JP2018008828A - Carbon black and secondary battery using the same - Google Patents

Carbon black and secondary battery using the same Download PDF

Info

Publication number
JP2018008828A
JP2018008828A JP2014235674A JP2014235674A JP2018008828A JP 2018008828 A JP2018008828 A JP 2018008828A JP 2014235674 A JP2014235674 A JP 2014235674A JP 2014235674 A JP2014235674 A JP 2014235674A JP 2018008828 A JP2018008828 A JP 2018008828A
Authority
JP
Japan
Prior art keywords
carbon black
dbp
surface area
specific surface
dbp absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014235674A
Other languages
Japanese (ja)
Inventor
祐作 原田
Yusaku Harada
祐作 原田
誠治 藤木
Seiji Fujiki
誠治 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2014235674A priority Critical patent/JP2018008828A/en
Priority to PCT/JP2015/082774 priority patent/WO2016080539A1/en
Publication of JP2018008828A publication Critical patent/JP2018008828A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: carbon black having excellent conductivity-imparting ability and dispersibility; and a secondary battery using the same.SOLUTION: The carbon black has a specific surface area according to JIS K 6217-2 of 80 to 150 m/g, a DBP absorption amount according to JIS K 6217-4 of 150 ml/100 g or more, and DBP/CDBP, which is a ratio of the DBP absorption amount (DBP) and a compressed DBP absorption amount (CDBP) according to JIS K 6217-4, is 1.50 or more. Preferably, SSA/CSSA, a ratio of the specific surface area (SSA) and a specific surface area (CSSA) after pressing the carbon black 4 times under 165 MPa, is 0.90 or more.SELECTED DRAWING: None

Description

本発明は二次電池において、これらの正極及び/又は負極に導電性を付与するための導電剤としてのカーボンブラックと、それを用いて構成された二次電池に関する。 The present invention relates to carbon black as a conductive agent for imparting conductivity to the positive electrode and / or the negative electrode in a secondary battery, and a secondary battery configured using the carbon black.

リチウムイオン二次電池は、スマートフォン、携帯端末、ノートパソコンなどの小型民生用機器の電源として幅広く用いられている。また、近年は中・大型用途として車載用や据置用の電源として開発が進められ、一部は実用化されている。そして使用機器の高性能化に伴い、電池への品質要求レベルはますます高まってきている。 Lithium ion secondary batteries are widely used as power sources for small consumer devices such as smartphones, portable terminals, and notebook computers. In recent years, development has been promoted as a power source for in-vehicle use or stationary use for medium and large-sized applications, and a part of them has been put into practical use. As the performance of the equipment used increases, the level of quality requirements for batteries is increasing.

従来、リチウムイオン二次電池の正極としては、コバルト酸リチウム、マンガン酸リチウム等の複合酸化物等の正極活物質とカーボンブラックや黒鉛等の導電剤などを含有した組成物を、アルミ箔等の集電体に被着させてなるものが用いられている。一方、負極としては、黒鉛、ハードカーボン等の炭素質材料やスズ系アモルファス材料、チタン酸リチウムの複合酸化物等の負極活物質とカーボンブラックや黒鉛等の導電剤などを含有した組成物を、銅箔等の集電体に被着させてなるものが用いられている。 Conventionally, as a positive electrode of a lithium ion secondary battery, a composition containing a positive electrode active material such as a composite oxide such as lithium cobaltate or lithium manganate and a conductive agent such as carbon black or graphite is used as an aluminum foil or the like. What is attached to a current collector is used. On the other hand, as the negative electrode, a composition containing a carbonaceous material such as graphite and hard carbon, a tin-based amorphous material, a negative electrode active material such as a composite oxide of lithium titanate, and a conductive agent such as carbon black and graphite, What is attached to current collectors, such as copper foil, is used.

導電剤の役割は、導電性の低い活物質に導電性を付与すること、充放電時に活物質が繰り返し膨張収縮して導電性が損なわれるのを防止することである。そのため、電極において活物質と導電剤の分散状態が悪いと、電極内において局所的に導電性の劣る部分が現れ、活物質が有効に利用されずに放電容量が低下し、電池特性が低下する原因となっている。近年では、スマートフォンや携帯端末の普及及び電気自動車の開発促進のため、電池の高容量化が求められている。高容量化のアプローチの一つとして、導電剤や結着剤の添加量を減らし、電池内において反応主材である活物質の占める割合を増加させる手法がある。このような場合、従来のカーボンブラックでは導電パスの形成が困難となるため、小粒径のカーボンブラックを用いることが検討されている。しかしながら、小粒径のカーボンブラックはその高い比表面積と吸液性のために、活物質、導電剤、結着剤、有機溶媒などからなる電極スラリー中での分散が困難となるという問題があった。 The role of the conductive agent is to impart conductivity to an active material having low conductivity, and to prevent the conductivity from being impaired due to repeated expansion and contraction of the active material during charging and discharging. Therefore, if the active material and the conductive agent are poorly dispersed in the electrode, a portion with poor conductivity appears locally in the electrode, the active material is not effectively used, the discharge capacity is reduced, and the battery characteristics are deteriorated. It is the cause. In recent years, in order to popularize smartphones and mobile terminals and promote the development of electric vehicles, it has been required to increase the capacity of batteries. One approach for increasing the capacity is to reduce the amount of conductive agent or binder added and increase the proportion of the active material that is the main reaction material in the battery. In such a case, since it is difficult to form a conductive path with the conventional carbon black, the use of carbon black having a small particle diameter has been studied. However, carbon black with a small particle size has a problem that it is difficult to disperse in an electrode slurry composed of an active material, a conductive agent, a binder, an organic solvent, etc. due to its high specific surface area and liquid absorption. It was.

そこで導電剤と活物質の均一分散を目的として、特許文献1ではカーボンブラックや黒鉛などの導電剤を有機溶媒中でボールミルを使用してより微細化する試みが行われている。また、特許文献2では分散剤を使用して高圧ジェットミルで有機溶媒に分散する試みが行われている。一方、特許文献3、4では、活物質と導電剤を乾式で均一混合する手法、活物質表面に導電剤を被覆する手法が試みられている。いずれも特殊な装置による処理が必要であり、処理時の異物混入や、活物質、導電剤のダメージによる性能の低下といった問題があった。 Therefore, for the purpose of uniformly dispersing the conductive agent and the active material, Patent Document 1 attempts to further refine the conductive agent such as carbon black and graphite using a ball mill in an organic solvent. In Patent Document 2, an attempt is made to disperse in an organic solvent with a high-pressure jet mill using a dispersant. On the other hand, Patent Documents 3 and 4 attempt a method of uniformly mixing an active material and a conductive agent in a dry manner and a method of coating a conductive agent on the active material surface. In any case, processing by a special apparatus is necessary, and there are problems such as contamination by foreign matters during processing and deterioration of performance due to damage of the active material and conductive agent.

