JP2018054578A/ja
Application granted granted Critical
Publication of JP6723630B2 publication Critical patent/JP6723630B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】 多層膜GMR素子を使用することにより比較的強い磁場に対応でき、広いダイナミックレンジで磁場を検出可能な、磁場の強度および磁場の方向を容易に検出することができる磁気検出装置を提供する。【解決手段】 磁気検出装置は、磁場強度検出部10と、磁場方向検出部20と、スイッチ部30とを備えている。磁場強度検出部10は、第1の直列回路Aと第2の直列回路Bとを有しており、第1,第2の直列回路A,Bの中点出力間の第1の差動出力電圧と、当該第1の差動出力電圧を反転させた第2の差動出力電圧とを、前記スイッチ部に出力する。磁場方向検出部20は、磁場方向の検出結果をスイッチ部30に出力し、スイッチ部30は、磁場方向検出部20から出力された磁場方向の検出結果に基づいて、第1の差動出力電圧と前記第2の差動出力電圧のいずれかを選択して検知出力電圧とする。【選択図】図1

Description

本発明は、被測定電流などの磁場発生源から発せられた磁場を、多層膜GMR素子を使用することで、広いダイナミックレンジ(測定可能範囲)で検出可能な、磁場の強度および磁場を容易に検出することができる磁気検出装置に関する。
従来の非接触式の電流センサとして、磁気抵抗効果素子を使用した磁気検出装置が提案されている。特許文献1に記載されている磁気センサ装置は、磁場の強さを示す第1の電気信号を出力する第1の検出手段として、磁性層と非磁性層とが交互に積層されてなるGMR素子が使用されている。このGMR素子は、磁界の強さを検知できるが、磁界の方向を検知できない。そこで、磁場の方向を示す第2の電気信号を出力する第2の検出手段と、第2の検出手段の第2の電気信号の極性を指標として磁界の方向を特定する処理回路とが設けられている。
第2の検出手段は、薄肉部を有する圧電素子である。薄肉部に電流が流されている状態で、磁界が作用すると、ローレンツ力によって、薄肉部が磁界の方向に追従して湾曲する。このときの湾曲方向に応じて異なる極性の電圧が第2の電気信号として出力される。
特開2007−218760号公報
特許文献1に記載された磁気センサ装置は、磁界の方向を検知するための第2の検知手段として、薄肉部を有する圧電素子を使用しているが、この圧電素子は薄肉部に機械的な力であるローレンツ力を与えて、薄肉部を湾曲させるものであるため、応答性が悪く、高い周波数で変化する磁界の方向に追従させることが難しい。
また、この磁気センサ装置は、GMR素子で検知された磁界の強さを示す第1の電気信号と、圧電素子で検知された磁界の方向を示す第2の電気信号が別々の出力として取り出されものであって、磁界の向きが変化したときに、その極性が変化する単一の出力を得ることはできない。
本発明は、従来の課題を解決するものであり、多層膜GMR素子を使用して比較的強い磁場に対応でき、広いダイナミックレンジで磁場を検出可能にするとともに、磁場の方向の変化に迅速に応答した検知出力を得ることができる磁気検出装置を提供することを目的としている。
本発明の磁気検出装置は、磁場強度検出部と、磁場方向検出部と、スイッチ部とを備えており、
前記磁場強度検出部は、
強磁性層と非磁性材料層とが交互に積層された多層膜GMR素子である第1の抵抗素子と、同じ磁場発生源からの磁場に対する検出感度が前記第1の検出素子とは相違する多層膜GMR素子または固定抵抗である第2の抵抗素子が直列に接続された第1の直列回路と、
前記第2の抵抗素子と、前記第1の抵抗素子とが直列に接続された第2の直列回路とを有し、
前記第1の直列回路と前記第2の直列回路とに同じ電圧が印加されて、
前記第1の直列回路と前記第2の直列回路における、前記第1の抵抗素子と前記第2の抵抗素子との中点出力間の第1の差動出力電圧と、前記第1の差動出力電圧の極性を反転させた第2の差動出力電圧とが、前記スイッチ部に出力され、
前記磁場方向検出部では、
磁場の向きに応じて極性が変化する検知出力が、前記スイッチ部に出力されており、
前記スイッチ部では、前記磁場方向検出部からの検知出力の極性に応じて、前記第1の差動出力電圧と前記第2の差動出力電圧のいずれかを選択して検知出力電圧とすることを特徴とするものである。
本発明は、前記第2の抵抗素子は、前記第1の抵抗素子と同じ膜構成で同じ大きさの多層膜GMR素子であってもよい。
前記第1の抵抗素子と前記第2の抵抗素子とは、同じ磁場発生源までの距離が相違するものであってもよい。
または、前記第1の抵抗素子と前記第2の抵抗素子とは、同じ磁場発生源との間における磁気シールドの設置が相違するものであってもよい。
前記第1の抵抗素子と前記第2の抵抗素子とでは、同じ磁場発生源の磁場に対する設置方向が相違するものであってもよい。
