JP2017188985A - Wireless power transmission system - Google Patents

Wireless power transmission system Download PDF

Info

Publication number
JP2017188985A
JP2017188985A JP2016074656A JP2016074656A JP2017188985A JP 2017188985 A JP2017188985 A JP 2017188985A JP 2016074656 A JP2016074656 A JP 2016074656A JP 2016074656 A JP2016074656 A JP 2016074656A JP 2017188985 A JP2017188985 A JP 2017188985A
Authority
JP
Japan
Prior art keywords
power transmission
transmission system
wireless power
power
impedance matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016074656A
Other languages
Japanese (ja)
Other versions
JP6782953B2 (en
Inventor
昌也 田村
Masaya Tamura
昌也 田村
一平 高野
Ippei Takano
一平 高野
和暉 小松
Kazuki Komatsu
和暉 小松
耀介 渡邊
Yosuke Watanabe
耀介 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2016074656A priority Critical patent/JP6782953B2/en
Publication of JP2017188985A publication Critical patent/JP2017188985A/en
Application granted granted Critical
Publication of JP6782953B2 publication Critical patent/JP6782953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wireless power transmission system for implementing efficient power transmission even when a line of sight between a power transmission unit and a power reception unit is disturbed by an obstacle or the like.SOLUTION: A first wireless power transmission system comprises: a structure, the whole of which is surrounded by an electromagnetic wave reflection member formed from material having appropriate relative magnetic permeability; and at least one power transmission unit and at least one power reception unit that are installed inside the structure. The power transmission unit transmits an electromagnetic wave having a resonant frequency that is one in the case of supposing that the equipment body is a waveguide resonator.SELECTED DRAWING: Figure 1

Description

本発明は、無線電力伝送システムに関する。とくに、金属体や絶縁体などの障害物を有する金属で囲われた配管やエンジンルーム、工場内部などに設置されたセンサ等へ無線で電力を供給する、あるいは情報を送受信するための構造体および無線伝送システムに関するものである。   The present invention relates to a wireless power transmission system. In particular, a structure for supplying power wirelessly to a pipe surrounded by a metal having an obstacle such as a metal body or an insulator, an engine room, a sensor installed in a factory, etc., or transmitting / receiving information, and The present invention relates to a wireless transmission system.

従来の離れた場所への無線電力伝送システムは、レクテナの原理に基づいて、電磁波を受電するアンテナと、前記アンテナと接続された整流回路からなる。前記アンテナを複数個近接して配置して実効的な受電面積を拡張させるアレー構造を設けることで無線電力伝送システムが構成される。   A conventional wireless power transmission system to a remote place includes an antenna for receiving electromagnetic waves and a rectifier circuit connected to the antenna based on the principle of rectenna. A wireless power transmission system is configured by providing an array structure in which a plurality of antennas are arranged close to each other to expand an effective power receiving area.

例えば、特許文献1には、マイクロ波を受信する受信手段と、受信したマイクロ波を整流する第1及び第2整流回路と、前記受信手段と前記第1及び第2整流回路との間に介装されたハイブリッド回路を備えたレクテナが開示されている。
For example, Patent Document 1 discloses a receiving unit that receives a microwave, first and second rectifier circuits that rectify the received microwave, and an intervening unit between the receiving unit and the first and second rectifier circuits. A rectenna with a mounted hybrid circuit is disclosed.

特開2012−23857号公報JP 2012-23857 A

このような従来の無線電力伝送システムでは、送電側システムと受電側システム間の見通しが良い場所での無線電力伝送が前提であるため、金属体や絶縁体などの障害物により見通しが悪い場所では、電力伝送効率は著しく劣化することが分かっている。   In such a conventional wireless power transmission system, wireless power transmission is premised on a place where the line of sight between the power transmission side system and the power receiving side system is good, so in a place where the line of sight is poor due to obstacles such as metal bodies and insulators. It has been found that power transmission efficiency is significantly degraded.

すなわち、従来の無線電力伝送システムでは、使用するアンテナの利得を決定する、アンテナの実効面積に応じて受電側システムでの電磁界強度が決まってしまうため、送受電アンテナ間に金属体や絶縁体を有する金属で囲われた配管やエンジンルーム、工場内部など複雑な構造物内では十分な実効面積を持つ送電アンテナを配置できないため、見通しの悪い場所にある受電アンテナに十分な量の電力が届かず、受電側システムでの電磁界強度が著しく低下することが課題であった。   That is, in the conventional wireless power transmission system, the electromagnetic field strength in the power receiving system is determined according to the effective area of the antenna, which determines the gain of the antenna to be used. A power transmission antenna with a sufficient effective area cannot be placed in complicated structures such as pipes, engine rooms, and factory interiors surrounded by metal, so that a sufficient amount of power reaches the power receiving antenna in a place with poor visibility However, the problem was that the electromagnetic field strength in the power receiving system was significantly reduced.

