JP2018049127A - 露光装置、露光方法、およびデバイス製造方法 - Google Patents

露光装置、露光方法、およびデバイス製造方法 Download PDF

Info

Publication number
JP2018049127A
JP2018049127A JP2016184087A JP2016184087A JP2018049127A JP 2018049127 A JP2018049127 A JP 2018049127A JP 2016184087 A JP2016184087 A JP 2016184087A JP 2016184087 A JP2016184087 A JP 2016184087A JP 2018049127 A JP2018049127 A JP 2018049127A
Authority
JP
Japan
Prior art keywords
illumination light
region
pattern
polarizing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016184087A
Other languages
English (en)
Inventor
誠司 松浦
Seiji Matsuura
誠司 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2016184087A priority Critical patent/JP2018049127A/ja
Priority to US15/640,488 priority patent/US10281821B2/en
Priority to CN201710701074.1A priority patent/CN107861337A/zh
Priority to TW106131503A priority patent/TW201814770A/zh
Priority to KR1020170121253A priority patent/KR20180032197A/ko
Publication of JP2018049127A publication Critical patent/JP2018049127A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • G03F7/2006Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light using coherent light; using polarised light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/701Off-axis setting using an aperture
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】様々な方向に延在するパターンの解像度を高めることができる露光装置を提供することである。【解決手段】露光装置(100)は、照明光を偏光させる偏光部材(125)と、少なくとも1つの開口部を有するフィルタ(130)とを備える。偏光部材は、第1偏光ユニット(1110)と、第1偏光ユニットを囲むように配置された第2偏光ユニット(1120)とを含む。第2偏光ユニットは、第2偏光ユニットに入射される照明光を第1偏光ユニットの外周に沿った周状方向に偏光させるように構成される。第1偏光ユニットの少なくとも一部分は、一部分から見て第1偏光ユニットの中央部と反対側に位置する第2偏光ユニットの部分における偏光方向と直交する方向に照明光を偏光させるように構成される。フィルタにおいて、開口部(132,134)は、フィルタおよび偏光部材の後段における照明光が、第1および第2偏光ユニットによって偏光された照明光を含むように配置される。【選択図】図12