また、前記第1の抵抗素子は、前記多層膜GMR素子の膜面方向が磁場発生源の磁場と平行に設けられており、前記第2の抵抗素子は、前記多層膜GMR素子の膜厚方向が磁場発生源の磁場と平行に設けられているものであってもよい。
それぞれの前記多層膜GMR素子は、最外層に位置している一方の強磁性層または両方の強磁性層に反強磁性層が接して設けられているものとすることができる。
さらに本発明は、前記磁場方向検出部は、スピンバルブ型のGMR素子を有するブリッジ回路を含むものが好ましい。
また、前記磁場方向検出部はホール素子を有するブリッジ回路を含むものでもよい。
本発明の磁気検出装置は、抵抗素子が強磁性層と複数の強磁性層と複数の非磁性層とが交互に積層された多層膜GMR素子を含んでいる。多層膜GMR素子は偶関数出力を得るものであるため、単純に直列に接続してその中点電位を検知出力電圧とするブリッジ回路を構成しても、磁場の変化に対して中点電位が変化することがない。
そこで、本発明では、ブリッジ回路から極性の異なる差動出力電圧を取り出し、磁場方向検出部の検知出力の極性に基づいて、スイッチ部で、2つの差動出力電圧のいずれかを選択している。そのため、測定しようとする磁場の向きが変化したときでも、その向きと大きさを示す単一の出力を得ることができる。
また、多層膜GMR素子は飽和磁場強度が大きいため、比較的強磁場に対して測定可能範囲(ダイナミックレンジ)を広くした磁気検出装置を構成することができる。
さらに、磁場方向検出部をスピンバルブ型のGMR素子などで構成することで、測定しようとする磁場の向きの変化に敏感に反応して磁場方向検出部の検知出力の極性を反転させることができる。したがって、測定する磁場の向きが高い周波数で変化しても、これに追従して変化する磁気検知出力を得ることができる。
本発明の第1の実施形態に係る磁気検出装置を使用した電流センサ1の回路ブロック図、 本発明の第1の実施形態の磁気検出装置に使用されている第1の抵抗素子11である多層膜GMR素子の膜構成を示す説明図、 図2に示す第1の抵抗素子11である多層膜GMR素子に、(a)磁場が印加されていない状態を示す説明図、(b)飽和磁場強度未満の磁場が印加された状態を示す説明図、(c)飽和磁場強度以上の磁場が印加された状態を示す説明図、 磁場の方向および強度の変化に対する、多層膜GMR素子の抵抗変化を示すグラフ、 磁場の方向および強度の変化に対する、磁場強度検出部の第1の直列回路Aの中点電圧の変化と、第2の直列回路Bの中点電圧の変化を示すグラフ、 磁場の方向および強度の変化に対する、第2の差動出力電圧(VoutB−VoutA)の変化を示すグラフ、 図1に示す磁場方向検出部に設けられたスピンバルブ型のGMR素子の磁場の方向と強度に対応した出力の変化を示すグラフ、 電流センサ1に使用されている磁気検出装置の出力電圧を示すグラフ、 本発明の第2の実施形態に係る磁気検出装置を使用した電流センサ2の回路ブロック図、 電流センサ2に使用されている磁気検出装置を構成する第1の抵抗素子41および第2の抵抗素子42のR−H波形を示すグラフ、 電流センサ2に使用されている磁気検出装置の出力電圧を示すグラフ、 本発明の第3の実施形態に係る磁気検出装置を使用した電流センサ3の回路ブロック図、 電流センサ3に使用されている磁気検出装置を構成する第1の抵抗素子51および第2の抵抗素子52のR−H波形を示すグラフ、 電流センサ3に使用されている磁気検出装置の出力電圧を示すグラフ、 本発明の第4の実施形態に係る磁気検出装置を使用した電流センサ4の回路ブロック図、 本発明の第1〜第4の実施形態に係る磁気検出装置に使用される多層膜GMR素子の膜構成の変形例を示す説明図、
<第1の実施形態>
図1は本発明の実施形態に係る磁気検出装置を使用した電流センサ1の回路ブロック図である。同図に示すように、電流センサ1に使用されている磁気検出装置は、磁場強度検出部10、磁場方向検出部20およびスイッチ部30を備えている。
磁場強度検出部10は、第1の抵抗素子11A,11Bおよび第2の抵抗素子12A,12Bを備えている。第1の抵抗素子11A,11Bを区別しないときは第1の抵抗素子11といい、第2の抵抗素子12A,12Bを区別しないときは第2の抵抗素子12という。以下、番号にA,Bを付して区別した部材を区別しない場合、適宜、A,Bを省略して番号のみを記す。
第1の抵抗素子11は多層膜GMR素子であり、第2の抵抗素子12は固定抵抗素子である。多層膜GMR素子は、飽和磁場強度が大きく、大きな磁場を受けても特性が劣化しない特徴がある。このため、電流センサ1として、大電流を検知することが可能である。
