JP2018005821A - 光学計測装置 - Google Patents

光学計測装置 Download PDF

Info

Publication number
JP2018005821A
JP2018005821A JP2016135957A JP2016135957A JP2018005821A JP 2018005821 A JP2018005821 A JP 2018005821A JP 2016135957 A JP2016135957 A JP 2016135957A JP 2016135957 A JP2016135957 A JP 2016135957A JP 2018005821 A JP2018005821 A JP 2018005821A
Authority
JP
Japan
Prior art keywords
measurement
synchronization
state
timing
monitoring signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016135957A
Other languages
English (en)
Other versions
JP6737018B2 (ja
Inventor
義宏 金谷
Yoshihiro Kanetani
義宏 金谷
智則 近藤
Tomonori Kondo
智則 近藤
祐太 鈴木
Yuta Suzuki
祐太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2016135957A priority Critical patent/JP6737018B2/ja
Priority to KR1020170068793A priority patent/KR101988103B1/ko
Priority to CN201710472648.2A priority patent/CN107588726B/zh
Priority to EP17177299.9A priority patent/EP3267148B1/en
Priority to US15/636,215 priority patent/US10514294B2/en
Publication of JP2018005821A publication Critical patent/JP2018005821A/ja
Application granted granted Critical
Publication of JP6737018B2 publication Critical patent/JP6737018B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37117Optical sensor, delivers analog signal as function of displacement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Programmable Controllers (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

【課題】測定結果を出力するタイミングから、測定開始のタイミングを判別できるように測定を実施する光学計測装置を提供する。
【解決手段】光学計測装置3は、PLC1から一定の通信周期でフィールドバス2に送信された同期信号を受信するとともに、同期信号に同期して光学計測装置3による測定結果(測定値)と、同期監視信号とを出力するように構成されたインターフェース部31と、通信周期とは独立した測定周期で光学的な測定を実行して測定結果を生成するとともに、同期監視信号を生成するように構成された計測部32とを備える。計測部32は、測定を開始した後のインターフェース部31による同期信号の受信に同期して、同期監視信号をオン状態に設定し、測定結果がインターフェース部31から出力される場合に、インターフェース部31による同期信号の受信に同期して、同期監視信号をオフ状態に設定する。
【選択図】図10

