JP2017530533A - Gel polymer electrolyte and lithium secondary battery including the same - Google Patents

Gel polymer electrolyte and lithium secondary battery including the same Download PDF

Info

Publication number
JP2017530533A
JP2017530533A JP2017517750A JP2017517750A JP2017530533A JP 2017530533 A JP2017530533 A JP 2017530533A JP 2017517750 A JP2017517750 A JP 2017517750A JP 2017517750 A JP2017517750 A JP 2017517750A JP 2017530533 A JP2017530533 A JP 2017530533A
Authority
JP
Japan
Prior art keywords
compound
gel polymer
polymer electrolyte
carbonate
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017517750A
Other languages
Japanese (ja)
Other versions
JP6612859B2 (en
Inventor
ソル・ジ・パク
キョン・ホ・アン
ジョン・ウ・オ
チュル・ヘン・イ
イ・ジン・ジュン
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Priority claimed from PCT/KR2015/010416 external-priority patent/WO2016053041A1/en
Publication of JP2017530533A publication Critical patent/JP2017530533A/en
Application granted granted Critical
Publication of JP6612859B2 publication Critical patent/JP6612859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/024Polyamines containing oxygen in the form of ether bonds in the main chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2220/00Compositions for preparing gels other than hydrogels, aerogels and xerogels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、電解液溶媒、リチウム塩、重合開始剤、及び第1化合物と第2化合物の混合化合物を含むゲルポリマー電解質用組成物、及び正極、負極、分離膜及びゲルポリマー電解質を含むリチウム二次電池であって、前記ゲルポリマー電解質は、前記ゲルポリマー電解質用組成物を重合させて形成されたリチウム二次電池を提供する。本発明に係るゲルポリマー電解質用組成物は、第1化合物は作用基としてポリエチレングリコールを含むアミン系化合物、及び第2化合物はエポキシ系化合物である第1化合物と第2化合物の混合化合物を含むことにより、リチウム二次電池に適用する場合、ホッピング現象を容易に誘導することで、電池の寿命を向上させることができるだけでなく、優れた高温保存性を発揮し、電池の容量特性を向上させることができる。The present invention relates to a composition for a gel polymer electrolyte containing an electrolyte solution solvent, a lithium salt, a polymerization initiator, and a mixed compound of a first compound and a second compound, and a lithium battery containing a positive electrode, a negative electrode, a separation membrane, and a gel polymer electrolyte. In the secondary battery, the gel polymer electrolyte provides a lithium secondary battery formed by polymerizing the composition for gel polymer electrolyte. In the composition for gel polymer electrolyte according to the present invention, the first compound includes an amine compound containing polyethylene glycol as a functional group, and the second compound includes a mixed compound of the first compound and the second compound which is an epoxy compound. Therefore, when applied to lithium secondary batteries, it can not only improve the battery life by easily inducing the hopping phenomenon, but also exhibit excellent high temperature storage and improve the capacity characteristics of the battery Can do.

Description

関連出願との相互引用
本出願は、2014年10月2日付韓国特許出願第10−2014−0133469号及び2015年10月1日付韓国特許出願第10−2015−0138643号に基づいた優先権の利益を主張し、当該韓国特許出願の文献に開示されている全ての内容は本明細書の一部として含まれる。
Cross-Citation with Related Applications This application is a benefit of priority based on Korean Patent Application No. 10-2014-0133469 dated October 2, 2014 and Korean Patent Application No. 10-2015-0138643 dated October 1, 2015 All the contents disclosed in the Korean patent application literature are included as part of this specification.

本発明は、ゲルポリマー電解質及びこれを含む二次電池に関する。   The present invention relates to a gel polymer electrolyte and a secondary battery including the same.

モバイル機器に対する技術の開発と需要の増加に伴い、エネルギー源としての二次電池の需要が急激に増加しており、このような二次電池の中で高いエネルギー密度と電圧を有するリチウム二次電池が商用化されて広く用いられている。   With the development of technology and demand for mobile devices, the demand for secondary batteries as energy sources is increasing rapidly. Among such secondary batteries, lithium secondary batteries having high energy density and voltage Has been commercialized and widely used.

リチウム二次電池の正極活物質としてはリチウム金属酸化物が用いられ、負極活物質としては、リチウム金属、リチウム合金、結晶質または非晶質炭素または炭素複合体が用いられている。前記活物質を適した厚さと長さで集電体に塗布するか、または活物質自体をフィルム形状に塗布し、絶縁体である分離膜とともに巻き取るか積層して電極群を製作したあと、カンまたはこれと類似した容器に入れてから、電解液を注入して二次電池を製造する。   Lithium metal oxide is used as the positive electrode active material of the lithium secondary battery, and lithium metal, lithium alloy, crystalline or amorphous carbon, or carbon composite is used as the negative electrode active material. After the active material is applied to the current collector with a suitable thickness and length, or the active material itself is applied in the form of a film and wound or laminated with a separation membrane that is an insulator to produce an electrode group, A secondary battery is manufactured by injecting an electrolytic solution after placing it in a can or similar container.

従来、電気化学反応を利用した電池、電気二重層キャパシタなどの電気化学素子用電解質には、液体状態の電解質、特に非水系有機溶媒に塩を溶解したイオン伝導性有機液体電解質が主に用いられてきた。   Conventionally, electrolytes for electrochemical devices such as batteries using electrochemical reactions and electric double layer capacitors have mainly been liquid electrolytes, especially ion-conducting organic liquid electrolytes in which a salt is dissolved in a non-aqueous organic solvent. I came.

しかし、このように液体状態の電解質を用いれば、電極物質が劣化して有機溶媒が揮発される可能性が大きいだけでなく、周辺の温度及び電池自体の温度の上昇による燃焼などの安全性の問題がある。特に、リチウム二次電池は、充放電を進めるとき、カーボネート有機溶媒の分解及び/または有機溶媒と電極との副反応によって電池の内部にガスが発生し、電池の厚さを膨張させるという問題点があり、高温保存の際はこのような反応が加速化されてガスの発生量がさらに増加することになる。   However, if the electrolyte in the liquid state is used in this way, there is a high possibility that the electrode material is deteriorated and the organic solvent is volatilized, as well as safety such as combustion due to an increase in the ambient temperature and the battery itself. There's a problem. In particular, when the lithium secondary battery is charged and discharged, gas is generated inside the battery due to decomposition of the carbonate organic solvent and / or side reaction between the organic solvent and the electrode, thereby expanding the thickness of the battery. In the case of high temperature storage, such a reaction is accelerated and the amount of generated gas is further increased.

このように持続的に発生したガスは、電池の内圧の増加を誘発させて角形電池が特定の方向に膨れ上がるなど、電池の特定の面の中心部が変形される現象をもたらすだけでなく、電池内の電極面での密着性で局所的な差異を発生させて、電極反応が全体の電極面で同様に起こることができない問題を引き起こす。したがって、電池の性能と安全性の低下が必ず招来されることになる。   The gas generated continuously in this way not only causes a phenomenon in which the central part of a specific surface of the battery is deformed, such as causing an increase in the internal pressure of the battery and causing the rectangular battery to swell in a specific direction. Local differences occur in the adhesion at the electrode surface in the battery, causing the problem that the electrode reaction cannot occur on the entire electrode surface as well. Therefore, the performance and safety of the battery are necessarily reduced.

一般に、電池の安全性は、液体電解質<ゲルポリマー電解質<固体高分子電解質の順で向上されるが、これに反して電池の性能は減少するものと知られている。このような劣等な電池の性能により、未だに固体高分子電解質を採用した電池等は商業化されていないものと知られている。   In general, the safety of a battery is improved in the order of liquid electrolyte <gel polymer electrolyte <solid polymer electrolyte, but it is known that the performance of the battery decreases on the contrary. Due to such inferior battery performance, it has been known that batteries using solid polymer electrolytes have not yet been commercialized.

本発明の解決しようとする課題は、混合化合物を電解液に含むことにより、電池の寿命を向上させることができるだけでなく、電池の容量特性を向上させることができるゲルポリマー電解質用組成物、及びこれを含むリチウム二次電池を提供することである。   The problem to be solved by the present invention is that a composition for a gel polymer electrolyte that can not only improve the life of a battery but also improve the capacity characteristics of the battery by including a mixed compound in the electrolytic solution, and A lithium secondary battery including the same is provided.

前記のような目的を達成するため、本発明は、電解液溶媒、リチウム塩、重合開始剤、及び第1化合物と第2化合物の混合化合物を含むゲルポリマー電解質用組成物を提供する。   In order to achieve the above object, the present invention provides a composition for a gel polymer electrolyte comprising an electrolyte solvent, a lithium salt, a polymerization initiator, and a mixed compound of a first compound and a second compound.

前記第1化合物は、作用基としてポリエチレングリコールを含むアミン系化合物であってよく、前記第2化合物はエポキシ系化合物であってよい。   The first compound may be an amine compound containing polyethylene glycol as a functional group, and the second compound may be an epoxy compound.