本発明は、上記課題を解決するためになされたものであり、使用するアンテナの実効面積が小さく、障害物等により見通しの悪い場所であっても高効率な無線電力伝送を実現するものである。   The present invention has been made to solve the above-described problems, and realizes high-efficiency wireless power transmission even in a place where the effective area of an antenna to be used is small and the line of sight is bad due to an obstacle or the like. .

本発明にかかる第一の無線電力伝送システムは、適宜な比透磁率を有する材料で形成された電磁波反射部材によって全体が包囲された構造体と、該構造体の内部に設置された少なくとも1つの送電部および少なくとも1つの受電部とを備え、前記送電部は、前記設備本体を導波路共振器と想定する場合における共振周波数による電磁波を送信するものであることを特徴とする。   A first wireless power transmission system according to the present invention includes a structure that is entirely surrounded by an electromagnetic wave reflecting member formed of a material having an appropriate relative magnetic permeability, and at least one of the structures installed inside the structure. A power transmission unit and at least one power reception unit, wherein the power transmission unit transmits an electromagnetic wave having a resonance frequency when the facility body is assumed to be a waveguide resonator.

本発明に係る第二の無線電力伝送システムは、前記本発明に係る第一の無線電力伝送システムであって、前記構造体は、一部が他と異なる種類の電磁波反射部材が使用されていることを特徴とする。   A second wireless power transmission system according to the present invention is the first wireless power transmission system according to the present invention, wherein the structure uses an electromagnetic wave reflecting member of a type that is partially different from others. It is characterized by that.

本発明に係る第三の無線電力伝送システムは、前記本発明に係る第一または第二の無線電力伝送システムであって、前記構造体を包囲する電磁波反射部材は、一部の領域または全体に貫通孔を有するものであることを特徴とする。     A third wireless power transmission system according to the present invention is the first or second wireless power transmission system according to the present invention, wherein the electromagnetic wave reflecting member surrounding the structure is partially or entirely. It has a through-hole.

本発明に係る第四の無線電力伝送システムは、前記本発明に係る第三の無線電力伝送システムであって、前記貫通孔は、前記電磁波反射部材の一部または全部が、適宜な比透磁率を有する材料によって網目状に形成することによって設けられるものであることを特徴とする。     A fourth wireless power transmission system according to the present invention is the third wireless power transmission system according to the present invention, wherein the through-hole has an appropriate relative magnetic permeability in which a part or all of the electromagnetic wave reflecting member is appropriate. It is provided by forming in mesh shape with the material which has this.

本発明に係る第五の無線電力伝送システムは、前記本発明に係る第一ないし第四のいずれかの無線電力伝送システムであって、前記共振周波数は、基底共振周波数に設定されていることを特徴とする。     A fifth wireless power transmission system according to the present invention is any one of the first to fourth wireless power transmission systems according to the present invention, wherein the resonance frequency is set to a base resonance frequency. Features.

本発明に係る第六の無線電力伝送システムは、前記本発明に係る第一ないし第五のいずれかの無線電力伝送システムであって、前記ケーシングの内部に金属体および/または絶縁体からなる遮蔽物が設置される場合における前記共振周波数は、前記遮蔽物をリアクタンス素子とみなして算出される基底共振周波数に設定されていることを特徴とする。     A sixth wireless power transmission system according to the present invention is any one of the first to fifth wireless power transmission systems according to the present invention, wherein the casing is made of a metal body and / or an insulator. The resonance frequency when an object is installed is set to a base resonance frequency calculated by regarding the shield as a reactance element.

本発明に係る第七の無線電力伝送システムは、前記本発明に係る第一ないし第六のいずれかの無線電力伝送システムであって、前記送電部と前記受電部との間における伝送路間でインピーダンス整合させていることを特徴とする。     A seventh wireless power transmission system according to the present invention is any one of the first to sixth wireless power transmission systems according to the present invention, and is provided between transmission lines between the power transmission unit and the power reception unit. It is characterized by impedance matching.