Description

本発明は、光学計測装置に関し、特に、産業用ネットワークに接続可能な光学計測装置に関する。
多くの生産現場で使用される機械および設備は、典型的には、プログラマブルコントローラ(Programmable Logic Controller;以下「PLC」とも称す。)などからなる制御装置を含む制御システムによって制御される。
PLCと1または複数のリモートIOターミナルとの間の通信は、PLCが通信全体を管理するマスタとして機能し、ポーリング方式を用いて実現される場合もある。例えば、特開2007−312043号公報(特許文献1)は、リモートIOシステムにおけるマスタ/スレーブ間通信として、一般的には、一斉同報方式とポーリング方式との2通りの通信方式を開示する。
特開2007−312043号公報
近年では、産業用オートメーションの現場では、制御コマンドおよびデータ信号を伝達するためのネットワーク(フィールドバスとも呼ばれる)が構築されているのが一般的である。そのようなネットワークの1つとして、EtherCAT(登録商標)がある。EtherCATは同期性を強みとしたフィールドバスであり、全スレーブが1μs以下のジッタで同期できることを強みとしている。各スレーブは、この同期タイミングでマスタからの出力信号(制御信号)を受け取り、外部から取得した値をマスタへの入力信号(測定値や状態信号など)に反映する。
一方では、内部同期によって連続的な測定が可能な光学計測装置が存在する。このような光学計測装置をEtherCATに接続した場合には、EtherCATに接続された機器の間での同期が問題となる。精度の高い計測を実現するためには、各機器からPLCに入力された信号に反映されたデータが、いつ取得されたかが重要である。
しかし、一般に、光学計測装置では測定値を得るために、ある程度の時間にわたり光を受光しなければならない。すなわち測定時間には受光のための時間が含まれる。さらに、光学計測装置の内部で受光データから測定値を生成する時間も必要になる。このために、光学計測装置では、測定タイミングと測定結果を出力するタイミングとが同期していないことがある。したがって、マスタ装置は、光学計測装置から出力されたデータが、どのタイミングで測定された結果を反映しているのかを判別することが困難である。
本発明の目的は、測定結果を出力するタイミングから、測定開始のタイミングを判別できるように測定を実施する光学計測装置を提供することである。
本発明の一態様に従う光学計測装置は、マスタ装置およびスレーブ装置の間で時刻を同期させる同期機能を有する産業用ネットワークに接続可能に構成された光学計測装置である。光学計測装置は、マスタ装置から一定の通信周期で産業用ネットワークに送信された同期信号を受信するとともに、同期信号に同期して、光学計測装置による測定結果と、第1の状態および第2の状態を有する同期監視信号とを出力するように構成されたインターフェース部と、通信周期とは独立した測定周期で光学的な測定を実行して測定結果を生成するとともに、同期監視信号を生成するように構成された計測部とを備える。計測部は、測定を開始した後のインターフェース部による同期信号の受信に同期して、同期監視信号を第1の状態に設定し、測定結果がインターフェース部から出力される場合に、インターフェース部による同期信号の受信に同期して、同期監視信号を第2の状態に設定する。
上記の構成によれば、測定結果を出力するタイミングから、測定開始のタイミングを判別できるように測定を実施する光学計測装置を提供することができる。同期監視信号が第1の状態に設定される(切り換わる)タイミング、および同期監視信号が第2の状態に設定される(切り換わる)タイミングは、インターフェース部による同期信号の受信に同期する。光学計測の測定の周期が通信周期と異なる場合にも、同期監視信号の状態は通信周期に同期して変化する。たとえば、その通信周期で、マスタ装置は、光学計測装置の測定値を受けるだけでなく、同期監視信号を受ける。マスタ装置は、通信周期に基づいて、測定の開始のタイミングと、その測定の結果が出力されたタイミングを検出することができる。
好ましくは、計測部は、インターフェース部が同期信号を受信するタイミングに同期して、同期監視信号を第1の状態に設定する。
上記の構成によれば、同期監視信号がその測定の開始を示すように、計測部は同期監視信号を第1の状態に設定する。したがって、たとえばマスタ装置は、光学計測装置の測定開始のタイミングをより正確に検出することができる。同期監視信号を第1の状態に設定するタイミングは、インターフェース部が同期信号を受信するタイミングに同期していればよい。たとえば、インターフェース部が同期信号を受信するタイミングに同期して測定を開始するとともに、同期監視信号を第1の状態に設定してもよい。あるいは、測定の開始の次の、インターフェース部が同期信号を受信するタイミングに同期して同期監視信号を第1の状態に設定してもよい。
好ましくは、計測部は、インターフェース部が同期信号に同期して測定結果を出力するタイミングで、同期監視信号を第2の状態に設定する。
上記の構成によれば、計測部が同期監視信号を第2の状態に設定することによって、測定開始のタイミングと、その測定開始のタイミングで得られた測定結果とを関連付けることができる。
好ましくは、計測部は、開始のタイミングが異なる複数の前記測定を並列に実行可能なように構成され、複数の測定により、同期監視信号を第1の状態に設定するタイミングと、同期監視信号を第2の状態に設定するタイミングとが重なる場合には、同期監視信号の状態が変化するように、同期監視信号を第1の状態および第2の状態のいずれかに設定する。
上記の構成によれば、ある測定処理の実行中に次の測定が開始されても、同期監視信号を第1の状態に保つことができる。すなわち、同期監視信号の状態は、後の測定の開始による影響を受けない。したがって、たとえばマスタ装置は、先の測定の開始のタイミングを正確に把握することができる。一方、ある測定処理の結果を出力するタイミングと、別の測定の開始のタイミングとが重なる場合には、そのタイミングにおいて、計測部は、同期監視信号を第2の状態から第1の状態に切り換えるか、または、計測部は、同期監視信号を第1の状態から第2の状態に切り換えることができる。同期監視信号が第1の状態から第2の状態に切り換わる場合には、測定結果が出力されたタイミングと、その測定結果を得るための測定の開始のタイミングとを関連付けることができる。一方、同期監視信号が第2の状態から第1の状態に切り換わる場合には、別の測定の開始のタイミングを示すことができる。
好ましくは、計測部は、開始のタイミングが異なる複数の測定を並列に実行可能であるとともに、複数の測定にそれぞれ対応した複数の同期監視信号を生成可能であるように構成され、複数の測定のうちの第1の測定の開始に応じて、複数の同期監視信号のうち、第1の測定に対応する第1の同期監視信号を第1の状態に設定し、第1の同期監視信号を第2の状態に設定する前に、第1の測定の次の第2の測定を開始するとともに、複数の同期監視信号のうち、第2の測定に対応する第2の同期監視信号を第1の状態に設定する。
上記の構成によれば、それぞれの測定処理に対応した同期監視信号が第1の状態あるいは第2の状態に設定されるので、マスタ装置は、光学計測装置3の複数の測定の各々の開始のタイミングを正確に把握することができる。
上記のいずれかの光学計測装置において、通信周期は、測定周期よりも短い、または、通信周期は、測定周期よりも長く、かつ、計測部による測定処理時間を測定周期に加えた時間よりも短い。
上記の構成によれば、測定結果が出力されたタイミングと、その測定結果を得るための測定の開始のタイミングとを関連付けることの効果を高めることができる。計測部による測定処理時間を測定周期に加えた時間よりも通信周期が長い場合には、通信周期の1周期内に測定を終了させることができる。たとえば、ある通信周期内に測定を開始し、次の通信周期にその測定結果を出力した場合には、測定開始のタイミングと、その測定結果を出力するタイミングとを関連付けることが容易である。しかし、通信周期が測定周期よりも短くなると、マスタ装置がある通信周期で測定結果を受けた場合に、その測定結果を得るための測定が行なわれた時点を特定することがより難しくなる。また、通信周期が測定周期より長く、かつ、計測部による測定処理時間を測定周期に加えた時間よりも短い場合にも、マスタ装置がある通信周期で測定結果を受けた場合に、その測定結果を得るための測定が行なわれた時点を特定することが難しいという問題が生じうる。これらの場合に、同期監視信号の状態を監視することによって、測定結果が出力されたタイミングと、その測定結果を得るための測定の開始のタイミングとを関連付けることができる。