磁場強度検出部10は、多層膜GMR素子である第1の抵抗素子11Aと、固定抵抗素子である第2の抵抗素子12Aとが直列に接続されて第1の直列回路Aが構成され、固定抵抗素子である第2の抵抗素子12Bと、多層膜GMR素子である第1の抵抗素子11Bとが直列に接続されて第2の直列回路Bが構成されている。並列に接続された第1の直列回路Aおよび第2の直列回路Bの第1端13が第1の電位源(Vdd)に接続され、第2端14が第2の電位源(GND)に接続されている。そして、第1の直列回路Aの中点であるセンサ出力端15Aと、第2の直列回路Bの中点であるセンサ出力端15Bとが差動増幅器16A,16Bに接続されている。差動増幅器16Aはセンサ出力端15A−センサ出力端15Bの第1の差動出力電圧(VoutA−VoutB)をスイッチ部30に出力し、差動増幅器16Bはセンサ出力端15B−センサ出力端15Aの第2の差動出力電圧(VoutB−VoutA)をスイッチ部30に出力する。
図2に、第1の抵抗素子11を構成する多層膜GMR素子の膜構成の一例が示されている。
多層膜GMR素子は、下地層111と保護層115との間に、強磁性層112と非磁性材料層113とが交互に重ねられた多層構造層114を有している。多層構造層114では、強磁性層112が非磁性材料層113を介したRKKY層間相互作用により反強磁性結合をしている。したがって、非磁性材料層113に隣接する強磁性層112は、図中に矢印で示したように、磁化方向が反対向きになっている。これらの層は例えばスパッタ工程で成膜される。
多層構造層114に対し、強磁性層112の磁化の向きに沿う方向の外部磁場が加えられると、全ての強磁性層112の磁化が外部磁場の向きに揃えられようとする。このときの、非磁性材料層113を挟んで対向する対を成す強磁性層112の磁化ベクトルの相対する向きに応じて、巨大磁気抵抗効果(GMR効果)により、多層膜GMR素子の抵抗値が変化する。
多層構造層114は、強磁性層112の磁化が反平行に向けられている。そのため、外部磁場Hの向きが、強磁性層112の磁化の向きに沿う一方(正方向)に変化するときと、他方(負方向)に変化するときとで、抵抗値の変化が対称に現れる。すなわち、外部磁場の強度変化に対する、抵抗値の変化は、偶関数で現れる。多層構造層114の層の数や各層の厚さは、必要とされる飽和磁場強度(磁化状態が変化しなくなる磁場強度)に応じて設定される。
多層膜GMR素子の下地層111は、NiFeCr合金(ニッケル,鉄,クロム合金)あるいはCrなどで形成されている。強磁性層112は、Fe,Co,Niおよびこれらの合金からなる群のうち、一または複数を主成分とする合金で形成される。強磁性層112がFeCo合金(鉄,コバルト合金)で形成される場合、Feの含有割合を高くすることにより、保磁力が高くなる。
非磁性材料層113は、Cu(銅)、Cr(クロム)またはRu(ルテニウム)、などである。対を成す強磁性層112間でRKKY層間相互作用を生じさせるために、非磁性材料層113の膜厚は、Cu(銅)の場合、7〜13Åまたは16〜24Åであることが好ましく、Cr(クロム)の場合、7〜13Åまたは19〜27Åであることが好ましく、Ru(ルテニウム)の場合、3〜5Åまたは8〜10Åであることが好ましい。
図3(a)、(b)、(c)は、図2に示した第1の抵抗素子11である多層膜GMR素子に印加される外部磁場Hの向きと強度が変化したときの、多層構造層114の磁化方向の変化状態を示している。多層構造層114に影響を与える外部磁場強度がゼロ(ゼロ磁場)のとき、図3(a)に示すように、反強磁性結合されている各強磁性層112の磁化ベクトルは互い違いであるが絶対値は同じである。このとき、抵抗値は極大値となる。図3(b)に示すように、強磁性層112の磁化の方向である図示右方向に、飽和磁場よりも弱い外部磁場Hが作用しているときは、強磁性層112の磁化は図示右方向で支配的であるため、抵抗値がやや低くなる。図3(c)に示すように、飽和磁場よりも大きい外部磁場Hが図示右方向に作用すると、互いに逆向きであった強磁性層112の磁化方向が外部磁場Hと同じ右向きに揃えられる。このとき抵抗値が極小値となる。
外部磁場Hが図示左方向に作用しているときも、各強磁性層112の外部磁場の変化と抵抗値の変化は、磁化が変化する方向以外、図3(a)、(b)、(c)と同様である。
図4に示すグラフでは、横軸に、強磁性層112の磁化の向きに沿う方向での外部磁場Hの向きと大きさの変化を示し、縦軸に、多層膜GMR素子の抵抗値の変化を示している。図4の4箇所に示す矢印は、外部磁場Hの変化に応じた、複数の強磁性層112の磁化の変化を示している。多層膜GMR素子の抵抗値は、磁場強度がゼロで極大となり、いずれかの方向の磁場強度の成分(外部磁場H)が増加するに伴って抵抗値が減少し、いずれかの方向に向く外部磁場Hの大きさが、飽和磁場強度以上になると、抵抗値が変化しなくなり、抵抗値が極小になる。すなわち、相反する2つの方向での外部磁場Hの変化に対する抵抗値の変化は偶関数となる。
多層膜GMR素子は、磁場強度の大きさによって抵抗が変化し、測定可能範囲における抵抗変化率(R/R)が高く、さらに飽和磁場強度が大きいという特徴を備えている。多層膜GMR素子の飽和磁場強度は、例えば100mT以上である。