さらに、本発明は、正極、負極、分離膜、及びゲルポリマー電解質を含むリチウム二次電池であって、前記ゲルポリマー電解質は前記ゲルポリマー電解質用組成物を重合させて形成されたリチウム二次電池を提供する。   Furthermore, the present invention is a lithium secondary battery including a positive electrode, a negative electrode, a separation membrane, and a gel polymer electrolyte, wherein the gel polymer electrolyte is formed by polymerizing the composition for gel polymer electrolyte. I will provide a.

前記ゲルポリマー電解質は、以下の化学式(1)及び(2)で表されるオリゴマーを含むものであってよい。   The gel polymer electrolyte may include an oligomer represented by the following chemical formulas (1) and (2).

ここで、前記n、mはそれぞれ1から20の整数であり、前記RからRは、それぞれ独立して水素、または−CO(CHCOO−(CHCHO)x−CHであるものであり、xは1から100の整数であり、前記RからRのうち少なくとも3以上は−CO(CHCOO−(CHCHO)−CHである。 Here, n and m are each an integer of 1 to 20, and R 1 to R 5 are independently hydrogen or —CO (CH 2 ) 3 COO— (CH 2 CH 2 O) x —. CH 3 , x is an integer of 1 to 100, and at least three of the R 1 to R 5 are —CO (CH 2 ) 3 COO— (CH 2 CH 2 O) X —CH 3. It is.

ここで、前記aは1から100の整数である。   Here, the a is an integer from 1 to 100.

本発明のゲルポリマー電解質用組成物は、第1化合物は作用基としてポリエチレングリコールを含むアミン系化合物、及び第2化合物はエポキシ系化合物である第1化合物と第2化合物の混合化合物を含むことにより、リチウム二次電池に適用する場合、ホッピング現象を容易に誘導することで、電池の寿命を向上させることができるだけでなく、優れた高温保存性を発揮し、電池の容量特性を向上させることができる。   In the composition for gel polymer electrolyte of the present invention, the first compound contains an amine compound containing polyethylene glycol as a functional group, and the second compound contains an epoxy compound and a mixed compound of the first compound and the second compound. When applied to lithium secondary batteries, the hopping phenomenon can be easily induced to not only improve battery life, but also exhibit excellent high-temperature storage and improve battery capacity characteristics. it can.

ゲルポリマー電解質用組成物を用いた場合のリチウムイオンの移動原理を示した図である。It is the figure which showed the movement principle of the lithium ion at the time of using the composition for gel polymer electrolytes. 実施例5から7で製造された二次電池の高温保管後の厚さ増加の程度を示したグラフである。6 is a graph showing the degree of increase in thickness after storage at high temperatures of the secondary batteries manufactured in Examples 5 to 7.

以下、本発明に対する理解を助けるため、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail to facilitate understanding of the present invention.

本明細書及び特許請求の範囲に用いられた用語や単語は、通常的や辞書的な意味に限定して解釈されてはならず、発明者は自身の発明を最良の方法で説明するために用語の概念を適宜定義することができるという原則に即し、本発明の技術的思想に適合する意味と概念として解釈されなければならない。   Terms and words used in this specification and claims should not be construed as limited to ordinary or lexicographic meanings, and the inventor should describe his invention in the best possible manner. In accordance with the principle that the term concept can be defined as appropriate, it should be interpreted as a meaning and concept that conforms to the technical idea of the present invention.

本発明の一実施形態に係るゲルポリマー電解質用組成物は、電解液溶媒、リチウム塩、重合開始剤、及び第1化合物と第2化合物の混合化合物を含み、前記第1化合物は作用基としてポリエチレングリコールを含むアミン系化合物であってよく、前記第2化合物はエポキシ系化合物であってよい。   The gel polymer electrolyte composition according to an embodiment of the present invention includes an electrolyte solution solvent, a lithium salt, a polymerization initiator, and a mixed compound of a first compound and a second compound, and the first compound is polyethylene as a functional group. It may be an amine compound containing glycol, and the second compound may be an epoxy compound.

前記第1化合物は、具体的にエチレングリコールが含まれているポリイミンであってよく、例えば、ポリ(エチレンイミン)−グラフト−ポリ(エチレングリコール)(PEI−PEG)などが適用されてよい。また、前記第2化合物は、二つ以上のエポキシグループを有するポリエチレングリコールであってよく、例えば、ポリエチレンジグリシジルエーテルなどが適用されてよい。   The first compound may be a polyimine specifically containing ethylene glycol, and for example, poly (ethyleneimine) -graft-poly (ethylene glycol) (PEI-PEG) may be applied. The second compound may be polyethylene glycol having two or more epoxy groups, and for example, polyethylene diglycidyl ether may be applied.

本発明の一実施形態によれば、前記第1化合物に含まれているポリエチレングリコール作用基が化合物に含まれていることにより、ゲルポリマー電解質用組成物に対する溶解度が増加し、ゲルポリマー電解質内のゲル構造上に安定的に固定されて存在できるようにし、エポキシ系化合物を含む第2化合物が混合されることにより、後述する図1のホッピング現象を一層容易に行うことができるようにして、重合反応で生成されるゲルポリマー電解質のイオン移動度を高めて出力特性を向上させることができる。   According to one embodiment of the present invention, since the polyethylene glycol functional group contained in the first compound is contained in the compound, the solubility in the composition for gel polymer electrolyte is increased, By allowing the second compound containing the epoxy compound to be stably fixed and existing on the gel structure, the hopping phenomenon of FIG. The ion mobility of the gel polymer electrolyte produced by the reaction can be increased to improve the output characteristics.

前記第1化合物は、前記ゲルポリマー電解質用組成物の総重量に対し、1から15重量%、具体的に3から12重量%、さらに具体的に4から10重量%の量で含まれてよい。   The first compound may be included in an amount of 1 to 15 wt%, specifically 3 to 12 wt%, more specifically 4 to 10 wt%, based on the total weight of the gel polymer electrolyte composition. .

前記第1化合物が、前記ゲルポリマー電解質用組成物の総重量に対して1重量%以上含まれる場合、ゲルポリマー電解質用組成物のゲル化が一層円滑に行われ、高温保存特性が向上されて高温保存の際に電池の厚さ増加を減少させることができ、その含量が、具体的に3重量%、さらに具体的に4重量%の場合にその傾向がさらに目立つ。さらに、前記第1化合物が前記ゲルポリマー電解質用組成物の総重量に対して15重量%以下で含まれる場合、前記のところのようなゲル化及び高温保存特性の向上の効果を奏するとともに、過量含有による電池の抵抗の増加を防止することができる。   When the first compound is contained in an amount of 1% by weight or more based on the total weight of the gel polymer electrolyte composition, gelation of the gel polymer electrolyte composition is performed more smoothly, and high temperature storage characteristics are improved. The increase in thickness of the battery during storage at high temperatures can be reduced, and this tendency becomes more conspicuous when the content is specifically 3% by weight, more specifically 4% by weight. Further, when the first compound is contained in an amount of 15% by weight or less based on the total weight of the composition for gel polymer electrolyte, the gelation and the high temperature storage characteristics as described above can be obtained, and the excess amount An increase in battery resistance due to inclusion can be prevented.

前記第1化合物と第2化合物は、重量比として1:0.2から0.6であってよく、具体的に1:0.25から0.5であってよい。   The first compound and the second compound may have a weight ratio of 1: 0.2 to 0.6, specifically 1: 0.25 to 0.5.

前記第1化合物と第2化合物が1:0.2から0.6の重量比を満す場合、ゲルポリマー電解質用組成物のゲル化が一層円滑に行われ、高温保存特性が向上されて高温保存の際に電池の厚さ増加を減少させることができ、ホッピング現象が一層容易に行われて、重合反応で生成されるゲルポリマー電解質のイオン移動度が高くなることにより出力特性が向上され得る。   When the first compound and the second compound satisfy a weight ratio of 1: 0.2 to 0.6, the gel polymer electrolyte composition is more smoothly gelled, and the high-temperature storage characteristics are improved. The battery thickness increase during storage can be reduced, the hopping phenomenon can be performed more easily, and the output characteristics can be improved by increasing the ion mobility of the gel polymer electrolyte produced by the polymerization reaction .