特開平10−144302号公報JP-A-10-144302 特開2004−281096号公報JP 2004-289696 A 特開2007−220510号公報JP 2007-220510 A 特開2004−14519号公報JP 2004-14519 A

本発明の目的は、導電性付与能力と分散性に優れたカーボンブラック及びそれを用いた二次電池を提供することにある。 An object of the present invention is to provide a carbon black excellent in conductivity imparting ability and dispersibility and a secondary battery using the same.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)JIS K6217−2による比表面積が80〜150m/g、JIS K6217−4によるDBP吸収量が150ml/100g以上、DBP吸収量(DBP)とJIS K6217−4による圧縮DBP吸収量(CDBP)の比であるDBP/CDBPが1.50以上であることを特徴とするカーボンブラック。
(2)比表面積(SSA)と165MPaで4回圧縮した後の比表面積(CSSA)の比であるSSA/CSSAが0.90以上であることを特徴とする前記(1)に記載のカーボンブラック。
(3)結晶子サイズLcが25Å以下であることを特徴とする前記(1)または(2)に記載のカーボンブラック。
(4)揮発分が0.20〜0.50%であることを特徴とする前記(1)または(2)に記載のカーボンブラック。
(5)前記(1)〜(4)のいずれか一項に記載のカーボンブラックを含有してなる二次電池。
The present invention employs the following means in order to solve the above problems.
(1) The specific surface area according to JIS K6217-2 is 80 to 150 m 2 / g, the DBP absorption amount according to JIS K6217-4 is 150 ml / 100 g or more, the DBP absorption amount (DBP) and the compressed DBP absorption amount according to JIS K6217-4 (CDBP) A carbon black having a DBP / CDBP ratio of 1.50 or more.
(2) The carbon black as described in (1) above, wherein SSA / CSSA, which is the ratio of specific surface area (SSA) to specific surface area (CSSA) after being compressed four times at 165 MPa, is 0.90 or more .
(3) The carbon black as described in (1) or (2) above, wherein the crystallite size Lc is 25 mm or less.
(4) The carbon black as described in (1) or (2) above, having a volatile content of 0.20 to 0.50%.
(5) A secondary battery comprising the carbon black according to any one of (1) to (4).

本発明のカーボンブラックは導電性付与能力と分散性に優れており、これを用いることにより高性能の二次電池を得ることができる。 The carbon black of the present invention is excellent in conductivity imparting ability and dispersibility, and by using this, a high performance secondary battery can be obtained.

本発明のカーボンブラックの比表面積は80〜150m/gであり、リチウムイオン二次電池の導電剤として従来から使用されているカーボンブラックの比表面積と比べて高いことが特徴である。比表面積はJIS K6217−2に従って測定することができ、粒子の小粒径化や中空化、粒子表面の多孔質化などによりその値を高くすることができる。このように高比表面積を有するカーボンブラックはマトリックス中でのパーコレーション効果により導電性付与能力が高くなるため、導電剤として有効である。比表面積が80m/g未満であると電極内で活物質との接触点が少なくなり、十分な導電性を発揮できなくなる。一方で比表面積が150m/gを超えると分散性が低下するため、電極内において局所的に導電性の劣る部分が生じ、電池特性が低下してしまう。 The specific surface area of the carbon black of the present invention is 80 to 150 m 2 / g, which is characterized by being higher than the specific surface area of carbon black conventionally used as a conductive agent for lithium ion secondary batteries. The specific surface area can be measured in accordance with JIS K6217-2, and the value can be increased by reducing the particle size of the particle, making it hollow, or making the particle surface porous. As described above, carbon black having a high specific surface area is effective as a conductive agent because the conductivity imparting ability is enhanced by the percolation effect in the matrix. When the specific surface area is less than 80 m 2 / g, the number of contact points with the active material in the electrode decreases, and sufficient conductivity cannot be exhibited. On the other hand, when the specific surface area exceeds 150 m 2 / g, the dispersibility is lowered, so that a portion having poor conductivity is locally generated in the electrode, and the battery characteristics are lowered.

本発明のカーボンブラックのDBP吸収量は150ml/100g以上である。ここでDBP吸収量とは、カーボンブラックの粒子表面及びストラクチャーや凝集粒子が作る空隙にジブチルフタレートを吸収する能力を評価する指標であり、JIS K6217−4に従って測定することができる。ストラクチャーの発達したカーボンブラックでは、一次粒子が融着してできるネック部や粒子同士が凝集して形成される空隙が多くなるためDBP吸収量が多くなる。DBP吸収量が150ml/100g未満であるとストラクチャーが十分に発達していないために導電パスが形成されず、導電性付与能力が低下してしまう。また、二次電池に用いた場合には、充放電に伴う活物質の体積変化を緩衝することができず、サイクル特性などの電池特性が低下してしまう。
DBP吸収量は300ml/100g以下であることが好ましい。DBP吸収量が300ml/100gを超えると分散媒と混合した際に塊状の凝集が生成し、分散処理によるせん断を十分に与えることができなくなるおそれがある。
The DBP absorption amount of the carbon black of the present invention is 150 ml / 100 g or more. Here, the DBP absorption amount is an index for evaluating the ability to absorb dibutyl phthalate in the voids formed by the carbon black particle surface and structure or aggregated particles, and can be measured according to JIS K6217-4. In carbon black having a developed structure, the neck portion formed by fusing primary particles and the voids formed by agglomeration of particles increase, so the DBP absorption amount increases. When the DBP absorption is less than 150 ml / 100 g, the structure is not sufficiently developed, so that a conductive path is not formed, and the conductivity imparting ability is lowered. Moreover, when used for a secondary battery, the volume change of the active material accompanying charge / discharge cannot be buffered, and battery characteristics such as cycle characteristics are deteriorated.
The DBP absorption is preferably 300 ml / 100 g or less. When the DBP absorption amount exceeds 300 ml / 100 g, agglomerates are formed when mixed with the dispersion medium, and there is a possibility that sufficient shear due to the dispersion treatment cannot be given.