図5には、図1に示す直列回路Aにおけるセンサ出力端15Aの電位(VoutA)の変化と、直列回路Bにおけるセンサ出力端15Bの電位(VoutB)の変化が示されている。センサ出力端15Aの電位変化とセンサ出力端15Bの電位変化は逆極性になる。作動増幅器16Bから出力される第2の差動出力電圧(VoutB−VoutA)は、外部磁場の変化に対して図6に示す波形で現れ、差動増幅器16Aから出力される第1の差動出力電圧(VoutA−VoutB)は、外部磁場の変化に対して図6と上下対称の波形で現れる。なお、図6の縦軸の電圧値は、図5に示す縦軸の電圧値よりも縮尺されたレンジで示されている。図8に、第1の差動出力電圧(VoutA−VoutB)の変化が実線で示され、第2の差動出力電圧(VoutB−VoutA)の変化が1点鎖線で示されている。
磁場強度検出部10の第1の抵抗素子11A,11Bとして使用されている多層膜GMR素子は飽和磁化が大きいため、強磁場の範囲内で抵抗変化を示すことができる。よって、図8に示すように、例えば±500mT程度の強磁場において、第1の差動出力電圧(VoutA−VoutB)および第2の差動出力電圧(VoutB−VoutA)は、出力変化を示すことができ、ダイナミックレンジを広く確保できる。
ただし、図8において実線で示すように、第1の差動出力電圧(VoutA−VoutB)は外部磁場Hの方向の変化に対して偶関数で変化し、図8において1点鎖線で示すように、第2の差動出力電圧(VoutB−VoutA)は外部磁場Hの方向の変化に対して偶関数で変化し、それぞれ外部磁場Hの向きの変化を識別することができない。そこで、電流センサ1では、第1の差動出力電圧と第2の差動出力電圧とがスイッチ部30に出力され、磁場方向検出部20により検出された磁場方向の識別に基づいて、スイッチ部30で第1の差動出力電圧(VoutA−VoutB)と第2の差動出力電圧(VoutB−VoutA)のいずれかを切り替えて出力している。
磁場方向検出部20は、電流センサ1における被測定電流線5に起因する磁場方向によって極性が変化する検知電圧をスイッチ部30に出力する。図1に示す磁場方向検出部20は、第3の抵抗素子21A,21Bおよび第4の抵抗素子22A,22Bを備えたフルブリッジ構成である。なお、磁場方向検出部20は磁場方向を検出可能であればよいから、ハーフブリッジ構成の回路としてもよい。
第3の抵抗素子21は、磁場方向に応じて出力が変化する素子であるスピンバルブ型のGMR素子である。スピンバルブ型のGMR素子は、磁化の向きが固定された固定磁性層と、外部磁化に応じて磁化の向きが変化する自由磁性層とが、非磁性層を挟んで積層されている。第4の抵抗素子22は、第3の抵抗素子21とは固定磁性層の固定磁化の向きが逆向きのスピンバルブ型のGMR素子あるいは、固定抵抗である。図1に示す磁場方向検出部20では、第3の抵抗素子21Aと第4の抵抗素子22Aとの中点電位と、第4の抵抗素子22Bと第3の抵抗素子21Bとの中点電位との差がコンパレータ23の出力として得られる。磁場方向検出部20のコンパレータ23は、差動出力電圧と閾値とを比較して、磁場方向を検知してスイッチ部30に出力する。ノイズの影響などによって閾値付近における磁場方向の検知結果が頻繁に変わることを防止するために、コンパレータ23はヒステリシスが設定されたものが好ましい。
図7には、スピンバルブ型のGMR素子を使用した磁場方向検出部20のコンパレータ23からの検知出力が示されている。第3の抵抗素子21を構成するスピンバルブ型のGMR素子の固定磁性層の固定磁化の向きを、測定しようとする外部磁界と平行にまたは反平行に向けておくことにより、磁界の向きの変化によって異なる極性の検知出力が得られる。なお、第3の抵抗素子21は、磁界の向きに応じて極性が異なる出力が得られる素子であるならば、スピンバルブ型のGMR素子に限られず、AMR(Anisotropic-Magneto-Resistive)素子や、ホール素子などを使用することもできる。AMR素子やホール素子でブリッジ回路を構成することも可能である。
図1に示すスイッチ部30は、磁場方向検出部20からの検知出力の極性の変化に応じて、第1の差動出力電圧(VoutA−VoutB)と第2の差動出力電圧(VoutB−VoutA)とを切り替える。その結果、図1に示す磁気検出装置の検知出力電圧(Vout)は、図8に示す太い1点鎖線と、太い実線とが連続したものとなる。すなわち、単一の検知出力電圧(Vout)として、外部磁界の変化、例えば電流センサ1における被測定電流線5の向きの変化に応じた測定磁場の向きの変化によって極性が相違した出力を得ることができる。
<第2の実施形態>
図9は本発明の実施形態に係る磁気検出装置を使用した電流センサ2の回路ブロック図である。本実施形態以降の実施形態では、既に説明した部材に同じ番号を付して詳しい説明を省略する。図9に示すように、電流センサ2に使用されている磁気検出装置は、磁場強度検出部10に代えて磁場強度検出部40を備えている点において、第1の実施形態において説明した電流センサ1と相違している。