本発明によれば、測定結果を出力するタイミングから、測定開始のタイミングを判別できるように測定を実施する光学計測装置を提供することができる。
本実施の形態に係る計測システムの構成例を示す模式図である。 EtherCATによるスレーブの同期を説明するための模式的なブロック図である。 EtherCATにおける時刻同期機能を説明するための模式図である。 フィールドバスに接続された光学計測装置の測定周期と、EtherCATの通信周期とが同期していない場合の課題点を説明するためのタイミング図である。 一般的な光学式変位センサの処理フローを説明するためのタイミング図である。 光学式変位センサの処理フローの例を示した図である。 本実施の形態に係る光学計測装置による測定周期と通信周期との同期の例を模式的に示したタイミング図である。 本実施の形態に係る光学計測装置による測定周期と通信周期との同期の他の例を模式的に示したタイミング図である。 本実施の形態に係る光学計測装置3の測定時間の長さが通信周期の長さとほぼ同じである場合の例を模式的に示したタイミング図である。 本実施の形態に係る光学計測装置の詳細な構成を示したブロック図である。 本実施の形態に係る光学計測装置による、同期監視信号の出力の例を模式的に示したタイミング図である。 本発明の実施の形態に係る光学計測装置による、通信周期と同期した測定を説明するためのタイミング図である。 本実施の形態に係る光学計測装置によって実行される、同期監視信号の出力に関する一連の処理のフローチャートである。 図1に示された計測システムの応用例を示した概略図である。 PLCが光学計測装置の測定値とサーボモータからの位置データとを紐づけるときにPLCにおいて対処が必要となる、時間的なずれを説明したタイミング図である。 ずれ量を補正するためのPLCの構成を模式的に示した機能ブロック図である。 補正の前後に、メモリ空間に保持される、位置データおよび光学計測装置3の測定値(高さデータ)を模式的に示した図である。
本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。
<A.制御システムの構成例>
図1は、本実施の形態に係る計測システム100の構成例を示す模式図である。図1を参照して、計測システム100は、PLC1と、フィールドバス2と、光学計測装置3と、サーボモータ4とを含む。
PLC1、光学計測装置3、および、サーボモータ4はフィールドバス2に接続される。フィールドバス2は、PLC1と遣り取りされる各種データを伝送する。フィールドバス2としては、各種の産業用のイーサネット(登録商標)を用いることができる。産業用のイーサネットとしては、例えば、EtherCAT、PROFINET(登録商標)などがある。以下の説明においては、フィールドバス2としてEtherCATが代表的に説明される。
サーボモータ4は、ステージ5を移動させる。図示しないが、サーボモータ4は、エンコーダを含む。エンコーダの値は、ステージ5の位置を表す位置データに相当する。位置データは、フィールドバス2を介してPLC1に入力される。
光学計測装置3は、ステージ5の上に置かれた計測対象物51の変位を計測する。光学計測装置3は、センサコントローラ11と、センサヘッド12と、ケーブル13とを含む。センサヘッド12は、ケーブル13によってセンサコントローラ11に接続される。
センサコントローラ11からの制御信号はケーブル13を通じてセンサヘッド12に送られる。後述するように、センサヘッド12は、投光部および受光部を有する。投光部は、ステージ5に向けて光を照射し、受光部は、ステージ5からの反射光を受光する。受光部から信号が出力されて、その信号は、ケーブル13を通じてセンサコントローラ11に送られる。センサコントローラ11は、センサヘッド12からの信号に基づいて測定値を算出する。センサコントローラ11は、フィールドバス2を介してPLC1に測定値を送る。さらに、センサコントローラ11は、測定の開始のタイミングと、その測定の結果(測定値)の出力のタイミングとを示す同期監視信号を出力する。PLC1は、同期監視信号により、その測定値を得るための測定が開始されたタイミングを把握することができる。なお、この実施の形態では、投光部および受光部がセンサヘッド12に設けられているが、投光部および受光部はセンサコントローラ11に設けられていてもよい。
サーボモータ4によってステージ5が移動することにより、光学計測装置3に対して、計測対象物51の表面が走査される。したがって光学計測装置3は、ステージ5の移動方向に沿って、センサヘッド12から計測対象物51の表面までの変位を測定することができる。この結果、光学計測装置3は、ステージ5の移動方向に沿った、計測対象物51の表面の形状を測定することができる。図1では、ステージ5は一次元方向に動くように示されているが、ステージ5は二次元方向(XY方向)に可動であってもよい(図14を参照)。
この実施の形態では、サーボモータ4からPLC1に入力される位置データ(エンコーダ値)と、光学計測装置3からPLC1に入力される測定値との間の同期性を担保することができる。したがって、位置情報と測定値(変位情報)を正確に関連付けることが可能になるので、計測対象物51の表面の形状に関する、より精度の高い情報を得ることができる。
<B.フィールドバス>
図2は、EtherCATによるスレーブの同期を説明するための模式的なブロック図である。図2を参照して、制御システムSYSは、マスタ装置1aと、スレーブ装置3−1〜3−3と、マスタ装置1aおよびスレーブ装置3−1〜3−3を接続するフィールドバス2によって構成される。
マスタ装置1aは、スレーブ装置3−1〜3−3の制御を司る。スレーブ装置3−1〜3−3の各々は、IEEE 802.3標準Ethernet(登録商標)フレームを高速で伝送する。図2に示されるように、フレーム21は、マスタ装置1aから送出され、スレーブ装置3−1〜3−3を順番に通過する。フレーム21は、スレーブ装置3−3において折り返されて、マスタ装置1aに戻る。フレーム21は、制御コマンドおよびデータを含むことができる。
EtherCATでは、マスタ装置1aからフレーム21が送出された時点からフレーム21がマスタ装置1aに戻るまでを1サイクルとする。各スレーブ装置は、フレーム21が通過する際に、オンザフライで入出力処理を実行する。したがって、1サイクルの間にすべての入出力処理が完了する。
図3は、EtherCATにおける時刻同期機能を説明するための模式図である。図3を参照して、マスタ装置1aおよびスレーブ装置3−1,3−2,3−3,3−4は、それぞれ時計を有する。この時計は、各装置での処理の実行タイミングなどを定める基準となる。より具体的には、マスタ装置1aおよびスレーブ装置3−1,3−2,3−3,3−4の各々は、時計として、同期の基準となる時刻情報を周期的に生成するタイマを有している。マスタ装置1aの時計が基準となり、スレーブ装置3−1〜3−4は、マスタ装置1aの時計に同期する。より具体的には、スレーブ装置3−1〜3−3の各々は、フィールドバス2上を周期的に伝搬するフレーム(図2を参照)に基づいて、各々が有するタイマに生じている時間的なずれを都度補正する。これによって、すべてのスレーブ装置のジッタのずれを1μs以内に抑えることができる。
<C.測定周期と通信周期とが同期していない場合の課題>
図4は、フィールドバスに接続された光学計測装置の測定周期と、EtherCATの通信周期とが同期していない場合の課題点を説明するためのタイミング図である。図4を参照して、一般的に光学計測装置(たとえば光学式変位センサ)では、光学計測装置自体の測定周期にしたがって撮像を行う。光学計測装置は、通信周期記の1サイクルごとに測定値を出力する。