本発明のカーボンブラックのDBP吸収量(DBP)と圧縮DBP吸収量(CDBP)の比であるDBP/CDBPは1.50以上である。ここで圧縮DBP吸収量とは、圧力165MPaで4回圧縮した後に求めたDBP吸収量であり、JIS K6217−4に従って測定することができる。DBP吸収量(DBP)と圧縮DBP吸収量(CDBP)の比であるDBP/CDBPは、カーボンブラックを導電剤としてマトリックスへ添加し、混練した際の凝集粒子のほぐれ具合を示す指標である。
本発明者はカーボンブラックの導電性付与能力と分散性を両立するために鋭意検討を行った結果、DBP吸収量(DBP)と圧縮DBP吸収量(CDBP)の比であるDBP/CDBPがこれらの特性に大きく影響することを見出した。すなわち、DBP吸収量(DBP)と圧縮DBP吸収量(CDBP)の比であるDBP/CDBPを1.50以上とすることにより、電極スラリー混練時にカーボンブラックの一次粒子やストラクチャーを破壊させずに凝集粒子をほぐして均一分散することができ、これを用いた二次電池の特性を大幅に向上させることができる。DBP吸収量(DBP)と圧縮DBP吸収量(CDBP)の比であるDBP/CDBPが1.50未満であると電極スラリー混練後も凝集粒子が多く存在するようになり、電極スラリーの粘度が上昇して塗工性の低下が顕著となる。また、塗工後の集電体の表面平滑性が低下してしまう。
DBP吸収量(DBP)と圧縮DBP吸収量(CDBP)の比であるDBP/CDBPは2.50以下であることが好ましい。DBP吸収量(DBP)と圧縮DBP吸収量(CDBP)の比であるDBP/CDBPが2.50を超えると電極スラリー混練時にストラクチャーが破壊される可能性があり、それにともなって導電パスの形成が不十分となる場合があり、導電性付与能力が低下する恐れがある。
DBP / CDBP, which is the ratio of the DBP absorption amount (DBP) and the compressed DBP absorption amount (CDBP), of the carbon black of the present invention is 1.50 or more. Here, the compressed DBP absorption amount is the DBP absorption amount obtained after compression four times at a pressure of 165 MPa, and can be measured according to JIS K6217-4. DBP / CDBP, which is the ratio of the DBP absorption amount (DBP) and the compressed DBP absorption amount (CDBP), is an index indicating the degree of loosening of the aggregated particles when carbon black is added to the matrix as a conductive agent and kneaded.
As a result of intensive studies to achieve both conductivity imparting ability and dispersibility of carbon black, the present inventor found that DBP / CDBP, which is the ratio of DBP absorption (DBP) to compression DBP absorption (CDBP), is It was found that the characteristics are greatly affected. In other words, by setting DBP / CDBP, which is the ratio of DBP absorption (DBP) and compression DBP absorption (CDBP), to 1.50 or more, it aggregates without destroying the primary particles and structure of carbon black when kneading the electrode slurry. The particles can be loosened and uniformly dispersed, and the characteristics of the secondary battery using the particles can be greatly improved. When DBP / CDBP, which is the ratio of DBP absorption (DBP) to compression DBP absorption (CDBP), is less than 1.50, a large amount of agglomerated particles are present even after electrode slurry kneading, and the viscosity of the electrode slurry increases. As a result, the decrease in coatability becomes remarkable. Further, the surface smoothness of the current collector after coating is lowered.
DBP / CDBP, which is the ratio of DBP absorption (DBP) and compressed DBP absorption (CDBP), is preferably 2.50 or less. If DBP / CDBP, which is the ratio of DBP absorption (DBP) to compression DBP absorption (CDBP), exceeds 2.50, the structure may be destroyed when the electrode slurry is kneaded. In some cases, it may be insufficient, and the conductivity imparting ability may be reduced.

本発明では、カーボンブラックの比表面積(SSA)と165MPaで4回圧縮した後の比表面積(CSSA)の比であるSSA/CSSAが0.90以上であることが好ましい。165MPaで4回圧縮する試料はJIS K6217−4附属書A(圧縮試料の作製方法)に従って作製することができる。比表面積は窒素吸着量により評価しているため、通常、圧縮処理によって凝集の解砕やストラクチャーの切断が生じてもその値が大きく変化することはない。しかし、カーボンブラックの一次粒子が破砕してしまうと、新しい表面が形成されるため、比表面積が大幅に増加する。
比表面積(SSA)と165MPaで4回圧縮した後の比表面積(CSSA)の比SSA/CSSAが0.90未満であると電極スラリー混練時にカーボンブラックの一次粒子が破砕されるため、分散性が著しく低下してしまうおそれがある。
In the present invention, SSA / CSSA, which is the ratio of the specific surface area (SSA) of carbon black and the specific surface area (CSSA) after being compressed four times at 165 MPa, is preferably 0.90 or more. A sample that is compressed four times at 165 MPa can be produced according to JIS K6217-4 Annex A (a method for producing a compressed sample). Since the specific surface area is evaluated based on the amount of nitrogen adsorbed, the value does not change greatly even if the aggregate is crushed or the structure is cut by the compression treatment. However, if the primary particles of carbon black are crushed, a new surface is formed and the specific surface area is greatly increased.
If the ratio SSA / CSSA of the specific surface area (SSA) and the specific surface area (CSSA) after being compressed four times at 165 MPa is less than 0.90, the primary particles of carbon black are crushed when the electrode slurry is kneaded. There is a risk that it will drop significantly.

本発明では、カーボンブラックの結晶子サイズLcが25Å以下であることが好ましい。結晶子サイズLcはX線回折により求めることができる。具体的には、CuKα線を用い、測定範囲2θ=10〜40゜、スリット幅0.5゜の条件でX線回折を行う。得られた(002)面の回折線を用いて、Scherrerの式:Lc(Å)=(K×λ)/(β×cosθ)により結晶子サイズLcを求めることができる。ここでKは形状因子定数0.9、λはX線の波長1.54Å、θは(002)回折線吸収バンドにおける極大値を示す角度、βは(002)回折線吸収バンドにおける半価幅(ラジアン)である。結晶子サイズLcが25Åを超えると分散媒への濡れ性が低下してしまうおそれがある。 In the present invention, it is preferable that the crystallite size Lc of the carbon black is 25 mm or less. The crystallite size Lc can be determined by X-ray diffraction. Specifically, X-ray diffraction is performed using CuKα rays under the conditions of a measurement range 2θ = 10 to 40 ° and a slit width of 0.5 °. Using the obtained (002) plane diffraction line, the crystallite size Lc can be obtained by the Scherrer equation: Lc (Å) = (K × λ) / (β × cos θ). Here, K is a form factor constant of 0.9, λ is an X-ray wavelength of 1.54 mm, θ is an angle indicating a maximum value in the (002) diffraction line absorption band, and β is a half-value width in the (002) diffraction line absorption band. (Radians). If the crystallite size Lc exceeds 25 mm, the wettability to the dispersion medium may be reduced.

本発明では、カーボンブラックの揮発分が0.20〜0.50%であることが好ましい。ここで揮発分とは、カーボンブラックの表面に存在するカルボキシル基やカルボニル基などの官能基の量を評価する指標であり、JIS K6221に従って測定することができる。具体的には、るつぼの中にカーボンブラックを規定量入れ、950℃で5分間加熱した後の質量減少分を測定して求めることができる。揮発分が0.20%未満であるとカーボンブラックの表面官能基が少ないために分散媒への濡れ性が低下してしまうおそれがある。一方で揮発分が0.50%を超えると電子吸引性の酸性官能基によりカーボンブラックのπ電子が捕獲され、導電性が低下してしまうおそれがある。また、二次電池に用いた場合に電気化学的な反応によりガス化を引き起こし、電池特性を低下させてしまうおそれがある。 In the present invention, the carbon black preferably has a volatile content of 0.20 to 0.50%. Here, the volatile matter is an index for evaluating the amount of a functional group such as a carboxyl group or a carbonyl group present on the surface of carbon black, and can be measured according to JIS K6221. Specifically, a specified amount of carbon black is put in a crucible, and the mass loss after heating at 950 ° C. for 5 minutes can be measured. If the volatile content is less than 0.20%, the surface functional groups of the carbon black are small, so that the wettability to the dispersion medium may be reduced. On the other hand, if the volatile content exceeds 0.50%, π electrons of carbon black are captured by the electron-withdrawing acidic functional group, and the conductivity may be lowered. Further, when used in a secondary battery, there is a possibility that gasification is caused by an electrochemical reaction and battery characteristics are deteriorated.