さらに、本発明の一実施形態によれば、前記ゲルポリマー電解質用組成物に前記混合化合物を含む場合、正極から溶出された金属イオンが負極から析出される一般電解液を用いた場合とは異なり、正極から溶出された金属イオンが前記混合化合物と結合して負極から金属が析出されることを軽減させることができる。こういうわけで、リチウム二次電池の充放電効率を向上させることができ、良好なサイクル特性を表すことができる。それだけでなく、前記作用基を有するモノマーを含むゲルポリマー電解質用組成物をリチウム二次電池に適用する場合、漏液の危険性が少なく難燃特性を有するので、電池の安定性を向上させることができる。   Furthermore, according to one embodiment of the present invention, when the mixed compound is included in the composition for gel polymer electrolyte, unlike the case of using a general electrolytic solution in which metal ions eluted from the positive electrode are deposited from the negative electrode. The metal ions eluted from the positive electrode can be combined with the mixed compound to reduce the precipitation of metal from the negative electrode. For this reason, the charge / discharge efficiency of the lithium secondary battery can be improved, and good cycle characteristics can be expressed. In addition, when a composition for a gel polymer electrolyte containing a monomer having a functional group is applied to a lithium secondary battery, the risk of leakage is small and the flame retardancy is improved, thereby improving the stability of the battery. Can do.

前記第1化合物及び第2化合物の混合化合物は、ゲルポリマー電解質用組成物の総重量に対して0.1重量%から10重量%、好ましくは0.5重量%から5重量%であってよい。0.1重量%未満であれば、ゲル化され難いためゲルポリマー電解質の特性が発現され難いことがあり、10重量%を超過すれば、モノマーの過量含有によって抵抗が増加するので、電池の性能が低下し得る。   The mixed compound of the first compound and the second compound may be 0.1 wt% to 10 wt%, preferably 0.5 wt% to 5 wt%, based on the total weight of the gel polymer electrolyte composition. . If the amount is less than 0.1% by weight, the gel polymer electrolyte characteristics may not be expressed because it is difficult to be gelled. If the amount exceeds 10% by weight, the resistance increases due to the excessive monomer content. Can be reduced.

本発明の一実施形態によれば、前記第1化合物及び第2化合物を混合し、30℃から100℃の温度範囲で2分から12時間の間反応して重合性モノマーを製造することができる。このとき、作用基を有するモノマーと分枝型モノマーの含量比は、例えば、1:18から1:75の重量比であってよいが、これに限定されるものではない。   According to an embodiment of the present invention, the first compound and the second compound may be mixed and reacted in a temperature range of 30 ° C. to 100 ° C. for 2 minutes to 12 hours to produce a polymerizable monomer. At this time, the content ratio of the monomer having a functional group and the branched monomer may be, for example, a weight ratio of 1:18 to 1:75, but is not limited thereto.

このようなゲルポリマー電解質では、リチウムイオンの大きさが小さいため直接的な移動が相対的に容易であるだけでなく、図1に示す通り、電解液内でホッピング(hopping)現象で移動し易い。   In such a gel polymer electrolyte, not only the direct movement is relatively easy due to the small size of the lithium ions, but also the hopping phenomenon easily moves in the electrolyte as shown in FIG. .

本発明の一実施形態に係る電解質用組成物に含まれる前記イオン化可能なリチウム塩は、例えば、LiPF、LiBF、LiSbF、LiAsF、LiClO、LiN(CSO、LiN(CFSO、CFSOLi、LiC(CFSO及びLiCBOからなる群より選択されるいずれか一つまたはこれらのうち2種以上の混合物であってよく、これに限定されるものではない。 Examples of the ionizable lithium salt included in the electrolyte composition according to the embodiment of the present invention include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , and LiN (C 2 F 5 SO 2 ) 2. Any one selected from the group consisting of LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 and LiC 4 BO 8, or a mixture of two or more thereof There may be, but it is not limited to this.

さらに、本発明の一実施形態に基づいて用いられる電解液溶媒には、リチウム二次電池用電解液に通常用いられるものらを制限なく用いることができ、例えば、エーテル、エステル、アミド、線形カーボネートまたは環状カーボネートなどを、それぞれ単独にまたは2種以上を混合して用いることができる。   Furthermore, as the electrolyte solution solvent used in accordance with one embodiment of the present invention, those commonly used in electrolyte solutions for lithium secondary batteries can be used without limitation, for example, ethers, esters, amides, linear carbonates. Or cyclic carbonate etc. can be used individually or in mixture of 2 or more types, respectively.

その中でも代表的に、環状カーボネート、線形カーボネートまたはこれらの混合物であるカーボネート化合物を含むことができる。   Among them, typically, a carbonate compound which is a cyclic carbonate, a linear carbonate, or a mixture thereof can be included.

前記環状カーボネート化合物の具体的な例には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2−ブチレンカーボネート、2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、2,3−ペンチレンカーボネート、ビニレンカーボネート、及びこれらのハロゲン化物からなる群より選択されるいずれか一つまたはこれらのうち2種以上の混合物を挙げることができる。さらに、前記線形カーボネート化合物の具体的な例には、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)及びエチルプロピルカーボネート(EPC)からなる群より選択されるいずれか一つまたはこれらのうち2種以上の混合物などが代表的に用いられ得るが、これに限定されるものではない。   Specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3- Examples thereof include any one selected from the group consisting of pentylene carbonate, vinylene carbonate, and halides thereof, or a mixture of two or more thereof. Furthermore, specific examples of the linear carbonate compound include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), and ethyl propyl carbonate. Any one selected from the group consisting of (EPC) or a mixture of two or more of these may be used as a representative, but is not limited thereto.

特に、前記カーボネート系電解液溶媒のうち、環状カーボネートであるプロピレンカーボネート及びエチレンカーボネートは、高粘度の有機溶媒として誘電率が高いため、電解液内のリチウム塩をよく解離させるので好ましく使用可能であり、このような環状カーボネートにエチルメチルカーボネート、ジエチルカーボネートまたはジメチルカーボネートのような低粘度、低誘電率線形カーボネートを好適な割合で混合して用いれば、高い電気伝導率を有する電解液を製造することができるので、さらに好ましく使用可能である。   Particularly, among the carbonate-based electrolyte solvents, propylene carbonate and ethylene carbonate, which are cyclic carbonates, have high dielectric constants as high-viscosity organic solvents, and can be preferably used because they dissociate lithium salts in the electrolyte well. If a low viscosity, low dielectric constant linear carbonate such as ethyl methyl carbonate, diethyl carbonate or dimethyl carbonate is mixed in a suitable ratio and used in such a cyclic carbonate, an electrolyte having high electrical conductivity can be produced. Can be used more preferably.

さらに、前記電解液溶媒のうち、エステルにはメチルアセテート、エチルアセテート、プロピルアセテート、メチルプロピオネート、エチルプロピオネート、γ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、α−バレロラクトン及びε−カプロラクトンからなる群より選択されるいずれか一つまたはこれらのうち2種以上の混合物を用いることができるが、これに限定されるものではない。   Further, among the electrolyte solvents, esters include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, γ-valerolactone, γ-caprolactone, α-valerolactone and ε. -Any one selected from the group consisting of caprolactone or a mixture of two or more thereof can be used, but is not limited thereto.

本発明において、重合開始剤は、当業界に知られている通常の重合開始剤が用いられてよい。   In the present invention, a usual polymerization initiator known in the art may be used as the polymerization initiator.

前記重合開始剤の非制限的な例には、ベンゾイルペルオキシド(benzoyl peroxide)、アセチルペルオキシド(acetyl peroxide)、ジラウリルペルオキシド(dilauryl peroxide)、ジ−tert−ブチルペルオキシド(di−tert−butyl peroxide)、t−ブチルペルオキシ−2−エチル−ヘキサノエート(t−butyl peroxy−2−ethyl−hexanoate)、クミルヒドロペルオキシド(cumyl hydroperoxide)及びヒドロゲンペルオキシド(hydrogen peroxide)などの有機過酸化物類やヒドロ過酸化物類と2,2’−アゾビス(2−シアノブタン)、2,2’−アゾビス(メチルブチロニトリル)、AIBN(2,2’−Azobis(iso−butyronitrile))及びAMVN(2,2’−Azobisdimethyl−Valeronitrile)などのアゾ化合物類などがあるが、これに限定されない。   Non-limiting examples of the polymerization initiator include benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide, Organic peroxides and hydroperoxides such as t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide and hydrogen peroxide 2,2′-azobis (2-cyanobutane), 2,2′-azobis (methylbutyronitrile), AI N (2,2'-Azobis (iso-butyronitrile)) and AMVN (2,2'-Azobisdimethyl-Valeronitrile) there are such azo compounds such as, but not limited to.

前記重合開始剤は、電池内で熱、非制限的な例として30℃から100℃の熱によって分解されるか常温(5℃から30℃)で分解されてラジカルを形成し、自由ラジカル重合により重合性モノマーと反応してゲルポリマー電解質を形成することができる。   The polymerization initiator is decomposed by heat in the battery, as a non-limiting example, from 30 ° C. to 100 ° C. or decomposed at normal temperature (5 ° C. to 30 ° C.) to form radicals, and by free radical polymerization It can react with the polymerizable monomer to form a gel polymer electrolyte.