図5は、一般的な光学式変位センサの処理フローを説明するためのタイミング図である。図5を参照して、まず、照明が点灯されるとともに撮像処理が実行される。次に、受光位置を検出する処理が実行される。たとえば受光位置を検出するために、撮像素子において受光強度が最大である位置が特定される(最大の受光強度の位置に対応する撮像素子の画素が特定される)。続いて、たとえばフィルタリング、平均値算出等、測定値を算出する処理が実行される。測定値の算出後に、測定結果として測定値が出力される。
図6は、光学式変位センサの処理フローの例を示した図である。図6を参照して、撮像処理が、ある測定周期Tで繰り返し実行される。図6に示した例では、ある測定の開始(撮像の開始)から、その測定の結果を出力するまでに要する時間(以下「測定時間」と呼ぶ)は、測定周期T+計測処理時間(3×T)=4×Tとなる。
図4に戻り、撮像タイミングは測定周期に従う。しかし撮像されたタイミングと、測定値が出力される(測定結果を更新する)タイミングとが異なりうる。光学式変位センサに限らず、光学計測装置の場合には、このように、撮像されたタイミングと、測定値が出力される(測定結果を更新する)タイミングとが異なることが起こる。フィールドバスの通信周期と測定周期とが同期していない場合、PLC1では、光学計測装置から送られた測定値が、どのタイミングで測定された結果であるのかを判別することができない。
<D.測定周期と通信周期との同期>
本実施の形態では、光学計測装置は、測定のタイミングをフィールドバスの通信周期に同期させる。これにより、測定のタイミングがフィールドバスの通信周期に関連付けられる。
図7は、本実施の形態に係る光学計測装置3による測定周期と通信周期との同期の例を模式的に示したタイミング図である。図7に示されるように、光学計測装置3は、PLC1からのSYNC信号の受信に応答して、測定のための割込み処理を発生させる。図7および以後の図において、SYNC信号の受信は「SYNC割込み」と表記される。
図7に示された例では、測定時間(4×T)が通信周期よりも短い。測定のタイミングをフィールドバスの通信周期に同期させることによって、測定は、次の通信周期の開始よりも早く終了する。したがって、次の通信周期の開始のトリガに応じて、光学計測装置3は、PLC1に測定結果を送信することができる。すなわち、光学計測装置3は、ある通信周期内での測定結果を、その次の通信周期内に出力することができる。
図8は、本実施の形態に係る光学計測装置3による測定周期と通信周期との同期の他の例を模式的に示したタイミング図である。図8に示されるように、光学計測装置3は、他のスレーブ機器の入力タイミングと測定開始のタイミングとを同期させるために、SYNC割込みの発生からオフセット時間が経過した後の時点において測定を開始してもよい。オフセットの長さと測定時間との和が通信周期よりも短いので、次の通信周期の開始よりも早く測定が終了する。光学計測装置3は、ある通信周期内での測定結果を、その次の通信周期内に出力することができる。
図7および図8に示された例では、測定時間(またはオフセットと測定時間との和)が通信周期よりも短いため、PLC1は測定結果を受信したタイミングに基づいて、その測定結果を得るための測定が実行された通信周期を把握することができる。しかしながら通信周期は、計測システム100の環境に依存する。一方で、測定周期は、計測対象物51の反射率、光学計測装置3の仕様、光学計測装置3の個体差といった要因によって決定されるため、通信周期とは独立した長さとなる。必ずしも測定時間が通信周期よりも短くなるように計測システム100が構築されるとは限らない。
たとえば、計測対象物51の反射率に依存して、露光時間が長くなることが考えられる。このような場合には、測定時間が通信周期と同じになる可能性、あるいは通信周期より長くなる可能性がある。
図9は、本実施の形態に係る光学計測装置3が測定時間の長さが通信周期の長さとほぼ同じである場合の例を模式的に示したタイミング図である。図9に示されるように、通信周期T1の開始に同期して、測定が開始される。測定時間TAの長さは、通信周期T1,T2,T3の各々の長さにほぼ等しい。したがって、測定結果を更新するタイミングが、通信周期T1の次の通信周期T2、あるいは、通信周期T2の次の通信周期T3でありえる。
測定結果を更新するタイミングが計測システム100の環境に依存する場合、ユーザが、たとえばユーザマニュアルの記載に基づいて、測定結果の更新タイミングを自分自身で計算することが考えられる。しかし、そのような場合には、ユーザが計測システム構築するための難易度が高くなる。さらに、計算によって求められた更新タイミングが正しいかどうかを確認することも難しい。計算によって求められた更新タイミングが仮に正しいとしても、たとえば光学計測装置3の個体差に依存して、測定結果の更新のタイミングは計算によって求められたタイミングからずれる可能性がある。しかし、そのようなタイミングのずれを検出することは難しい。
本発明の実施の形態では、光学計測装置3が、同期監視信号を出力する。同期監視信号は、通信周期に同期して、第1の状態と第2の状態との間で変化する。第1の状態への変化は、測定の開始を表し、第2の状態への変化は、その測定の結果の出力(すなわち測定の終了)を表す。PLC1は、同期監視信号をモニタすることにより、光学計測装置3の測定周期の始まりと終わりとを検出することができる。これにより安定した計測システムを構築することができる。本発明の実施の形態に係る光学計測装置3について、以下に、より詳細に説明する。
<E.光学計測装置の構成>
図10は、本実施の形態に係る光学計測装置の詳細な構成を示したブロック図である。図10を参照して、センサコントローラ11は、インターフェース部31と、計測部32と、クロック33とを含む。計測部32は、投受光制御部41と、センサ制御部42と、演算部43と、信号生成部44とを含む。
インターフェース部31は、フィールドバス2に対する入力/出力を担う。インターフェース部31は、フィールドバス2において伝送されるフレーム21(図2を参照)を通じて、PLC1からSYNC信号を受信する。SYNC信号は、通信周期ごとに発生する信号である。一方、インターフェース部31は、測定値および同期監視信号を、フィールドバス2を介してPLC1に送信する。
計測部32は、光学計測装置3を統括的に制御することにより、測定周期に従って計測対象物51の変位を光学的に測定する。さらに計測部32は、その測定の開始および終了を表すための同期監視信号を生成する。
投受光制御部41は、SYNC信号に応答して、測定を開始するための制御信号を発行する。応じて、センサ制御部42および演算部43は測定処理を実行する。演算部43は、光学計測装置3による変位の測定の結果を示す値を表す測定値を生成する。信号生成部44は、同期監視信号を生成する。
クロック33は、光学計測装置3において実行される処理のタイミングなどを定めるためのクロック信号を発生させる。このクロック信号に基づいて測定周期が決定される。ただし、クロック信号は、センサコントローラ11の内部で発生するものと限定されない。クロック信号は、センサコントローラ11の外部から供給されてもよい。
センサヘッド12は、センサ制御部42からの制御信号を、ケーブル13を介して受信する。センサヘッド12は、投光部34と、受光部35とを含む。
投光部34は、制御信号に応じて、ステージ5に向けて光を投射する。受光部35は、ステージ5または計測対象物51によって反射された光を受ける。図示しないが、受光部35は、撮像素子を含んでもよい。受光部35は、制御信号に応じて、受光部35が受けた光の量を表す受光信号を出力する。受光信号は、ケーブル13を介して計測部32に送られる。演算部43は、受光信号によって表される受光量に基づいて、測定値を算出する。
光学計測装置3が光学式変位センサである場合、変位の測定の方式は特に限定されない。変位の測定の方式は、たとえば白色共焦点方式であってもよく、三角測量方式であってもよい。
<F.光学計測装置の出力>
図11は、本実施の形態に係る光学計測装置3による、同期監視信号の出力の例を模式的に示したタイミング図である。図10および図11を参照して、時刻tにおいて、光学計測装置3は、通信周期に同期して測定を開始するとともに、同期監視信号をオフ状態からオン状態に変化させる。したがって時刻tにおいて、同期監視信号は、第1の状態であるオン状態に設定される。