本発明に係るカーボンブラックの製造方法は特に限定されるものではなく、例えば、炭化水素などの原料ガスを反応炉の炉頂に設置されたノズルから供給し、熱分解反応及び又は部分燃焼反応によりカーボンブラックを製造し、反応炉下部に直結されたバグフィルターから捕集することができる。使用する原料ガスは特に限定されるものではなく、アセチレン、メタン、エタン、プロパン、エチレン、プロピレン、ブタジエンなどのガス状炭化水素や、トルエン、ベンゼン、キシレン、ガソリン、灯油、軽油、重油などのオイル状炭化水素をガス化したものを使用することができる。またこれらの複数を混合して使用することもできる。中でも、硫黄分などの不純物が少ないアセチレンガスを使用することが好ましい。また、アセチレンガスの分解熱により反応炉内の温度が高くなるため、得られるカーボンブラックの比表面積やDBP吸収量を高めることができる。 The method for producing carbon black according to the present invention is not particularly limited. For example, a raw material gas such as a hydrocarbon is supplied from a nozzle installed at the top of the reactor and is subjected to a pyrolysis reaction and / or a partial combustion reaction. Carbon black can be produced and collected from a bag filter directly connected to the bottom of the reactor. The raw material gas to be used is not particularly limited, and gaseous hydrocarbons such as acetylene, methane, ethane, propane, ethylene, propylene, and butadiene, and oils such as toluene, benzene, xylene, gasoline, kerosene, light oil, and heavy oil Gasified hydrocarbons can be used. A plurality of these can also be mixed and used. Among them, it is preferable to use acetylene gas having a small amount of impurities such as sulfur. Moreover, since the temperature in the reaction furnace becomes high due to the heat of decomposition of the acetylene gas, the specific surface area and DBP absorption amount of the resulting carbon black can be increased.

カーボンブラックの比表面積及びDBP吸収量は、反応炉の形状や炉内温度分布などの制御によって調整できる。例えば、原料ガスの供給量が多くなると、原料ガスの分解による発熱量が多くなるため、反応炉内が高温となる。するとカーボンブラックの均一な核生成が起こり、得られるカーボンブラックが小粒径となり比表面積が高くなる。また、生成されるカーボンブラックの一次粒子同士が反応炉内で衝突する頻度が高くなるため、ストラクチャーが発達し、DBP吸収量が高くなる。
本発明のように高比表面積で凝集が解砕されやすいカーボンブラックを得るためには、二重管構造のノズルを用いて内筒側の空隙部から原料ガスを、外筒側の空隙部から原料ガス以外のガス(以下、「他ガス」という。)を供給することが好ましい。また、他ガスをノズルから反応炉内へ噴出する速度は1.50m/s以上であることが好ましい。他ガスの噴出速度は、ガス流量やノズル径を変えることによって調整できる。これらにより、DBP吸収量(DBP)と圧縮DBP吸収量(CDBP)の比であるDBP/CDBPが1.50以上となり、導電性付与能力と分散性を両立したカーボンブラックが得られる。
ここで、カーボンブラックの製造は、反応炉内に供給された原料ガスが瞬時に熱分解及び又は部分燃焼することでカーボンブラックの核生成及び粒成長が起こり、捕集設備に移動する間の反応炉内低温領域でカーボンブラック粒子が互いに融着して鎖状につながりストラクチャーを形成することで説明される。同心軸構造を有する二重管ノズルによって原料ガス外周部から他ガスを噴出速度1.50m/s以上で供給すると、反応炉内のストラクチャー形成領域におけるカーボンブラック粒子の空間密度が低下するため、分枝状の複雑な構造のストラクチャーが形成され難くなると推察される。二重管ノズルの外筒側空隙部から原料ガスを供給し、内筒側空隙部から他ガスを供給する場合、または、原料ガスと他ガスを混合して同一ノズルから供給する場合、反応炉内の核生成及び粒成長領域における温度が低下するため、本発明の比表面積及びDBP吸収量を満足することが困難となる。
また、他ガスを噴出速度1.50m/s以上で供給すると、反応炉内で高温となる核生成領域における滞留時間が短くなるため、結晶子サイズが過度に大きくなることを防ぐことができる。他ガスの噴出速度は3.00m/s以下であることが好ましい。3.00m/sを超えるとストラクチャー形成領域における滞留時間が短くなり、DBP吸収量が低くなってしまうおそれがある。
The specific surface area and DBP absorption amount of carbon black can be adjusted by controlling the shape of the reaction furnace, the temperature distribution in the furnace, and the like. For example, when the supply amount of the raw material gas increases, the amount of heat generated by the decomposition of the raw material gas increases, so that the temperature in the reaction furnace becomes high. Then, uniform nucleation of carbon black occurs, and the resulting carbon black has a small particle size and a high specific surface area. Moreover, since the frequency with which the primary particles of the generated carbon black collide in the reaction furnace increases, the structure develops and the DBP absorption amount increases.
In order to obtain carbon black having a high specific surface area and easy to be crushed as in the present invention, the raw material gas is discharged from the inner cylinder side gap portion and the outer cylinder side gap portion using a double tube structure nozzle. It is preferable to supply a gas other than the source gas (hereinafter referred to as “other gas”). Moreover, it is preferable that the speed | rate which spouts other gas into a reaction furnace from a nozzle is 1.50 m / s or more. The ejection speed of the other gas can be adjusted by changing the gas flow rate and the nozzle diameter. As a result, DBP / CDBP, which is the ratio of the DBP absorption amount (DBP) to the compressed DBP absorption amount (CDBP), is 1.50 or more, and carbon black having both conductivity imparting ability and dispersibility can be obtained.
Here, the production of carbon black is the reaction during which the raw material gas supplied into the reactor is instantly pyrolyzed and / or partially burned to cause nucleation and grain growth of the carbon black and move to the collection facility. This is explained by the fact that the carbon black particles are fused together in a low temperature region in the furnace to form a chain structure. If another gas is supplied from the outer periphery of the raw material gas at a jet velocity of 1.50 m / s or more by a double tube nozzle having a concentric shaft structure, the spatial density of the carbon black particles in the structure formation region in the reactor decreases. It is inferred that it becomes difficult to form a branch-like complex structure. When supplying source gas from the outer cylinder side gap of the double pipe nozzle and supplying other gas from the inner cylinder side gap, or when mixing the source gas and other gas and supplying from the same nozzle, the reactor Since the temperature in the inner nucleation and grain growth regions decreases, it becomes difficult to satisfy the specific surface area and DBP absorption amount of the present invention.
Further, when another gas is supplied at an ejection speed of 1.50 m / s or more, the residence time in the nucleation region that is high in the reaction furnace is shortened, so that the crystallite size can be prevented from becoming excessively large. The ejection speed of the other gas is preferably 3.00 m / s or less. If it exceeds 3.00 m / s, the residence time in the structure forming region is shortened, and the DBP absorption amount may be lowered.