図9に示す磁場強度検出部40における、第1の抵抗素子41A,41Bと第2の抵抗素子42A,42Bは、膜構成と寸法が全て同じ多層膜GMR素子あり、図4に示す抵抗変化の特性を示す。
電流センサ2に設けられている磁気検出装置では、第1の抵抗素子41A,41Bから磁場発生源である被測定電流線5までの距離d1と、第2の抵抗素子42A,42Bから磁場発生源である被測定電流線5までの距離d2とを異ならせている。被測定電流線5を流れる電流によって、第1の抵抗素子41に誘導される磁場の強度と、第2の抵抗素子42に誘導される磁場の強度とが相違し、第1の抵抗素子41に作用する磁場が、第2の抵抗素子42に作用する磁場よりも強くなる。したがって、第1の抵抗素子41の検出感度が、第2の抵抗素子42の検出感度よりも実質的に高くなる。
磁場発生源である被測定電流線5までの距離を異ならせることで、被測定電流線5に流れる電流に対する、第1の抵抗素子41の感度と、第2の抵抗素子42の感度とを実質的に異ならせることができる。距離d1と距離d2の差は、d1<d2<5d1 とすることが好ましく、1.5d1<d2<2.5d1とすることがさらに好ましい。
図10は、電流センサ1を構成する多層膜GMR素子のR−H波形を示すグラフである。第1の抵抗素子41は第2の抵抗素子42よりも実質的に検出感度が高い。そのため、被測定電流線5に流れる電流量がプラス方向とマイナス方向に変化し、外部磁場Hが1つの方向に沿って互いに逆向きに変化するときの抵抗値の変化は、第1の抵抗素子41(実線表示)が急峻であるのに対し、第2の抵抗素子42(破線表示)で緩やかになる。
図11に、第1の差動出力電圧(VoutA−VoutB)が実線で示され、第2の差動出力電圧(VoutB−VoutA)が1点鎖線で示されている。図9に示すスイッチ部30では、磁場方向検出部20からの検知出力の極性の変化に応じて、第1の差動出力電圧(VoutA−VoutB)と第2の差動出力電圧(VoutB−VoutA)とを切り替える。その結果、磁気検出装置の検知出力電圧(Vout)は、図11に示す太い1点鎖線と、太い実線とが連続したものとなる。すなわち、図11に示す測定可能範囲において、単一の検知出力電圧(Vout)として、外部磁界の変化、例えば電流センサ1における被測定電流線5の向きの変化に応じた測定磁場の向きの変化によって極性が相違した出力を得ることができる。
<第3の実施形態>
図12は本発明の第3の実施形態に係る電流センサ3の回路ブロック図である。同図に示すように、電流センサ3に使用されている磁気検出装置は、磁場強度検出部10に代えて磁場強度検出部50を備えている点において、第1の実施形態において説明した電流センサ1と相違している。
図12に示す磁場強度検出部50における、第1の抵抗素子51A,51Bと第2の抵抗素子52A,52Bは、膜構成と寸法が全て同じ多層膜GMR素子あり、図4に示す抵抗変化の特性を示す。ただし、第2の抵抗素子52A,52Bと被測定電流線5との間に磁気シールド53A,53Bが設けられ、第2の抵抗素子52A,52Bの検出感度が、第1の抵抗素子51A,51Bよりも低くなっている。
磁気シールド53は、所定範囲内の磁場強度を減少させるものである。このため、磁気シールド53を設けることにより、被測定電流線5から誘導される被測定磁場に対する検出感度が低くなる。したがって、第2の抵抗素子52の検出感度は、第1の抵抗素子51の検出感度よりも低くなる。図9に示す第2の実施の形態と比較すると、磁気シールド53を用いることにより、電流センサ3を小型に構成できるようになる。
図13は、電流センサ3を構成する磁気検出装置を構成する第1の抵抗素子51および第2の抵抗素子52のR−H波形を示すグラフである。図13に示す実線は、被測定電流線5との間に磁気シールド53を設けていない第1の抵抗素子51の外部磁場Hの変化に対する抵抗値の変化を示し、破線は、被測定電流線5との間に磁気シールド53を設けた第2の抵抗素子52の外部磁場Hの変化に対する抵抗値の変化を示している。図13における破線のグラフは、±430(mT)付近で抵抗値の変化が出なくなっているが、これは、磁気シールド53が前記数値付近において磁気飽和となることを意味している。
図14に、第1の差動出力電圧(VoutA−VoutB)が実線で示され、第2の差動出力電圧(VoutB−VoutA)が1点鎖線で示されている。図12に示すスイッチ部30では、磁場方向検出部20からの検知出力の極性の変化に応じて、第1の差動出力電圧(VoutA−VoutB)と第2の差動出力電圧(VoutB−VoutA)とを切り替える。その結果、磁気検出装置の検知出力電圧(Vout)は、図14に示す太い1点鎖線と、太い実線とが連続したものとなる。すなわち、図14に示す測定可能範囲において、単一の検知出力電圧(Vout)として、外部磁界の変化、例えば電流センサ1における被測定電流線5の向きの変化に応じた測定磁場の向きの変化によって極性が相違した出力を得ることができる。