光学計測装置3は、その測定の結果を出力するタイミングで、同期監視信号をオン状態からオフ状態に変化させる。たとえば、通信周期T2の開始に同期して光学計測装置3が測定結果を出力する場合、光学計測装置3は、通信周期T2の開始時刻tにおいて、同期監視信号をオン状態からオフ状態に変化させる。したがって時刻tにおいて、同期監視信号は、第2の状態であるオフ状態に設定される。通信周期T3の開始に同期して光学計測装置3が測定結果を出力する場合、光学計測装置3は、通信周期T3の開始時刻tにおいて、同期監視信号をオン状態からオフ状態に変化させてもよい。
同期監視信号の状態がオフ状態からオン状態に変化したタイミングを検出することにより、光学計測装置3による測定の開始を検出することができる。同期監視信号のオン状態は、光学計測装置3が測定中であること、言い換えると、その測定の結果を出力するための処理を実行中であることを表す。同期監視信号の状態がオン状態からオフ状態に変化したタイミングを検出することにより、光学計測装置3から測定結果が出力されたことを検出することができる。
PLC1は、同期監視信号の状態をモニタすることによって、光学計測装置3による測定の開始のタイミングと、その測定の結果の出力のタイミングとを検出できる。したがって、PLC1は、測定結果が出力されるタイミングと、その測定が開始されるタイミングとを関連付けることができる。
本実施の形態では、同期監視信号の第1の状態はオン状態であり、同期監視信号の第2の状態はオフ状態である。しかしながら、このように限定されるものではない。同期監視信号の第1の状態がオフ状態であり、同期監視信号の第2の状態がオン状態であってもよい。
図12は、本発明の実施の形態に係る光学計測装置による、通信周期と同期した測定を説明するためのタイミング図である。図12を参照して、PLC1は、SYNC信号を、一定の通信周期Tcで出力する。したがって、光学計測装置3のインターフェース部31(図10を参照)は、SYNC信号を、通信周期Tcごとに受信する。
時刻t1において、光学計測装置3は、SYNC信号を受信する。SYNC信号の受信に応じて、光学計測装置3は、時刻t11において露光および撮像を開始する。時刻t1から時刻t11までの間の長さは、計測システム100の環境に依存し得る。
時刻t2において、光学計測装置3は、露光および撮像を終了する。以後、光学計測装置3は、測定結果を出力するための処理を実行する。たとえば時刻t1から時刻t2までの間の長さは一定である。したがって、時刻t1から時刻t11までの間の長さを変更することによって、露光時間が変更される。
時刻t3において、光学計測装置3は、次のSYNC信号を受信する。時刻t3においては、光学計測装置3は、測定中の状態である。光学計測装置3は、SYNC信号の受信に同期して、同期監視信号の状態をオフ状態からオン状態へと変化させる。
光学計測装置3が測定処理を完了した直後の時刻t4において、光学計測装置3は、SYNC信号を受信する。光学計測装置3は、SYNC信号の受信に同期して、測定を開始する。時刻t4では、時刻t11に始まった測定の結果は未だ出力されていない。したがって、時刻t4から時刻t5までの間に測定が開始されるものの、同期監視信号はオン状態のままである。時刻t4でのSYNC信号の受信により、光学計測装置3は、時刻t12において露光および撮像を開始する。
時刻t5において、光学計測装置3は、SYNC信号を受信する。光学計測装置3は、SYNC信号の受信に同期して、時刻t11に始まった測定の結果を出力するとともに、同期監視信号の状態をオン状態からオフ状態へと変化させる。時刻t11から開始された測定は、時刻t5において終了する。時刻t11から時刻t5までの長さが測定時間TAである。通信周期Tcは測定周期よりも短い。
時刻t6の直前において、光学計測装置3は、t12において始まった測定処理を完了する。時刻t6においてSYNC信号を受信すると、光学計測装置3は、時刻t13において露光および撮像を開始する。
時刻t7において、光学計測装置3は、SYNC信号を受信する。光学計測装置3は、SYNC信号の受信に応じて、時刻t12に始まった測定の結果を出力する。さらに、光学計測装置3は、同期監視信号の状態をオン状態からオフ状態へと変化させる。同期監視信号の状態の変化は、時刻t13における測定の開始を表す。
時刻t3から時刻t5までの同期監視信号の変化によって示されるように、光学計測装置3は、測定の開始により、同期監視信号を一旦オンすると、その測定の結果を出力するまでの間、同期監視信号をオン状態に維持する。たとえば時刻t11から開始された測定処理の実行中に、時刻t12において次の測定処理が開始される。時刻t12においては、同期監視信号はオン状態である。つまり、同期監視信号の状態は、後の測定の開始による影響を受けない。測定結果を出力するタイミングで、光学計測装置3は同期監視信号をオフする。これにより、測定結果が出力されるタイミングと、その測定が開始されるタイミングとを関連付けることができるので、PLC1は、測定値に対応する測定の開始のタイミングを正確に把握することができる。
時刻t5は、時刻t11において開始された測定処理の結果が光学計測装置3から出力されることを示すように同期監視信号がオフするタイミングであるとともに、時刻t12から別の測定が開始されたことを示すタイミングでもある。時刻t5以前において、同期監視信号がオン状態であるので、計測部32は、時刻t5において同期監視信号をオフする。これにより、時刻t5において光学計測装置3から出力される測定結果(測定値)と、その測定値を得るための測定の開始のタイミングとを関連付けることができる。
時刻t7は、時刻t13において開始された測定処理の結果が出力されることを示すように同期監視信号がオンするタイミングであるとともに、時刻t12において開始された測定の結果が光学計測装置3から出力されることを示すタイミングでもある。時刻t7以前において、同期監視信号がオフ状態であるので、計測部32は、時刻t7において同期監視信号をオンする。これにより、同期監視信号は、時刻t7の直前の通信周期において測定が開始されたことを開始されたことを示す。時刻t7以前において、同期監視信号がオフ状態であるということは、時刻t12において測定が開始されたということを示すように同期監視信号が変化してはいないということである。したがって、測定結果が出力されるタイミングと、その測定が開始されるタイミングとが確実に関連付けられる。
<G.同期監視信号の出力のフロー>
図13は、本実施の形態に係る光学計測装置3によって実行される、同期監視信号の出力に関する一連の処理のフローチャートである。図10および図13を参照して、SYNC割込みの発生により、処理が開始されるとともに、SYNC割込みのたびに図13に示された一連の処理が繰り返して実行される。
ステップS1において、光学計測装置3(たとえば計測部32)は、SYNC割込みが生じた時点において測定が既に開始されているかどうかを判定する。たとえば、露光および撮像が完了した場合には、測定が既に開始したと判定することができる。この場合(ステップS1においてYES)、処理はステップS2に進む。
ステップS2において、光学計測装置3(たとえば信号生成部44)は、同期監視信号の状態をオフ状態からオン状態に切換える。すなわち、光学計測装置3は、SYNC割込みに応じて、測定開始を示すように同期監視信号の状態を変化させる。
一方、SYNC割込みが生じたタイミングが、測定の開始を示すタイミングとは異なる場合(ステップS1においてNO)、処理はステップS3に進む。この場合、光学計測装置3(たとえば計測部32)は、SYNC割込みが生じたタイミングが、測定結果を出力するタイミングであるかどうかを判定する。SYNC割込みが生じたタイミングが、測定結果を出力するタイミングである場合(ステップS3においてYES)、光学計測装置3(たとえば信号生成部44)は、同期監視信号の状態をオン状態からオフ状態に切換える。すなわち、光学計測装置3は、SYNC割込みに応じて、測定結果の出力を示すように同期監視信号の状態を変化させる。
