JP2018040953A - Crystal structure and method for producing the same - Google Patents

Crystal structure and method for producing the same Download PDF

Info

Publication number
JP2018040953A
JP2018040953A JP2016175025A JP2016175025A JP2018040953A JP 2018040953 A JP2018040953 A JP 2018040953A JP 2016175025 A JP2016175025 A JP 2016175025A JP 2016175025 A JP2016175025 A JP 2016175025A JP 2018040953 A JP2018040953 A JP 2018040953A
Authority
JP
Japan
Prior art keywords
crystal
crystal structure
regular reflectance
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016175025A
Other languages
Japanese (ja)
Inventor
行成 近藤
Yukinari Kondo
行成 近藤
裕樹 小松原
Hiroki Komatsubara
裕樹 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2016175025A priority Critical patent/JP2018040953A/en
Publication of JP2018040953A publication Critical patent/JP2018040953A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a crystal structure that is not derived from a metal element and shows a regular reflectance exceeding 2%, and exhibits a metallic luster and a method of producing the same.SOLUTION: The present invention provides a crystal structure having a stacking structure in which a plurality of tabular crystal particles of organic compounds with a conductivity K of 1×10[S/m] or less are stacked, and the crystal structure having a regular reflectance R of exceeding 2%, and a method for producing the same.SELECTED DRAWING: None

Description

本発明は、結晶構造体及びその製造方法に関する。   The present invention relates to a crystal structure and a manufacturing method thereof.

光の反射は、膜、層又は固体の表面及び界面で生じる現象の一つであり、カメラや光ファイバーなどの光学材料に広く利用されている。そして、反射する光の波長によって人の目に映る色調は様々に変化し、金属調の光沢感を与える光の反射もある。光の反射によって生じる金属調の光沢を呈する物質は、古代より貨幣又は宝飾品等として重宝されてきた。   Light reflection is one of the phenomena that occur at the surface and interface of a film, layer, or solid, and is widely used in optical materials such as cameras and optical fibers. The color tone reflected by the human eye varies depending on the wavelength of the reflected light, and there is also reflection of light that gives a metallic luster. Substances exhibiting metallic luster caused by reflection of light have been useful as money or jewelry since ancient times.

金属調の光沢を呈する物質は、多岐に亘るが、一般には、金及び銀等の金属のように、自由電子のプラズマ振動によって金属調の光沢を生じる場合が多い。
その一方、従来から金属調の光沢を呈する有機化合物が合成されており、例えば、ポリアセチレンにヨウ素又はアルカリ金属等をドーピングした高分子化合物が知られている(例えば、非特許文献1参照)。
また、低分子量の有機化合物としては、金属調の光沢を示す結晶が開示されている(例えば、非特許文献2等参照)。これは、金属調の光沢の発現は、分子層の高い平面性と層内相互作用による高い緻密性に関連するとされている。更に、過塩素酸塩アニオンでドープした3−メトキシチオフェンのオリゴマーのニトロメタン溶液をガラス基板に塗布すると金色光沢を示すことも開示されている(例えば、非特許文献3参照)。本文献では、チオフェン環間のπ−π相互作用による高度な平面性と構造緻密性によって金属光沢が発現するものとされている。
There are a wide variety of materials exhibiting metallic luster, but generally, metallic luster is often generated by plasma oscillation of free electrons, such as metals such as gold and silver.
On the other hand, organic compounds exhibiting a metallic luster have been synthesized, and for example, polymer compounds obtained by doping polyacetylene with iodine or an alkali metal are known (see, for example, Non-Patent Document 1).
As low molecular weight organic compounds, crystals exhibiting metallic luster are disclosed (for example, see Non-Patent Document 2). It is said that the appearance of metallic luster is related to the high flatness of the molecular layer and the high density due to the intra-layer interaction. Furthermore, it is also disclosed that when a nitromethane solution of an oligomer of 3-methoxythiophene doped with a perchlorate anion is applied to a glass substrate, it shows a golden luster (for example, see Non-Patent Document 3). In this document, the metallic luster is expressed by a high degree of planarity and structural density due to π-π interaction between thiophene rings.

Shirakawa,H.;Louis,E.J.;MacDiarmid,A.G.;Chiang,C.K.;Heeger,A.J.Synthesis of Electrically Conducting Organic Polymers:Halogen Derivatives of Polyacetylene,(CH)J.Chem.Soc.,Chem.Commun.1977,16,578−580Shirakawa, H .; Louis, E .; J .; MacDiarmid, A. G .; Chiang, C .; K .; Heeger, A. J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH) J. Chem. Soc., Chem. Commun. 1977, 16, 578-580 Ogura,K.;Yanai,H.;Miokawa,M.;Akazome,M.A New π−System:1-Aryl-2,5-di(2-thienyl)pyrroles Tetrahedron Lett.1999,40,8887−8891Ogura, K .; Yanai, H .; Miokawa, M .; Akazome, M .; A New π-System: 1-Aryl-2,5-di (2-thienyl) pyrroles Tetrahedron Lett. 1999, 40, 8887-8891 Tagawa,R.;Masu,H.;Itoh,T.,;Hoshino,K.Solution-cast self-assembled films of perchloratedoped oligo(3-methoxythiophene) showing a gold-like luster,RSC Adv.,2014,24053−24Tagawa, R .; Masu, H .; Itoh, T., Hoshino, K. Solution-cast self-assembled films of perchloratedoped oligo (3-methoxythiophene) showing a gold-like luster, RSC Adv., 2014, 24053-24

上記のように、金属調の光沢を呈する物質としては、金属を含有する高分子化合物のほか、低分子の有機化合物も提案されているが、自由電子のプラズマ振動、又は平面性、角度依存性、緻密さに由来して発現する技術に留まり、検出角度を変えても全反射率が変化しない絶縁性の低分子化合物の結晶物についての提案は乏しい。   As described above, low-molecular organic compounds as well as high-molecular compounds containing metals have been proposed as substances exhibiting metallic luster, but free electron plasma vibration, planarity, and angle dependence However, there are few proposals for crystalline materials of insulating low molecular weight compounds that remain in the technology that is derived from the denseness, and whose total reflectance does not change even when the detection angle is changed.

金属を用いずに、金属調の光沢を示す光沢が提供されれば、金属アレルギー等が懸念される宝飾品及びアクセサリー等の金属加工品、軽量で環境負荷の小さい塗料等への応用が期待される。   If a gloss that shows a metallic luster is provided without using metal, it is expected to be applied to metal processed products such as jewelry and accessories that are allergic to metal allergies, etc., and lightweight, environmentally friendly paints. The

本発明は、上記に鑑みなされたものであり、金属元素に由来せずに2%を超える正反射率を有し、金属光沢を呈する結晶構造体及びその製造方法を提供することを目的とし、この目的を達成することを課題とする。   The present invention has been made in view of the above, and an object thereof is to provide a crystal structure having a specular reflectance exceeding 2% without being derived from a metal element and exhibiting a metallic luster, and a method for producing the same. The task is to achieve this goal.

本発明は、有機化合物の結晶物が有する正反射率の高さが金属調の光沢に大きく影響を与えるため、光の全反射率ではなく正反射率に着目し、かつ、結晶片の積層が金属調の光沢発現の機構に重要な役割を果たしているとの知見を得、かかる知見に基づいて達成されたものである。
上記の課題を解決するための具体的手段には、以下の態様が含まれる。
In the present invention, since the high regular reflectance of the organic compound crystal material greatly affects the metallic luster, the focus is on the regular reflectance rather than the total reflectance of the light, and the lamination of the crystal pieces is The inventor obtained knowledge that it plays an important role in the mechanism of metallic luster development, and has been achieved based on such knowledge.
Specific means for solving the above problems include the following aspects.