本実施形態では、第2の抵抗素子52のみに磁気シールド53を設置しているが第1の抵抗素子51と第2の抵抗素子52とに、異なる磁気シールドを設置して、第1の抵抗素子51と第2の抵抗素子52の感度を相違させてもよい。
<第4の実施形態>
図15は本発明の第4の実施形態に係る電流センサ4に使用されている磁気検出装置の回路ブロック図である。同図に示すように、電流センサ4に使用されている磁気検出装置は、磁場強度検出部10に代えて磁場強度検出部60を備えている点において、第1の実施形態において説明した電流センサ1と相違している。
図15に示す磁場強度検出部60の第1の抵抗素子61A,61Bおよび第2の抵抗素子62A,62Bは全て多層膜GMR素子であり、同じ膜構成で同じ大きさである。ただし、第1の抵抗素子61A,61Bと第2の抵抗素子62A,62Bとでは、磁場発生源である被測定電流線5にからの磁場方向に対する設置の向きが相違している。
図2に示した第1の抵抗素子61および第2の抵抗素子62の多層膜GMR素子は、Y方向が各層の積層方向であり、各層の厚み方向でもある。X−Z面が、各強磁性層112と非磁性材料層113の面と平行である。各層は、X−Z面での面積が、図2に表れているX−Y面での面積(断面積)よりも十分に大きい。
第1の抵抗素子61は、X−Z面と平行な各層の面が、被測定電流線5に図13の紙面に垂直に手前から奥方向に電流が流れた場合に生じる磁場Hと平行となるように設置されている。これに対して、第2の抵抗素子62は、X−Y面と平行な各層の面が磁場Hと平行となるように設置されている。したがって、第2の抵抗素子62では、外部磁場Hが変化したとき、強磁性層112(図2参照)の磁化が、膜厚方向(Y方向)に向けて変化しようとするため、反磁場が作用し、素子の検出感度がきわめて低くなる。よって、第2の抵抗素子62の検出感度を第1の抵抗素子61と実質的に異ならせることができるから、図15に示したブロック回路を構成することで、外部磁場Hの変化(検出電流の変化)を検知することが可能になる。
図16は、上述した第1〜第4の実施形態に係る磁気検出装置が備える多層膜GMR素子の膜構成の変形例を示す説明図である。同図に示すように、この多層膜GMR素子70は、強磁性層112のうち、最外層の強磁性層112に反強磁性層116が積層されている。なお、反強磁性層116は下地層111と最も下層の強磁性層112との間に設けられていてもよい。すなわち反強磁性層116は、多層構造層114の最外層に位置する強磁性層112の一方または双方に積層して設けられる。
反強磁性層116は、x−Mn合金(x,マンガン合金、x=Pt,Ir,Ru,Rh,Pd,Fe,Ni)、x−Cr合金(x,クロム合金、x=Al,Pt,Mn)およびx−O(xの酸化物、x=Fe,Co,Ni)などを用いることができる。これらの中では、PtMn合金(白金,マンガン合金)およびIrMn合金(イリジウム,マンガン合金)が好ましい。
本実施形態では、PtMn合金からなる反強磁性層116をアニール処理して規則化し、強磁性層112との間(界面)で交換結合を生じさせる。この交換結合によって、強磁性層112の強磁場耐性を向上させる。
(実施例1)
以下の膜構成を備えた磁気検出装置の抵抗素子(図2参照)を製造した。()内の数値は膜厚(Å)を示す。
基板/下地層111:NiFe−36Cr(42)/多層構造層114:[強磁性層112:90CoFe(20)/非磁性材料層113:Cu(11)]×15/保護層115:Ta(50)
Rs=4.6Ω/□、ストライプ線長=150μm、ストライプ幅=0.8μm、ストライプ本数=13本、R=11213Ω
すなわち、多層膜GMR素子は、図2に示すX方向がストライプの線長方向に向けられ、Z方向の寸法がストライプ幅方向に向けられて線状に形成されている。第1の抵抗素子11における多層膜GMR素子は、X方向がストライプの線長方向となって、X−Z面内において、ジグザグにいわゆるミアンダパターンで形成されている。ストライプ本数とは、ミアンダパターンでの素子のストライプの本数である。Rはミアンダパターン全体での抵抗値である。
1,2,3,4 電流センサ
5 被測定電流線
10,40,50,60 磁場強度検出部
11A,11B,41A,41B,51A,51B,61A,61B 第1の抵抗素子(多層膜GMR素子)
12A,12B 第2の抵抗素子(固定抵抗素子)
42A,42B,52A,52B,62A,62B 第2の抵抗素子(多層膜GMR素子)
13 第1端
14 第2端
15A,15B,センサ出力端
16A,16B 差動増幅器
20 磁場方向検出部
21A,21B 第3の抵抗素子
22A,22B 第4の抵抗素子
23 コンパレータ
30 スイッチ部
53A,53B 磁気シールド
70 多層膜GMR素子
111 下地層
112 強磁性層
113 非磁性材料層
114 多層構造層
115 保護層
116 反強磁性層
A 第1の直列回路
B 第2の直列回路
Vdd 第1の電位源
GND 第2の電位源
d1,d2 距離
H 磁場