Description

この開示は、露光装置に関し、より特定的には、半導体デバイスを製造するための露光装置に関する。
半導体製造過程において、光を利用して平面基板にパターンを転写するフォトリソグラフィ工程が知られている。このフォトリソグラフィ工程では、露光装置によって、フォトマスクに形成されているパターンが、ウェハ上に塗布された感光体層(フォトレジスト)に転写(露光)される。露光装置には、ステッパー等の一括露光型の投影露光装置やスキャナー等の走査露光型の投影露光装置などが用いられている。
近年の微細加工技術の向上に伴い、これらの露光装置にも解像度を高めるための技術が求められている。露光装置の解像度を高める技術として、露光光源の波長を短くすることや、投影光学系の開口数を大きくすることが知られている。しかしながら、投影光学系の焦点深度は、開口数の2乗に反比例して小さくなり、また、波長に比例して小さくなる。そこで、これらのパラメータに依存せずに、解像度を高めるための技術(低k1化技術)が求められている。低k1化技術としては、照明分野では変形照明法、マスク分野では位相シフトマスク法などが知られている。
解像度を高めるための変形照明法に関し、特開2006−278979号公報(特許文献1)は、X方向に所定ピッチで配列された一方向密集パターンを露光する際に、照明光学系の瞳面において、X軸に平行な直線に沿って配置された4つの二次光源で光量が大きくなる一列4極照明を用いるとともに、照明光の偏光状態を外側の2つの二次光源でX軸に直交する方向の直線偏光として、内側の2つの二次光源でX軸に平行な方向の直線偏光とする露光装置を開示する([要約]参照)。
また、特開2010−093291号公報(特許文献2)は、照明光学装置の瞳面またはその近傍に、光軸を含む中心領域に位置する光強度分布と光軸から間隔を隔てた複数の周辺領域に位置する光強度分布とを有する照明瞳分布を形成するための照明瞳形成手段と、複数の周辺領域に位置する光強度分布の位置および大きさを中心領域に位置する光強度分布とは独立して変更するための領域変更手段とを備える露光装置を開示する([要約]参照)。
特開2006−278979号公報 特開2010−093291号公報
しかしながら、上記の特許文献に開示される技術は、特定方向に延在するパターンの解像度を向上させることはできるが、当該特定方向と直交する方向に延在するパターンの解像度が低下してしまう。そのため、上記の特許文献に開示される露光装置は、様々な方向に延在するパターンを露光するにあたってダブルパターニングを行なう必要があるという問題があった。
本開示は、上記のような問題を解決するためになされたものであって、ある局面における目的は、様々な方向に延在するパターンの解像度を高めることができる露光装置を提供することである。他の局面における目的は、様々な方向に延在するパターンの解像度を高めることができる露光装置を用いたデバイス製造方法を提供することである。さらに他の局面における目的は、様々な方向に延在するパターンの解像度を高めることができる露光方法を提供することである。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
ある実施形態に従う露光装置は、露光用の照明光を発する光源と、照明光を偏光させる偏光部材と、少なくとも1つの開口部を有するフィルタとを備える。偏光部材は、第1偏光ユニットと、偏光部材に対する照明光の入射方向から見て、第1偏光ユニットを囲むように配置された第2偏光ユニットとを含む。第2偏光ユニットは、第2偏光ユニットに入射される照明光の少なくとも一部を第1偏光ユニットの外周に沿った周状方向に偏光させるように構成される。第1偏光ユニットの少なくとも一部分は、一部分から見て第1偏光ユニットの中央部と反対側に位置する第2偏光ユニットの部分における偏光方向と直交する方向に照明光を偏光させるように構成される。フィルタにおいて、開口部は、照明光の光学系路においてフィルタおよび偏光部材の後段における照明光が、第1偏光ユニットによって偏光された照明光と、第2偏光ユニットによって偏光された照明光とを含むように配置される。
ある実施形態に従う露光装置によれば、様々な方向に延在するパターンの解像度を高めることができる。そのため、この露光装置は、ダブルパターニングによらず、一度に様々な方向に延在するパターンを高解像度で露光できる。
この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。
関連技術に従う露光装置の構成例について説明する図である。 関連技術に従う偏光部材の偏光分布を説明する図である。 関連技術に従うフィルタの構成を説明する図である。 フォトマスクに形成されるパターンの例を説明する図である。 関連技術に従う投影光学系の瞳面上における回折光分布を説明する図である。 他の関連技術に従う偏光部材の偏光分布を説明する図である。 フォトマスクに形成される他のパターンの例を説明する図である。 スペース幅の狭いL&Sパターンを用いた場合の投影光学系の瞳面上における回折光分布を説明する図である。 スペース幅の広いL&Sパターンを用いた場合の投影光学系の瞳面上における回折光分布を説明する図である。 メモリアレイおよび周辺デバイスを構成する概略回路構成を説明する図である。 ある実施形態に従う偏光部材の偏光分布を説明する図である。 ある実施形態に従うフィルタの構成について説明する図である。 ある実施形態に従う露光装置の投影光学系の瞳面上における回折光分布を説明する図である。 ある実施形態に従う、フィルタにおける開口部(ダイポール)の配置位置を説明する図である。 偏光ユニット1110と1120との境界位置が0.7の場合におけるシミュレーション結果を説明する図である。 偏光ユニット1110と1120との境界位置が0.55の場合におけるシミュレーション結果を説明する図である。 偏光ユニット1110と1120との境界位置が0.85の場合におけるシミュレーション結果を説明する図である。 図15におけるデータ点A,B,Cのシミュレーション結果を個別に説明する図である。 ある実施形態に従う、フィルタ1900における開口部(ダイポール)の配置位置を説明する図である。 フォトマスクに形成されるL&Sパターンの例を説明する図である。 ある実施形態に従う、露光パターンに応じたフィルタの選択方法の一例について説明するフローチャートである。 ある実施形態に従うデバイス製造方法の一例を説明するフローチャートである。
以下、この発明の実施形態について図面を参照しながら詳細に説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
[関連技術]
まず、関連技術に従う露光装置の問題点について説明する。その次に、関連技術に従う露光装置の問題点を解決し得る、ある実施形態に従う露光装置について説明する。
図1は、関連技術に従う露光装置100Rの構成例について説明する図である。図1を参照して、関連技術に従う露光装置100Rは、光源105を備え、光学経路の順に、ズームレンズ110と、ミラー115と、マイクロレンズアレイ120と、偏光部材125R1と、フィルタ130Rと、コンデンサレンズ135と、フォトマスク140と、投影光学系145と、ステージ155とをさらに備える。ステージ155上には、ウェハ150が固定されている。
光源105は、露光用の照明光を照射可能に構成される。光源105としては、例えば波長約193nmのArFエキシマレーザー、波長約248nmのKrFエキシマレーザー、波長約157nmのF2エキシマレーザーなどのパルスレーザーを使用することができる。
光源105から照射された照明光は、凹レンズと凸レンズとの組み合わせによって構成されるズームレンズ110を介して光路折り曲げ用のミラー115に入射される。ズームレンズ110は、上記凹レンズと凸レンズとの組み合わせによって定まる所定の範囲内で焦点距離を連続的に変化させることができるように構成されている。
ミラー115によって光路をx軸方向からz軸方向に折り曲げられた照明光は、マイクロレンズアレイ120に入射される。マイクロレンズアレイ120において、多数の微小レンズ(微小屈折面)が互いに隔絶されることなく一体的に形成される。これにより、マイクロレンズアレイ120は、オプティカルインテグレーター(照度均一化部材)として機能し得る。なお、他の局面において、マイクロレンズアレイ120に替えて、フライアイレンズを用いてもよい。マイクロレンズアレイ120を介した照明光は、偏光部材125R1に入射される。
図2は、関連技術に従う偏光部材125R1の偏光分布を説明する図である。偏光部材125R1は、光学結晶軸の方向が均一な1/2波長板によって構成され、通過する光の偏光方向をy方向に揃える機能を有する。ある局面において、偏光部材125R1の中心位置を光軸AXが貫くように偏光部材125R1が配置される。
図1を再び参照して、偏光部材125R1を通過した照明光は、フィルタ130Rに入射される。
図3は、関連技術に従うフィルタ130Rの構成を説明する図である。図3を参照して、フィルタ130Rは、円盤形状であって、x方向の端部付近に開口部132Rおよび134Rを有する。このようなフィルタ130Rは、2重極(ダイポール)照明とも称される。フィルタ130Rは、偏光部材125R1を通過する照明光のうち、開口部132Rおよび134Rに照射される照明光のみを通過させる。したがって、フィルタ130Rは、絞りとして機能し得る。
ある局面において、フィルタ130Rの中心を、偏光部材125R1を通過する光束の光軸AXが貫くように、これらの光学部材が配置される。これにより、光軸から離れた位置に配置される開口部132Rおよび134Rからの照明光は、コンデンサレンズ135によって集光された後に、フォトマスク140に斜めから入射される。フォトマスク140には、ウェハ150上に形成されたフォトレジスト(感光体層)に露光するためのパターンが形成されている。
フォトマスク140に入射される光束は、フォトマスク140上に形成されたパターンによって回折されて、投影光学系145に入射される。投影光学系145は、入射された光束を縮小してウェハ150上に形成されたフォトレジストに照射する。
図4は、フォトマスク140に形成されるパターンの例を説明する図である。図4を参照して、ある局面において、フォトマスク140には、x方向に所定間隔で配列されたラインアンドスペースパターン(以下、「L&Sパターン」とも称する)400が形成されている。このL&Sパターン400を構成する各ライン410は、y方向に延在している。
図5は、関連技術に従う投影光学系145の瞳面PU上における回折光分布を説明する図である。図5において、一例として、開口部132Rからの光束について説明する。開口部132Rを介してL&Sパターン400に斜めから入射された光束は、x方向に回折される。そのため、図5に示されるように、瞳面PUには、開口部132Rを通過した光束の0次回折光510と、1次回折光520とが入射され得る。これにより、ウェハ150(上のフォトレジスト)には、0次回折光および1次回折光の2光束によってパターンが結像される。このように、関連技術に従う露光装置100Rは、フィルタ130Rによって斜めからフォトマスク140に光を入射することによって、ウェハ150上の光強度を強くして、解像度を高め得る。なお、開口部134Rからの光束も、開口部132Rからの光束と同様の振る舞いをするため、その説明については繰り返さない。