<1> 導電率Kが1×10−6[S/m]以下である有機化合物の平板状結晶粒子が複数個積み重なった積層構造を有し、かつ、正反射率Rが2%を超える結晶構造体である。
<2> 前記有機化合物は、2つのベンゼン環がビニレン基を介して結合されたビスフェニル構造を有する前記<1>に記載の結晶構造体である。
<3> 前記有機化合物は、スチルベン及びスチルベンの置換体からなる群より選ばれる化合物である前記<1>又は前記<2>に記載の結晶構造体である。
<4> 前記有機化合物がスチルベン又はスチルベンの置換体であり、かつ、前記積層構造における前記平板状結晶粒子の積層数が2以上である前記<1>〜前記<3>のいずれか1つに記載の結晶構造体である。
<5> 前記平板状結晶粒子の厚みが15μm未満である前記<1>〜前記<4>のいずれか1つに記載の結晶構造体である。
<6> 前記正反射率Rが10%以上である前記<1>〜前記<5>のいずれか1つに記載の結晶構造体である。
<7> 前記<1>〜前記<6>のいずれか1つに記載の結晶構造体の製造方法であって、2つのベンゼン環がビニレン基を介して結合されたビスフェニル構造を有する有機化合物を溶媒に溶解し、得られた溶解液から前記有機化合物を再結晶させる工程を含む、結晶構造体の製造方法である。
<1> A crystal having a laminated structure in which a plurality of tabular crystal grains of an organic compound having an electrical conductivity K of 1 × 10 −6 [S / m] or less is stacked and having a regular reflectance R exceeding 2% It is a structure.
<2> The organic compound is a crystal structure according to <1>, which has a bisphenyl structure in which two benzene rings are bonded via a vinylene group.
<3> The crystal structure according to <1> or <2>, wherein the organic compound is a compound selected from the group consisting of stilbene and stilbene substituents.
<4> In any one of the above items <1> to <3>, wherein the organic compound is stilbene or a substituted stilbene, and the number of stacked tabular crystal grains in the stacked structure is 2 or more. It is the crystal structure described.
<5> The crystal structure according to any one of <1> to <4>, wherein the thickness of the tabular crystal grain is less than 15 μm.
<6> The crystal structure according to any one of <1> to <5>, wherein the regular reflectance R is 10% or more.
<7> The method for producing a crystal structure according to any one of <1> to <6>, wherein the organic compound has a bisphenyl structure in which two benzene rings are bonded via a vinylene group. Is dissolved in a solvent, and the organic compound is recrystallized from the resulting solution.

本発明によれば、金属元素に由来せずに2%を超える正反射率を有し、金属光沢を呈する結晶構造体及びその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the crystal structure which has a regular reflectance exceeding 2% without originating in a metallic element, and exhibits metallic luster, and its manufacturing method are provided.

光沢の発現機構を説明するための光の反射モデルを示す図である。It is a figure which shows the reflection model of the light for demonstrating the expression mechanism of glossiness. 入射した光の反射と透過による強度変化を説明するための説明図である。It is explanatory drawing for demonstrating the intensity change by reflection and transmission of the incident light. (a)は、単一層での光の正反射率及び透過率を説明するための説明図であり、(b)は多層での正反射率及び透過率を説明するための説明図である。(A) is explanatory drawing for demonstrating the regular reflectance and transmittance | permeability of the light in a single layer, (b) is explanatory drawing for demonstrating the regular reflectance and transmittance | permeability in a multilayer. 1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの多層結晶の、正反射率のモデル式による計算スペクトルと正反射率の実測スペクトルとを示すグラフである。It is a graph which shows the calculation spectrum by the model formula of regular reflectance, and the measured spectrum of regular reflectance of the multilayer crystal of 1, 2-bis (4- (3-methylbutoxy) phenyl) ethene. 1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの多層結晶における層数と正反射率との関係を示すグラフである。It is a graph which shows the relationship between the number of layers and the regular reflectance in the multilayer crystal of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene. 1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの平板状結晶粒子の厚みと正反射率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the tabular crystal grain of 1, 2-bis (4- (3-methylbutoxy) phenyl) ethene, and regular reflectance. 1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの多層結晶の表面の二乗平均平方根粗さと正反射率との関係を示すグラフである。It is a graph which shows the relationship between the root mean square roughness of the surface of the multilayer crystal of 1, 2- bis (4- (3-methylbutoxy) phenyl) ethene, and regular reflectance.

以下、本発明の結晶構造体及びその製造方法について、詳細に説明する。
本発明の結晶構造体は、有機化合物の平板状結晶粒子が複数個積み重なった積層構造を有し、結晶構造体を形成する平板状結晶粒子は、導電率Kが1×10−6[S/m]以下である。本発明の結晶構造体は、正反射率Rが2%を超える金属光沢を発現する。
Hereinafter, the crystal structure of the present invention and the production method thereof will be described in detail.
The crystal structure of the present invention has a laminated structure in which a plurality of organic compound flat crystal grains are stacked, and the flat crystal grains forming the crystal structure have a conductivity K of 1 × 10 −6 [S / m] or less. The crystal structure of the present invention exhibits a metallic luster in which the regular reflectance R exceeds 2%.

なお、本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
また、本明細書中の「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In addition, the term “process” in this specification is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term is used as long as the intended purpose of the process is achieved. included.

従来から、金属調の光沢を呈する有機物質としては、高分子化合物をはじめ幾つかの有機化合物が提案されているが、いずれの化合物も、自由電子のプラズマ振動、又は平面性、角度依存性もしくは緻密性に由来して発現するものであり、平板状結晶が積み重なって形成された積層物での性状は明らかにされていない。
本発明は、上記状況を踏まえ、比較的低分子の有機化合物の結晶のうち、導電率Kが1×10−6[S/m]以下である複数の平板状結晶粒子が、堆積等によって積み重なった積層構造を有している。これにより、単一の結晶物自体が透明性であるにも関わらず、結晶粒子が重なって形成された積層構造は、正反射率が2%を超える金属光沢を呈するものとなる。
本発明の結晶構造体が金属光沢を呈する理由の詳細については後述するが、本発明の結晶構造体は、平板状結晶粒子の積層物であり、かつ、平板状結晶粒子が非導電性(絶縁性)の粒子であることから、従来から知られている自由電子のプラズマ振動又は平面性等に起因した金属光沢ではなく、所定個数の平板状粒子が積み重ねられた結晶構造を有しているためと考えられる。
正反射率が2%を超える金属光沢を得る観点では、所定個数の平板粒子が積み重ねられた構造であることに加え、平板状粒子の粒子厚みが薄いことが好ましい。
Conventionally, several organic compounds including polymer compounds have been proposed as organic substances exhibiting a metallic luster, but any of these compounds is a plasma oscillation of free electrons, planarity, angle dependence or It is derived from the denseness, and the properties of the laminate formed by stacking flat crystals are not clarified.
In the present invention, based on the above situation, a plurality of tabular crystal grains having a conductivity K of 1 × 10 −6 [S / m] or less among crystals of a relatively low molecular organic compound are stacked by deposition or the like. Have a laminated structure. Thereby, the single crystal product itself is transparent, but the laminated structure formed by overlapping crystal grains exhibits a metallic luster with a regular reflectance exceeding 2%.
Although the details of the reason why the crystal structure of the present invention exhibits a metallic luster will be described later, the crystal structure of the present invention is a laminate of tabular crystal grains, and the tabular crystal grains are non-conductive (insulating). Therefore, it has a crystal structure in which a predetermined number of tabular grains are stacked rather than the metallic luster caused by the plasma vibration or flatness of free electrons that has been conventionally known. it is conceivable that.
From the viewpoint of obtaining a metallic luster with a regular reflectance exceeding 2%, it is preferable that the tabular grains have a thin grain thickness in addition to a structure in which a predetermined number of tabular grains are stacked.