Claims (9)

  1. 磁場強度検出部と、磁場方向検出部と、スイッチ部とを備えており、
    前記磁場強度検出部は、
    強磁性層と非磁性材料層とが交互に積層された多層膜GMR素子である第1の抵抗素子と、同じ磁場発生源からの磁場に対する検出感度が前記第1の検出素子とは相違する多層膜GMR素子または固定抵抗である第2の抵抗素子が直列に接続された第1の直列回路と、
    前記第2の抵抗素子と、前記第1の抵抗素子とが直列に接続された第2の直列回路とを有し、
    前記第1の直列回路と前記第2の直列回路とに同じ電圧が印加されて、
    前記第1の直列回路と前記第2の直列回路における、前記第1の抵抗素子と前記第2の抵抗素子との中点出力間の第1の差動出力電圧と、前記第1の差動出力電圧の極性を反転させた第2の差動出力電圧とが、前記スイッチ部に出力され、
    前記磁場方向検出部では、
    磁場の向きに応じて極性が変化する検知出力が、前記スイッチ部に出力されており、
    前記スイッチ部では、前記磁場方向検出部からの検知出力の極性に応じて、前記第1の差動出力電圧と前記第2の差動出力電圧のいずれかを選択して検知出力電圧とすることを特徴とする磁気検出装置。
  2. 前記第2の抵抗素子は、前記第1の抵抗素子と同じ膜構成で同じ大きさの多層膜GMR素子である請求項1に記載の磁気検出装置。
  3. 前記第1の抵抗素子と前記第2の抵抗素子とは、同じ磁場発生源までの距離が相違する請求項2に記載の磁気検出装置。
  4. 前記第1の抵抗素子と前記第2の抵抗素子とは、同じ磁場発生源との間における磁気シールドの設置が相違する請求項2に記載の磁気検出装置。
  5. 前記第1の抵抗素子と前記第2の抵抗素子とは、同じ磁場発生源の磁場に対する設置方向が相違する請求項2に記載の磁気検出装置。
  6. 前記第1の抵抗素子は、前記多層膜GMR素子の膜面方向が磁場発生源の磁場と平行に設けられており、
    前記第2の抵抗素子は、前記多層膜GMR素子の膜厚方向が磁場発生源の磁場と平行に設けられている請求項3に記載の磁気検出装置。
  7. それぞれの前記多層膜GMR素子は、最外層に位置している一方の強磁性層または両方の強磁性層に反強磁性層が接して設けられている請求項1ないし6のいずれかに記載の磁気検出装置。
  8. 前記磁場方向検出部は、スピンバルブ型のGMR素子を有するブリッジ回路を含む請求項1ないし7のいずれかに記載の磁気検出装置。
  9. 前記磁場方向検出部は、ホール素子を有するブリッジ回路を含む請求項1ないし7のいずれかに記載の磁気検出装置。
JP2016194475A 2016-09-30 2016-09-30 磁気検出装置 Active JP6723630B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016194475A JP6723630B2 (ja) 2016-09-30 2016-09-30 磁気検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016194475A JP6723630B2 (ja) 2016-09-30 2016-09-30 磁気検出装置