また、0次回折光510および1次回折光520は、偏光部材125R1の作用によりy方向に振動する直線偏光である。そのため、ウェハ150上の結像面において、0次回折光510の振動方向(偏光方向)と、1次回折光520の振動方向とが一致して、これらの回折光は互いに強めあうように干渉する。これにより、関連技術に従う露光装置100Rは、ウェハ上の光強度を強くして、解像度を高め得る。
図6は、他の関連技術に従う偏光部材125R2の偏光分布を説明する図である。図6に示されるように、偏光部材125R2は、矩形形状である。偏光部材125R2は、2本の対角線によって4分割された領域において、光軸AXを中心として周状に偏光分布を形成する。より具体的には、4分割された領域のうち、x方向に向かい合う領域を構成する1/2波長板は、通過する光束をy方向に直線偏光させるように光学結晶軸の方向が配列されている。一方、y方向に向かい合う領域を構成する1/2波長板は、通過する光束をx方向に直線偏光させるように光学結晶軸の方向が配列されている。このような偏光部材125R2を、図2で説明した偏光部材125R1に替えて用いた場合であっても、開口部132Rおよび134Rを通過する光束の偏光方向はy方向である。そのため、関連技術に従う露光装置100Rは、図2で説明した偏光部材125R1に替えて図6に示される偏光部材125R2を用いても、偏光部材125R1の場合と同様の効果が得られる。
しかしながら、偏光部材125R1または125R2と、フィルタ130Rとの組み合わせを用いて、図7に示されるような、y方向に所定間隔で配列されたL&Sパターン700を露光する場合、高い解像度が得られない。
図7は、フォトマスク140に形成される他のパターンの例を説明する図である。他の局面において、フォトマスク140には、y方向に所定間隔で配列されたL&Sパターン700が形成されている。このL&Sパターン700を構成する各ライン710は、x方向に延在している。
ラインアンドスペース700の各ライン710どうしの間隔(スペースの幅)に応じて、投影光学系145の瞳面PU上における回折光分布は異なる。偏光部材125R1とフィルタ130Rとの組み合わせを用いて、L&Sパターン700を露光する場合において、当該パターンのスペース幅が狭いとき、およびスペース幅が広いときについて説明する。
図8は、スペース幅の狭いL&Sパターン700を用いた場合の投影光学系145の瞳面PU上における回折光分布を説明する図である。図8では、図5のときと同様に、一例として開口部132Rからの光束の回折光分布について説明する。瞳面PUには、L&Sパターン700を通過した0次回折光810と、1次回折光820および830が入射される。L&Sパターン700におけるスペース幅が狭いほど、1次回折光の、0次回折光に対する角度は大きくなる。そのため、図8に示されるように、1次回折光820および830の大部分は瞳面PUに入射されない。したがって、実質的に1次回折光820および830は結像に寄与せず、ウェハ150上の光強度は低い。その結果、ウェハ150上におけるL&Sパターン700の解像度は高められない。
図9は、スペース幅の広いL&Sパターン700を用いた場合の投影光学系145の瞳面PU上における回折光分布を説明する図である。図9では、図5のときと同様に、一例として開口部132Rからの光束の回折光分布について説明する。瞳面PUには、L&Sパターン700を通過した0次回折光910と、1次回折光920および930が入射される。図9に示されるように、L&Sパターン700におけるスペース幅が広い場合、0次回折光に対する1次回折光の角度が小さいため、1次回折光の大部分が瞳面PUに入射される。しかしながら、ウェハ150上の結像面において0次回折光910と、1次回折光920および930の振動方向が一致しないため、これらの回折光によってウェハ150上での光強度が高くならない。その結果、ウェハ150上におけるL&Sパターン700の解像度は高められない。
なお、図8および図9に示される例は、偏光部材125R1に替えて偏光部材125R2を用いた場合でも同様である。
上記のように、関連技術に従う露光装置100Rは、x方向に配列されるL&Sパターン400(y方向に延在するパターンの繰り返し)の解像度を高めることはできるが、y方向に配列されるL&Sパターン700の解像度を高めることはできない。
図10は、メモリアレイおよび周辺デバイスを構成する概略回路構成を説明する図である。分図(A)は、あるレイヤにおける金属配線層を説明する図である。分図(B)は、他のレイヤにおける金属配線層を説明する図である。
分図(A)に示されるレイヤでは、ワード線としての金属配線1010がx方向に延在するほか、周辺デバイス(行デコーダなど)としての金属配線1020が形成される。金属配線1010は、y方向に所定間隔で配列されるL&Sパターンを形成する。金属配線1020には、x方向に延在する金属配線に加え、y方向に延在する金属配線も含まれる。また、領域1025において金属配線どうしの間隔(スペースの幅)が狭く、当該領域に形成される金属配線は、高い解像度が要求される。
分図(B)に示されるレイヤでは、ビット線としての金属配線1050がy方向に延在するほか、周辺デバイス(マルチプレクサ等)としての金属配線1060が形成される。金属配線1050は、x方向に所定間隔で配列されるL&Sパターンを形成する。金属配線1060には、y方向に延在する金属配線に加え、x方向に延在する金属配線も含まれる。また、領域1065や周辺デバイスとメモリアレイ部との接続部である領域1070において金属配線どうしの間隔(スペースの幅)が狭く、当該領域に形成される金属配線は、高い解像度が要求される。
上記説明したように、関連技術に従う露光装置100Rは、所定方向に延在するパターンの解像度を高めることはできるが、当該所定方向に直交する方向に延在するパターンの解像度を高めることはできない。そのため、仮に関連技術に従う露光装置100Rを用いて分図(A)または分図(B)に示されるパターンを露光する場合、金属配線1020のうちy方向に延在するパターンや、金属配線1060のうちx方向に延在するパターンなどの解像度が低くなり得る。そのため、露光装置100Rは、高い解像度が求められる領域1025,1065,および1070において要求される解像度を満足できない場合もあり得る。その場合、露光装置100Rは、分図(A)または/および(B)に示されるパターンを露光するためにダブルパターンニングを行なわなければならない。ダブルパターニングを行なう場合、高い解像度は実現できるものの、露光装置の露光対象である製品の製造コストの上昇、および生産効率の低下などの問題が生じる。そこで、以下に、これら問題を解決し得る、ある実施形態に従う露光装置の構成について説明する。
[実施形態1]
図1を再び参照して、ある実施形態に従う露光装置100は、偏光部材125R1に替えて125を、フィルタ130Rに替えてフィルタ130を備える点において、関連技術に従う露光装置100Rとは相違する。その他の部分については同じであるため、その説明は繰り返さない。なお、他の局面において、露光装置100は、投影光学系145と、ウェハ150との間を、媒体(たとえば、屈折率1.44の純粋)で満たす構成であってもよい。また、露光装置100は、ステッパー等の一括露光型の装置であってもよいし、スキャナー等の走査露光型の装置であってもよい。
(偏光部材125の構成)
図11は、ある実施形態に従う偏光部材125の偏光分布を説明する図である。図11を参照して、偏光部材125は、偏光ユニット1110と、偏光ユニット1110の外側の偏光ユニット1120とを含む。偏光ユニット1120は、偏光部材125に対する照明光の入射方向から見て、偏光ユニット1110を囲むように配置される。ある局面において、偏光ユニット1110と、偏光ユニット1120とは一体に形成される。図11に示される例において、偏光部材125は矩形であって、偏光部材125を構成する偏光ユニット1110および1120も矩形である。なお、偏光ユニット1110および1120の形状は矩形に限られず、例えば円形状であってもよい。また、他の局面において、偏光部材125は、3つ以上の偏光ユニットによって構成されてもよい。
ある局面において、偏光ユニット1110および1120は1/2波長板によって構成される。偏光ユニット1120を構成する1/2波長板は、通過する光束を偏光ユニット1110の外周に沿った周状に直線偏光させるように光学結晶軸の方向が配列されている。図11に示される例において、偏光ユニット1120は、2本の対角線によって4分割された領域において光軸AXを中心として周状に偏光分布を形成する。4分割された領域のうち、x方向に向かい合う領域を構成する1/2波長板は、通過する光束をy方向に直線偏光させるように光学結晶軸の方向が配列されている。一方、y方向に向かい合う領域を構成する1/2波長板は、通過する光束をx方向に直線偏光させるように光学結晶軸の方向が配列されている。
偏光ユニット1110を構成する1/2波長板の少なくとも一部分は、当該一部分から見て偏光ユニット1110の中央部と反対側に位置する偏光ユニット1120の部分における偏光方向と直交する方向に照明光を偏光させるように、光学結晶軸の方向が配列されている。図11に示される例において、偏光ユニット1110は、2本の対角線によって4分割された領域を有する。4分割された領域のうち、x方向に向かい合う領域を構成する1/2波長板は、通過する光束をx方向に直線偏光させるように光学結晶軸の方向が配列されている。一方、y方向に向かい合う領域を構成する1/2波長板は、通過する光束をy方向に直線偏光させるように光学結晶軸の方向が配列されている。
図11に示される例において、光軸AXから偏光ユニット1120の外周端部までの距離を1とした場合、偏光ユニット1110と1120との境界線の位置は0.7に設定される。なお、他の局面において、偏光ユニット1110と1120との境界線の位置は0.6乃至0.8に設定され得る。
(フィルタ130の構成)
図12は、ある実施形態に従うフィルタ130の構成について説明する図である。図12を参照して、フィルタ130は、x方向の端部付近に開口部132および134を有する。図12に示される例において、フィルタ130、開口部132、および開口部134は、円形である。なお、フィルタ130、開口部132、および開口部134の形状は、円形に限られるものではなく、例えば矩形であってもよい。