本発明に係る第八の無線電力伝送システムは、前記本発明に係る第七の無線電力伝送システムであって、前記受電部が複数である場合における前記インピーダンス整合は、任意の受電部を選択し、該受電部と前記送電部との間における伝送路間でインピーダンス整合したものであることを特徴とする。     An eighth wireless power transmission system according to the present invention is the seventh wireless power transmission system according to the present invention, wherein the impedance matching in the case where there are a plurality of power receiving units selects an arbitrary power receiving unit. The impedance matching is performed between the transmission paths between the power reception unit and the power transmission unit.

本発明に係る第九の無線電力伝送システムは、前記本発明に係る第七の無線電力伝送システムであって、前記受電部が複数である場合における前記インピーダンス整合は、複数ポート同時整合法による基準インピーダンスによりインピーダンス整合したものであることを特徴とする。     A ninth wireless power transmission system according to the present invention is the seventh wireless power transmission system according to the present invention, wherein the impedance matching when there are a plurality of power receiving units is a standard based on a multiple port simultaneous matching method. It is characterized by impedance matching by impedance.

本発明に係る第十の無線電力伝送システムは、前記本発明に係る第七の無線電力伝送システムであって、前記受電部が複数である場合における前記インピーダンス整合は、前記送電部と個別の受電部との間における伝送路間でインピーダンス整合させるものであって、適宜時間を単位として異なる伝送路間のインピーダンス整合に切り替えるものであることを特徴とする。     A tenth wireless power transmission system according to the present invention is the seventh wireless power transmission system according to the present invention, wherein the impedance matching in the case where there are a plurality of power receiving units is a power receiving unit that is separate from the power transmitting unit. It is characterized in that impedance matching is performed between the transmission lines between the two parts, and switching is made to impedance matching between different transmission paths as appropriate in units of time.

本発明により、金属や絶縁体などの障害物を有する金属で囲われた遮蔽空間内全体に定在波を発生させることができるため、前記遮蔽空間内の任意の場所で電界強度、磁界強度のいずれか、あるいは両方が強くなり、電力を得ることができる。その結果として、送電用無線電力伝送システムと受電用無線電力伝送システムの見通しが悪くとも高効率の電力伝送を実現できる。
According to the present invention, a standing wave can be generated in the entire shielded space surrounded by a metal having an obstacle such as a metal or an insulator. Therefore, the electric field strength and the magnetic field strength can be increased at any location in the shielded space. Either or both become stronger, and power can be obtained. As a result, high-efficiency power transmission can be realized even if the outlook of the wireless power transmission system for power transmission and the wireless power transmission system for power reception is bad.

本発明に係る無線電力伝送システムの第一の構成を表す図である。It is a figure showing the 1st structure of the wireless power transmission system which concerns on this invention. 本発明に係る無線電力伝送システムの第二の構成を表す図である。It is a figure showing the 2nd structure of the wireless power transmission system which concerns on this invention. 本発明に係る実施例1に記載の無線電力伝送システムにおいて見通し内に受電器を設置した無線電力伝送システムの斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a wireless power transmission system in which a power receiver is installed in line of sight in the wireless power transmission system according to Embodiment 1 of the present invention. パネルマウントタイプのSMAコネクタの斜視図である。It is a perspective view of a panel mount type SMA connector. 本発明に係る実施例1に記載の無線電力伝送システムにおいて見通し外に受電器を設置した第一の無線電力伝送システムの斜視図である。1 is a perspective view of a first wireless power transmission system in which a power receiver is installed out of sight in the wireless power transmission system according to Embodiment 1 of the present invention. 本発明に係る実施例1に記載の無線電力伝送システムにおいて見通し外に受電器を設置した第二の無線電力伝送システムの斜視図である。It is a perspective view of the 2nd wireless power transmission system which installed the power receiver in the wireless power transmission system as described in Example 1 which concerns on this invention out of sight. 本発明に係る実施例1に記載の無線電力伝送システムにおける電力伝送効率の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the power transmission efficiency in the wireless power transmission system as described in Example 1 which concerns on this invention. 本発明に係る実施例2に記載の無線電力伝送システムの斜視図である。It is a perspective view of the wireless power transmission system described in Example 2 according to the present invention. 本発明に係る実施例2に記載の無線電力伝送システムにおける電力伝送効率の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the power transmission efficiency in the wireless power transmission system as described in Example 2 which concerns on this invention. 本発明に係る実施例3に記載の無線電力伝送システムの斜視図である。It is a perspective view of the wireless power transmission system described in Example 3 according to the present invention. 本発明に係る実施例3に記載の無線電力伝送システムにおける電力伝送効率の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the power transmission efficiency in the wireless power transmission system as described in Example 3 which concerns on this invention.