さらに、前記重合開始剤は、ゲルポリマー電解質用組成物の総重量に対して0.01重量%から2重量%の量で用いられてよい。重合開始剤が2重量%を超過すれば、ゲルポリマー電解質用組成物を電池内に注液する途中でゲル化があまりにも早く起こるか未反応開始剤が残って、後で電池の性能に悪影響を及ぼすとの欠点があり、逆に重合開始剤が0.01重量%未満であれば、ゲル化が十分に行われない問題がある。   Further, the polymerization initiator may be used in an amount of 0.01 wt% to 2 wt% based on the total weight of the composition for gel polymer electrolyte. If the polymerization initiator exceeds 2% by weight, gelation will occur too early during the injection of the gel polymer electrolyte composition into the battery, or unreacted initiator will remain, which will adversely affect the performance of the battery later. On the contrary, if the polymerization initiator is less than 0.01% by weight, there is a problem that gelation is not sufficiently performed.

本発明の一実施形態に係るゲルポリマー電解質用組成物は、前記記載の成分等以外に、当業界に知られているその他の添加剤などを選択的に含有することができる。   The composition for gel polymer electrolyte which concerns on one Embodiment of this invention can selectively contain the other additive etc. which are known in this industry besides the above-mentioned component.

本発明の一実施形態によれば、正極;負極;分離膜;及びゲルポリマー電解質を含むリチウム二次電池において、前記ゲルポリマー電解質は、前記ゲルポリマー電解質用組成物を重合させて形成されていることを特徴とするリチウム二次電池を提供する。本発明の一実施形態に係るゲルポリマー電解質は、当業界に知られている通常の方法に従い、ゲルポリマー電解質用組成物を重合させて形成されているものであってよい。例えば、ゲルポリマー電解質は、二次電池の内部で前記ゲルポリマー電解質用組成物をin−situ重合して形成されてよい。   According to one embodiment of the present invention, in a lithium secondary battery including a positive electrode; a negative electrode; a separation membrane; and a gel polymer electrolyte, the gel polymer electrolyte is formed by polymerizing the composition for gel polymer electrolyte. A lithium secondary battery is provided. The gel polymer electrolyte according to one embodiment of the present invention may be formed by polymerizing a composition for gel polymer electrolyte according to a conventional method known in the art. For example, the gel polymer electrolyte may be formed by in-situ polymerization of the gel polymer electrolyte composition inside a secondary battery.

より好ましい一実施形態を挙げると、(a)正極、負極、及び前記正極と負極の間に介在されている分離膜からなる電極組立体を電池ケースに挿入する段階、及び(b)前記電池ケースに本発明に係るゲルポリマー電解質用組成物を注入したあと重合させてゲルポリマー電解質を形成する段階を含むことができる。   In a more preferred embodiment, (a) a step of inserting an electrode assembly comprising a positive electrode, a negative electrode, and a separation membrane interposed between the positive electrode and the negative electrode into a battery case; and (b) the battery case. The step of injecting the composition for gel polymer electrolyte according to the present invention and then polymerizing the composition may form a gel polymer electrolyte.

リチウム二次電池内のin−situ重合反応は、熱重合を介して進められてよい。このとき、重合時間は大凡2分から12時間程度必要となり、熱重合温度は30から100℃となり得る。   The in-situ polymerization reaction in the lithium secondary battery may proceed via thermal polymerization. At this time, a polymerization time of about 2 minutes to 12 hours is required, and a thermal polymerization temperature can be 30 to 100 ° C.

このような重合反応によるゲル化を経ることになると、ゲルポリマー電解質が形成される。具体的には、重合性モノマーが重合反応によって互いに架橋されたオリゴマーが形成され、電解質塩が電解液溶媒に解離された液体電解液が前記形成されたオリゴマー内に均一に含浸され得る。   When gelation is caused by such a polymerization reaction, a gel polymer electrolyte is formed. Specifically, an oligomer in which polymerizable monomers are cross-linked with each other by a polymerization reaction is formed, and a liquid electrolyte solution in which an electrolyte salt is dissociated in an electrolyte solution solvent can be uniformly impregnated in the formed oligomer.

本発明の一実施形態に係る前記オリゴマーは、下記化学式(1)及び(2)で表されるオリゴマーの混合された形態であってよい。   The oligomer according to an embodiment of the present invention may be a mixed form of oligomers represented by the following chemical formulas (1) and (2).

ここで、前記n、mはそれぞれ1から20の整数であり、前記RからRは、それぞれ独立して水素、または−CO(CHCOO−(CHCHO)x−CHであるものであり、xは1から100の整数であり、前記RからRのうち少なくとも3以上は−CO(CHCOO−(CHCHO)−CHである。 Here, n and m are each an integer of 1 to 20, and R 1 to R 5 are independently hydrogen or —CO (CH 2 ) 3 COO— (CH 2 CH 2 O) x —. CH 3 , x is an integer of 1 to 100, and at least three of the R 1 to R 5 are —CO (CH 2 ) 3 COO— (CH 2 CH 2 O) X —CH 3. It is.

ここで、前記aは1から100の整数である。   Here, the a is an integer from 1 to 100.

本発明の一実施形態に係る前記リチウム二次電池は、充電電圧が3.0Vから5.0Vの範囲であって、一般電圧及び高電圧領域の全てでリチウム二次電池の容量特性に優れる。   The lithium secondary battery according to an embodiment of the present invention has a charging voltage in the range of 3.0 V to 5.0 V, and is excellent in capacity characteristics of the lithium secondary battery in all of the general voltage and high voltage regions.

本発明の一実施形態によれば、前記リチウム二次電池の電極は、当分野に知られている通常の方法で製造することができる。例えば、電極活物質に溶媒、必要に応じてバインダ、導電材、分散剤を混合及び撹拌してスラリーを製造したあと、これを金属材料の集電体に塗布(コーティング)し圧縮してから、乾燥して電極を製造することができる。   According to an embodiment of the present invention, the electrode of the lithium secondary battery can be manufactured by a conventional method known in the art. For example, a slurry is prepared by mixing and stirring a solvent, if necessary, a binder, a conductive material, and a dispersing agent to the electrode active material, and then applying (coating) and compressing this onto a current collector of a metal material, The electrode can be manufactured by drying.

本発明の一実施形態によれば、前記正極において、正極活物質は一般電圧または高電圧に適用することができ、リチウムを可逆的にインターカレーション/ジインターカレーションできる化合物であれば制限なく使用可能である。   According to an embodiment of the present invention, in the positive electrode, the positive electrode active material can be applied to a general voltage or a high voltage, and can be any compound that can reversibly intercalate / diintercalate lithium. It can be used.

本発明の一実施形態に係るリチウム二次電池において、一般電圧に適用可能な正極活物質は、例えば、LiCoO、LiNiO、LiMnO、LiMn、LiNi1−yCo(O=y<1)、LiCo1−yMn(O=y<1)、LiNi1−yMn(O=y<1)及びLi[NiCoMn]O(0<a、b、c=1、a+b+c=1)からなる群より選択されるいずれか一つまたはこれらのうち2種以上の混合物を含むことができ、これらに限定されるものではない。さらに、このような酸化物(oxide)以外に硫化物(sulfide)、セレン化物(selenide)及びハロゲン化物(halide)なども含まれ得る。 In the lithium secondary battery according to the embodiment of the present invention, the positive electrode active material applicable to the general voltage is, for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiNi 1-y Co y O 2 ( O = y <1), LiCo 1-y Mn y O 2 (O = y <1), LiNi 1-y Mn y O 2 (O = y <1) and Li [Ni a Co b Mn c ] O 2 Any one selected from the group consisting of (0 <a, b, c = 1, a + b + c = 1) or a mixture of two or more thereof may be included, but is not limited thereto. Furthermore, in addition to such oxides, sulfides, selenides, halides, and the like may be included.

一方、本発明の一実施形態に係るリチウム二次電池において、前記負極活物質には、通常リチウムイオンが吸蔵及び放出可能な炭素材、リチウム金属、ケイ素または錫などを用いることができる。好ましくは炭素材を用いることができ、炭素材には低結晶炭素及び高結晶性炭素などが全て用いられ得る。低結晶性炭素には軟化炭素(soft carbon)及び硬化炭素(hard carbon)が代表的であり、高結晶性炭素には天然黒鉛、キッシュ黒鉛(Kish graphite)、熱分解炭素(pyrolytic carbon)、液晶ピッチ系炭素繊維(mesophase pitch based carbon fiber)、炭素微小球体(meso−carbon microbeads)、液晶ピッチ(Mesophase pitches)及び石油と石炭系コークス(petroleum or coal tar pitch derived cokes)などの高温焼成炭素が代表的である。   On the other hand, in the lithium secondary battery according to an embodiment of the present invention, a carbon material, lithium metal, silicon, tin, or the like that can normally store and release lithium ions can be used as the negative electrode active material. Preferably, a carbon material can be used, and all of low crystalline carbon and high crystalline carbon can be used as the carbon material. Typical examples of the low crystalline carbon include soft carbon and hard carbon. Examples of the high crystalline carbon include natural graphite, Kish graphite, pyrolytic carbon, and liquid crystal. Pitch-based carbon fibers (mesophase pitch based carbon fibers), carbon microspheres (meso-carbon microbeads), liquid crystal pitches (Mesophase pitches), and petroleum and coal-based coke (high temperature) Is.