図12において、グリッドは偏光部材125から射出された光束を表す。ある局面において、円形状のフィルタ130は、偏光部材125(偏光ユニット1120)から射出された光束がxy平面において作り出す矩形の各辺に接するように配置され得る。
ある局面において、開口部132および134のxy平面における重心位置は、偏光ユニット1110から入射される光束と、偏光ユニット1120から入射される光束との境界位置に配置され得る。この場合、xy平面において、光軸AXの位置からフィルタ130の外周端部までの距離を1として、光軸AXの位置を原点(0、0)としたとき、開口部132の重心位置は(0.7、0)であって、開口部134の重心位置は(−0.7、0)に設定され得る。かかる場合、開口部132および134から射出される光束は、偏光ユニット1110によって偏光された光束と、偏光ユニット1120によって変更された光束とを含む。より具体的には、開口部132の右半分(x方向の座標位置が0.7以上の部分)から射出される光束は偏光ユニット1120によるy方向の直線偏光を有し、左半分(x方向の座標位置が0.7未満の部分)から射出される光束は偏光ユニット1110によるx方向の直線偏光を有する。開口部134の左半分(x方向の座標位置が−0.7未満の部分)から射出される光束は偏光ユニット1120によるy方向の直線偏光を有し、左半分(x方向の座標位置が−0.7以上の部分)から射出される光束は偏光ユニット1110によるx方向の直線偏光を有する。
なお、他の局面においてフィルタ130は、光学経路において偏光部材125の前段に配置される構成であってもよい。フィルタ130において開口部は、偏光部材125およびフィルタ130の後段における光束(照明光)が、偏光ユニット1110によって偏光された光束と、偏光ユニット1120によって偏光された光束とを含むように配置されればよい。
(瞳面PUでの回折光分布)
図13は、ある実施形態に従う露光装置100の投影光学系145の瞳面PU上における回折光分布を説明する図である。図13は、上記の偏光部材125およびフィルタ130を用いてL&Sパターン400、L&Sパターン700を露光した場合の瞳面PU上における回折光分布である。なお、説明の簡単のため、図13では、開口部132から射出される光束の回折光分布を記す。
フォトマスク140にx方向に配列されるL&Sパターン400が形成されている場合、0次回折光1310と1次回折光1320とが瞳面PUに入射される。上記説明した通り、0次回折光1310および1次回折光1320の右半分(領域1312,1322の光)はy方向の直線偏光を有し、左半分(領域1314,1324の光)はx方向の直線偏光を有する。
x方向に配列されたL&Sパターン400によって回折された0次回折光および1次回折光は、xz平面を進みウェハ150上の結像面で干渉する。この場合、0次回折光のうちy方向の直線偏光を有する光束(領域1312の光)と、1次回折光のうちy方向の直線偏光を有する光束(領域1322の光)とは、ウェハ150上の結像面において強めあうように干渉する。一方、0次回折光のうちx方向の直線偏光を有する光束(領域1314の光)と、1次回折光のうちx方向の直線偏光を有する光束(領域1324の光)とは、ウェハ150上の結像面において振動方向が一致しないため打ち消し合うように干渉する。そのため、図13に示される例において、1次回折光1320のうち、x方向の直線偏光を有する光束が瞳面PUに入射されないように露光装置100を構成する光学系(例えば投影光学系145)を配置する。換言すれば、露光装置100を構成する光学系は、1次回折光1320のうち、実質的にy方向の直線偏光を有する光束のみが瞳面PUに入射されるように配置される。これにより、ある実施形態に従う露光装置100は、0次回折光1310と1次回折光1320とが強めあうように干渉するため、x方向に配列されるL&Sパターン400の解像度を高めることができる。
次に、フォトマスク140にy方向に配列されるL&Sパターン700が形成されている場合について説明する。この場合、0次回折光1310と1次回折光1330および1340とが瞳面PUに入射される。1次回折光1330および1340の右半分(領域1332,1342の光)はy方向の直線偏光を有し、左半分(領域1334,1344の光)はx方向の直線偏光を有する。
y方向に配列されたL&Sパターン700によって回折された0次回折光および1次回折光は、yz平面を進みウェハ150上の結像面で干渉する。この場合、0次回折光のうちx方向の直線偏光を有する光束(領域1314の光)と、1次回折光のうちx方向の直線偏光を有する光束(領域1334,1344の光)とは、ウェハ150上の結像面において強めあうように干渉する。一方、0次回折光のうちy方向の直線偏光を有する光束(領域1312の光)と、1次回折光のうちy方向の直線偏光を有する光束(領域1332,1342の光)とは、ウェハ150上の結像面において振動方向が一致しないため打ち消し合うように干渉する。しかしながら、図13に示されるように、1次回折光1330および1340のうち、y方向の直線偏光を有する光束(領域1332,1342の光)は、大部分が瞳面PUに入射されない。これにより、ある実施形態に従う露光装置100は、0次回折光1310と1次回折光1330および1340とが強めあうように干渉するため、y方向に配列されるL&Sパターン700の解像度を高めることができる。
上記によれば、ある実施形態に従う露光装置100は、x方向に延在するパターン(例えばライン710)およびy方向に延在するパターン(例えばライン410)の両方の解像度を高めることができる。したがって、この露光装置100は、様々な方向に延在するパターンの解像度を高めることができる。その結果、露光装置100は、図10に示されるような、所定方向に延在するL&Sパターンと、当該所定方向とは直交する方向に延在するラインとを含むパターンの解像度をダブルパターニングを用いることなく高めることができる。
なお、フィルタ130における開口部132,134(ダイポール)の位置は図12に示される例に限られない。開口部132および134は、偏光ユニット1110によって偏光された光束と、偏光ユニット1120によって偏光された光束とが入射されるように配置されればよい。すなわち、開口部132および134は、偏光ユニット1110から入射される光束と、偏光ユニット1120から入射される光束との境界位置を含むように配置されればよい。
図14は、ある実施形態に従う、フィルタにおける開口部(ダイポール)の配置位置を説明する図である。図14を参照して、ある局面において、開口部132と134とは、領域1420と領域1440とにそれぞれ配置され得る。なお、かかる場合も、開口部132および134は、偏光ユニット1110から入射される光束と、偏光ユニット1120から入射される光束との境界位置を含むように配置される。
領域1420は、光軸AXを原点とし、偏光部材125(偏光ユニット1120)から射出された光束の端部から光軸AXまでの距離を1とした場合に、x方向における0.4乃至0.9、かつ、y方向における−0.5乃至0.5の領域を含む。一方、領域1430は、x方向における−0.4乃至−0.9、かつ、y方向における−0.5乃至0.5の領域を含む。
このとき、開口部132および134の重心位置は、偏光ユニット1110から入射される光束と、偏光ユニット1120から入射される光束との境界位置に配置されてもよいし、境界位置から外れた位置に配置されてもよい。また、開口部132の重心位置と開口部134の重心位置とは、光軸AXを中心として対称に配置されてもよい。
このように開口部132および134が配置されたフィルタ130を用いる露光装置100であっても、様々な方向に延在するパターンの解像度を高め得る。
(関連技術との比較)
以下に、図15〜図18を用いて実施形態に従う露光装置100の解像性と、関連技術に従う露光装置100Rの解像性とを比較したシミュレーション結果を説明する。図15〜図17において、偏光ユニット1110と1120との境界線の位置が異なる。
図15は、偏光ユニット1110と1120との境界位置が0.7の場合におけるシミュレーション結果を説明する図である。なお、この0.7とは、光軸AXから偏光ユニット1120の外周端部までの距離を1とした場合の値である。この条件は、図16〜図18においても同様である。
図15において、”○”が実施形態に従う露光装置100の解像性を、”△”が関連技術に従う露光装置100Rの解像性をそれぞれ表す。また、図15において、縦軸がx方向に延在するL&Sパターン700の解像限界を、横軸がy方向に延在するL&Sパターン400の解像限界をそれぞれ表す。なお、解像の閾値は光強度勾配(image log-slope)が20以上の場合と設定した。図15において、グラフの左下に近いデータ点ほど、x方向に延在するパターンおよびy方向に延在するパターンの双方の解像度が高いことを表す。
図15を参照して、開口部132および134の重心位置を様々な位置に設定した場合においても、実施形態に従う露光装置100は、関連技術に従う露光装置100Rに比して、x方向に延在するパターンおよびy方向に延在するパターンの双方の解像性が優れていることが読み取れる。なお、データ点A,B,Cについては図18について具体的に説明する。
図16は、偏光ユニット1110と1120との境界位置が0.55の場合におけるシミュレーション結果を説明する図である。図16を参照して、開口部132および134の重心位置によっては、実施形態に従う露光装置100は、関連技術に従う露光装置100Rに比して、パターンの解像度が高いことが読み取れる。
図17は、偏光ユニット1110と1120との境界位置が0.85の場合におけるシミュレーション結果を説明する図である。この場合、y方向に延在するパターンの解像度については、実施形態に従う露光装置100よりも関連技術に従う露光装置100Rの方が高いことが読み取れる。
上記の図15〜図17に示されるように、偏光ユニット1110と1120との境界位置は、0.6乃至0.8の位置であることが望ましい。
図18は、図15におけるデータ点A,B,Cのシミュレーション結果を個別に説明する図である。データ点Aは、関連技術に従う露光装置100Rにおいて、開口部132Rの重心位置が(0.7、0)であって、開口部134Rの重心位置が(−0.7,0)の場合のシミュレーション結果である。データ点Bは、実施形態に従う露光装置100において、開口部132の重心位置(0.7、0)であって、開口部134の重心位置が(−0.7,0)の場合のシミュレーション結果である。データ点Cは、実施形態に従う露光装置100において、開口部132の重心位置(0.6、0.3)であって、開口部134の重心位置が(−0.6,−0.3)の場合のシミュレーション結果である。なお、これらの座標は、xy平面において、光軸AXの位置からフィルタ130の外周端部までの距離を1として、光軸AXの位置を原点(0、0)としたとき座標である。また、図18に示されるシミュレーション結果は、開口部の直径距離が0.3のときの結果である。