使用する他ガスは特に限定されるものではなく、酸素ガス、水素ガス、窒素ガスなどを使用することができる。中でも、酸素ガスを使用することが好ましい。酸素ガスを使用すると賦活作用によりカーボンブラックが多孔質化され、比表面積を高めることができる。
二重管ノズルの外筒側空隙部から原料ガスを供給し、内筒側空隙部から酸素ガスを供給する場合、または、原料ガスと酸素ガスを混合して同一ノズルから供給する場合、酸素ガスの全量が原料ガスの部分燃焼に使用されて、比表面積が著しく高くなってしまうおそれがある。一方で原料ガス外周部から酸素ガスを供給すると、その一部分が消費されるに留まる。またこれにより、カーボンブラックの表面に酸素含有官能基を付与し、揮発分を高めることができる。
Other gases to be used are not particularly limited, and oxygen gas, hydrogen gas, nitrogen gas, and the like can be used. Among these, it is preferable to use oxygen gas. When oxygen gas is used, carbon black is made porous by the activation action, and the specific surface area can be increased.
When supplying source gas from the outer cylinder side gap of the double pipe nozzle and supplying oxygen gas from the inner cylinder side gap, or when mixing source gas and oxygen gas and supplying from the same nozzle, oxygen gas May be used for partial combustion of the raw material gas, resulting in a significant increase in specific surface area. On the other hand, when oxygen gas is supplied from the outer periphery of the source gas, a part of the oxygen gas is consumed. Thereby, an oxygen-containing functional group can be imparted to the surface of the carbon black, and the volatile content can be increased.

次に、本発明の二次電池について説明する。本発明の二次電池の電極は、例えば、正極活物質又は負極活物質と本発明のカーボンブラックとの混合物を結着剤を含む液体に分散してスラリーを調製し、それを金属箔からなる集電体に塗布、その後乾燥して被着させることによって製造することができる。正極と負極とをセパレータを介して積層あるいは捲回して形成される電極群に電解液を浸漬することで二次電池を製造することができる。
導電剤として使用する本発明のカーボンブラックの添加量は、正極活物質又は負極活物質と結着剤の合算量に対して0.5〜10質量%であることが好ましい。本発明のカーボンブラックは高比表面積を有するため、このように少ない添加量においても優れた電池特性を発揮することができる。なお導電剤には、本発明のカーボンブラックの導電性付与能力、分散性を阻害しない範囲でその他のカーボンブラック、黒鉛、カーボンナノチューブ、カーボンナノファイバー等を添加してもよい。
Next, the secondary battery of the present invention will be described. The electrode of the secondary battery of the present invention is prepared, for example, by preparing a slurry by dispersing a positive electrode active material or a mixture of the negative electrode active material and the carbon black of the present invention in a liquid containing a binder, which is made of a metal foil. It can be manufactured by applying to a current collector and then applying it by drying. A secondary battery can be manufactured by immersing the electrolytic solution in an electrode group formed by laminating or winding a positive electrode and a negative electrode through a separator.
The addition amount of the carbon black of the present invention used as the conductive agent is preferably 0.5 to 10% by mass with respect to the total amount of the positive electrode active material or the negative electrode active material and the binder. Since the carbon black of the present invention has a high specific surface area, excellent battery characteristics can be exhibited even with such a small addition amount. In addition, other carbon black, graphite, carbon nanotube, carbon nanofiber, etc. may be added to the conductive agent as long as the conductivity and dispersibility of the carbon black of the present invention are not impaired.

正極活物質は特に限定されるものではなく、LixMO(ただしMは、一種類以上の遷移金属であり、0.05≦x≦1.0である)を主体とするリチウム複合酸化物、TiS、MoS、NbSe、V等のリチウムを含有しない金属硫化物、金属酸化物などを使用することができる。中でも、電池の起電力を高めることができるLiCoO、LiNi1/3Mn1/3Co1/3、LiMn等のコバルトやマンガンを含むリチウム含有遷移金属酸化物が好ましい。
負極活物質は特に限定されるものではなく、天然黒鉛、人造黒鉛、グラファイト、活性炭、コークス、ニードルコークス、フリュードコークス、メソフェーズマイクロビーズ、炭素繊維、熱分解炭素など、各種の炭素質材料を使用することができる。
The positive electrode active material is not particularly limited, and a lithium composite oxide mainly composed of LixMO 2 (where M is one or more transition metals and 0.05 ≦ x ≦ 1.0), TiS 2 , metal sulfides, metal oxides, etc. which do not contain lithium, such as MoS 2 , NbSe 2 and V 2 O 5, can be used. Among these, lithium-containing transition metal oxides containing cobalt and manganese such as LiCoO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , and LiMn 2 O 4 that can increase the electromotive force of the battery are preferable.
The negative electrode active material is not particularly limited, and various carbonaceous materials such as natural graphite, artificial graphite, graphite, activated carbon, coke, needle coke, fluid coke, mesophase micro beads, carbon fiber, pyrolytic carbon are used. be able to.

結着剤は特に限定されるものではなく、ポリエチレン、ニトリルゴム、ポリブタジエン、ブチルゴム、ポリスチレン、スチレン・ブタジエンゴム、多硫化ゴム、ニトロセルロース、セチルメチルセルロース、ポリビニルアルコール、四フッ化エチレン樹脂、ポリフッ化ビニリデン、ポリフッ化クロロプレンなどを使用することができる。 The binder is not particularly limited. Polyethylene, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene-butadiene rubber, polysulfide rubber, nitrocellulose, cetylmethylcellulose, polyvinyl alcohol, tetrafluoroethylene resin, polyvinylidene fluoride Polyfluorinated chloroprene can be used.

集電体は特に限定されるものではなく、金、銀、銅、白金、アルミニウム、鉄、ニッケル、クロム、マンガン、鉛、タングステン、チタン等、乃至これらを主成分とする合金の金属箔が使用される。正極にはアルミニウムを、負極には銅を用いることが好ましい。 The current collector is not particularly limited, and a metal foil of gold, silver, copper, platinum, aluminum, iron, nickel, chromium, manganese, lead, tungsten, titanium, or an alloy containing these as a main component is used. Is done. It is preferable to use aluminum for the positive electrode and copper for the negative electrode.