前記正極及び/または負極は、バインダと溶媒、必要に応じて通常用いられ得る導電材と分散剤を混合及び撹拌してスラリーを製造したあと、これを集電体に塗布し圧縮して負極を製造することができる。   The positive electrode and / or negative electrode is prepared by mixing and stirring a binder, a solvent, and, if necessary, a conductive material and a dispersing agent that can be usually used, and stirring the slurry. Can be manufactured.

前記バインダには、ポリビニリデンフルオリド−ヘキサフルオロプロピレンコポリマー(PVDF−co−HEP)、ポリビニリデンフルオリド(polyvinylidenefluoride)、ポリアクリロニトリル(polyacrylonitrile)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、澱粉、ヒドロキシプロピルセルロース、再生セルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリアクリル酸、エチレン−プロピレン−ジエンモノマー(EPDM)、スルホン化EPDM、スチレンブチレンゴム(SBR)、フッ素ゴム、多様な共重合体などの多様な種類のバインダ高分子が用いられ得る。   Examples of the binder include polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, cellulose alcohol, polyvinyl MC, ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butylene rubber (SBR), fluororubber, Various types of buffers such as various copolymers Sunda polymer may be used.

さらに、分離膜には、従来に分離膜として用いられていた通常の多孔性高分子フィルム、例えば、エチレン単独重合体、プロピレン単独重合体、エチレン/ブテン共重合体、エチレン/ヘキセン共重合体及びエチレン/メタクリレート共重合体などのようなポリオレフィン系高分子で製造した多孔性高分子フィルムを単独でまたはこれらを積層して用いることができ、または通常の多孔性不織布、例えば、高融点のガラス繊維、ポリエチレンテレフタレート繊維などからなる不織布を用いることができるが、これに限定されるものではない。   Further, the separation membrane may be a conventional porous polymer film conventionally used as a separation membrane, for example, an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and Porous polymer films made of polyolefin polymers such as ethylene / methacrylate copolymers can be used alone or in layers, or ordinary porous nonwoven fabrics such as high melting glass fibers A nonwoven fabric made of polyethylene terephthalate fiber or the like can be used, but is not limited thereto.

本発明の一実施形態に係るリチウム二次電池の外形には特別な制限がないが、缶を用いた円筒形、角形、パウチ(pouch)型またはコイン(coin)型などとなり得る。   The external shape of the lithium secondary battery according to an embodiment of the present invention is not particularly limited, but may be a cylindrical shape using a can, a square shape, a pouch shape, a coin shape, or the like.

以下、本発明を具体的に説明するため、実施例を挙げて詳しく説明する。しかし、本発明に係る実施例は幾多の他の形態に変形されてよく、本発明の範囲が下記で詳述する実施例に限定されるものと解釈されてはならない。本発明の実施例は、当業界で平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。   Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention may be modified in many other forms, and the scope of the present invention should not be construed to be limited to the embodiments detailed below. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

実施例1:ゲルポリマー電解質用組成物の製造
エチレンカーボネート(EC):エチルメチルカーボネート(EMC)=1:2(体積比)の組成を有する非水電解液溶媒に、LiPFを1Mの濃度になるように溶解して電解液を準備した。前記電解液の重量を合算した電解質用組成物の総重量を基準に、重合開始剤としてt−ブチルペルオキシ−2−エチルヘキサノエート0.25重量%を添加し、第1化合物としてポリ(エチレンイミン)−グラフト−ポリ(エチレングリコール)(PEI−PEG)2重量%を添加したあと、第2化合物としてポリエチレングリコールジグリシジルエーテルを第1化合物を基準に1/3重量%の量で添加した。これにより、ゲルポリマー電解質用組成物を製造した。
Example 1 Production of Composition for Gel Polymer Electrolyte In a non-aqueous electrolyte solvent having a composition of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 2 (volume ratio), LiPF 6 was brought to a concentration of 1M. It melt | dissolved so that it might become and prepared the electrolyte solution. On the basis of the total weight of the electrolyte composition, the total weight of the electrolyte solution, 0.25% by weight of t-butylperoxy-2-ethylhexanoate is added as a polymerization initiator, and poly (ethylene) is used as the first compound. After adding 2% by weight of (imine) -graft-poly (ethylene glycol) (PEI-PEG), polyethylene glycol diglycidyl ether was added as a second compound in an amount of 1/3% by weight based on the first compound. Thereby, the composition for gel polymer electrolyte was manufactured.

実施例2:ゲルポリマー電解質用組成物の製造
前記実施例1で、第1化合物としてポリ(エチレンイミン)−グラフト−ポリ(エチレングリコール)(PEI−PEG)を5重量%の量で、第2化合物としてポリエチレングリコールジグリシジルエーテルを第1化合物を基準に1/3重量%の量で用いたことを除き、実施例1と同様の方法でゲルポリマー電解質用組成物を製造した。
Example 2 Production of Composition for Gel Polymer Electrolyte In Example 1, poly (ethyleneimine) -graft-poly (ethylene glycol) (PEI-PEG) was used as the first compound in an amount of 5% by weight. A gel polymer electrolyte composition was produced in the same manner as in Example 1 except that polyethylene glycol diglycidyl ether was used as a compound in an amount of 1/3 wt% based on the first compound.

実施例3:ゲルポリマー電解質用組成物の製造
前記実施例1で、第1化合物としてポリ(エチレンイミン)−グラフト−ポリ(エチレングリコール)(PEI−PEG)に代えてポリ(エチレンイミン)(PEI)を用いたことを除き、実施例1と同様の方法でゲルポリマー電解質用組成物を製造した。
Example 3 Production of Composition for Gel Polymer Electrolyte In Example 1, poly (ethyleneimine) (PEI) was used instead of poly (ethyleneimine) -graft-poly (ethylene glycol) (PEI-PEG) as the first compound. ) Was used in the same manner as in Example 1 to produce a gel polymer electrolyte composition.

実施例4:ゲルポリマー電解質用組成物の製造
前記実施例2で、第1化合物としてポリ(エチレンイミン)−グラフト−ポリ(エチレングリコール)(PEI−PEG)に代えてポリ(エチレンイミン)(PEI)を用いたことを除き、実施例2と同様の方法でゲルポリマー電解質用組成物を製造した。
Example 4 Production of Composition for Gel Polymer Electrolyte In Example 2, poly (ethyleneimine) (PEI) was used instead of poly (ethyleneimine) -graft-poly (ethylene glycol) (PEI-PEG) as the first compound. ) Was used in the same manner as in Example 2 to produce a gel polymer electrolyte composition.

実施例5:二次電池の製造
正極の製造
正極活物質としてLiCoO 94重量%、導電材としてカーボンブラック(carbon black)3重量%、バインダとしてPVdF 3重量%を溶媒であるN−メチル−2−ピロリドン(NMP)に添加して正極混合物スラリーを製造した。前記正極混合物スラリーを厚さが20um程度の正極集電体であるアルミニウム(Al)薄膜に塗布し、乾燥して正極を製造したあと、ロールプレス(roll press)を実施して正極を製造した。
Example 5: Production of secondary battery Production of positive electrode LiCoO 2 94% by weight as a positive electrode active material, carbon black 3% by weight as a conductive material, PVdF 3% by weight as a binder, N-methyl-2 as a solvent -Added to pyrrolidone (NMP) to produce a positive electrode mixture slurry. The positive electrode mixture slurry was applied to an aluminum (Al) thin film, which was a positive electrode current collector having a thickness of about 20 μm, and dried to produce a positive electrode. Then, a roll press was performed to produce a positive electrode.

負極の製造
負極活物質として炭素粉末、バインダとしてPVdF、導電材としてカーボンブラック(carbon black)をそれぞれ96重量%、3重量%及び1重量%にして溶媒であるNMPに添加し、負極混合物スラリーを製造した。前記負極混合物スラリーを厚さが10umの負極集電体である銅(Cu)薄膜に塗布し、乾燥して負極を製造したあと、ロールプレス(roll press)を実施して負極を製造した。
Manufacture of negative electrode Carbon powder as a negative electrode active material, PVdF as a binder, carbon black as a conductive material were added to NMP which is 96 wt%, 3 wt% and 1 wt% respectively, and added to NMP which is a solvent, and a negative electrode mixture slurry was prepared. Manufactured. The negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 μm, and dried to produce a negative electrode. Then, a roll press was performed to produce a negative electrode.