Publications (2)

Publication Number Publication Date
JP2018054578A true JP2018054578A (ja) 2018-04-05
JP6723630B2 JP6723630B2 (ja) 2020-07-15

Family

ID=61836481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016194475A Active JP6723630B2 (ja) 2016-09-30 2016-09-30 磁気検出装置

Country Status (1)

Country Link
JP (1) JP6723630B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497082A (en) * 1995-01-25 1996-03-05 Honeywell Inc. Quadrature detector with a hall effect element and a magnetoresistive element
JP2015045506A (ja) * 2013-08-27 2015-03-12 アルプス電気株式会社 回転検出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497082A (en) * 1995-01-25 1996-03-05 Honeywell Inc. Quadrature detector with a hall effect element and a magnetoresistive element
JP2015045506A (ja) * 2013-08-27 2015-03-12 アルプス電気株式会社 回転検出装置

Also Published As

Publication number Publication date
JP6723630B2 (ja) 2020-07-15

Similar Documents

Publication Publication Date Title
JP6725667B2 (ja) 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置
US10254305B2 (en) Inertial sensor
JP6842741B2 (ja) 磁気センサ
JP6702034B2 (ja) 磁気センサ
US11320498B2 (en) Magnetic-field-applying bias film, and magnetic detection element and magnetic detector including the same
JP2019516094A (ja) セット/リセットデバイスのない異方性磁気抵抗(amr)センサ
JP6610746B1 (ja) 磁気センサ
JP2017072375A (ja) 磁気センサ
WO2017199519A1 (ja) 平衡式磁気検知装置
JP7057680B2 (ja) 磁気センサおよび電流センサ
JP2015135267A (ja) 電流センサ
JP5869405B2 (ja) 磁気検出素子及びそれを用いた磁気センサ
US11578996B2 (en) Position detection element and position detection apparatus using same
JP6723630B2 (ja) 磁気検出装置
US11488758B2 (en) Exchange coupling film, and magnetoresistive sensor and magnetic detector including the same
JP2018096895A (ja) 磁場検出装置
JP6618618B2 (ja) 磁気検出装置
WO2015125699A1 (ja) 磁気センサ
JP5184380B2 (ja) 磁気検出装置
JP2017191112A (ja) 慣性センサ
WO2022208771A1 (ja) 磁気センサ素子、磁気センサおよび磁気センサ装置
JP2015099882A (ja) 磁気センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200620

R150 Certificate of patent or registration of utility model

Ref document number: 6723630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150