本発明に係る無線電力伝送システムについて、以下に図を用いて説明する。   A wireless power transmission system according to the present invention will be described below with reference to the drawings.

図1は本発明に係る無線電力伝送システムの構成図である。図1において、無線電力伝送システム1は内部に少なくとも1つ以上の送電器2と、少なくとも1つ以上の受電器3を有しており、前記無線電力伝送システム1は電磁波を反射する材料である電磁波反射板4で全面が囲われている。すなわち、前記無線電力伝送システム1は無線給電を実施する構造物全体を指している。   FIG. 1 is a configuration diagram of a wireless power transmission system according to the present invention. In FIG. 1, a wireless power transmission system 1 includes at least one power transmitter 2 and at least one power receiver 3 therein, and the wireless power transmission system 1 is a material that reflects electromagnetic waves. The entire surface is surrounded by the electromagnetic wave reflection plate 4. That is, the wireless power transmission system 1 indicates the entire structure that performs wireless power feeding.

前記電磁波反射板4は、銅や鉄などの金属や高い比透磁率を有する導電性材料からなる。さらに、前記電磁波反射板4は板状の部材だけでなく、前記金属や導電材料からからなるメッシュ状または網状の部材であってもよい。   The electromagnetic wave reflection plate 4 is made of a metal such as copper or iron or a conductive material having a high relative permeability. Further, the electromagnetic wave reflection plate 4 may be not only a plate-like member but also a mesh-like or net-like member made of the metal or conductive material.

次に、前記本発明に係る無線電力システムの構成を具体的に説明する。前記無線電力伝送システム1は前記電磁波反射板4で遮蔽された空間を有するため、導波管共振器として考えることができる。したがって、前記無線電力伝送システム1においてx軸方向の辺の長さをa、y軸方向の辺の長さをb、z軸方向の辺の長さをcとすると、下記数式1から求められる共振周波数fr1m,n,pを送電周波数に設定することで、前記無線電力伝送システム1内全体に電磁界を分布させることができる。 Next, the configuration of the wireless power system according to the present invention will be specifically described. Since the wireless power transmission system 1 has a space shielded by the electromagnetic wave reflection plate 4, it can be considered as a waveguide resonator. Therefore, in the wireless power transmission system 1, when the length of the side in the x-axis direction is a, the length of the side in the y-axis direction is b, and the length of the side in the z-axis direction is c, the following formula 1 is obtained. By setting the resonance frequency fr1 m, n, p to the power transmission frequency, the electromagnetic field can be distributed throughout the wireless power transmission system 1.

Figure 2017188985
Figure 2017188985

ここで、vは光速、μrは比透磁率、εrは比誘電率、m、n、pはそれぞれ整数を示している。 Here, v is the speed of light, μr is the relative permeability, εr is the relative permittivity, and m, n, and p are integers.

前記共振周波数のうち、最も低い周波数を示す共振周波数を基底共振周波数と呼ぶ。例えば、図1に示すように、前記無線電力伝送システム1が直方体であり、前記送電器2をz軸方向に配置した場合、m=1、n=0、p=1となるTE101モードが基底共振周波数を示す。送電周波数を基底共振周波数に設定すると前記無線電力伝送システム1内全体に電磁界定在波が生じる。   The resonance frequency indicating the lowest frequency among the resonance frequencies is referred to as a base resonance frequency. For example, as shown in FIG. 1, when the wireless power transmission system 1 is a rectangular parallelepiped and the power transmitter 2 is arranged in the z-axis direction, the TE101 mode in which m = 1, n = 0, and p = 1 is the base. Indicates the resonance frequency. When the power transmission frequency is set to the base resonance frequency, an electromagnetic field standing wave is generated in the entire wireless power transmission system 1.

前記電磁界定在波では、電界定在波の振幅が密な場所では磁界定在波の振幅が疎となり、電界定在波の振幅が疎の場所では磁界定在波の振幅は密となる。したがって、前記受電器3は、電界定在波の振幅が密の場所では電界から、磁界定在波の振幅が密の場所では磁界から電力を得ることができる。また、電界定在波と磁界定在波の両方が存在する場所では、電界および磁界の両方から電力を得ることができる。   In the electromagnetic field standing wave, the amplitude of the magnetic field standing wave is sparse when the amplitude of the electric field standing wave is dense, and the amplitude of the magnetic field standing wave is dense where the amplitude of the electric field standing wave is sparse. Therefore, the power receiver 3 can obtain electric power from the electric field when the amplitude of the electric field standing wave is dense, and from the magnetic field when the amplitude of the magnetic field standing wave is dense. Moreover, in a place where both an electric field standing wave and a magnetic field standing wave exist, electric power can be obtained from both the electric field and the magnetic field.