一方、SYNC割込みが生じたタイミングが、測定の開始を示すタイミング、および測定結果を出力するタイミングのいずれとも異なる場合(ステップS3においてNO)、処理はステップS5に進む。この場合には、光学計測装置3(たとえば信号生成部44)は、同期監視信号の状態をオン状態またはオフ状態に保つ。すなわち同期監視信号の状態は変化しない。ステップS2,S4,S5のいずれかの処理の実行後には、このフローは、SYNC割り込みによる開始を待つ状態に戻される。
<H.応用例>
図14は、図1に示された計測システム100の応用例を示した概略図である。図1および図14を参照して、計測対象物51は、ステージ5(図1参照)を駆動するサーボモータ4によって、二次元方向(X方向およびY方向)に走査される。センサヘッド12は、センサヘッド12から計測対象物51までの距離(Z方向の変位)を測定する。位置データと、光学計測装置3の測定値とが、PLC1に送られて、PLC1は、その内部で実行されるプログラムによって、位置データと光学計測装置3の測定値とを紐づける。図1および図14に示された構成によれば、ステージ5の加減速の影響を受けにくい変位の計測を実現できる。したがって正確な測定が可能な3次元形状測定システムを実現することができる。
PLC1の内部で実行されるプログラムでは、光学計測装置3の測定値と位置データとを紐づけるときには、PLC1が光学計測装置3の測定値を受け取るタイミングと、サーボモータ4の位置データを受け取るタイミングとの間のずれを考慮する必要がある。ステージ5の移動速度は常に等速ではないため、時間方向のずれ量が大きいほど計測対象物51の形状の測定が不正確になるためである。
図15は、PLC1が光学計測装置3の測定値とサーボモータ4からの位置データとを紐づけるときにPLC1において対処が必要となる、時間的なずれを説明したタイミング図である。図15において、4種類のタイミングのずれが示される。第1のずれT21は、起点となるタイミングから光学計測装置3が測定を開始するタイミングまでの間のずれである。第2のずれT22は、起点となるタイミングからPLC1が測定結果を受け取るタイミングまでの間のずれである。第3のずれT23は、起点となるタイミングから、サーボモータ4がステージ5の位置を保持するタイミングまでの間のずれである。第4のずれT24は、起点となるタイミングから、PLC1が位置データを受け取るタイミングまでの間のずれである。
第2のずれT22および第4のずれT24は、通信周期Tcを単位とした(通信周期の整数倍の長さを持つ)ずれである。より詳細には、第2のずれT22は、通信周期Tcと測定時間TA(図12参照)との組み合わせにより、通信周期Tcを単位として変動する。さらに、光学計測装置3の個体差によっても第2のずれT22は、通信周期Tcを単位として変動しうる。PLC1は、同期監視信号がオン状態である時間(たとえば図12に示された、時刻t3から時刻t5までの間の時間)を測定することにより、第2のずれT22の長さを把握することができる。
光学計測装置3の運用中に第2のずれT22が変動しないという条件が成立する場合、PLC1は、光学計測装置3の運用開始時に1度のみ、第2のずれT22の長さを把握すればよい。PLC1は、その長さに基づいて、ずれ量を補正することができる。一方、光学計測装置3の運用中に第2のずれT22が変動しうるのであれば、PLC1は、同期監視信号のオン状態の時間の長さを常に計測して、その計測された長さに基づいて、ずれ量を補正することができる。
一方、第4のずれT24の長さは、ほぼ一定とみなすことができる。その理由として、ステージ5の位置の保持に必要な処理時間は十分に小さいこと、処理時間の変動がわずかであることが挙げられる。したがって、PLC1は、予め確定された(たとえば仕様により確定された)ずれ量の値を用いて位置データを補正することができる。
図16は、ずれ量を補正するためのPLC1の構成を模式的に示した機能ブロック図である。図16を参照して、PLC1は、メモリ61と、補正処理部62とを含む。メモリ61は、光学計測装置3からの測定値、およびサーボモータ4からの位置データを格納するためのメモリ空間を構成する。補正処理部62は、メモリ61に格納された測定値と位置データとを用いて、ずれ量を補正するための処理を実行する。これにより、光学計測装置3からの測定値と、位置データとを正確に紐づけることができるので、計測対象物51の形状について正確な測定値を得ることができる。
図17は、補正の前後に、メモリ空間に保持される、位置データおよび光学計測装置3の測定値(高さデータ)を模式的に示した図である。図17に示されるように、たとえば、補正前には、位置データと高さデータとが、(位置_1,高さ_1)、(位置_2,高さ_2),(位置_3,高さ_3),(位置_4,高さ_4)のように紐づけられる。ずれ量が補正されたことにより、位置データと高さデータとが、(位置_2,高さ_1)、(位置_3,高さ_2),(位置_4,高さ_3),(位置_5,高さ_4)のように紐づけられる。
図15に示されたタイミング図において、第1のずれT21が明確である場合には、第3のずれT23を第1のずれT21に一致させることによって、通信周期からのずれ量を一致させることができる。逆に第3のずれT23が明確である場合には、第1のずれT21を第3のずれT23に一致させてもよい。この場合にも、通信周期からのずれ量を一致させることができる。
本実施の形態に係る計測システム100において、以上の補正処理を含むプログラムをPLC1が実行する。この際に、PLC1は、同期監視信号がオンおよびオフするタイミングおよび、同期監視信号のオン時間の長さを監視する。これにより、意図しない補正ずれが発生した場合にも、その発生を検出することができるので、補正のずれを修正することができる。したがって、計測対象物51の形状を正確に計測することができる。
本発明の実施の形態に係る光学計測装置3において、計測部32は、複数の測定にそれぞれ対応した複数の同期監視信号を生成してもよい。この場合、計測部32は、複数の測定のうちの第1の測定の開始に応じて、複数の同期監視信号のうち、第1の測定に対応する第1の同期監視信号をオン状態に設定することができる。さらに計測部32は、第1の同期監視信号をオフ状態に設定する前に、第1の測定の次の第2の測定を開始するとともに、複数の同期監視信号のうち、第2の測定に対応する第2の同期監視信号をオン状態に設定することができる。この場合にも、各々の同期監視信号によって、マスタ装置は、光学計測装置3の複数の測定の各々の開始のタイミングを正確に把握することができる。
また、図12のタイミング図においては、通信周期は、測定周期よりも長く、かつ、計測部による測定処理時間を測定周期に加えた時間(測定時間)よりも短い例を示した。しかし通信周期が、測定周期よりも短い場合にも本発明の実施の形態に係る光学計測装置3によって、測定結果が出力されたタイミングと、その測定結果を得るための測定の開始のタイミングとを関連付けることができる。
計測システム100において、本発明の実施の形態に係る光学計測装置3の数は複数であってもよい。その場合、複数の光学計測装置3は、露光終了タイミングを互いに同期させてもよい。同期監視信号がオフ状態からオン状態に変わるタイミング(図12の時刻t7に対応)は、SYNC信号を受信したすべての光学計測装置3が測定を開始した次のSYNC信号の受信タイミングとすることができる。
今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1a マスタ装置、2 フィールドバス(産業用ネットワーク)、3−1〜3−4 スレーブ装置、3 光学計測装置、4 サーボモータ、5 ステージ、11 センサコントローラ、12 センサヘッド、13 ケーブル、21 フレーム、31 インターフェース部、32 計測部、33 クロック、34 投光部、35 受光部、41 投受光制御部、42 センサ制御部、43 演算部、44 信号生成部、51 計測対象物、61 メモリ、62 補正処理部、100 計測システム、S1〜S5 ステップ、SYS 制御システム、T 測定周期、TA 測定時間、T1,T2,T3,Tc 通信周期、t1〜t7,t11〜t13,tA,tB 時刻、T21 第1のずれ、T22 第2のずれ、T23 第3のずれ、T24 第4のずれ。