電解液は特に限定されるものではなく、リチウム塩を含む非水電解液またはイオン伝導ポリマーなどを使用することができる。リチウム塩を含む非水電解液における非水電解質の非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネートなどが挙げられる。また、非水溶媒に溶解できるリチウム塩としては、六フッ化リン酸リチウム、ホウ四フッ化リチウム、トリフルオロメタンスルホン酸リチウムなどが挙げられる。 The electrolytic solution is not particularly limited, and a nonaqueous electrolytic solution containing lithium salt or an ion conductive polymer can be used. Examples of the nonaqueous solvent for the nonaqueous electrolyte in the nonaqueous electrolytic solution containing a lithium salt include ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate. Examples of the lithium salt that can be dissolved in the non-aqueous solvent include lithium hexafluorophosphate, lithium borotetrafluoride, and lithium trifluoromethanesulfonate.

セパレータは特に限定されるものではなく、ポリエチレンやポリプロピレンなどの合成樹脂を使用することができる。電解液の保持性が良いことから多孔性フィルムを用いることが好ましい。 The separator is not particularly limited, and synthetic resins such as polyethylene and polypropylene can be used. It is preferable to use a porous film because the electrolyte retainability is good.

以下、実施例により本発明を詳細に説明する。しかし、本発明の範囲は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the scope of the present invention is not limited to the following examples.

実施例1
カーボンブラック製造炉(炉長3m、炉直径0.5m)の炉頂に設置された二重管ノズルの内筒(内径37m、外径43.5mm)からアセチレンガスを15m/h、外筒(内径55mm)から酸素ガスを5m/h(噴射速度1.56m/s)の条件で噴霧し、アセチレンの熱分解反応を利用してカーボンブラックを製造した。
得られたカーボンブラックについて、以下の物性を測定した。評価結果を表1に示す。
(1)比表面積(SSA):JIS K6217−2に従い測定した。
(2)DBP吸収量(DBP):JIS K6217−4に従い測定した。
(3)165MPaで4回圧縮した後の比表面積(CSSA):JIS K6217−4附属書A(圧縮試料の作製方法)に従い試料を作製し、JIS K6217−2に従い測定した。
(4)圧縮DBP吸収量(CDBP):JIS K 6217−4に従い測定した。
(5)結晶子サイズLc:X線回折装置(Brucker社製「D8ADVANCE」)により、CuKα線を用いて測定範囲2θ=10〜40゜、スリット幅0.5゜の条件でX線回折を行った。測定角度の校正にはX線標準用シリコン(三津和化学薬品社製金属シリコン)を用いた。得られた(002)面の回折線を用いて、Scherrerの式:Lc(Å)=(K×λ)/(β×cosθ)により結晶子サイズLcを求めた。ここでKは形状因子定数0.9、λはX線の波長1.54Å、θは(002)回折線吸収バンドにおける極大値を示す角度、βは(002)回折線吸収バンドにおける半価幅(ラジアン)である。
(6)揮発分:JIS K6221に従い測定した。
Example 1
15 m 3 / h of acetylene gas from the inner cylinder (inner diameter 37 m, outer diameter 43.5 mm) of the double pipe nozzle installed at the top of the furnace of the carbon black production furnace (furnace length 3 m, furnace diameter 0.5 m), outer cylinder Oxygen gas was sprayed from an inner diameter of 55 mm under the condition of 5 m 3 / h (injection speed 1.56 m / s), and carbon black was produced using the thermal decomposition reaction of acetylene.
The obtained carbon black was measured for the following physical properties. The evaluation results are shown in Table 1.
(1) Specific surface area (SSA): Measured according to JIS K6217-2.
(2) DBP absorption (DBP): measured according to JIS K6217-4.
(3) Specific surface area (CSSA) after being compressed four times at 165 MPa: A sample was prepared according to JIS K6217-4 Annex A (a method for preparing a compressed sample), and measured according to JIS K6217-2.
(4) Compressed DBP absorption (CDBP): Measured according to JIS K 6217-4.
(5) Crystallite size Lc: X-ray diffraction was performed with an X-ray diffractometer (“D8ADVANCE” manufactured by Brucker) using CuKα rays in a measurement range of 2θ = 10 to 40 ° and a slit width of 0.5 °. It was. For calibration of the measurement angle, silicon for X-ray standard (metal silicon manufactured by Mitsuwa Chemicals) was used. Using the obtained (002) plane diffraction line, the crystallite size Lc was determined by the Scherrer equation: Lc (c) = (K × λ) / (β × cos θ). Here, K is a form factor constant of 0.9, λ is an X-ray wavelength of 1.54 mm, θ is an angle indicating a maximum value in the (002) diffraction line absorption band, and β is a half-value width in the (002) diffraction line absorption band. (Radians).
(6) Volatile content: Measured according to JIS K6221.

得られたカーボンブラック4質量部と正極活物質としてLiNi1/3Mn1/3Co1/3(日本化学工業社製「CELLSEED NMC Ni:Mn:Co=1:1:1」)92質量部、結着剤としてポリフッ化ビニリデン(クレハ社製「クレハKFポリマーW#1100」)4質量部、溶剤としてN−メチルピロリドン(Aldrich社製)67質量部を脱泡混練機(日本精機製作所社製「NBK−1」)回転数1000rpmの条件で15分間混練し、電極スラリーを作製した。この電極スラリーのせん断速度1s−1における粘度を粘弾性測定機(AntonPaar社製「MCR102」)で評価した。評価結果を表2に示す。 4 parts by mass of the obtained carbon black and LiNi 1/3 Mn 1/3 Co 1/3 O 2 (“CELLSEED NMC Ni: Mn: Co = 1: 1: 1” manufactured by Nippon Chemical Industry Co., Ltd.) 92 4 parts by mass of polyvinylidene fluoride (“Kureha KF Polymer W # 1100” manufactured by Kureha) and 67 parts by mass of N-methylpyrrolidone (manufactured by Aldrich) as a solvent “NBK-1” manufactured by the company) was kneaded for 15 minutes under the condition of a rotational speed of 1000 rpm to prepare an electrode slurry. The viscosity of this electrode slurry at a shear rate of 1 s −1 was evaluated with a viscoelasticity measuring device (“MCR102” manufactured by Anton Paar). The evaluation results are shown in Table 2.

得られた電極スラリーを厚さ20μmのアルミニウム箔(集電体)上に塗布し、乾燥したものを、プレス、裁断して、正極を作製した。正極の塗膜の状態を目視観察し、○:平滑で良好、△:凹凸があり不良、×:凹凸と剥離があり不良、にて判断した。評価結果を表2に示す。 The obtained electrode slurry was applied onto an aluminum foil (current collector) having a thickness of 20 μm, and the dried one was pressed and cut to produce a positive electrode. The state of the coating film on the positive electrode was visually observed, and judged as follows: ◯: smooth and good, Δ: irregularity and defect, x: irregularity and peeling. The evaluation results are shown in Table 2.