正反射率(R;regular reflectance)は、入射した放射束又は光束に対して正反射した放射束又は光束の比をいい、表面の光沢(艶)感を示す指標となる。これに対し、拡散反射率(diffuse reflectance)は、艶のない表面で拡散反射した放射束又は光束の比を指し、正反射率とは区別される。
正反射率は、金属光沢の観点からは高い程好ましい。本発明の結晶構造体においては、正反射率は、2%以上であり、4%以上が好ましく、10%以上がより好ましく、15%以上が更に好ましい。
結晶構造体の正反射率は、JASCO ILN−472積分球(入射角:5°)を装備したJASCO V−570分光光度計(日本分光社製)にて25℃で測定される値である。
The regular reflectance (R) is the ratio of the radiant flux or light flux that is specularly reflected with respect to the incident radiant flux or light flux, and is an index that indicates the glossiness of the surface. In contrast, diffuse reflectance refers to the ratio of radiant flux or luminous flux diffusely reflected by a dull surface, and is distinguished from regular reflectance.
The regular reflectance is preferably as high as possible from the viewpoint of metallic luster. In the crystal structure of the present invention, the regular reflectance is 2% or more, preferably 4% or more, more preferably 10% or more, and further preferably 15% or more.
The specular reflectance of the crystal structure is a value measured at 25 ° C. with a JASCO V-570 spectrophotometer (manufactured by JASCO Corporation) equipped with a JASCO ILN-472 integrating sphere (incident angle: 5 °).

積層構造を形成する有機化合物の平板状結晶粒子は、平板形状を有している。
平板形状の、積層構造の積層方向を法線とする主平面は、アスペクト比(主平面の縦横比)が1:1〜1:30の範囲であることが好ましく、アスペクト比が1:3〜1:10の範囲であることがより好ましい。アスペクト比が上記範囲内であると、積層構造を形成しやすく、金属光沢が得られやすい。
アスペクト比は、走査型電子顕微鏡(SEM)により求められる値であり、例えば、電界放出形走査型電子顕微鏡(SEM−EDX S−4800(Tilt40°)、日立ハイテクノロジーズ社製)にて測定することができる。
The tabular crystal grains of the organic compound forming the laminated structure have a tabular shape.
The main plane having a flat plate shape and the normal direction in the stacking direction of the laminated structure preferably has an aspect ratio (aspect ratio of main plane) of 1: 1 to 1:30, and an aspect ratio of 1: 3 to 3. A range of 1:10 is more preferable. When the aspect ratio is within the above range, it is easy to form a laminated structure and to obtain a metallic luster.
An aspect ratio is a value calculated | required with a scanning electron microscope (SEM), for example, is measured with a field emission scanning electron microscope (SEM-EDX S-4800 (Tilt 40 °), manufactured by Hitachi High-Technologies Corporation). Can do.

また、板状結晶粒子の厚み(積層構造の積層方向(法線方向)の長さ)としては、15μm未満が好ましく、1μm〜10μmがより好ましく、1μm〜5μmが更に好ましい。平板形状の厚みが15μm未満であると、結晶構造体の正反射率を高めやすい。
板状結晶粒子の厚みは、走査型電子顕微鏡(SEM)により求められる値であり、例えば、電界放出形走査型電子顕微鏡(SEM−EDX S−4800(Tilt40°)、日立ハイテクノロジーズ社製)にて測定することができる。
The thickness of the plate-like crystal particles (the length in the stacking direction (normal direction) of the stacked structure) is preferably less than 15 μm, more preferably 1 μm to 10 μm, and even more preferably 1 μm to 5 μm. When the thickness of the flat plate shape is less than 15 μm, the regular reflectance of the crystal structure can be easily increased.
The thickness of the plate-like crystal particle is a value determined by a scanning electron microscope (SEM). For example, a field emission scanning electron microscope (SEM-EDX S-4800 (Tilt 40 °), manufactured by Hitachi High-Technologies Corporation) Can be measured.

平板状結晶粒子の導電率Kは、1×10−6[S/m]以下であり、電気絶縁性を示す。一般に、自由電子が存在して導電性を示す材料は、自由電子に起因する光沢性を示す傾向があるが、本発明の結晶構造体は、電気絶縁性の結晶粒子により形成されながらも光沢性を有している。本発明の結晶構造体の光沢性は、自由電子の存在によるのではなく、複数個の積層構造を採ることによって発現している。
導電率は、四端子法により求められる値である。
The conductivity K of the tabular crystal grains is 1 × 10 −6 [S / m] or less, indicating electrical insulation. In general, materials exhibiting conductivity in the presence of free electrons tend to exhibit gloss due to free electrons, but the crystal structure of the present invention is glossy while being formed by electrically insulating crystal particles. have. The glossiness of the crystal structure of the present invention is expressed not by the presence of free electrons but by taking a plurality of laminated structures.
The conductivity is a value obtained by the four probe method.

本発明における平板状結晶粒子は、いわゆる高分子の有機化合物に由来する結晶粒子ではなく、分子量が800以下である低分子の有機化合物に由来する結晶粒子である。本発明における有機化合物としては、分子量が500以下の有機化合物を用いてもよい。
有機化合物の分子量は、化合物の化学式から計算により求められる値である。
The tabular crystal grains in the present invention are not crystal grains derived from so-called high molecular organic compounds but crystal grains derived from low molecular organic compounds having a molecular weight of 800 or less. As the organic compound in the present invention, an organic compound having a molecular weight of 500 or less may be used.
The molecular weight of the organic compound is a value obtained by calculation from the chemical formula of the compound.

有機化合物の例としては、2つのベンゼン環がビニレン基又はアゾ基を介して結合されたビスフェニル構造を有する化合物を挙げることができる。ビスフェニル構造を有する化合物の中でも、ビニレン基又はアゾ基を介して対称構造を有している化合物が好ましい。対象構造を有していることで、再結晶させて得られる結晶粒子は、平板形状をとりやすく、結晶構造体とした場合の正反射率を高めやすい。   Examples of the organic compound include a compound having a bisphenyl structure in which two benzene rings are bonded via a vinylene group or an azo group. Among the compounds having a bisphenyl structure, compounds having a symmetric structure via a vinylene group or an azo group are preferable. By having the target structure, the crystal grains obtained by recrystallization are likely to have a flat plate shape, and it is easy to increase the regular reflectance when the crystal structure is formed.

ビスフェニル構造を有する化合物としては、下記一般式(A)で表される化合物を挙げることができる。   Examples of the compound having a bisphenyl structure include compounds represented by the following general formula (A).

一般式(A)において、2つのRは、ともにCH又はN(窒素原子)を表し、R及びRは、それぞれ独立に、アルキル基、又はアルコキシ基を表す。 In general formula (A), two R < 1 > represents both CH or N (nitrogen atom), and R < 2 > and R < 3 > represent an alkyl group or an alkoxy group each independently.

及びRにおけるアルキル基は、無置換でも置換基で置換されていてもよく、総炭素数1〜12アルキル基が好ましく、総炭素数1〜9のアルキル基がより好ましい。アルキル基としては、例えば、メチル基、エチル基、3−メチルブチル基、N,N−ジメチルアミノエチル基、N,N−ジエチルアミノエチル基等を挙げることができる。 The alkyl group in R 2 and R 3 may be unsubstituted or substituted with a substituent, preferably an alkyl group having 1 to 12 carbon atoms, and more preferably an alkyl group having 1 to 9 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, a 3-methylbutyl group, an N, N-dimethylaminoethyl group, and an N, N-diethylaminoethyl group.