図18に示されるように、実施形態に従うデータ点Bのy方向に延在するL&Sパターン400の解像限界はデータ点A(関連技術)と同様に高い(優れている)。さらに、データ点Bのx方向に延在するL&Sパターン700の解像限界は、データ点Aに比して大幅に高い。
また、データ点Cのy方向に延在するL&Sパターン400の解像限界は、データ点Bに比して若干低いものの、x方向に延在するL&Sパターン700の解像限界はデータ点Bに比して、大幅に高い。これらのシミュレーション結果からも読み取れるように、開口部(ダイポール照明)の重心位置は、偏光ユニット1110から入射される光束と、偏光ユニット1120から入射される光束との境界位置の位置に配置されなくとも、露光装置は、様々な方向に延在するパターンの解像度を高めることができる。また、データ点Cは、y方向に延在するL&Sパターン400(x方向に配列されるL&Sパターン)に対してx方向から光束を入射されたものではなく、x方向に対して±26度傾いた方向から光束を入射されたときの結果である。このことから、所定方向に配列されるL&Sパターンに対して、所定方向に対して±30度程度傾いた方向から光束を入射した場合であっても、実施形態に従う露光装置は、様々な方向に延在するパターンの解像度を高め得る。
[実施形態2]
図15〜図18に示される結果において、y方向に延在するパターンの解像限界の方が、x方向に延在するパターンの解像限界よりも高いが、これは開口部(ダイポール照明)の配置位置に依存する。本実施形態では、フォトマスク140上に形成されるパターンに応じた開口部の配置位置について説明する。
図12や図14に示される開口部は、フィルタ130のx方向端部付近に配置される構成であった。そのため、図13に示されるように、y方向に延在するL&Sパターンによって回折された1次回折光の瞳面PUにおける入射位置と、0次回折光の瞳面PUにおける入射位置との間隔を広くできる。これにより、0次回折光および1次回折光の結像面に対する入射角が大きくなるため、y方向に延在するパターンの解像限界を高くなる。一方、x方向に延在するL&Sパターンによって回折された1次回折光の瞳面PUにおける入射位置と、0次回折光の瞳面PUにおける入射位置との間隔は狭い。そのため、0次回折光および1次回折光の結像面に対する入射角が小さくなり、x方向に延在するパターンの解像限界はあまり高くならない。
図19は、ある実施形態に従う、フィルタ1900における開口部(ダイポール)の配置位置を説明する図である。ある実施形態において、露光装置100は、フィルタ130とフィルタ1900とを交換可能に構成され得る。
フィルタ1900は、y方向端部付近に2つの開口部1910および1930を有する。ある局面において、円形状のフィルタ1900は、偏光部材125(偏光ユニット1120)から射出された光束がxy平面において作り出す矩形の各辺に接するように配置され得る。
xy平面において、光軸AXの位置からフィルタ130の外周端部までの距離を1として、光軸AXの位置を原点(0、0)とする。この場合、開口部1910,1930の重心位置は、(0、0.7),(0、−0.7)にそれぞれ設定され得る。この場合、図18に示されるデータ点Bのy方向に延在するパターンの解像限界の値と、x方向に延在するパターンの解像限界の値とが入れ替わる(x方向が38nm、y方向が86nmになる)。
他の局面において、開口部1910、1930の重心位置は上記の例に限られず、領域1920、1940にそれぞれ配置され得る。なお、この場合も、開口部1910および1930は、偏光ユニット1110から入射される光束と、偏光ユニット1120から入射される光束との境界位置を含むように配置される。
領域1920は、光軸AXを原点とし、偏光部材125(偏光ユニット1120)から射出された光束の端部から光軸AXまでの距離を1とした場合に、x方向における−0.5乃至0.5、かつ、y方向における0.4乃至0.9の領域を含む。一方、領域1940は、x方向における−0.5乃至0.5、かつ、y方向における−0.4乃至−0.9の領域を含む。
このとき、開口部1910および1930の重心位置は、偏光ユニット1110から入射される光束と、偏光ユニット1120から入射される光束との境界位置に配置されてもよいし、境界位置から外れた位置に配置されてもよい。また、開口部1910の重心位置と開口部1930の重心位置とは、光軸AXを中心として対称に配置されてもよい。
図20は、フォトマスク140に形成されるL&Sパターンの例を説明する図である。分図(A)は、y方向、およびy方向から±30度傾いた方向に延在するL&Sパターンを示す。換言すれば、分図(A)は、x方向、およびx方向から±30度傾いた方向に配列されるL&Sパターンを示す。フォトマスク140に形成されるパターンに分図(A)に示されるL&Sパターンのいずれかが含まれる場合、露光装置100はフィルタ130を装着して露光することが好ましい。図15および図18に示されるように、y方向に延在するパターンの解像度を、x方向に延在するパターンの解像度に比してより高めることができるためである。
分図(B)は、x方向、およびx方向から±30度傾いた方向に延在するL&Sパターンを示す。換言すれば、分図(B)は、y方向、およびy方向から±30度傾いた方向に配列されるL&Sパターンを示す。フォトマスク140に形成されるパターンに分図(B)に示されるL&Sパターンのいずれかが含まれる場合、露光装置100はフィルタ1900を装着して露光することが好ましい。x方向に延在するパターンの解像度を、y方向に延在するパターンの解像度に比してより高めることができるためである。
図21を用いて、上記一連のフィルタの選択方法についてより詳細に説明する。
図21は、ある実施形態に従う、露光パターンに応じたフィルタの選択方法の一例について説明するフローチャートである。ある局面において、図21に示される処理は、露光装置に搭載される図示しないコンピュータ(プロセッサ)が画像処理を行なうことにより実行され得る。他の局面において、図21に示される処理は、露光装置のユーザが判断結果を受け付けたコンピュータにより実行され得る。
ステップS2110において、プロセッサは、フォトマスク140上に形成されるパターンに、微細なL&Sパターンが含まれるか否かを判断する。ある局面において、ハーフピッチ(L&Sパターンを構成するラインが配置される間隔の半分)が「0.5×λ/NA」未満である場合に、微細なL&Sパターンが含まれると判断され得る。なお、”λ”は光源105が射出する照明光の波長を表し、”NA”は投影光学系145の開口数を表す。微細なL&Sパターンが含まれると判断された場合(ステップS2110においてYES)、プロセッサは処理をステップS2120に進める。そうでない場合(ステップS2110においてNO)、プロセッサは処理をステップS2180に進める。
ステップS2120において、プロセッサは、微細なL&Sパターンが延在する方向がy方向であるか否かを判断する。ある局面において、L&Sパターンが延在する方向がy方向に対して±30度以内である場合、L&Sパターンが延在する方向がy方向であると判断され得る。プロセッサは、微細なL&Sパターンが延在する方向がy方向であると判断した場合(ステップS2120においてYES)、処理をステップS2130に進める。そうでない場合(ステップS2120においてNO)、プロセッサは処理をステップS2150に進める。
ステップS2130において、プロセッサは、フォトマスク140上に形成されるパターンにy方向以外のパターンを含むか否かを判断する。ある局面において、y方向以外のパターンとは、y方向から±30度以外の方向に延在するパターン(例えば、x方向に延在するパターン710)を表す。プロセッサは、フォトマスク140上に形成されるパターンにy方向以外のパターンが含まれると判断した場合(ステップS2130においてYES)、処理をステップS2140に進め、フィルタ130をセットされた露光装置100によって露光を実行する。これにより、露光装置100は、y方向に延在するL&Sパターンの解像度を大幅に高めるとともに、y方向以外の方向に延在するパターンの解像度を高めることができる。一方、プロセッサは、フォトマスク140上に形成されるパターンにy方向以外のパターンが含まれないと判断した場合(ステップS2130においてNO)、処理をステップS2180に進める。
ステップS2150において、プロセッサは、微細なL&Sパターンが延在する方向がx方向であるか否かを判断する。ある局面において、L&Sパターンが延在する方向がx方向に対して±30度以内である場合、L&Sパターンが延在する方向がx方向であると判断され得る。プロセッサは、微細なL&Sパターンが延在する方向がx方向であると判断した場合(ステップS2150においてYES)、処理をステップS2160に進める。そうでない場合(ステップS2150においてNO)、プロセッサは処理をステップS2180に進める。
ステップS2160において、プロセッサは、フォトマスク140上に形成されるパターンにx方向以外のパターンを含むか否かを判断する。ある局面において、x方向以外のパターンとは、x方向から±30度以外の方向に延在するパターン(例えば、y方向に延在するパターン410)を表す。プロセッサは、フォトマスク140上に形成されるパターンにx方向以外のパターンが含まれると判断した場合(ステップS2160においてYES)、処理をステップS2170に進め、フィルタ1900をセットされた露光装置100によって露光を実行する。これにより、露光装置100は、x方向に延在するL&Sパターンの解像度を大幅に高めるとともに、x方向以外の方向に延在するパターンの解像度を高めることができる。一方、プロセッサは、フォトマスク140上に形成されるパターンにx方向以外のパターンが含まれないと判断した場合(ステップS2160においてNO)、処理をステップS2180に進める。
ステップS2180において、プロセッサは、フィルタ130および1900を用いず、一般的な露光方法(例えば、関連技術に従う露光装置100R)によりフォトマスク140上に形成されるパターンを露光する。
なお、他の局面において、プロセッサは、ステップS2130およびステップS2160の処理を省略してもよい。また、他の局面において、ステップS2140において、図14に示される領域1420,1440内の任意の位置に配置される開口部を有するフィルタを用いてもよい。同様に、ステップS2170において、図19に示される領域1920,1940内の任意の位置に配置される開口部を有するフィルタを用いてもよい。
図10に示される例を用いて、上記一連のフィルタの選択方法の具体的を説明する。分図(A)に示されるパターンには、x方向に延在する微細なL&Sパターン(金属配線1010に対応するパターン)の他、y方向に延在するパターンが一部含まれる(金属配線1020の一部に対応するパターン)。したがって、プロセッサは、フィルタ1900をセットされた露光装置100によって当該パターンを露光し得る。図(B)に示されるパターンには、y方向に延在する微細なL&Sパターン(金属配線1050に対応するパターン)の他、x方向に延在するパターン(金属配線1060の一部に対応するパターン)が含まれる。したがって、プロセッサは、フィルタ130をセットされた露光装置100によって、当該パターンを露光し得る。