電池の製造
前記正極、負極及びポリプロピレン/ポリエチレン/ポリプロピレン(PP/PE/PP)3層からなる分離膜を利用して電池を組み立て、組み立てられた電池に前記実施例1で製造されたゲルポリマー電解質用組成物を注入したあと、80℃で2〜30分間加熱して二次電池を製造した。
Production of Battery A battery is assembled using a separation membrane comprising the positive electrode, the negative electrode, and three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), and the gel polymer electrolyte produced in Example 1 is assembled into the assembled battery. After injecting the composition, the secondary battery was manufactured by heating at 80 ° C. for 2 to 30 minutes.

実施例6から8:二次電池の製造
前記実施例5で、前記実施例1で製造されたゲルポリマー電解質用組成物に代えて、それぞれ前記実施例2から4で製造されたゲルポリマー電解質用組成物を用いたことを除き、前記実施例5と同様の方法でそれぞれ二次電池を製造した。
Examples 6 to 8: Production of Secondary Battery In Example 5, instead of the composition for gel polymer electrolyte produced in Example 1, the gel polymer electrolyte produced in Examples 2 to 4, respectively. Secondary batteries were manufactured in the same manner as in Example 5 except that the composition was used.

実験例1:ゲル電解質生成反応の比較
前記実施例1から4で製造されたゲルポリマー電解質用組成物を65℃で硬化させてゲル化(gelation)が行われるのかを観察し、その結果を下記表1に示した。
Experimental Example 1: Comparison of Gel Electrolyte Formation Reaction The gel polymer electrolyte composition produced in Examples 1 to 4 was cured at 65 ° C. to observe whether gelation was performed. It is shown in Table 1.

前記表1に示されているところのように、第1化合物としてポリ(エチレンイミン)−グラフト−ポリ(エチレングリコール)(PEI−PEG)を用い、第2化合物としてポリエチレングリコールジグリシジルエーテルを用いた混合化合物を含むゲルポリマー電解質用組成物は、前記第1化合物の含量が2重量%であり、第2化合物の含量が前記第1化合物を基準に1/3重量%である場合(実施例1)、及び前記第1化合物が5重量%であり、第2化合物の含量が前記第1化合物を基準に1/3重量%である場合のいずれも円滑にゲル化が行われた。一方、第1化合物としてポリ(エチレンイミン)(PEI)を用い、第2化合物としてポリエチレングリコールジグリシジルエーテルを用いた混合化合物を含むゲルポリマー電解質用組成物の場合は、前記第1化合物の含量が2重量%であり、第2化合物の含量が前記第1化合物を基準に1/3重量%である実施例3の場合は円滑にゲル化が行われたが、第1化合物が5重量%であり、第2化合物の含量が前記第1化合物を基準に1/3重量%である実施例4の場合はゲル化が行われなかった。   As shown in Table 1, poly (ethyleneimine) -graft-poly (ethylene glycol) (PEI-PEG) was used as the first compound, and polyethylene glycol diglycidyl ether was used as the second compound. In the composition for gel polymer electrolyte containing a mixed compound, the content of the first compound is 2% by weight, and the content of the second compound is 1/3% by weight based on the first compound (Example 1) ) And 5% by weight of the first compound, and when the content of the second compound is 1/3% by weight based on the first compound, gelation was smoothly performed. On the other hand, in the case of a composition for gel polymer electrolyte containing a mixed compound using poly (ethyleneimine) (PEI) as the first compound and polyethylene glycol diglycidyl ether as the second compound, the content of the first compound is In the case of Example 3 in which the content of the second compound is 1% by weight based on the first compound, gelation was smoothly performed, but the first compound was 5% by weight. In the case of Example 4 in which the content of the second compound was 1/3 wt% based on the first compound, gelation was not performed.

実験例2:二次電池の容量の評価
実施例5から7で製造されたそれぞれの二次電池を、0.1C(単位:mA/g)の速度(C−rate)で電圧が4.4Vになるまで充電させたあと、4.4Vの定電圧条件で電流が0.05Cになるまでさらに充電させた。以後、10分間休止(rest)した。引続き、前記各電池を0.3Cの速度で電圧が2.8Vになるまで放電させた。それぞれの放電容量を測定して結果を表2に示し、電解質のゲル化が行われていない実施例8の電池に対しては実験を進めなかった。
Experimental Example 2: Evaluation of Secondary Battery Capacity Each secondary battery manufactured in Examples 5 to 7 had a voltage of 4.4 V at a rate (C-rate) of 0.1 C (unit: mA / g). Then, the battery was further charged until the current became 0.05 C under a constant voltage condition of 4.4V. Thereafter, it was rested for 10 minutes. Subsequently, each battery was discharged at a rate of 0.3 C until the voltage reached 2.8V. Each discharge capacity was measured and the results are shown in Table 2. The experiment was not carried out on the battery of Example 8 in which the electrolyte was not gelled.

表2から確認できるところのように、第1化合物と第2化合物の混合化合物を含むゲルポリマー電解質用組成物を用いた二次電池は優れた容量特性を表し、特に第1化合物としてポリエチレングリコール作用基を含むアミン系化合物であるポリ(エチレンイミン)−グラフト−ポリ(エチレングリコール)(PEI−PEG)を含む場合(実施例5)は、ポリエチレングリコール作用基を含まないアミン系化合物であるポリ(エチレンイミン)(PEI)を含む場合(実施例7)に比べ、第1化合物及び第2化合物の含量が同一であるにもかかわらず、さらに優れた容量特性を表すことが分かった。   As can be confirmed from Table 2, the secondary battery using the composition for the gel polymer electrolyte containing the mixed compound of the first compound and the second compound exhibits excellent capacity characteristics, and particularly has a polyethylene glycol action as the first compound. When poly (ethyleneimine) -graft-poly (ethylene glycol) (PEI-PEG), which is an amine compound containing a group (Example 5), is a poly (ethylene compound containing no polyethylene glycol functional group) Compared to the case of containing ethyleneimine (PEI) (Example 7), it was found that even though the contents of the first compound and the second compound were the same, the capacity characteristics were further improved.

実験例3:高温保存特性の評価
実施例5から7で製造されたそれぞれの二次電池の厚さを測定したあと、前記それぞれの二次電池を温度60℃のチャンバに入れて3週間保管したあと、再度厚さを測定し、保管前の厚さと比べて計算したあと、その結果を図2に示した。
Experimental Example 3: Evaluation of high-temperature storage characteristics After measuring the thickness of each secondary battery manufactured in Examples 5 to 7, each secondary battery was placed in a chamber at a temperature of 60 ° C and stored for 3 weeks. Then, after measuring the thickness again and calculating it compared with the thickness before storage, the result is shown in FIG.

図2に示す通り、第1化合物としてポリエチレングリコール作用基を含むアミン系化合物であるポリ(エチレンイミン)−グラフト−ポリ(エチレングリコール)(PEI−PEG)を用いてゲル化させた二次電池(実施例6)の場合、ポリエチレングリコール作用基を含まないアミン系化合物であるポリ(エチレンイミン)(PEI)を用いてゲル化させた二次電池(実施例7)に比べ、高温保存の際に厚さの増加量が減少して優れた高温保存性能を表した。   As shown in FIG. 2, a secondary battery gelled using poly (ethyleneimine) -graft-poly (ethylene glycol) (PEI-PEG), which is an amine-based compound containing a polyethylene glycol functional group, as the first compound ( In the case of Example 6), compared with the secondary battery (Example 7) gelled using poly (ethyleneimine) (PEI), which is an amine compound that does not contain a polyethylene glycol functional group, at the time of high temperature storage. The increase in thickness decreased, indicating excellent high-temperature storage performance.

Claims (13)