及びRにおけるアルコキシ基は、無置換でも置換基で置換されていてもよく、総炭素数1〜12のアルコキシ基が好ましく、総炭素数1〜8のアルコキシ基がより好ましい。アルコキシ基としては、例えば、メトキシ基、エトキシ基、3−メチルブトキシ基、N,N−ジメチルアミノエトキシ基、N,N−ジエチルアミノエトキシ基、4−メチルペントキシ基等を挙げることができる。 The alkoxy group in R 2 and R 3 may be unsubstituted or substituted with a substituent, is preferably an alkoxy group having 1 to 12 carbon atoms, and more preferably an alkoxy group having 1 to 8 carbon atoms. Examples of the alkoxy group include methoxy group, ethoxy group, 3-methylbutoxy group, N, N-dimethylaminoethoxy group, N, N-diethylaminoethoxy group, 4-methylpentoxy group and the like.

ジフェニル構造を有する化合物としては、スチルベン、スチルベンの置換体、アゾベンゼン、及びアゾベンゼンの置換体からなる群より選ばれる化合物を挙げることができる。スチルベンの置換体及びアゾベンゼンの置換体は、スチルベン又はアゾベンゼンに、前記一般式(A)におけるR及びRが置換した化合物を指す。 Examples of the compound having a diphenyl structure include compounds selected from the group consisting of stilbene, substituted stilbene, azobenzene, and substituted azobenzene. The substituted stilbene and the substituted azobenzene are compounds in which R 2 and R 3 in the general formula (A) are substituted for stilbene or azobenzene.

以下、本発明における有機化合物の例として、ビスフェニル構造を有する化合物の具体例を示す。本発明においては、以下に示す具体例に制限されるものではない。なお、以下に示す具体例は、例えば、A.Matsumoto,M.Kawaharazuka,Y.Takahashi,N.Norio,T.Kawai,Y.Kondo,J.Oleo Sci.,59(3),151-156 (2010)、及びY.Kondo,A.Matsumoto,K.Fukuyasu,K.Nakajima,Y.Takahashi,Langmuir,30,4422-4426 (2014)等の文献に記載されている。   Hereinafter, specific examples of the compound having a bisphenyl structure are shown as examples of the organic compound in the present invention. The present invention is not limited to the specific examples shown below. Specific examples shown below include, for example, A. Matsumoto, M. Kawaharazuka, Y. Takahashi, N.A. Norio, T. Kawai, Y. Kondo, J .; Oleo Sci., 59 (3), 151-156 (2010), and Y.R. Kondo, A. Matsumoto, K. Fukuyasu, K.K. Nakajima, Y. Takahashi, Langmuir, 30, 4422-4426 (2014).

本発明の結晶構造体を形成する平板状結晶粒子の積層数Nは、有機化合物の種類又は平板形状等に依存し、複数層が積層されていれば正反射率の向上が期待できるが、例えば、2層以上30層以下の範囲とすることができ、好ましくは5層以上20層以下の範囲とすることができる。
例えばスチルベン又はスチルベンの置換体を用いた結晶構造体の場合、平板状結晶粒子の積層数は、5層以上15層以下が好ましく、10層以上15層以下がより好ましい。平板状結晶粒子の積層数が5層以上であると、正反射率がより高められ、金属光沢により優れたものとなる。また、平板状結晶粒子の積層数は、15層より多い積層数としても正反射率は一定の値に収束するため、15層を超える層数に見合う効果は期待できない。
The number N of stacked tabular crystal grains forming the crystal structure of the present invention depends on the type of organic compound or the tabular shape, etc., and if a plurality of layers are stacked, an improvement in regular reflectance can be expected. It can be in the range of 2 or more and 30 or less, preferably in the range of 5 or more and 20 or less.
For example, in the case of a crystal structure using stilbene or a substituted stilbene, the number of tabular crystal grains is preferably 5 or more and 15 or less, and more preferably 10 or more and 15 or less. When the number of stacked tabular crystal grains is 5 or more, the regular reflectance is further increased, and the metallic luster is excellent. Further, even if the number of stacked tabular crystal grains is greater than 15 layers, the regular reflectance converges to a constant value, and therefore an effect commensurate with the number of layers exceeding 15 layers cannot be expected.

結晶構造体を形成している平板状結晶粒子の積層数を数えることは容易でないため、結晶構造体の厚みを、平板状結晶粒子の厚みで除算した値とする。
本発明の結晶構造体の厚みは、デジタルマイクロメーターを用いて測定される値であり、例えば、デジタル外側マイクロメーターMCD130−25(新潟精機社製)を用いて測定することができる。平板状結晶粒子の厚みの測定法は、既述の通りである。
Since it is not easy to count the number of stacked tabular crystal grains forming the crystal structure, the thickness of the crystal structure is set to a value obtained by dividing the thickness of the tabular crystal grain.
The thickness of the crystal structure of the present invention is a value measured using a digital micrometer, and can be measured using, for example, a digital outer micrometer MCD130-25 (manufactured by Niigata Seiki Co., Ltd.). The method for measuring the thickness of the tabular crystal grains is as described above.

本発明の結晶構造体は、上記のように、平板状結晶粒子が複数個積み重なった積層構造を有することで、正反射率が上昇した金属光沢を有している。
本発明の結晶構造体が金属光沢を発現する機構について、モデル式を使って検証する。
As described above, the crystal structure of the present invention has a metallic luster in which the regular reflectance is increased by having a laminated structure in which a plurality of tabular crystal grains are stacked.
The mechanism by which the crystal structure of the present invention exhibits metallic luster will be verified using a model formula.

はじめに、光が入射する側の第一層での正反射率及び透過率を考える。粗さがない表面に対して斜めに入射する光の全反射率Rは、次のように与えられる。 First, consider the regular reflectance and transmittance of the first layer on the side where light enters. The total reflectance R 0 of light incident obliquely on the surface having no roughness is given as follows.

ここで、iは入射角(°)を表し、rは屈折角(°)を表す。また、屈折角rは、屈折率nを用いて上記式で与えられ、全反射率Rは、入射角iと屈折率nの関数とみなすことができる。なお、屈折率は、屈折率計を用いて25℃で求められる値であり、例えば、アッベ屈折計(NAR−1T SOLID(D線)、アタゴ社製)を用いて測定することができる。
得られた反射率Rを用い、正反射率Rは、次の式で与えられる。
Here, i represents an incident angle (°), and r represents a refraction angle (°). The refraction angle r is given by the above formula using the refractive index n, and the total reflectance R 0 can be regarded as a function of the incident angle i and the refractive index n. In addition, a refractive index is a value calculated | required at 25 degreeC using a refractometer, For example, it can measure using an Abbe refractometer (NAR-1T SOLID (D line), the product made by Atago Co., Ltd.).
Using the obtained reflectance R 0 , the regular reflectance R is given by the following equation.

ここで、λは入射波長(nm)を表し、σは二乗平均平方根粗さ(nm)を表す。
なお、二乗平均平方根粗さは、株式会社日立ハイテクサイエンス社製のS−imageを用いてDFMコンタクトモード(カンチレバーSI−DF20、Coat:Al)にて求められる。
Here, λ represents the incident wavelength (nm), and σ represents the root mean square roughness (nm).
In addition, the root mean square roughness is calculated | required by DFM contact mode (cantilever SI-DF20, Coat: Al) using Hitachi High-Tech Science Co., Ltd. S-image.