Claims (6)

  1. マスタ装置およびスレーブ装置の間で時刻を同期させる同期機能を有する産業用ネットワークに接続可能に構成された光学計測装置であって、
    前記マスタ装置から一定の通信周期で前記産業用ネットワークに送信された同期信号を受信するとともに、前記同期信号に同期して、前記光学計測装置による測定結果と、第1の状態および第2の状態を有する同期監視信号とを出力するように構成されたインターフェース部と、
    前記通信周期とは独立した測定周期で光学的な測定を実行して前記測定結果を生成するとともに、前記同期監視信号を生成するように構成された計測部とを備え、
    前記計測部は、前記測定を開始した後の前記インターフェース部による前記同期信号の受信に同期して、前記同期監視信号を前記第1の状態に設定し、前記測定結果が前記インターフェース部から出力される場合に、前記インターフェース部による前記同期信号の受信に同期して、前記同期監視信号を前記第2の状態に設定する、光学計測装置。
  2. 前記計測部は、前記インターフェース部が前記同期信号を受信するタイミングに同期して、前記同期監視信号を前記第1の状態に設定する、請求項1に記載の光学計測装置。
  3. 前記計測部は、前記インターフェース部が前記同期信号に同期して前記測定結果を出力するタイミングで、前記同期監視信号を前記第2の状態に設定する、請求項2に記載の光学計測装置。
  4. 前記計測部は、開始のタイミングが異なる複数の前記測定を並列に実行可能なように構成され、前記複数の前記測定により、前記同期監視信号を前記第1の状態に設定するタイミングと、前記同期監視信号を前記第2の状態に設定するタイミングとが重なる場合には、前記同期監視信号の状態が変化するように、前記同期監視信号を前記第1の状態および前記第2の状態のいずれかに設定する、請求項1から請求項3のいずれか1項に記載の光学計測装置。
  5. 前記計測部は、開始のタイミングが異なる複数の前記測定を並列に実行可能であるとともに、前記複数の前記測定にそれぞれ対応した複数の前記同期監視信号を生成可能であるように構成され、前記複数の前記測定のうちの第1の測定の開始に応じて、前記複数の前記同期監視信号のうち、前記第1の測定に対応する第1の同期監視信号を前記第1の状態に設定し、前記第1の同期監視信号を前記第2の状態に設定する前に、前記第1の測定の次の第2の測定を開始するとともに、前記複数の前記同期監視信号のうち、前記第2の測定に対応する第2の同期監視信号を前記第1の状態に設定する、請求項1から請求項3のいずれか1項に記載の光学計測装置。
  6. 前記通信周期は前記測定周期よりも短い、または、前記通信周期は、前記測定周期よりも長く、かつ、前記計測部による測定処理時間を前記測定周期に加えた時間よりも短い、請求項1から請求項5のいずれか1項に記載の光学計測装置。
JP2016135957A 2016-07-08 2016-07-08 光学計測装置 Active JP6737018B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016135957A JP6737018B2 (ja) 2016-07-08 2016-07-08 光学計測装置
KR1020170068793A KR101988103B1 (ko) 2016-07-08 2017-06-02 광학 계측 장치
CN201710472648.2A CN107588726B (zh) 2016-07-08 2017-06-20 光学计测装置
EP17177299.9A EP3267148B1 (en) 2016-07-08 2017-06-22 Optical measurement apparatus
US15/636,215 US10514294B2 (en) 2016-07-08 2017-06-28 Optical measurement apparatus having a synchronizing function of synchronizing time between a master device and a slave device, and connectable to an industrial network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135957A JP6737018B2 (ja) 2016-07-08 2016-07-08 光学計測装置