続いて、前記無線電力伝送システム1の内部に、少なくとも一面が前記電磁波反射板4と接続された金属体5が、少なくとも1つ以上存在する無線電力伝送システム6を考える。   Next, consider a wireless power transmission system 6 in which at least one metal body 5 having at least one surface connected to the electromagnetic wave reflector 4 is present in the wireless power transmission system 1.

図2に示すように、前記無線電力伝送システム6の内部に配置された前記送電器1をz軸方向に配置した場合、前記金属体5が、電界定在波が集中する位置に配置されているならば、電界エネルギーが蓄えられるため容量性、一方、前記金属体5が、磁界定在波が集中する位置に配置されているならば、磁気エネルギーが蓄えられるため誘導性を示す。すなわち、前記金属体5はリアクタンス素子として動作する。   As shown in FIG. 2, when the power transmitter 1 disposed inside the wireless power transmission system 6 is disposed in the z-axis direction, the metal body 5 is disposed at a position where electric field standing waves are concentrated. If the metal body 5 is disposed at a position where the magnetic field standing wave is concentrated, the magnetic energy is stored, so that inductivity is exhibited. That is, the metal body 5 operates as a reactance element.

その結果、前記無線電力伝送システム6の共振周波数fr2m,n,pは、前記無線電力伝送システム1の共振周波数fr1m,n,pよりも低周波となる。したがって、前記無線電力伝送システム6においては共振周波数fr2m,n,pを送電周波数に設定することで前記無線電力伝送システム6内全体に電磁界を分布させることができる。 As a result, the resonance frequency fr2 m, n, p of the wireless power transmission system 6, the wireless power transmission system 1 of the resonance frequency fr1 m, n, than p a low frequency. Therefore, in the wireless power transmission system 6, the electromagnetic field can be distributed throughout the wireless power transmission system 6 by setting the resonance frequency fr2m , n, p to the power transmission frequency.

前記無線電力伝送システム6において、送電周波数を共振周波数fr2m,n,pに設定した場合、前記無線電力伝送システム1において送電周波数を共振周波数fr1m,n,pに設定した場合と同様に、前記無線電力伝送システム6内に生じる定在波は、電界定在波が密な場所では磁界定在波が疎となり、電界定在波が疎の場所では磁界定在波は密となる。したがって、前記受電器3は、電界定在波の振幅が密の場所では電界から、磁界定在波の振幅が密の場所では磁界から電力を得ることができる。また、電界定在波と磁界定在波の両方が存在する場所では電界および磁界の両方から電力を得ることができる。 In the wireless power transmission system 6, when the power transmission frequency is set to the resonance frequency fr2 m, n, p , similarly to the case where the power transmission frequency is set to the resonance frequency fr1 m, n, p in the wireless power transmission system 1, The standing wave generated in the wireless power transmission system 6 is sparse in the magnetic field standing wave where the electric field standing wave is dense, and the magnetic field standing wave is dense in the place where the electric field standing wave is sparse. Therefore, the power receiver 3 can obtain electric power from the electric field when the amplitude of the electric field standing wave is dense, and from the magnetic field when the amplitude of the magnetic field standing wave is dense. Moreover, electric power can be obtained from both the electric field and the magnetic field in a place where both an electric field standing wave and a magnetic field standing wave exist.

上記の構成により、無線電力伝送システム内全体に電磁界を分布させることができるため、受電部での電磁界強度を低下させることなく電力を得ることができ、結果として、無線電力伝送効率の高効率化が実現できる。具体的には、本発明に係る無線電力伝送システムの受電器に接続された、温度センサや照度センサ、湿度センサなどのセンサモジュールといった電子機器を駆動させることができる。   With the above configuration, since the electromagnetic field can be distributed throughout the wireless power transmission system, power can be obtained without lowering the electromagnetic field strength at the power receiving unit, resulting in high wireless power transmission efficiency. Efficiency can be realized. Specifically, an electronic device such as a sensor module such as a temperature sensor, an illuminance sensor, or a humidity sensor connected to the power receiver of the wireless power transmission system according to the present invention can be driven.

さらに、前記無線電力伝送システム1の内部に少なくとも絶縁体が、少なくとも1つ以上存在する無線電力伝送システムを考える。すなわち、前記無線電力伝送システム6の前記金属体5を前記絶縁体に置き換えた場合である。   Further, consider a wireless power transmission system in which at least one insulator is present in the wireless power transmission system 1. That is, this is a case where the metal body 5 of the wireless power transmission system 6 is replaced with the insulator.