電解液溶媒、リチウム塩、重合開始剤;及び第1化合物と第2化合物の混合化合物を含むゲルポリマー電解質用組成物。   A composition for a gel polymer electrolyte, comprising: an electrolyte solution solvent, a lithium salt, a polymerization initiator; and a mixed compound of a first compound and a second compound. 前記第1化合物は、作用基としてポリエチレングリコールを含むアミン系化合物である請求項1に記載のゲルポリマー電解質用組成物。   The composition for a gel polymer electrolyte according to claim 1, wherein the first compound is an amine compound containing polyethylene glycol as a functional group. 前記第2化合物は、エポキシ系化合物である請求項1に記載のゲルポリマー電解質用組成物。   The composition for a gel polymer electrolyte according to claim 1, wherein the second compound is an epoxy compound. 前記混合化合物は、組成物の総重量に対して0.1重量%から10重量%の量で含まれている請求項1に記載のゲルポリマー電解質用組成物。   The composition for a gel polymer electrolyte according to claim 1, wherein the mixed compound is contained in an amount of 0.1 wt% to 10 wt% based on the total weight of the composition. 前記第1化合物と第2化合物は、重量比として1:0.2から0.6である請求項1に記載のゲルポリマー電解質用組成物。   The composition for a gel polymer electrolyte according to claim 1, wherein the first compound and the second compound have a weight ratio of 1: 0.2 to 0.6. 前記リチウム塩は、LiPF、LiBF、LiSbF、LiAsF、LiClO、LiN(CSO、LiN(CFSO、CFSOLi、LiC(CFSO及びLiCBOからなる群より選択されるいずれか一つまたはこれらのうち2種以上の混合物である請求項1に記載のゲルポリマー電解質用組成物。 The lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2, CF 3 SO 3 Li, LiC (CF 3 SO 2) 3 and any one selected from the group consisting of LiC 4 BO 8 or gel polymer electrolyte composition according to claim 1 which is a mixture of two or more of these. 前記電解液溶媒は、線形カーボネート、環状カーボネートまたはこれらの組み合わせである請求項1に記載のゲルポリマー電解質用組成物。   The composition for gel polymer electrolyte according to claim 1, wherein the electrolyte solvent is linear carbonate, cyclic carbonate, or a combination thereof. 前記線形カーボネートは、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート及びエチルプロピルカーボネートからなる群より選択されるいずれか一つまたはこれらのうち2種以上の混合物を含み、前記環状カーボネートは、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、2,3−ペンチレンカーボネート、ビニレンカーボネート、及びこれらのハロゲン化物からなる群より選択されるいずれか一つまたはこれらのうち2種以上の混合物を含む請求項7に記載のゲルポリマー電解質用組成物。   The linear carbonate includes any one selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, and ethyl propyl carbonate, or a mixture of two or more thereof. The cyclic carbonate is composed of ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, and halides thereof. The composition for gel polymer electrolyte according to claim 7, comprising any one selected from the group or a mixture of two or more thereof. 前記重合開始剤は、ベンゾイルペルオキシド(benzoyl peroxide)、アセチルペルオキシド(acetyl peroxide)、ジラウリルペルオキシド(dilauryl peroxide)、ジ−tert−ブチルペルオキシド(di−tert−butyl peroxide)、t−ブチルペルオキシ−2−エチル−ヘキサノエート(t−butyl peroxy−2−ethyl−hexanoate)、クミルヒドロペルオキシド(cumyl hydroperoxide)及びヒドロゲンペルオキシド(hydrogen peroxide)などの有機過酸化物類;ヒドロ過酸化物類と2,2’−アゾビス(2−シアノブタン)、2,2’−アゾビス(メチルブチロニトリル)、AIBN(2,2’−Azobis(iso−butyronitrile))及びAMVN(2,2’−Azobisdimethyl−Valeronitrile)などのアゾ化合物類からなる群より選択される1種以上である請求項1に記載のゲルポリマー電解質用組成物。   Examples of the polymerization initiator include benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide, and t-butyl peroxide. Organic peroxides such as ethyl-hexanoate, cumyl hydroperoxide, and hydrogen peroxide; 2,2 ′ hydroperoxides -Azobis (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), AIBN (2,2'- zobis (iso-butyronitrile)) and AMVN (2,2'-Azobisdimethyl-Valeronitrile) at least one selected from the group consisting of azo compounds gel polymer electrolyte composition according to claim 1, such as. 正極;負極;分離膜;及びゲルポリマー電解質を含むリチウム二次電池であって、
前記ゲルポリマー電解質は、請求項1に記載のゲルポリマー電解質用組成物を重合させて形成されているものであるリチウム二次電池。
A lithium secondary battery including a positive electrode; a negative electrode; a separation membrane; and a gel polymer electrolyte,
The said lithium polymer battery is a lithium secondary battery formed by polymerizing the composition for gel polymer electrolytes of Claim 1.
前記ゲルポリマー電解質は、以下の化学式(1)及び(2)で表されるオリゴマーを含む請求項10に記載のリチウム二次電池。
(ここで、前記n、mはそれぞれ1から20の整数であり、前記RからRは、それぞれ独立して水素、または−CO(CHCOO−(CHCHO)x−CHであるものであり、xは1から100の整数であり、前記RからRのうち少なくとも3以上は−CO(CHCOO−(CHCHO)−CHである。)
(ここで、前記aは1から100の整数である。)
The lithium secondary battery according to claim 10, wherein the gel polymer electrolyte includes an oligomer represented by the following chemical formulas (1) and (2).
(Where n and m are each an integer of 1 to 20, and R 1 to R 5 are each independently hydrogen or —CO (CH 2 ) 3 COO— (CH 2 CH 2 O) x. —CH 3 , x is an integer of 1 to 100, and at least three of R 1 to R 5 are —CO (CH 2 ) 3 COO— (CH 2 CH 2 O) X —CH. 3 )
(Here, a is an integer from 1 to 100.)
前記リチウム二次電池の充電電圧は、3.0Vから5.0Vである請求項10に記載のリチウム二次電池。   The lithium secondary battery according to claim 10, wherein a charge voltage of the lithium secondary battery is 3.0V to 5.0V. 前記正極は正極活物質を含み、前記正極活物質は、LiCoO、LiNiO、LiMnO、LiMn、LiNi1−yCo(O=y<1)、LiCo1−yMn(O=y<1)、LiNi1−yMn(O=y<1)及びLi[NiCoMn]O(0<a、b、c=1、a+b+c=1)からなる群より選択されるいずれか一つまたはこれらのうち2種以上の混合物である請求項10に記載のリチウム二次電池。 The positive electrode includes a positive electrode active material, and the positive electrode active material includes LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiNi 1-y Co y O 2 (O = y <1), LiCo 1-y Mn. y O 2 (O = y <1), LiNi 1-y Mn y O 2 (O = y <1) and Li [Ni a Co b Mn c ] O 2 (0 <a, b, c = 1, a + b + c The lithium secondary battery according to claim 10, which is any one selected from the group consisting of = 1) or a mixture of two or more thereof.
JP2017517750A 2014-10-02 2015-10-01 Gel polymer electrolyte and lithium secondary battery including the same Active JP6612859B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2014-0133469 2014-10-02
KR20140133469 2014-10-02
KR1020150138643A KR101797295B1 (en) 2014-10-02 2015-10-01 Gel polymer electrolyte and lithium secondary battery comprising the same
PCT/KR2015/010416 WO2016053041A1 (en) 2014-10-02 2015-10-01 Gel polymer electrolyte and lithium secondary battery containing same
KR10-2015-0138643 2015-10-01

Publications (2)

Publication Number Publication Date
JP2017530533A true JP2017530533A (en) 2017-10-12
JP6612859B2 JP6612859B2 (en) 2019-11-27

Family

ID=55801164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017517750A Active JP6612859B2 (en) 2014-10-02 2015-10-01 Gel polymer electrolyte and lithium secondary battery including the same

Country Status (5)

Country Link
US (1) US10276893B2 (en)
EP (1) EP3203566B1 (en)
JP (1) JP6612859B2 (en)
KR (1) KR101797295B1 (en)
CN (1) CN106797053B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190118452A (en) * 2018-04-10 2019-10-18 주식회사 엘지화학 Lithium secondary battery and preperation method thereof
JP2020532057A (en) * 2017-11-16 2020-11-05 エルジー・ケム・リミテッド Positive electrode for lithium secondary battery and its manufacturing method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102229445B1 (en) 2017-04-04 2021-03-17 주식회사 엘지화학 Separator and lithium-sulfur battery comprising the same
KR102657448B1 (en) * 2017-07-26 2024-04-16 주식회사 엘지에너지솔루션 Polymer electrolyte for secondary battery and lithium secondary battery comprising the same
KR102255536B1 (en) * 2017-11-30 2021-05-25 주식회사 엘지에너지솔루션 Composition for gel polymer electrolyte, gel polymer electrolyte and lithium secondary battery comprising the same
KR102217108B1 (en) * 2017-11-30 2021-02-18 주식회사 엘지화학 Composition for gel polymer electrolyte, gel polymer electrolyte and lithium secondary battery comprising the same
US11404721B2 (en) * 2017-12-01 2022-08-02 Lg Energy Solution, Ltd. Gel polymer electrolyte composition and lithium secondary battery including the same
US10505224B2 (en) 2017-12-28 2019-12-10 Industrial Technology Research Institute Electrolyte, composition for electrolyte and lithium battery employing the same
WO2019209089A1 (en) * 2018-04-27 2019-10-31 주식회사 엘지화학 Lithium secondary battery and manufacturing method therefor
KR102434068B1 (en) 2018-04-27 2022-08-19 주식회사 엘지에너지솔루션 Separators for lithium secondary battery and lithium secondary battery comprising the same
KR102093129B1 (en) * 2018-07-09 2020-03-25 울산과학기술원 Gel electrolyte comprising crosslinked polymer and manufacturing method for the same
KR102428263B1 (en) * 2019-11-25 2022-08-02 울산과학기술원 Composite solid electrolyte comprising crosslinked polymer and manufacturing method for the same
WO2021112287A1 (en) * 2019-12-05 2021-06-10 울산과학기술원 Gel electrolyte comprising crosslinked polymer, and method for producing same
KR20230102444A (en) 2021-12-30 2023-07-07 코오롱인더스트리 주식회사 Ion-conductive pi-conjugated polymer, solid polymer electrolyte composition, solid polymer electrolyte formed from the composition and lithium secondary battery including the same electrolyte
KR20230102523A (en) 2021-12-30 2023-07-07 코오롱인더스트리 주식회사 Ion-conductive pi-conjugated polymer, solid polymer electrolyte composition, solid polymer electrolyte formed from the composition and lithium secondary battery including the same electrolyte