厚みd(μm)の単一層に光が入射する場合を考えると、図2に示すように、入射光強度をIとした場合、光が入射する側の層表面(大気と層との界面)で反射する光の強度はIRで表される。層の内部へ侵入する光の強度I'は、図2及び下記式(3−a)に示すように、I(1−R)で表される。
層の内部に侵入した光は、光が入射する側とは反対側の層の表面(裏面:大気と層との界面)に到達する間に一部が吸収される。そのため、層内を通過して入射面とは反対側の裏面に到達する光の強度I''は、図2及び下記式(3−b)で表されるように、ランベルト・ベールの法則からI(1−R)e−αdで与えられる。
そして、光の入射面とは反対側の裏面で再び反射が生じるので、層を透過する光の強度Iは、図2及び下記式(3−c)で表されるように、I(1−R)−αdで表され、裏面で反射して層内に戻ってくる光の強度I''Rは、下記の式(3−b)及び式(3−c)から、I(1−R)Re−αdと導出される。裏面で反射して層内を通過して光の入射面(大気と層との界面)に戻る光は、層内を通過する過程で再び一部が吸収され、光の入射面(大気と層との界面)で反射する。
Considering the case where light is incident on a single layer having a thickness d (μm), as shown in FIG. 2, when the incident light intensity is I, the layer surface on the light incident side (interface between the atmosphere and the layer) The intensity of light reflected by is represented by IR. The intensity I ′ T of light entering the inside of the layer is represented by I (1-R) as shown in FIG. 2 and the following formula (3-a).
A part of the light that has entered the inside of the layer is absorbed while it reaches the surface of the layer opposite to the side on which the light is incident (back surface: the interface between the atmosphere and the layer). Therefore, the intensity I ″ T of light passing through the layer and reaching the back surface opposite to the incident surface is expressed by the Lambert-Beer law as shown in FIG. 2 and the following equation (3-b). To I (1-R) e- αd .
Then, the reflection again in the rear surface opposite to the incident surface of the light occurs, the intensity I T of the light transmitted through the layer, as represented in Figure 2 and the following formula (3-c), I ( 1 -R) The intensity I '' TR of light that is represented by 2 e -αd and is reflected from the back surface and returns to the layer is expressed by the following equation (3-b) and equation (3-c): It is derived as (1-R) Re- αd . The light that is reflected from the back surface and passes through the layer and returns to the light incident surface (atmosphere-layer interface) is partially absorbed again in the process of passing through the layer, and the light incident surface (atmosphere-layer) Reflected at the interface).

上記のような光の反射は、図3に示すように無限に繰り返される。そのため、厚みdの単一層に光が入射する場合、得られる反射率R及び透過率Tは、それぞれの方向に進む光の強度の総和を入射光強度Iで除することで、それぞれ次のように与えられる. The reflection of light as described above is repeated infinitely as shown in FIG. Therefore, when light is incident on a single layer having a thickness d, the obtained reflectance R 1 and transmittance T 1 are obtained by dividing the sum of the intensities of light traveling in the respective directions by the incident light intensity I, respectively. Is given as

次に、多層化した場合に得られる正反射率及び透過率を導出する。
まずはじめに、単一層で得られる正反射率R及び透過率Tを用い、同一の層を二層重ねた積層構造とした場合に得られる正反射率R及び透過率Tを考える。
二層の積層構造とした場合、図3(b)に示すように、界面で光が反射する場合は、層に入射した光の強度にRを乗じ、層を透過する場合は入射した光の強度にTを乗ずることで、それぞれの光の強度が求められる。
反射強度又は透過強度の総和を求め、入射光強度Iで除すると、層数2の積層構造(二層構造)とした場合に得られる正反射率R及び透過率Tは、以下のようになる。
Next, the regular reflectance and transmittance obtained in the case of multilayering are derived.
First, the regular reflectance R 2 and the transmittance T 2 obtained by using the regular reflectance R 1 and the transmittance T 1 obtained by a single layer and using a laminated structure in which two identical layers are stacked will be considered.
If a two-layer structure of, as shown in FIG. 3 (b), the light when the light is reflected at the interface, multiplied by R 1 to the intensity of light incident on the layer, which is incident when passing through the layer by strength by multiplying the T 1 to the intensity of each light is obtained.
When the sum of the reflection intensity or the transmission intensity is obtained and divided by the incident light intensity I, the regular reflectance R 2 and the transmittance T 2 obtained in the case of a laminated structure (two-layer structure) having two layers are as follows: become.

次に、二層と一層とに分けて三層構造にした場合に得られる正反射率R及び透過率Tを考える。この場合、二層構造における正反射率及び透過率を求める過程と同様に考え、次の式を得る。 Next, the regular reflectance R 3 and the transmittance T 3 obtained when the three-layer structure is divided into two layers and one layer will be considered. In this case, the following formula is obtained in the same way as the process of obtaining the regular reflectance and transmittance in the two-layer structure.

以上から、層数N(1層〜n層)の場合の正反射率R及び透過率Tは、層数N−1(1層〜(n−1)層)の場合の正反射率Rn−1及び透過率Tn−1を用い、帰納的に考えることによって次の漸化式として表すことができる。 From the above, the regular reflectance R n and the transmittance T n in the case of the number of layers N (1 layer to n layers) are the regular reflectance in the case of the number of layers N−1 (1 layer to (n−1) layers). By using R n-1 and transmittance T n-1 and considering it inductively, it can be expressed as the following recurrence formula.

なお、上記の各式に含まれる吸光係数αは、次式で表される。   The extinction coefficient α included in each of the above formulas is represented by the following formula.

ここで、層数Nは、結晶構造体の積層構造を形成している平板状結晶粒子の層数を表す。なお、層数は、実際の計測が難しいため、平板状結晶粒子の積層構造を有する結晶構造体の厚さを平板状結晶粒子の厚みで除した際の値に近い整数を結晶層の数とする。   Here, the number N of layers represents the number of tabular crystal grains forming a stacked structure of crystal structures. Since the number of layers is difficult to actually measure, an integer close to the value obtained by dividing the thickness of the crystal structure having a laminated structure of tabular crystal grains by the thickness of the tabular crystal grains is the number of crystal layers. To do.

上記のように、複数の平板状結晶粒子の積層構造を有する結晶構造体では、第一層目の表面で反射した光は、積層構造の結晶とは異なる色彩を呈している。そして、第一層目を透過した入射光は、第二層目以降の層で反射して第一層の光の入射面に戻ってくる。積層構造の層数が多くなるにつれ、第一層の表面へ戻ってくる正反射光は多くなる。そのため、結晶構造体は、全体の正反射率が上昇し、光沢を発現するようになると考えられる。
このように、光沢を発現する機構は、平板状の結晶片の積層による界面の増加が正反射率の上昇に影響を与え、単一層では透明性の層でも、一定の積層数を有していることに基づくと考えられる。
As described above, in a crystal structure having a stacked structure of a plurality of tabular crystal grains, the light reflected by the surface of the first layer exhibits a color different from that of the crystal of the stacked structure. The incident light transmitted through the first layer is reflected by the second and subsequent layers and returns to the light incident surface of the first layer. As the number of layers in the laminated structure increases, more regular reflection light returns to the surface of the first layer. For this reason, it is considered that the crystal structure has an increase in the regular reflectance and develops gloss.
In this way, the mechanism that expresses the glossy effect is that the increase in the interface due to the lamination of the flat crystal pieces affects the increase in the regular reflectance, and even a single transparent layer has a certain number of laminated layers. It is thought that it is based on being.

〜結晶構造体の製造〜
既述の本発明の結晶構造体は、製造方法に制限されるものではないが、好ましくは、2つのベンゼン環がビニレン基を介して結合されたビスフェニル構造を有する有機化合物(好ましくは、既述の一般式(A)で表される化合物)を溶媒に溶解し、得られた溶解液から前記有機化合物を再結晶させる工程を設けることで製造することができる。
~ Manufacture of crystal structure ~
The crystal structure of the present invention described above is not limited to the production method, but preferably an organic compound having a bisphenyl structure in which two benzene rings are bonded via a vinylene group (preferably, The compound represented by the general formula (A) described above can be dissolved in a solvent, and the organic compound can be recrystallized from the obtained solution.