また、上記の例において、フィルタは、開口部を2つ有するダイポール照明として機能するものであったが、開口部の個数および形状はこれに限られない。具体的には、フィルタは、開口部から射出される光束が、フォトマスク140上に形成されるパターンに対して斜めから入射されるように構成されればよい。換言すれば、開口部は、当該開口部の中心を光軸AXが貫かないようにフィルタに配置されればよい。他の局面において、フィルタは、光軸を含む中央部を遮光するように、輪帯状の開口部を有する構成(輪帯照明)であってもよい。さらに他の局面において、フィルタは、開口部を4つ有する構成(4重極照明)であってもよい。
[実施形態3]
この実施形態では、上記説明した露光装置100を用いた半導体デバイスの製造方法例について説明する。
図22は、ある実施形態に従うデバイス製造方法の一例を説明するフローチャートである。
ステップS2210において、1ロットのウェハ上に酸化膜が形成される。酸化膜の形成方法は、特に限定されず、例えば熱酸化法、スパッタ法、CDV(Chemical Vapor Deposition)法などが用いられ得る。
ステップS2220において、形成された酸化膜上にフォトレジスト(感光体)が塗布される。フォトレジストの塗布には、例えばスピンコード法などが用いられ得る。
ステップS2230において、上記説明した実施形態に従う露光装置を用いて、フォトマスク上のパターンの像がその投影光学系を介して、その1ロットのウェハ上の各ショット領域に順次露光転写される。
ステップS2240において、その1ロットのウェハ上のフォトレジストは薬液などによって現像される。ステップS2250において、その1ロットのウェハ上でレジストパターンをマスク層として、エッチングが行なわれる。これにより、フォトマスク上のパターンに対応する回路パターンが、各ウェハ上の各ショット領域に形成される。その後、さらに上層レイヤの回路パターンの形成等を行なうことによって、半導体素子等のデバイスが製造され得る。上述の半導体デバイス製造方法によれば、様々な方向に延在する微細な回路パターンを有する半導体デバイスをスループット良く得ることができる。特に、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、フラッシュメモリなど集積性の高いデバイスは、図10に示されるようなx方向に延在するL&Sパターンと、y方向に延在するL&Sパターンとの組み合わせで構成されるため、実施形態に従う露光装置の有用性が高い。
[構成]
(構成1)
ある実施形態に従う露光装置(100)は、露光用の照明光を発する光源(105)と、照明光を偏光させる偏光部材(125)と、少なくとも1つの開口部を有するフィルタ(130)とを備える。偏光部材は、第1偏光ユニット(1110)と、偏光部材に対する照明光の入射方向から見て、第1偏光ユニットを囲むように配置された第2偏光ユニット(1120)とを含む。第2偏光ユニットは、第2偏光ユニットに入射される照明光の少なくとも一部を第1偏光ユニットの外周に沿った周状方向に偏光させるように構成される。第1偏光ユニットの少なくとも一部分は、一部分から見て第1偏光ユニットの中央部と反対側に位置する第2偏光ユニットの部分における偏光方向と直交する方向に照明光を偏光させるように構成される。フィルタにおいて、開口部(132,134)は、照明光の光学系路においてフィルタおよび偏光部材の後段における照明光が、第1偏光ユニットによって偏光された照明光と、第2偏光ユニットによって偏光された照明光とを含むように配置される。
これにより、この露光装置は、所定方向に延在するパターンおよび所定方向に直交する方向に延在するパターンの両方の解像度を高めることができる。したがって、この露光装置は、様々な方向に延在するパターンの解像度を高めることができる。その結果、露光装置は、様々な方向に延在するパターンとを含むパターンの解像度をダブルパターニングを用いることなく高めることができる。そのため、例えばこの露光装置を用いて半導体デバイス等を製造する場合、半導体デバイスの生産コストおよび生産効率を高め得る。
(構成2)
フィルタは、2つの開口部(132,134)を有する。
これにより、フォトマスクに形成されたパターンには2つの開口部(ダイポール照明)から斜めに照射光を入射される。そのため、投影光学系の瞳面PUに、1次回折光が入射され得る。その結果、0次回折光および1次回折光による干渉によって、解像度が高められ得る。
(構成3)
2つの開口部は、照明光の光軸(AX)を中心として対称な位置に配置される。
(構成4)
フィルタは、照明光の光学経路において、偏光部材よりも後段に配置される。
(構成5)
フィルタは、2つの開口部を有する。第1および第2偏光ユニットは、入射される照明光を互いに直交する第1方向(xまたはy)と第2方向(xまたはy)とに偏光させる。フィルタは、偏光部材を通過した通過光を照射される照射領域を含み、2つの開口部のうち一方の開口部を第1領域(1420)に、他方の開口部を第2領域(1440)にそれぞれ配置されるように構成される。第1領域は、第1および第2方向を軸として通過光の光軸を原点とする2次元平面において、通過光の光軸から照射領域の端部までの距離を1とした場合に、第1方向における+0.4乃至+0.9、かつ、第2方向における−0.5乃至+0.5の領域を含む。第2領域は、第1方向における−0.4乃至−0.9、かつ、第2方向における−0.5乃至+0.5の領域を含む。
(構成6)
偏光部材は、照明光の光軸から第1偏光ユニットと第2偏光ユニットとの境界位置までの距離が、照明光の光軸から偏光部材の端部までの距離の6割乃至8割となるように、第1偏光ユニットと第2偏光ユニットとが配置されるように構成される。
これにより、露光装置は、より様々に延在するパターンの解像度を高めることができる(図15〜図18)。
(構成7)
第2偏光ユニットは、当該ユニットに入射される照明光を互いに直交する第1方向と第2方向とに偏光させることによって周状に偏光させる。
(構成8)
第1および第2偏光ユニットは、矩形である。
(構成9)
照明光の光学系路においてフィルタおよび偏光部材の後段に配置される、所定パターンが形成されたフォトマスク(140)と、所定パターンを縮小して被照射面(150)に投影するための投影光学系(145)とをさらに備える。所定パターンは、所定方向に所定間隔で配列された繰り返しパターン(400,700)を含む。投影光学系は、当該投影光学系の瞳面(PU)において、繰り返しパターンによって1次回折された照明光のうち、第2偏光ユニットによって偏光された照明光のみを実質的に受け付けるように配置される。
これにより、露光装置は、繰り返しパターンの解像度を高めるとともに、上記所定方向に延在するパターンの解像度を高め得る。
(構成10)
感光体層を露光する露光方法は、光源から照明光を射出するステップと、照明光を偏光部材によって偏光させるステップと、偏光された照明光を、少なくとも1つの開口部が設けられるフィルタに通過させるステップとを備える。偏光させるステップは、偏光部材に対する照明光の入射方向から見て、偏光部材の第1領域を囲む第2領域において、第1領域の外周に沿った周状方向に照明光を偏光させることと、第1領域の少なくとも一部分において、一部分からみて第1領域の中央部と反対側に位置する第2領域における偏光方向と直交する方向に照明光を偏光させることとを含む。通過させるステップは、開口部が第1領域において偏光された照明光と、第2領域において偏光された照明光とを通過させることを含む。
この露光方法によれば、所定方向に延在するパターンおよび所定方向に直交する方向に延在するパターンの両方の解像度が高まり得る。この露光方法によれば、様々な方向に延在するパターンとを含むパターンの解像度が、ダブルパターニングを用いることなく高まり得る。そのため、例えばこの露光方法を用いて半導体デバイス等を製造する場合、デバイスの生産コストおよび生産効率が高まり得る。
(構成11)
ある実施形態に従うデバイス製造方法は、(構成1)に記載の露光装置を用いてウェハ基板(150)上の感光体層にパターンを露光するステップ(ステップS2230)と、パターンが転写された感光体層を現像して、パターンに対応するマスク層を形成するステップ(ステップS2240)と、マスク層を介して、ウェハ基板を加工するステップ(ステップS2250)とを含む。
このデバイス製造方法によれば、従来より半導体デバイスの生産コストおよび生産効率が高まり得る。
(構成12)
第1および第2偏光ユニットは、照明光を互いに直交する第1方向と第2方向とに偏光させる。フィルタは、光学経路において偏光部材よりも後段に配置される。フィルタは、2つの開口部を有する。フィルタは、偏光部材を通過した通過光を照射される照射領域を含む。2つの開口部のうち一方の開口部はフィルタにおける第1領域に配置され、2つの開口部のうち他方の開口部はフィルタにおける第2領域に配置されるようにそれぞれ構成される。第1領域は、第1および第2方向を軸として通過光の光軸を原点とする2次元平面において、通過光の光軸から照射領域の端部までの距離を1とした場合に、第1方向における+0.4乃至+0.9、かつ、第2方向における−0.5乃至+0.5の領域を含みむ。第2領域は、第1方向における−0.4乃至−0.9、かつ、第2方向における−0.5乃至+0.5の領域を含む。偏光部材は、照明光の光軸から第1偏光ユニットと第2偏光ユニットとの境界位置までの距離が、照明光の光軸から偏光部材の端部までの距離の6割乃至8割となるように、第1偏光ユニットと第2偏光ユニットとが配置されるように構成される。パターンは、第2の方向に対して30度以内の方向に延在するラインが所定間隔で配列された繰り返しパターンを含む。
このデバイス製造方法によれば、より様々な方向に延在するパターンとを含むパターンの解像度が高まり得る。
以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明者は前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
100,100R 露光装置、105 光源、110 ズームレンズ、115 ミラー、120 マイクロレンズアレイ、125,125R2,125R1 偏光部材、130,130R,1900 フィルタ、132,132R,134,134R,1910,1930 開口部、135 コンデンサレンズ、140 フォトマスク、145 投影光学系、150 ウェハ、155 ステージ、410,710 ライン、400,700 ラインアンドスペース、1110,1120 偏光ユニット、AX 光軸、PU 瞳面。