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0869817A (en) * 1994-05-13 1996-03-12 Gould Electron Inc Polymer electrolyte with dendrimer structure
JP2003187637A (en) * 2001-09-21 2003-07-04 Daiso Co Ltd Element using polymer gel electrolyte
JP2004214041A (en) * 2003-01-06 2004-07-29 Nitto Denko Corp Gel electrolyte and nonaqueous electrolyte battery using the same
JP2004525204A (en) * 2000-12-29 2004-08-19 ザ・ユニバーシティ・オブ・オクラホマ Conducting polyamine-based electrolytes
WO2011071101A1 (en) * 2009-12-09 2011-06-16 株式会社日本触媒 Electrolyte material, and battery material and secondary battery using said electrolyte material
KR20110104137A (en) * 2010-03-16 2011-09-22 한양대학교 산학협력단 Dye-sensitized solar cell containing gel polymer electrolyte by in-situ chemical cross-linking reaction and method for fabricating the same
WO2014098525A1 (en) * 2012-12-21 2014-06-26 주식회사 엘지화학 Cable-type secondary battery and method for manufacturing same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384807A (en) * 1989-08-28 1991-04-10 Yuasa Battery Co Ltd Polymer solid electrolyte
US5429793A (en) 1994-05-17 1995-07-04 Institute Of Gas Technology Scaleable process for producing Ni-Al ODS anode
US6562520B1 (en) * 1999-11-22 2003-05-13 Hitachi Maxell, Ltd. Polymer electrolyte and rechargeable cell comprising the same
JP4562896B2 (en) * 1999-11-22 2010-10-13 日立マクセル株式会社 Gel polymer electrolyte and secondary battery
KR100394077B1 (en) 2001-03-13 2003-08-06 한국화학연구원 Polyalkylene oxide polymer Composition for Solid polymer Electrolytes
KR100399788B1 (en) * 2001-08-17 2003-09-29 삼성에스디아이 주식회사 Polymeric sol electrolyte and lithium battery employing the same
KR100522685B1 (en) 2001-08-25 2005-10-19 삼성에스디아이 주식회사 Polymeric gel electrolyte and lithium battery employing the same
KR101102729B1 (en) 2007-05-23 2012-01-05 주식회사 엘지화학 Gel polymer electrolyte and electrochemical device comprising the same
KR101911431B1 (en) 2011-11-25 2018-10-25 삼성전자주식회사 Electrolyte Composition, Gel polymer electrolyte and Lithium battery comprising gel polymer electrolyte
KR101381873B1 (en) 2012-04-13 2014-04-14 한국과학기술연구원 Polymer gel electrolyte composition, the preparing method for the composition, and dye-sensitized solar cell comprising the electrolyte
KR101641763B1 (en) 2013-01-28 2016-07-21 주식회사 엘지화학 High voltage lithium secondary battery
EP2784867B1 (en) 2013-01-28 2016-11-23 LG Chem, Ltd. High-voltage lithium secondary battery
KR101633966B1 (en) 2013-01-28 2016-06-27 주식회사 엘지화학 Composition for gel polymer electrolyte and lithium secondary battery comprising the same
KR101346414B1 (en) * 2013-02-15 2014-01-16 한양대학교 산학협력단 Gel polymer electrolyte and lithium secondary battery using the same
CN103474697B (en) 2013-09-10 2016-09-07 东莞新能源科技有限公司 A kind of gel polymer lithium ion battery
CN103872379B (en) 2014-03-21 2017-04-26 东莞新能源科技有限公司 gel electrolyte of lithium ion battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0869817A (en) * 1994-05-13 1996-03-12 Gould Electron Inc Polymer electrolyte with dendrimer structure
JP2004525204A (en) * 2000-12-29 2004-08-19 ザ・ユニバーシティ・オブ・オクラホマ Conducting polyamine-based electrolytes
JP2003187637A (en) * 2001-09-21 2003-07-04 Daiso Co Ltd Element using polymer gel electrolyte
JP2004214041A (en) * 2003-01-06 2004-07-29 Nitto Denko Corp Gel electrolyte and nonaqueous electrolyte battery using the same
WO2011071101A1 (en) * 2009-12-09 2011-06-16 株式会社日本触媒 Electrolyte material, and battery material and secondary battery using said electrolyte material
KR20110104137A (en) * 2010-03-16 2011-09-22 한양대학교 산학협력단 Dye-sensitized solar cell containing gel polymer electrolyte by in-situ chemical cross-linking reaction and method for fabricating the same
WO2014098525A1 (en) * 2012-12-21 2014-06-26 주식회사 엘지화학 Cable-type secondary battery and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020532057A (en) * 2017-11-16 2020-11-05 エルジー・ケム・リミテッド Positive electrode for lithium secondary battery and its manufacturing method
JP7062189B2 (en) 2017-11-16 2022-05-06 エルジー エナジー ソリューション リミテッド Positive electrode for lithium secondary battery and its manufacturing method
US11476458B2 (en) 2017-11-16 2022-10-18 Lg Energy Solution, Ltd. Cathode for lithium secondary batteries and method of manufacturing the same
KR20190118452A (en) * 2018-04-10 2019-10-18 주식회사 엘지화학 Lithium secondary battery and preperation method thereof
JP2021504922A (en) * 2018-04-10 2021-02-15 エルジー・ケム・リミテッド Lithium secondary battery and its manufacturing method
KR102338540B1 (en) 2018-04-10 2021-12-14 주식회사 엘지에너지솔루션 Lithium secondary battery and preperation method thereof
JP7076879B2 (en) 2018-04-10 2022-05-30 エルジー エナジー ソリューション リミテッド Lithium secondary battery and its manufacturing method
US11658301B2 (en) 2018-04-10 2023-05-23 Lg Energy Solution, Ltd. Lithium secondary battery and method of preparing the same

Also Published As

Publication number Publication date
CN106797053B (en) 2019-05-28
CN106797053A (en) 2017-05-31
JP6612859B2 (en) 2019-11-27
KR20160040113A (en) 2016-04-12
EP3203566B1 (en) 2018-08-22
KR101797295B1 (en) 2017-11-13
EP3203566A4 (en) 2017-08-09
US20170309956A1 (en) 2017-10-26
US10276893B2 (en) 2019-04-30
EP3203566A1 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6612859B2 (en) Gel polymer electrolyte and lithium secondary battery including the same
JP6562568B2 (en) Gel polymer electrolyte and lithium secondary battery including the same
JP6562569B2 (en) Gel polymer electrolyte and lithium secondary battery including the same
JP6102039B2 (en) Composition for gel polymer electrolyte and lithium secondary battery containing the same
KR102019312B1 (en) Composition for gel polymer electrolyte and lithium secondary battery comprising the same
JP6504550B2 (en) High voltage lithium secondary battery
US10170791B2 (en) High-voltage lithium secondary battery
KR20190064257A (en) Composition for gel polymer electrolyte, gel polymer electrolyte and lithium secondary battery comprising the same
KR102287767B1 (en) Separators for lithium secondary battery and lithium secondary battery comprising the same
KR20190064260A (en) Composition for gel polymer electrolyte, gel polymer electrolyte and lithium secondary battery comprising the same
JP2023512820A (en) Method for producing gel polymer electrolyte secondary battery, and gel polymer electrolyte secondary battery produced thereby
WO2016053041A1 (en) Gel polymer electrolyte and lithium secondary battery containing same
JP6793998B2 (en) Composition for gel polymer electrolyte and lithium secondary battery containing it
KR20190054981A (en) Composition for gel polymer electrolyte, gel polymer electrolyte and lithium secondary battery comprising the same
KR20190064259A (en) Composition for gel polymer electrolyte, gel polymer electrolyte and lithium secondary battery comprising the same
KR102288127B1 (en) Seperator for lithium secondary battery and lithium secondary battery comprising the same
KR20190051355A (en) Gel polymer electrolyte and lithium secondary battery comprising the same
CN116670882A (en) Method for manufacturing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery obtained thereby
CN117280512A (en) Method for producing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery obtained thereby
KR20220038006A (en) Composition for gel polymer electrolyte and lithium secondary battery comprising the gel polymer electrolyte formed therefrom
KR20190064284A (en) Composition for gel polymer electrolyte, gel polymer electrolyte and lithium secondary battery comprising the same
KR20190064283A (en) Composition for gel polymer electrolyte, gel polymer electrolyte and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191031

R150 Certificate of patent or registration of utility model

Ref document number: 6612859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250