溶媒としては、水、有機溶剤が挙げられる。水としては、イオン交換水等を用いることができる。有機溶剤としては、水溶性を有する有機溶剤が好ましく、例えば、アセトン、アルコール、エーテル等を用いることができる。
有機化合物を溶媒に溶解する場合、再結晶させやすい点で、有機化合物を有機溶剤に溶解した後、溶解液を水に加えてもよい。
再結晶は、従来から知られた常法に基づいて行えばよく、例えば、有機化合物を有機溶剤に加熱溶解した後、水に投入して降温して再結晶化してもよい。
Examples of the solvent include water and organic solvents. As water, ion-exchanged water or the like can be used. As the organic solvent, a water-soluble organic solvent is preferable, and for example, acetone, alcohol, ether or the like can be used.
When the organic compound is dissolved in a solvent, the solution may be added to water after the organic compound is dissolved in the organic solvent in terms of easy recrystallization.
The recrystallization may be performed based on a conventionally known conventional method. For example, the organic compound may be heated and dissolved in an organic solvent, and then poured into water and cooled to be recrystallized.

次に、本発明の結晶構造体が金属光沢を発現する機構が、上記したモデル式に基づくものであることを、実施例を示して実証する。具体的には、所定の積層構造を有していることで、結晶構造体は、正反射率が上昇し、金属調の光沢が発現することを実施例を通じて説明する。但し、本発明は、その主旨を越えない限り、以下の実施例に制限されるものではない。   Next, it will be demonstrated by showing examples that the crystal structure of the present invention develops the metallic luster based on the above model formula. Specifically, it will be described through examples that the crystal structure has a predetermined laminated structure and thus the regular reflectance increases and a metallic luster appears. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

(実施例1)
−スチルベン置換体の単結晶の調製−
1,2−ビス(4−(3−メチルブトキシ)フェニル)エテン(分子量273)0.05gをアセトン3.0mLに加えて溶解した溶液を調製した。調製した溶液をサンプル瓶に入れ、このサンプル瓶を水6.0mLが入ったサンプル容器へ入れ、サンプル容器の蓋を閉めて冷却した。この状態で静置し、1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの単結晶(導電率<1×10−6[S/m]、アスペクト比=1:3.5)を得た。
Example 1
-Preparation of single crystals of substituted stilbene-
A solution was prepared by dissolving 0.05 g of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene (molecular weight 273) in 3.0 mL of acetone. The prepared solution was put into a sample bottle, this sample bottle was put into a sample container containing 6.0 mL of water, and the lid of the sample container was closed and cooled. Standing in this state, a single crystal of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene (conductivity <1 × 10 −6 [S / m], aspect ratio = 1: 3.5 )

−スチルベン置換体の多層結晶の調製−
上記とは別に、1,2−ビス(4−(3−メチルブトキシ)フェニル)エテン(分子量273)、アセトン、及び水を、1,2−ビス(4−(3−メチルブトキシ)フェニル)エテン(分子量273)0.1g当たりアセトン16mL及び水40mLの分量となるように混合し、60℃に加温して1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンを溶解した溶液を調製した。調製した溶液を、室温(25℃)下で24時間静置し、次いで3℃の冷蔵庫内に24時間静置することにより、1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンを再結晶させた。
再結晶した1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの結晶を、直径21mmの円形の濾紙を用いて吸引濾過し、濾紙上に結晶を堆積させた。
濾紙上に堆積した結晶は、平板形状を有する1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの結晶が複数積み重なった多層結晶(結晶構造体;導電率<1×10−6[S/m])として得られた。
-Preparation of multilayer crystals of stilbene substituted compounds-
Separately from the above, 1,2-bis (4- (3-methylbutoxy) phenyl) ethene (molecular weight 273), acetone, and water were mixed with 1,2-bis (4- (3-methylbutoxy) phenyl) ethene. (Molecular weight 273) A solution in which 1,2-bis (4- (3-methylbutoxy) phenyl) ethene was dissolved by mixing in an amount of 16 mL of acetone and 40 mL of water per 0.1 g and heating to 60 ° C. Was prepared. The prepared solution was allowed to stand at room temperature (25 ° C.) for 24 hours, and then allowed to stand in a refrigerator at 3 ° C. for 24 hours to obtain 1,2-bis (4- (3-methylbutoxy) phenyl) ethene. Was recrystallized.
The recrystallized 1,2-bis (4- (3-methylbutoxy) phenyl) ethene crystals were subjected to suction filtration using a circular filter paper having a diameter of 21 mm, and the crystals were deposited on the filter paper.
The crystal deposited on the filter paper is a multilayer crystal (crystal structure; conductivity <1 × 10 −6 ) in which a plurality of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene crystals having a flat plate shape are stacked. [S / m]).

−測定及び評価−
(1)吸光係数αの算出
まず、1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの結晶が複数積み重なった積層物(結晶構造体)の各波長に対する吸光係数αを、上記式(12)から求めた。
(2)各種パラメータの算出
上記した各式での計算に用いられる各パラメータ値は、以下の通りである。
・入射光の波長[λ]:700nm
・光の入射角[i]:5°
・平板状結晶粒子の厚み[d]:6.0μm
・二乗平均平方根粗さ[σ]:0.6nm
・屈折率[n]:1.52
-Measurement and evaluation-
(1) Calculation of extinction coefficient α First, the extinction coefficient α for each wavelength of a laminate (crystal structure) in which a plurality of crystals of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene are stacked, It calculated | required from Formula (12).
(2) Calculation of various parameters The parameter values used for the calculations in the above-described equations are as follows.
-Incident light wavelength [λ]: 700 nm
Light incident angle [i]: 5 °
-Thickness [d] of tabular crystal grains: 6.0 μm
・ Root mean square roughness [σ]: 0.6 nm
Refractive index [n]: 1.52

なお、単結晶の厚みは、1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの多層結晶を、電界放出形走査型電子顕微鏡(SEM−EDX S−4800(Tilt40°)、日立ハイテクノロジーズ社製)を用いて求め、層数で除して算出した。
二乗平均平方根粗さは、株式会社日立ハイテクサイエンス社製のS−imageを用い、1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの多層結晶に対してDFMコンタクトモード(カンチレバーSI−DF20、Coat:Al)にて求めた。
また、屈折率は、1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの単結晶に対し、中間液(モノブロナフタレン)及びアッベ屈折計(NAR−1T SOLID、アタゴ社製)によりD線を用いて25℃にて測定した。
Note that the thickness of the single crystal is a multilayer crystal of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene, a field emission scanning electron microscope (SEM-EDX S-4800 (Tilt 40 °), Hitachi, Ltd. And calculated by dividing by the number of layers.
The root mean square roughness was measured using a DFM contact mode (cantilever SI) for a multilayer crystal of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene using S-image manufactured by Hitachi High-Tech Science Co., Ltd. -DF20, Coat: Al).
In addition, the refractive index is determined by using an intermediate solution (monobronaphthalene) and an Abbe refractometer (NAR-1T SOLID, manufactured by Atago Co., Ltd.) for a single crystal of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene. It measured at 25 degreeC using the D line | wire.