Claims (12)

  1. 露光用の照明光を発する光源と、
    前記照明光を偏光させる偏光部材と、
    少なくとも1つの開口部を有するフィルタとを備え、
    前記偏光部材は、
    第1偏光ユニットと、
    前記偏光部材に対する前記照明光の入射方向から見て、前記第1偏光ユニットを囲むように配置された第2偏光ユニットとを含み、
    前記第2偏光ユニットは、前記第2偏光ユニットに入射される前記照明光の少なくとも一部を前記第1偏光ユニットの外周に沿った周状方向に偏光させるように構成され、
    前記第1偏光ユニットの少なくとも一部分は、前記一部分から見て前記第1偏光ユニットの中央部と反対側に位置する前記第2偏光ユニットの部分における偏光方向と直交する方向に前記照明光を偏光させるように構成され、
    前記フィルタにおいて、前記開口部は、前記照明光の光学系路において前記フィルタおよび前記偏光部材の後段における前記照明光が、前記第1偏光ユニットによって偏光された前記照明光と、前記第2偏光ユニットによって偏光された前記照明光とを含むように配置される、露光装置。
  2. 前記フィルタは、2つの開口部を有する、請求項1に記載の露光装置。
  3. 前記2つの開口部は、前記照明光の光軸を中心として対称な位置に配置される、請求項2に記載の露光装置。
  4. 前記フィルタは、前記照明光の光学経路において、前記偏光部材よりも後段に配置される、請求項1に記載の露光装置。
  5. 前記フィルタは、2つの開口部を有し、
    前記第1および第2偏光ユニットは、入射される前記照明光を互いに直交する第1方向と第2方向とに偏光させ、
    前記フィルタは、
    前記偏光部材を通過した通過光を照射される照射領域を含み、
    前記2つの開口部のうち一方の開口部を第1領域に、他方の開口部を第2領域にそれぞれ配置されるように構成され、
    前記第1領域は、前記第1および第2方向を軸として前記通過光の光軸を原点とする2次元平面において、前記通過光の光軸から前記照射領域の端部までの距離を1とした場合に、前記第1方向における+0.4乃至+0.9、かつ、前記第2方向における−0.5乃至+0.5の領域を含み、
    前記第2領域は、前記第1方向における−0.4乃至−0.9、かつ、前記第2方向における−0.5乃至+0.5の領域を含む、請求項4に記載の露光装置。
  6. 前記偏光部材は、前記照明光の光軸から前記第1偏光ユニットと前記第2偏光ユニットとの境界位置までの距離が、前記照明光の光軸から前記偏光部材の端部までの距離の6割乃至8割となるように、前記第1偏光ユニットと前記第2偏光ユニットとが配置されるように構成される、請求項1に記載の露光装置。
  7. 前記第2偏光ユニットは、当該ユニットに入射される前記照明光を互いに直交する第1方向と第2方向とに偏光させることによって周状に偏光させる、請求項1に記載の露光装置。
  8. 前記第1および第2偏光ユニットは、矩形である、請求項1に記載の露光装置。
  9. 前記照明光の光学系路において前記フィルタおよび前記偏光部材の後段に配置される、所定パターンが形成されたフォトマスクと、
    前記所定パターンを縮小して被照射面に投影するための投影光学系とをさらに備え、
    前記所定パターンは、所定方向に所定間隔で配列された繰り返しパターンを含み、
    前記投影光学系は、当該投影光学系の瞳面において、前記繰り返しパターンによって1次回折された前記照明光のうち、前記第2偏光ユニットによって偏光された照明光のみを実質的に受け付けるように配置される、請求項1に記載の露光装置。
  10. 光源からの光により感光体層を露光する露光方法であって、
    前記光源から照明光を射出するステップと、
    前記照明光を偏光部材によって偏光させるステップと、
    前記偏光された照明光を、少なくとも1つの開口部が設けられるフィルタに通過させるステップとを備え、
    前記偏光させるステップは、
    前記偏光部材に対する前記照明光の入射方向から見て、前記偏光部材の第1領域を囲む第2領域において、前記第1領域の外周に沿った周状方向に前記照明光を偏光させることと、
    前記第1領域の少なくとも一部分において、前記一部分からみて前記第1領域の中央部と反対側に位置する前記第2領域における偏光方向と直交する方向に前記照明光を偏光させることとを含み、
    前記通過させるステップは、前記開口部が前記第1領域において偏光された前記照明光と、前記第2領域において偏光された前記照明光とを通過させることを含む、露光方法。
  11. デバイス製造方法であって、
    請求項1に記載の露光装置を用いて、ウェハ基板上の感光体層にパターンを露光するステップと、
    前記パターンが転写された前記感光体層を現像して、前記パターンに対応するマスク層を形成するステップと、
    前記マスク層を介して、前記ウェハ基板を加工するステップとを含む、デバイス製造方法。
  12. 前記第1および第2偏光ユニットは、前記照明光を互いに直交する第1方向と第2方向とに偏光させ、
    前記フィルタは、
    光学経路において前記偏光部材よりも後段に配置され、
    2つの開口部を有し、
    前記偏光部材を通過した通過光を照射される照射領域を含み、
    前記2つの開口部のうち一方の開口部は前記フィルタにおける第1領域に配置され、前記2つの開口部のうち他方の開口部は前記フィルタにおける第2領域に配置されるようにそれぞれ構成され、
    前記第1領域は、前記第1および第2方向を軸として前記通過光の光軸を原点とする2次元平面において、前記通過光の光軸から前記照射領域の端部までの距離を1とした場合に、前記第1方向における+0.4乃至+0.9、かつ、前記第2方向における−0.5乃至+0.5の領域を含み、
    前記第2領域は、前記第1方向における−0.4乃至−0.9、かつ、前記第2方向における−0.5乃至+0.5の領域を含み、
    前記偏光部材は、前記照明光の光軸から前記第1偏光ユニットと前記第2偏光ユニットとの境界位置までの距離が、前記照明光の光軸から前記偏光部材の端部までの距離の6割乃至8割となるように、前記第1偏光ユニットと前記第2偏光ユニットとが配置されるように構成され、
    前記パターンは、前記第2の方向に対して30度以内の方向に延在するラインが所定間隔で配列された繰り返しパターンを含む、請求項11に記載のデバイス製造方法。
JP2016184087A 2016-09-21 2016-09-21 露光装置、露光方法、およびデバイス製造方法 Pending JP2018049127A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016184087A JP2018049127A (ja) 2016-09-21 2016-09-21 露光装置、露光方法、およびデバイス製造方法
US15/640,488 US10281821B2 (en) 2016-09-21 2017-07-01 Exposure apparatus, exposure method, and device manufacturing method
CN201710701074.1A CN107861337A (zh) 2016-09-21 2017-08-16 曝光设备、曝光方法及器件制造方法
TW106131503A TW201814770A (zh) 2016-09-21 2017-09-14 曝光裝置、曝光方法及元件製造方法
KR1020170121253A KR20180032197A (ko) 2016-09-21 2017-09-20 노광 장치, 노광 방법 및 디바이스 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016184087A JP2018049127A (ja) 2016-09-21 2016-09-21 露光装置、露光方法、およびデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2018049127A true JP2018049127A (ja) 2018-03-29