前記無線電力伝送システム6と同様に、前記無線電力伝送システムの内部に配置された前記送電器1をz軸方向に配置した場合、前記絶縁体が、電界定在波が集中する位置に配置されているならば、前記絶縁体の誘電性からコンデンサとみなすことができる。一方、前記絶縁体が、磁界定在波が集中する位置に配置されているならば、前記絶縁体の磁性からインダクタとみなすことができる。すなわち、前記絶縁体はリアクタンス素子として動作する。   Similar to the wireless power transmission system 6, when the power transmitter 1 disposed inside the wireless power transmission system is disposed in the z-axis direction, the insulator is disposed at a position where the electric field standing wave is concentrated. If it is, it can be regarded as a capacitor from the dielectric property of the insulator. On the other hand, if the insulator is disposed at a position where a magnetic standing wave is concentrated, it can be regarded as an inductor from the magnetism of the insulator. That is, the insulator operates as a reactance element.

その結果、前記無線電力伝送システム6の共振周波数fr3m,n,pは、前記無線電力伝送システム1の共振周波数fr1m,n,pよりも低周波となる。したがって、前記無線電力伝送システムにおいては共振周波数fr3m,n,pを送電周波数に設定することで、前記無線電力伝送システム6と同様の効果を得ることができる。 As a result, the resonant frequency fr3 m, n, p of the wireless power transmission system 6, the wireless power transmission system 1 of the resonance frequency fr1 m, n, than p a low frequency. Therefore, in the wireless power transmission system, the same effect as the wireless power transmission system 6 can be obtained by setting the resonance frequency fr3 m, n, p to the power transmission frequency.

さらに、前記受電器3が複数配置された場合を考える。このような場合でも、電界定在波の振幅が密の場所では電界から、磁界定在波の振幅が密の場所では磁界から、電界定在波と磁界定在波の両方が存在する場所では電界および磁界の両方から、同時に電力を得ることができる。   Further, consider a case where a plurality of the power receivers 3 are arranged. Even in such a case, the electric field standing wave has a high amplitude from the electric field, the magnetic field standing wave has a high amplitude from the magnetic field, and both the electric field standing wave and the magnetic field standing wave exist. Power can be obtained simultaneously from both electric and magnetic fields.

なお、複数配置された前記受電器3から同時に電力を得る場合は電力分配されるため、受電器1個あたりの受電電力は低下するが、各受電器を時分割して受電することで、前記送電器2と前記受電器3を1対1とする場合と同等の状況を作り出し、結果として、受電器1個あたりの受電電力を向上させることができる。   In addition, when power is simultaneously obtained from a plurality of the power receivers 3 arranged, since power is distributed, the power received per power receiver is reduced, but by receiving each power receiver in a time-sharing manner, A situation equivalent to the case where the power transmitter 2 and the power receiver 3 are set to 1: 1 is created, and as a result, the received power per power receiver can be improved.

なお、送電周波数を基底共振周波数に設定することで最も低い周波数で電力を伝送することができるため、受電器に接続されて使用する整流回路の高効率化を実現できる。結果として、無線電力伝送効率の向上を実現できる。   In addition, since electric power can be transmitted at the lowest frequency by setting the power transmission frequency to the base resonance frequency, high efficiency of the rectifier circuit used by being connected to the power receiver can be realized. As a result, improvement in wireless power transmission efficiency can be realized.

なお、前記電磁波反射板4を、銅や鉄などの金属や高い比透磁率を有する導電性材料からなるメッシュ状や網状の部材に置き換えた場合、電力供給する周波数においてのみ電磁波反射板と同様に動作させることができる。   When the electromagnetic wave reflection plate 4 is replaced with a mesh-like or net-like member made of a metal such as copper or iron or a conductive material having a high relative permeability, it is the same as the electromagnetic wave reflection plate only at the frequency at which power is supplied. It can be operated.

そのため、情報通信を行う場合、通信周波数はメッシュ状や網状の部材を通過するので、前記情報通信を前記無線電力伝送システム1外、あるいは前記無線電力伝送システム6外から制御することができる。例えば、前記無線電力伝送システム1内、あるいは前記無線電力伝送システム6内でセンシングの指示や、センシングデータを前記無線電力伝送システム1外、あるいは前記無線電力伝送システム6外で送受信することができる。   Therefore, when performing information communication, since the communication frequency passes through a mesh or net-like member, the information communication can be controlled from outside the wireless power transmission system 1 or from outside the wireless power transmission system 6. For example, sensing instructions and sensing data can be transmitted and received outside the wireless power transmission system 1 or outside the wireless power transmission system 6 within the wireless power transmission system 1 or within the wireless power transmission system 6.