(3)正反射率の評価
上記で得られた吸光係数α及び各種パラメータを、既述のモデル式に代入して正反射率を算出した。
一方、1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの多層結晶の正反射率は、JASCO ILN−472積分球(入射角:5°)を装備したJASCO V−570分光光度計(日本分光社製)にて25℃で測定した。また、単結晶の正反射率は、単結晶をガラス基板上に載置し、顕微紫外可視近赤外分光光度計JASCO MSV−5300(入射角:23°;日本分光社製)を用いて測定した。なお、単結晶の測定には、裏面反射除去ゲル(自己吸着ウレタン)を使用した。
上記の結果から、既述のモデル式に代入して計算された正反射率のスペクトルと、実測した正反射率のスペクトルと、を図4に示す。
図4に示されるように、既述のモデル式に代入して計算された正反射率は、実測値とほぼ一致した結果が得られた。
(3) Evaluation of regular reflectance The regular reflectance was calculated by substituting the light absorption coefficient α and various parameters obtained above into the above-described model formula.
On the other hand, the regular reflectance of the multilayer crystal of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene is determined by the JASCO V-570 spectrophotometer equipped with a JASCO ILN-472 integrating sphere (incident angle: 5 °). It measured at 25 degreeC with the meter (made by JASCO Corporation). Further, the regular reflectance of the single crystal is measured by placing the single crystal on a glass substrate and using a micro ultraviolet visible near infrared spectrophotometer JASCO MSV-5300 (incident angle: 23 °; manufactured by JASCO Corporation). did. In addition, the back surface reflection removal gel (self-adsorption urethane) was used for the measurement of a single crystal.
From the above results, the specular reflectance spectrum calculated by substituting into the above-described model equation and the actually measured specular reflectance spectrum are shown in FIG.
As shown in FIG. 4, the specular reflectance calculated by substituting into the above-described model formula was almost the same as the actually measured value.

以上から、結晶構造体が金属光沢を発現する機構は、既述のモデル式で検証された通り、所定個数の平板状粒子が積み重ねられた結晶構造を有しているためであることが実証された。   From the above, it is proved that the mechanism by which the crystal structure exhibits metallic luster is because it has a crystal structure in which a predetermined number of tabular grains are stacked, as verified by the model formula described above. It was.

(4)層数N、結晶粒子の厚みd、及び二乗平均平方根粗さσによる影響
層数N、結晶粒子の厚みd、及び二乗平均平方根粗さσを変化させた場合の正反射率の変化を求め、図5〜図7に示す。
(4) Influence of layer number N, crystal grain thickness d, and root mean square roughness σ Changes in regular reflectance when layer number N, crystal grain thickness d, and root mean square roughness σ are changed And is shown in FIGS.

図5は、平板形状を有する1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの多層結晶の層数Nを変化させた場合の正反射率の変化を示すグラフである。なお、上記した各式での計算に用いられる各パラメータ値のうち、層数N以外は上記値に固定した。
図5に示されるように、多層結晶の厚さに対する正反射率の値の変化は、層数が増加するにつれ、正反射率は増加し、15層に達した以降は一定の値を示した。このときの正反射率は、16%であった。
これは、層数が増すにつれて光が反射する界面が増加するため、正反射率は増加するが、15層にまで層数が増えると、多層結晶による光の吸収の影響が大きくなり、結果、結晶表面へ戻ってくる正反射光がなくなるためと考えられる。
FIG. 5 is a graph showing changes in regular reflectance when the number N of layers of a 1,2-bis (4- (3-methylbutoxy) phenyl) ethene multilayer crystal having a flat plate shape is changed. In addition, among the parameter values used for the calculation in each of the above formulas, the values other than the number N of layers were fixed to the above values.
As shown in FIG. 5, the change in the value of the regular reflectance with respect to the thickness of the multilayer crystal increased as the number of layers increased, and showed a constant value after reaching 15 layers. . The regular reflectance at this time was 16%.
As the number of layers increases, the interface where light is reflected increases, so that the regular reflectance increases. However, when the number of layers increases to 15 layers, the influence of light absorption by the multilayer crystal increases. It is thought that specular reflection light returning to the crystal surface disappears.

図6は、平板形状を有する1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの単結晶(平板状結晶粒子)の厚みdを変化させた場合の正反射率の変化を示すグラフである。なお、上記した各式での計算に用いられる各パラメータ値のうち、厚みd以外は上記値に固定した。
図6に示されるように、単結晶の厚みが厚くなるにしたがって正反射率は低下する傾向を示した。したがって、結晶粒子の厚みは薄いほど正反射率は高くなる。
これは、一つの層を通過する際に吸収される光の強度が大きくなるためと考えられる。
FIG. 6 shows changes in regular reflectance when the thickness d of a single crystal (tabular crystal grain) of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene having a flat plate shape is changed. It is a graph. Of the parameter values used for the calculations in the above equations, the values other than the thickness d were fixed to the above values.
As shown in FIG. 6, the regular reflectance tends to decrease as the thickness of the single crystal increases. Therefore, the regular reflectance increases as the thickness of the crystal grains decreases.
This is presumably because the intensity of light absorbed when passing through one layer increases.

図7は、平板形状を有する1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの多層結晶の二乗平均平方根粗さσを変化させた場合の正反射率の変化を示すグラフである。なお、上記した各式での計算に用いられる各パラメータ値のうち、二乗平均平方根粗さσ以外は上記値に固定した。
図7に示されるように、結晶表面の粗さが大きくなるにつれて正反射率は単調に減少し、粗さが増すにつれて急激に減少する傾向を示した。これは、結晶表面の粗さが増すことで、拡散反射光の割合が増えるためと考えられる。
FIG. 7 is a graph showing changes in regular reflectance when the root mean square roughness σ of a multilayer crystal of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene having a flat plate shape is changed. is there. Of the parameter values used for the calculations in the above equations, the values other than the root mean square roughness σ were fixed to the above values.
As shown in FIG. 7, the regular reflectance decreased monotonously as the crystal surface roughness increased, and showed a tendency to decrease rapidly as the roughness increased. This is presumably because the ratio of diffusely reflected light increases as the crystal surface roughness increases.

上記のように、複数の平板状結晶粒子の積層構造を有する結晶構造体では、まず、第一層目の表面で反射した光は、積層構造の結晶とは異なる色彩を呈する。1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの多層結晶を作製した本実施例の場合、第一層目を透過した入射光は500nm以上の波長を有し、第二層目以降の層で反射した光は第一層の表面へ戻ってくる。積層構造中の層数が多くなるにつれ、第一層の表面へ戻ってくる正反射光が多くなるため、1,2−ビス(4−(3−メチルブトキシ)フェニル)エテンの多層結晶では、正反射率が上昇し、光沢を発現するようになる。第二層目以降の層で反射して戻ってくる正反射光は、無色透明であり、15層以上の積層構造を有することで、正反射率の上昇と合わせて銀色の光沢が発現する。   As described above, in a crystal structure having a stacked structure of a plurality of tabular crystal grains, first, the light reflected on the surface of the first layer exhibits a color different from that of the crystal of the stacked structure. In this example in which a multilayer crystal of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene was produced, the incident light transmitted through the first layer had a wavelength of 500 nm or more, and the second layer The light reflected by the layers after the eye returns to the surface of the first layer. As the number of layers in the stacked structure increases, the amount of specularly reflected light returning to the surface of the first layer increases. Therefore, in the multilayer crystal of 1,2-bis (4- (3-methylbutoxy) phenyl) ethene, The regular reflectance increases and gloss is developed. The specularly reflected light reflected and returned by the second and subsequent layers is colorless and transparent, and has a laminated structure of 15 or more layers, so that a silvery luster is manifested with an increase in the regular reflectance.

本発明は、金属アレルギー等が懸念される宝飾品及びアクセサリー等の金属加工品、並びに軽量で環境負荷の小さい塗料、電波通信機器の金属色塗装等の用途に好適である。   INDUSTRIAL APPLICABILITY The present invention is suitable for metal processed products such as jewelry and accessories in which metal allergy or the like is a concern, as well as for applications such as lightweight and low environmental impact paints, and metal color coating of radio communication equipment.