Publications (2)

Publication Number Publication Date
JP2018005821A true JP2018005821A (ja) 2018-01-11
JP6737018B2 JP6737018B2 (ja) 2020-08-05

Family

ID=59227491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135957A Active JP6737018B2 (ja) 2016-07-08 2016-07-08 光学計測装置

Country Status (5)

Country Link
US (1) US10514294B2 (ja)
EP (1) EP3267148B1 (ja)
JP (1) JP6737018B2 (ja)
KR (1) KR101988103B1 (ja)
CN (1) CN107588726B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019133521A (ja) * 2018-02-01 2019-08-08 オムロン株式会社 データサンプリング装置、及びデータサンプリング方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072225A (ja) * 2016-10-31 2018-05-10 オムロン株式会社 制御システム、その制御方法およびそのプログラム
JP6919596B2 (ja) * 2018-03-01 2021-08-18 オムロン株式会社 計測システムおよび方法
JP6866865B2 (ja) * 2018-03-15 2021-04-28 オムロン株式会社 計測処理装置、計測処理方法及びプログラム
CN116136678A (zh) * 2021-11-18 2023-05-19 中国科学院沈阳自动化研究所 一种三坐标测量机融入智能化车间管控***的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143596A (ja) * 1985-12-18 1987-06-26 Sanyo Electric Co Ltd 遠隔デ−タ検出方式
JP2006048284A (ja) * 2004-08-03 2006-02-16 Yaskawa Electric Corp プログラマブルコントローラ装置およびオプションモジュールとの同期方法
JP2013516928A (ja) * 2010-01-11 2013-05-13 ファロ テクノロジーズ インコーポレーテッド 複数の計測デバイスによって行われる測定を同期させるための方法および装置
JP2014202568A (ja) * 2013-04-03 2014-10-27 キヤノン株式会社 エンコーダ
US20150134856A1 (en) * 2012-05-14 2015-05-14 Balluff Gmbh Control device for controlling a safety device, and use of an io link for transmission of a safety protocol to a safety device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982185A (en) * 1989-05-17 1991-01-01 Blh Electronics, Inc. System for synchronous measurement in a digital computer network
US6704684B2 (en) * 1999-10-22 2004-03-09 Carl-Zeiss-Stiftung Method for determining measuring points on a workpiece and a measuring system therefor
JP4032421B2 (ja) * 2003-02-25 2008-01-16 横河電機株式会社 測定データ同期システム
JP2007312043A (ja) 2006-05-17 2007-11-29 Omron Corp リモートi/oシステム
JP5314239B2 (ja) * 2006-10-05 2013-10-16 株式会社キーエンス 光学式変位計、光学式変位測定方法、光学式変位測定プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
US8805585B2 (en) * 2008-06-05 2014-08-12 Toshiba Kikai Kabushiki Kaisha Handling apparatus, control device, control method, and program
WO2012081115A1 (ja) 2010-12-16 2012-06-21 三菱電機株式会社 シーケンサシステムおよびその制御方法
US9160898B2 (en) * 2011-01-25 2015-10-13 Autofuss System and method for improved video motion control
JP5316563B2 (ja) * 2011-02-15 2013-10-16 オムロン株式会社 画像処理装置および画像処理システム
CN102183940B (zh) * 2011-05-31 2013-01-16 深圳华强数码电影有限公司 大型魔球多轴同步控制***、方法及魔球
JP5870576B2 (ja) * 2011-09-22 2016-03-01 オムロン株式会社 光学計測装置
EP2764455B1 (en) 2011-10-05 2022-04-20 Opteon Corporation System and method for monitoring and/or controlling dynamic environments
TWI448906B (zh) * 2011-12-30 2014-08-11 Aten Int Co Ltd 遠端管理系統及其遠端管理方法
CN204046621U (zh) * 2014-08-07 2014-12-24 上海华穗电子科技有限公司 用光纤传输的采样时钟同步装置
CN108964865B (zh) * 2018-08-24 2022-02-22 锐迪科(重庆)微电子科技有限公司 一种终端接收方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143596A (ja) * 1985-12-18 1987-06-26 Sanyo Electric Co Ltd 遠隔デ−タ検出方式
JP2006048284A (ja) * 2004-08-03 2006-02-16 Yaskawa Electric Corp プログラマブルコントローラ装置およびオプションモジュールとの同期方法
JP2013516928A (ja) * 2010-01-11 2013-05-13 ファロ テクノロジーズ インコーポレーテッド 複数の計測デバイスによって行われる測定を同期させるための方法および装置
US20150134856A1 (en) * 2012-05-14 2015-05-14 Balluff Gmbh Control device for controlling a safety device, and use of an io link for transmission of a safety protocol to a safety device
JP2014202568A (ja) * 2013-04-03 2014-10-27 キヤノン株式会社 エンコーダ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019133521A (ja) * 2018-02-01 2019-08-08 オムロン株式会社 データサンプリング装置、及びデータサンプリング方法

Also Published As

Publication number Publication date
EP3267148A1 (en) 2018-01-10
CN107588726A (zh) 2018-01-16
KR101988103B1 (ko) 2019-06-11
JP6737018B2 (ja) 2020-08-05
EP3267148B1 (en) 2018-09-26
KR20180006285A (ko) 2018-01-17
US10514294B2 (en) 2019-12-24
US20180010962A1 (en) 2018-01-11
CN107588726B (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
JP6737018B2 (ja) 光学計測装置
US10254108B2 (en) Optical measurement device
JP4185926B2 (ja) ロボット協調制御方法及びシステム
JP6497331B2 (ja) 制御装置および同期制御方法
US10155317B2 (en) Information processing system, information processing device, workpiece position identifying method, and workpiece position identifying program
US11307553B2 (en) Control device and control method
JP2001027904A (ja) 数値制御システム
KR101492910B1 (ko) 이더캣 기반의 분산 시계 동기화를 위한 방법 및 시스템
JP6683137B2 (ja) 産業用コントローラシステム
JP2017079006A (ja) プログラマブル・ロジック・コントローラ、拡張ユニット、制御方法、プログラム作成支援装置、プログラム作成支援方法およびプログラム
KR101645260B1 (ko) 복수의 제어기간의 정밀한 시간 기록을 포함하는 데이터 동기화 시스템 및 방법
KR102049291B1 (ko) 계측 시스템, 제어 장치, 계측 방법
JP4661743B2 (ja) モータ駆動装置
JP2020030672A (ja) 制御システム、制御方法及び制御装置
JP2012226475A (ja) モータ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R150 Certificate of patent or registration of utility model

Ref document number: 6737018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250