正極板に対する対極には金属リチウム(本城金属社製)を用い、これらを電気的に隔離するセパレータとしてオレフィン繊維製不織布を用いた。電解液にはエチレンカーボネート(Aldrich製)/ジメチルカーボネート(Aldrich製)を1/1の容積比で混合した溶液中に六フッ化リン酸リチウム(ステラケミファ社製)を1mol/L溶解させたものを用い、コインセル(CR−2032型)を作製した。
電池の放電試験として、電池を初充電後、充放電効率が100%近傍になるのを確認後、0.7mA/cmの電流密度にて定電流放電を3.0Vまで行った際の放電容量を測定し、正極活物質で除した容量密度(mAh/g)を算出した。この容量(mAh/g)を1時間で充放電可能な電流値を「1C」とした。
4.3V(0.2C定電流)で充電し、0.2C、3Cで放電した際の放電容量を求め、0.2Cの放電容量に対する3Cの放電容量の比(%)をレート特性(容量維持率)とした。また、3Cで充放電を繰り返し、1サイクル目における放電容量に対する150サイクル目の放電容量の比(%)をサイクル特性(容量維持率)とした。評価結果を表1に示す。
Metal lithium (manufactured by Honjo Metal Co., Ltd.) was used for the counter electrode with respect to the positive electrode plate, and an olefin fiber nonwoven fabric was used as a separator to electrically isolate them. In the electrolyte solution, 1 mol / L of lithium hexafluorophosphate (manufactured by Stella Chemifa) is dissolved in a solution in which ethylene carbonate (manufactured by Aldrich) / dimethyl carbonate (manufactured by Aldrich) is mixed at a volume ratio of 1/1. Was used to produce a coin cell (CR-2032 type).
As a discharge test of the battery, after confirming that the charge / discharge efficiency is close to 100% after the initial charge of the battery, discharge when performing constant current discharge to 3.0 V at a current density of 0.7 mA / cm 2 The capacity was measured, and the capacity density (mAh / g) divided by the positive electrode active material was calculated. The current value that can charge and discharge the capacity (mAh / g) in 1 hour was defined as “1C”.
Charge capacity at 4.3V (0.2C constant current), discharge capacity at 0.2C, 3C discharge, the ratio of discharge capacity of 3C to discharge capacity of 0.2C (%) rate characteristics (capacity Maintenance rate). Further, charging / discharging was repeated at 3C, and the ratio (%) of the discharge capacity at the 150th cycle to the discharge capacity at the first cycle was defined as cycle characteristics (capacity maintenance ratio). The evaluation results are shown in Table 1.

比較例1
市販のカーボンブラック(電気化学工業社製「デンカブラック粉状」)を用いて電極スラリー及び正極を作製し、評価した。評価結果を表1と2に示す。
Comparative Example 1
An electrode slurry and a positive electrode were prepared and evaluated using commercially available carbon black (“Denka Black Powder” manufactured by Denki Kagaku Kogyo Co., Ltd.). The evaluation results are shown in Tables 1 and 2.

実施例2、10、比較例2
外筒(内径55mm)から水素ガスを表1に示す条件で噴霧したこと以外は実施例1と同様にしてカーボンブラックを得た。評価結果を表1と2に示す。
Examples 2 and 10 and Comparative Example 2
Carbon black was obtained in the same manner as in Example 1 except that hydrogen gas was sprayed from the outer cylinder (inner diameter 55 mm) under the conditions shown in Table 1. The evaluation results are shown in Tables 1 and 2.

実施例3〜9、11、比較例3〜5
原料ガスの種類、原料ガスの供給量、酸素ガスの供給量、酸素ガスの供給ノズル、酸素ガスの噴出速度を表1に示すように変えたこと以外は実施例1と同様にしてカーボンブラックを得た。なお酸素ガスの噴出速度は、酸素ガスの供給量及び二重管ノズル外筒の内径を変更することにより調整した。評価結果を表1と2に示す。
Examples 3 to 9, 11 and Comparative Examples 3 to 5
Carbon black was prepared in the same manner as in Example 1 except that the raw material gas type, the raw material gas supply amount, the oxygen gas supply amount, the oxygen gas supply nozzle, and the oxygen gas ejection speed were changed as shown in Table 1. Obtained. The oxygen gas ejection speed was adjusted by changing the supply amount of oxygen gas and the inner diameter of the double tube nozzle outer cylinder. The evaluation results are shown in Tables 1 and 2.

Figure 2018008828
Figure 2018008828

Figure 2018008828
Figure 2018008828

表1及び表2の評価結果より、本発明のカーボンブラックは、比表面積が高く、DBP吸収量(DBP)と圧縮DBP吸収量(CDBP)の比であるDBP/CDBPが高いため、導電性付与能力と分散性に優れている。二次電池の導電剤に用いた場合、少量の添加量でも導電パスを形成することができるため、二次電池の容量を向上させることができる。また、溶剤と混合した際に高分散させることができるため、電極スラリーの塗工性が向上し、表面平滑性に優れた電極を得ることができる。 From the evaluation results of Tables 1 and 2, the carbon black of the present invention has a high specific surface area and a high DBP / CDBP ratio, which is the ratio of DBP absorption (DBP) to compression DBP absorption (CDBP), and therefore imparts conductivity. Excellent ability and dispersibility. When used as a conductive agent for a secondary battery, since a conductive path can be formed even with a small amount of addition, the capacity of the secondary battery can be improved. Moreover, since it can disperse | distribute highly when mixed with a solvent, the applicability | paintability of an electrode slurry improves and the electrode excellent in surface smoothness can be obtained.

本発明のカーボンブラックは、リチウムイオン二次電池などの各種二次電池の導電剤として利用することができる。
The carbon black of the present invention can be used as a conductive agent for various secondary batteries such as lithium ion secondary batteries.

Claims (5)

JIS K6217−2による比表面積が80〜150m/g、JIS K6217−4によるDBP吸収量が150ml/100g以上、DBP吸収量(DBP)とJIS K6217−4による圧縮DBP吸収量(CDBP)の比であるDBP/CDBPが1.50以上であることを特徴とするカーボンブラック。 The specific surface area according to JIS K6217-2 is 80 to 150 m 2 / g, the DBP absorption amount according to JIS K6217-4 is 150 ml / 100 g or more, the ratio of DBP absorption amount (DBP) and compressed DBP absorption amount (CDBP) according to JIS K6217-4 A carbon black having a DBP / CDBP of 1.50 or more. 比表面積(SSA)と165MPaで4回圧縮した後の比表面積(CSSA)の比であるSSA/CSSAが0.90以上であることを特徴とする請求項1に記載のカーボンブラック。 2. The carbon black according to claim 1, wherein SSA / CSSA, which is a ratio of the specific surface area (SSA) to the specific surface area (CSSA) after being compressed four times at 165 MPa, is 0.90 or more. 結晶子サイズLcが25Å以下であることを特徴とする請求項1または2に記載のカーボンブラック。 The carbon black according to claim 1 or 2, wherein the crystallite size Lc is 25 mm or less. 揮発分が0.20〜0.50%であることを特徴とする請求項1または2に記載のカーボンブラック。 The carbon black according to claim 1 or 2, wherein a volatile content is 0.20 to 0.50%. 請求項1〜4のいずれか一項に記載のカーボンブラックを含有してなる二次電池。
A secondary battery comprising the carbon black according to any one of claims 1 to 4.
JP2014235674A 2014-11-20 2014-11-20 Carbon black and secondary battery using the same Pending JP2018008828A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014235674A JP2018008828A (en) 2014-11-20 2014-11-20 Carbon black and secondary battery using the same
PCT/JP2015/082774 WO2016080539A1 (en) 2014-11-20 2015-11-20 Carbon black and rechargeable battery using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014235674A JP2018008828A (en) 2014-11-20 2014-11-20 Carbon black and secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2018008828A true JP2018008828A (en) 2018-01-18