Claims (7)

導電率Kが1×10−6[S/m]以下である有機化合物の平板状結晶粒子が複数個積み重なった積層構造を有し、かつ、正反射率Rが2%を超える結晶構造体。 A crystal structure having a laminated structure in which a plurality of tabular crystal grains of an organic compound having an electrical conductivity K of 1 × 10 −6 [S / m] or less are stacked, and having a regular reflectance R exceeding 2%. 前記有機化合物は、2つのベンゼン環がビニレン基を介して結合されたビスフェニル構造を有する請求項1に記載の結晶構造体。   The crystal structure according to claim 1, wherein the organic compound has a bisphenyl structure in which two benzene rings are bonded via a vinylene group. 前記有機化合物は、スチルベン及びスチルベンの置換体からなる群より選ばれる化合物である請求項1又は請求項2に記載の結晶構造体。   The crystal structure according to claim 1, wherein the organic compound is a compound selected from the group consisting of stilbene and stilbene substituents. 前記有機化合物がスチルベン又はスチルベンの置換体であり、かつ、前記積層構造における前記平板状結晶粒子の積層数が2以上である請求項1〜請求項3のいずれか1項に記載の結晶構造体。   The crystal structure according to any one of claims 1 to 3, wherein the organic compound is stilbene or a substituted stilbene, and the number of stacked tabular crystal grains in the stacked structure is 2 or more. . 前記平板状結晶粒子の厚みが15μm未満である請求項1〜請求項4のいずれか1項に記載の結晶構造体。   The crystal structure according to any one of claims 1 to 4, wherein the tabular crystal grains have a thickness of less than 15 µm. 前記正反射率Rが10%以上である請求項1〜請求項5のいずれか1項に記載の結晶構造体。   The crystal structure according to any one of claims 1 to 5, wherein the regular reflectance R is 10% or more. 請求項1〜請求項6のいずれか1項に記載の結晶構造体の製造方法であって、
2つのベンゼン環がビニレン基を介して結合されたビスフェニル構造を有する有機化合物を溶媒に溶解し、得られた溶解液から前記有機化合物を再結晶させる工程を含む、結晶構造体の製造方法。
A method for producing a crystal structure according to any one of claims 1 to 6,
A method for producing a crystal structure, comprising: dissolving an organic compound having a bisphenyl structure in which two benzene rings are bonded via a vinylene group in a solvent, and recrystallizing the organic compound from the obtained solution.
JP2016175025A 2016-09-07 2016-09-07 Crystal structure and method for producing the same Pending JP2018040953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175025A JP2018040953A (en) 2016-09-07 2016-09-07 Crystal structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175025A JP2018040953A (en) 2016-09-07 2016-09-07 Crystal structure and method for producing the same

Publications (1)

Publication Number Publication Date
JP2018040953A true JP2018040953A (en) 2018-03-15

Family

ID=61625762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175025A Pending JP2018040953A (en) 2016-09-07 2016-09-07 Crystal structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP2018040953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157284A (en) * 2018-03-07 2019-09-19 日本ゼオン株式会社 Non-woven fabric and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444245A (en) * 1966-08-17 1969-05-13 Wacker Chemie Gmbh Process for making 4,4'-bis-hydroxyalkyl ethers of stilbene
JP2009132641A (en) * 2007-11-29 2009-06-18 Norio Yoshino Golden solid azo compound and its production method
JP2010050598A (en) * 2008-08-20 2010-03-04 Toray Ind Inc Metallic luster decoration film for electromagnetic wave-permeable member, and electromagnetic wave-permeable member using the film
JP2013245282A (en) * 2012-05-25 2013-12-09 Sumitomo Seika Chem Co Ltd Electromagnetic wave transmissible film with metallic lustrous tone
WO2014021405A2 (en) * 2012-07-31 2014-02-06 国立大学法人 千葉大学 Film having metallic luster, article having said film formed thereon, and manufacturing method for film having metallic luster
JP2017165834A (en) * 2016-03-15 2017-09-21 株式会社リコー Organic colorant having silver gloss and coloring composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444245A (en) * 1966-08-17 1969-05-13 Wacker Chemie Gmbh Process for making 4,4'-bis-hydroxyalkyl ethers of stilbene
JP2009132641A (en) * 2007-11-29 2009-06-18 Norio Yoshino Golden solid azo compound and its production method
JP2010050598A (en) * 2008-08-20 2010-03-04 Toray Ind Inc Metallic luster decoration film for electromagnetic wave-permeable member, and electromagnetic wave-permeable member using the film
JP2013245282A (en) * 2012-05-25 2013-12-09 Sumitomo Seika Chem Co Ltd Electromagnetic wave transmissible film with metallic lustrous tone
WO2014021405A2 (en) * 2012-07-31 2014-02-06 国立大学法人 千葉大学 Film having metallic luster, article having said film formed thereon, and manufacturing method for film having metallic luster
US20160075917A1 (en) * 2012-07-31 2016-03-17 National University Corporation Chiba University Film having metallic luster, article having said film formed thereon, and manufacturing method for film having metallic luster
JP2017165834A (en) * 2016-03-15 2017-09-21 株式会社リコー Organic colorant having silver gloss and coloring composition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
中川 雄貴、他: "金属光沢を有する低分子有機結晶の調製とその色彩", 日本油化学会年会講演要旨集, vol. 52, JPN6019041298, 3 September 2013 (2013-09-03), JP, pages 239, ISSN: 0004481961 *
近藤 行成、他: "金色光沢有機結晶の調製と構造解析", 色材協会誌, vol. 84, JPN6020028650, January 2011 (2011-01-01), JP, pages 24 - 27, ISSN: 0004321953 *
高橋 裕、他: "金属光沢のある低分子有機結晶の創製", 色材協会誌, vol. 87, JPN6020028647, December 2014 (2014-12-01), JP, pages 442 - 447, ISSN: 0004481960 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157284A (en) * 2018-03-07 2019-09-19 日本ゼオン株式会社 Non-woven fabric and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Wang et al. Full color generation using silver tandem nanodisks
Lee et al. Strong resonance effect in a lossy medium‐based optical cavity for angle robust spectrum filters
Schmidl et al. Formation and characterization of silver nanoparticles embedded in optical transparent materials for plasmonic sensor surfaces
Villesen et al. Self-assembled Al nanoparticles on Si and fused silica, and their application for Si solar cells
CN102782012A (en) Optical member, polyimide, method for manufacturing optical member, and method for producing polyimide
Ibrahim et al. Solar selective performance of metal nitride/oxynitride based magnetron sputtered thin film coatings: a comprehensive review
Mao et al. Disorder‐Induced Material‐Insensitive Optical Response in Plasmonic Nanostructures: Vibrant Structural Colors from Noble Metals
Zhang et al. Ultra-low infrared emissivity at the wavelength of 3–5 μm from Ge/ZnS one-dimensional photonic crystal
JP7019909B2 (en) Decorative members and their manufacturing methods
JP2016049777A (en) Red omnidirectional structural color made by metal and dielectric layers
Petr et al. Noble metal nanostructures for double plasmon resonance with tunable properties
Jia et al. Structural colors of the SiO2/polyethyleneimine thin films on poly (ethylene terephthalate) substrates
Tagawa et al. Solution-cast self-assembled films of perchlorate-doped oligo (3-methoxythiophene) showing a gold-like luster
JP2018040953A (en) Crystal structure and method for producing the same
KR101966851B1 (en) Decoration element and preparing method thereof
Serrano et al. Ag-AgO nanostructures on glass substrates by solid-state dewetting: From extended to localized surface plasmons
Fang et al. Lithography-free fabrication and optical characterizations of nanotextured nickel dewetting thin film for broadband absorbers
JP7044441B2 (en) Decorative members and their manufacturing methods
WO2015194485A1 (en) Laminate
CN108219540A (en) Mix colored metallic pigment
KR102215030B1 (en) Metal member with colored surface and coloring method of metal surface
KR101782783B1 (en) Photo sensor for detecting adulterated petroleum
Mousavi et al. Development of a Transparent Scratch Resistant Coating through Direct Oxidation of Al‐Coated Glass
Perez et al. Fabrication and characterization of silver inverse opals
KR101347629B1 (en) Anti-reflection coating, and manufacturing method for the coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406