図3に示す前記電磁波反射板5をアルミニウムからなる金属板、前記送電器2と前記受電器3を銅製のモノポールプローブ、前記金属体5を銅からなる遮蔽物7、8、9、10、11からなる前記無線電力伝送システム6を考える。   The electromagnetic wave reflecting plate 5 shown in FIG. 3 is a metal plate made of aluminum, the power transmitter 2 and the power receiver 3 are copper monopole probes, and the metal body 5 is a shield made of copper 7, 8, 9, 10, Consider the wireless power transmission system 6 comprising 11.

前記無線電力伝送システム6の内寸はx軸方向に496mm、y軸方向に477mm、z軸方向に291mmとする。前記無線電力伝送システム6の各面は導通接続されている。前記無線電力伝送システム6のうち前記送電器2と前記受電器3および前記遮蔽物7、8、9、10、11が配置されている面を面12とする。前記面12上の配置はx座標、y座標ごとにmm単位で表記する。   The internal dimensions of the wireless power transmission system 6 are 496 mm in the x-axis direction, 477 mm in the y-axis direction, and 291 mm in the z-axis direction. Each surface of the wireless power transmission system 6 is conductively connected. In the wireless power transmission system 6, a surface on which the power transmitter 2, the power receiver 3, and the shields 7, 8, 9, 10, 11 are arranged is a surface 12. The arrangement on the surface 12 is expressed in mm for each of the x and y coordinates.

前記励振プローブ2、3は、図4に示すようにパネルマウントタイプのSMA(Sub Miniature TypeA)コネクタ13の中心導体14に銅線15をはんだづけしたものであり、ねじおよびナットにより前記面12に固定することができる。ここでは、前記銅線15は前記中心導体14を軸とした螺旋部の内径が12mm、螺旋のピッチが11mmの螺旋形状で、軸方向の長さは95mmとする。   As shown in FIG. 4, the excitation probes 2 and 3 are obtained by soldering a copper wire 15 to a center conductor 14 of a panel mount type SMA (Sub Miniature Type A) connector 13 and are fixed to the surface 12 with screws and nuts. can do. Here, the copper wire 15 has a spiral shape in which the inner diameter of the spiral portion with the central conductor 14 as an axis is 12 mm, the pitch of the spiral is 11 mm, and the axial length is 95 mm.

前記送電器2はx座標が346mm、y座標が94mmの位置に、前記受電器3はx座標が170mm、y座標が319mmの位置にそれぞれ取り付ける。ここで、前記送電器2と前記受電器3の座標位置は前記中心導体14を基準として定められるものとする。   The power transmitter 2 is attached at a position where the x coordinate is 346 mm and the y coordinate is 94 mm, and the power receiver 3 is attached at a position where the x coordinate is 170 mm and the y coordinate is 319 mm. Here, the coordinate positions of the power transmitter 2 and the power receiver 3 are determined based on the central conductor 14.

例えば、前記遮蔽物7はx座標316mm、y座標346mmを基準とし、x軸方向に160mm、y軸方向に100mm、z軸方向に150mmの大きさ、
前記遮蔽物8はx座標30mm、y座標406mmを基準とし、x軸方向に150mm、y軸方向に40mm、z軸方向に170mmの大きさ、
前記遮蔽物9はx座標316mm、y座標200mmを基準とし、x軸方向に160mm、y軸方向に50mm、z軸方向に110mmの大きさ、
前記遮蔽物10はx座標195mm、y座標33mmを基準とし、x軸方向に50mm、y軸方向に150mm、z軸方向に100mmの大きさ、
前記遮蔽物11はx座標60mm、y座標18mmを基準とし、x軸方向に50mm、y軸方向に270mm、z軸方向に130mmの大きさのいずれも銅製の箱とする。
For example, the shield 7 has a size of 160 mm in the x-axis direction, 100 mm in the y-axis direction, and 150 mm in the z-axis direction based on the x-coordinate 316 mm and the y-coordinate 346 mm.
The shield 8 has a size of 150 mm in the x-axis direction, 40 mm in the y-axis direction, and 170 mm in the z-axis direction based on the x coordinate of 30 mm and the y coordinate of 406 mm.
The shield 9 has a size of 160 mm in the x-axis direction, 50 mm in the y-axis direction, and 110 mm in the z-axis direction based on an x-coordinate of 316 mm and a y-coordinate of 200 mm.
The shield 10 has a size of 50 mm in the x-axis direction, 150 mm in the y-axis direction, and 100 mm in the z-axis direction based on an x coordinate of 195 mm and a y coordinate of 33 mm.
The shielding object 11 is a copper box having a size of 50 mm in the x-axis direction, 270 mm in the y-axis direction, and 130 mm in the z-axis direction with reference to the x coordinate of 60 mm and the y coordinate of 18 mm.