Family

ID=61620288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016184087A Pending JP2018049127A (ja) 2016-09-21 2016-09-21 露光装置、露光方法、およびデバイス製造方法

Country Status (5)

Country Link
US (1) US10281821B2 (ja)
JP (1) JP2018049127A (ja)
KR (1) KR20180032197A (ja)
CN (1) CN107861337A (ja)
TW (1) TW201814770A (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404482B1 (en) * 1992-10-01 2002-06-11 Nikon Corporation Projection exposure method and apparatus
JP2006005319A (ja) * 2004-06-21 2006-01-05 Canon Inc 照明光学系及び方法、露光装置及びデバイス製造方法
JP4591155B2 (ja) 2005-03-30 2010-12-01 株式会社ニコン 露光方法及び装置、並びにデバイス製造方法
JP4676815B2 (ja) * 2005-05-26 2011-04-27 ルネサスエレクトロニクス株式会社 露光装置および露光方法
JP2008171960A (ja) * 2007-01-10 2008-07-24 Canon Inc 位置検出装置及び露光装置
JP4952800B2 (ja) 2010-01-12 2012-06-13 株式会社ニコン 照明光学系、露光装置および露光方法
JP5866028B2 (ja) * 2012-10-26 2016-02-17 株式会社有沢製作所 露光装置、マスク、及び、光学フィルム

Also Published As

Publication number Publication date
TW201814770A (zh) 2018-04-16
CN107861337A (zh) 2018-03-30
US10281821B2 (en) 2019-05-07
US20180081275A1 (en) 2018-03-22
KR20180032197A (ko) 2018-03-29

Similar Documents

Publication Publication Date Title
JP4497968B2 (ja) 照明装置、露光装置及びデバイス製造方法
KR101547077B1 (ko) 노광 방법 및 장치, 그리고 디바이스 제조 방법
JP3958163B2 (ja) 露光方法
US7629087B2 (en) Photomask, method of making a photomask and photolithography method and system using the same
TW200421047A (en) Exposure apparatus and method
JP4750525B2 (ja) 露光方法及びデバイス製造方法
JP3950732B2 (ja) 照明光学系、照明方法及び露光装置
JP2001284212A (ja) 照明装置及びそれを有する露光装置
JP4591155B2 (ja) 露光方法及び装置、並びにデバイス製造方法
JP2006179516A (ja) 露光装置、露光方法及び半導体装置の製造方法
TW200809919A (en) Exposure apparatus
JP3647272B2 (ja) 露光方法及び露光装置
JP2008091881A (ja) 回折光学素子、露光装置およびデバイス製造方法
JP2004207709A (ja) 露光方法及び装置
JP3647270B2 (ja) 露光方法及び露光装置
JP3296296B2 (ja) 露光方法及び露光装置
JP2007103835A (ja) 露光装置及び露光方法
JP2018049127A (ja) 露光装置、露光方法、およびデバイス製造方法
JP3357928B2 (ja) 露光方法、デバイス形成方法、及び露光装置
JP5491272B2 (ja) 決定方法、露光方法及びプログラム
JP5539140B2 (ja) 決定方法、露光方法、プログラム及びコンピュータ
JP5103995B2 (ja) 露光方法及び装置、並びにデバイス製造方法
JP2006253241A (ja) 露光方法及び装置、並びにデバイス製造方法
JP2006269462A (ja) 露光装置および照明装置
JP3647271B2 (ja) 露光方法及び露光装置