Family

ID=56014069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014235674A Pending JP2018008828A (en) 2014-11-20 2014-11-20 Carbon black and secondary battery using the same

Country Status (2)

Country Link
JP (1) JP2018008828A (en)
WO (1) WO2016080539A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019522310A (en) * 2016-05-05 2019-08-08 キャボット コーポレイションCabot Corporation Electrode, composition, and device having highly structured carbon black
JP2021002482A (en) * 2019-06-21 2021-01-07 太陽誘電株式会社 All-solid battery
US11352536B2 (en) 2016-02-01 2022-06-07 Cabot Corporation Thermally conductive polymer compositions containing carbon black
CN116457427A (en) * 2020-12-04 2023-07-18 电化株式会社 Carbon black, slurry and lithium ion secondary battery
WO2023188706A1 (en) * 2022-03-30 2023-10-05 デンカ株式会社 Positive electrode composition and production method for same, positive electrode and production method for same, and battery
WO2023188707A1 (en) * 2022-03-30 2023-10-05 デンカ株式会社 Positive electrode composition, positive electrode and production method for same, and battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3113253B1 (en) * 2014-02-27 2019-04-10 Toda Kogyo Corp. Positive electrode mixture and nonaqueous electrolyte secondary cell
JP6714587B2 (en) * 2015-05-19 2020-06-24 デンカ株式会社 Silica-coated carbon black, electrode composition using the same, electrode for secondary battery and secondary battery
JP6989624B2 (en) * 2017-06-15 2022-01-05 キャボット コーポレイションCabot Corporation Electrodes containing carbon black particles and related methods
US11909042B2 (en) 2020-12-10 2024-02-20 Medtronic, Inc. Positive electrode enabling fast charging

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591572A (en) * 1982-06-25 1984-01-06 Asahi Carbon Kk High-structure carbon black
JP2652860B2 (en) * 1987-12-21 1997-09-10 横浜ゴム株式会社 Rubber composition for tire tread
JP2601319B2 (en) * 1988-06-16 1997-04-16 横浜ゴム株式会社 Rubber composition for tire tread
JP3389268B2 (en) * 1992-08-21 2003-03-24 財団法人電力中央研究所 Lithium secondary battery
JP3433477B2 (en) * 1993-08-23 2003-08-04 三菱化学株式会社 Conductive furnace black
JPH07233331A (en) * 1994-02-23 1995-09-05 Nippon Steel Chem Co Ltd Carbon black and rubber composition
JP3308709B2 (en) * 1994-05-31 2002-07-29 株式会社ブリヂストン Rubber composition
JP4228593B2 (en) * 2002-05-29 2009-02-25 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP4163142B2 (en) * 2004-04-23 2008-10-08 電気化学工業株式会社 Carbon black, method for producing the same, and composition containing the same
JP5235307B2 (en) * 2007-01-23 2013-07-10 三洋電機株式会社 Nonaqueous electrolyte secondary battery
EP2595221A4 (en) * 2010-07-16 2014-03-26 Mitsubishi Chem Corp Positive electrode for lithium secondary batteries and lithium secondary battery using same
WO2012053087A1 (en) * 2010-10-21 2012-04-26 トヨタ自動車株式会社 Battery electrode and use thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352536B2 (en) 2016-02-01 2022-06-07 Cabot Corporation Thermally conductive polymer compositions containing carbon black
US11732174B2 (en) 2016-02-01 2023-08-22 Cabot Corporation Thermally conductive polymer compositions containing carbon black
JP2019522310A (en) * 2016-05-05 2019-08-08 キャボット コーポレイションCabot Corporation Electrode, composition, and device having highly structured carbon black
US10971730B2 (en) 2016-05-05 2021-04-06 Cabot Corporation Electrodes, compositions, and devices having high structure carbon blacks
JP2021002482A (en) * 2019-06-21 2021-01-07 太陽誘電株式会社 All-solid battery
JP7401208B2 (en) 2019-06-21 2023-12-19 太陽誘電株式会社 all solid state battery
CN116457427A (en) * 2020-12-04 2023-07-18 电化株式会社 Carbon black, slurry and lithium ion secondary battery
WO2023188706A1 (en) * 2022-03-30 2023-10-05 デンカ株式会社 Positive electrode composition and production method for same, positive electrode and production method for same, and battery
WO2023188707A1 (en) * 2022-03-30 2023-10-05 デンカ株式会社 Positive electrode composition, positive electrode and production method for same, and battery

Also Published As

Publication number Publication date
WO2016080539A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2016080539A1 (en) Carbon black and rechargeable battery using same
US20210017025A1 (en) Systems and methods for particle generation
JP7099325B2 (en) Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
US20210020947A1 (en) Particle systems and methods
JP6864250B2 (en) Carbon material and non-aqueous secondary battery
WO2015049836A1 (en) Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP6977504B2 (en) Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP6219981B2 (en) Carbon black having excellent slurry viscosity characteristics, slurry composition for lithium ion secondary battery electrode, and lithium ion secondary battery
JP6734093B2 (en) Slurry composition for lithium-ion secondary battery electrode with excellent viscosity characteristics
JPWO2017010476A1 (en) Method for producing graphite-containing carbon powder for secondary battery and carbon material for battery electrode
JP5996380B2 (en) Carbon black for non-aqueous secondary battery, electrode and non-aqueous secondary battery
JP2008140707A (en) Negative electrode material for lithium ion secondary battery, and its manufacturing method
JP6859593B2 (en) Carbon material for non-aqueous secondary batteries and lithium-ion secondary batteries
JP2012221684A (en) Carbon black for nonaqueous secondary battery, electrode and nonaqueous secondary battery
WO2022118924A1 (en) Carbon black, slurry, and lithium-ion secondary battery
JP6045860B2 (en) Carbon material and non-aqueous secondary battery using the same
WO2023145543A1 (en) Carbon black, slurry and lithium ion secondary battery
JP2019179688A (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2022118920A1 (en) Carbon black, slurry, and lithium-ion secondary battery
WO2022118921A1 (en) Carbon black, slurry, and lithium ion secondary battery
CN108140825A (en) Negative electrode active material, the cathode and lithium secondary battery for including it
WO2022118923A1 (en) Carbon black, slurry, and lithium ion secondary battery
JP2018073579A (en) Lithium ion battery
WO2013190624A1 (en) Carbon black for nonaqueous secondary batteries, electrode, and nonaqueous secondary battery