前記遮蔽物7、8、9、10、11は前記面12と導通させるため、前記面12へ、例えば導電性テープを用いて固定される。   The shields 7, 8, 9, 10, and 11 are fixed to the surface 12 using, for example, conductive tape in order to conduct with the surface 12.

前記遮蔽物7、8、9、10、11の配置から、前記送電器2と前記受電器3は互いに見通し内に位置されている。   Due to the arrangement of the shields 7, 8, 9, 10, 11, the power transmitter 2 and the power receiver 3 are positioned within line of sight.

前記遮蔽物7、8、9、10、11を含まない前記無線電力伝送システム1の基底共振周波数は、その内寸から下記数式2より求められ、436.3MHzである。   The base resonance frequency of the wireless power transmission system 1 that does not include the shields 7, 8, 9, 10, and 11 is 436.3 MHz, which is obtained from the internal dimensions of the wireless power transmission system 1 according to Equation 2 below.

Figure 2017188985
Figure 2017188985

一方、前記遮蔽物7、8、9、10、11を含んだ前記無線電力伝送システム6は前記無線電力伝送システム1に比べてリッジ効果により共振周波数は低周波化する。   On the other hand, the resonance frequency of the wireless power transmission system 6 including the shields 7, 8, 9, 10, 11 is lower than that of the wireless power transmission system 1 due to the ridge effect.

前記共振周波数は電磁界シミュレーション(例えば、ANSYS社製HFSS(登録商標))などを用いることで構造から容易に計算することができる。図3に示す構造は357.5MHzと求められる。よって、電力伝送に用いる周波数は357.5MHzとなる。   The resonance frequency can be easily calculated from the structure by using an electromagnetic field simulation (for example, HFSS (registered trademark) manufactured by ANSYS). The structure shown in FIG. 3 is required to be 357.5 MHz. Therefore, the frequency used for power transmission is 357.5 MHz.

上記の構成において、前記送受電器2、3を含む送受電システムがインピーダンス整合された状態での電力伝送効率は74.4%となる。   In the above configuration, the power transmission efficiency in a state where the power transmission / reception system including the power transmitters 2 and 3 is impedance-matched is 74.4%.

一方、前記送電器2の見通し外となるように前記受電器3を、図5に示すようにx座標396mm、y座標298mmとなる見通し外の位置に移動させた場合のインピーダンス整合後の電力伝送効率は39.6%となり、図6に示すようにx座標152.5mm、y座標108mmとなる見通し外の位置に移動させた場合のインピーダンス整合後の電力伝送効率は46.7%となる。   On the other hand, the power transmission after impedance matching when the power receiver 3 is moved to an out-of-sight position where the x coordinate is 396 mm and the y coordinate is 298 mm as shown in FIG. The efficiency is 39.6%, and the power transmission efficiency after impedance matching is 46.7% when moved to an out-of-sight position where the x coordinate is 152.5 mm and the y coordinate is 108 mm as shown in FIG.

前記受電器3を、図7中に示す各位置、x座標170mm、y座標319mmと、x座標396mm、y座標298mm、およびx座標152.5mm、y座標108mmに配置した時の電力伝送効率の最大値を図7に示す。   The power transfer efficiency when the power receiver 3 is arranged at each position shown in FIG. 7, x coordinate 170 mm, y coordinate 319 mm, x coordinate 396 mm, y coordinate 298 mm, x coordinate 152.5 mm, and y coordinate 108 mm. The maximum value is shown in FIG.

以上により、前記受電器3に接続された、温度センサや照度センサ、湿度センサなどのセンサモジュールといった電子機器を駆動させることができる。   As described above, an electronic device such as a sensor module such as a temperature sensor, an illuminance sensor, and a humidity sensor connected to the power receiver 3 can be driven.

図3に示す前記無線電力伝送システム6において、図8に示すように新たにx座標396mm、y座標298mmの位置に設置した受電器16、およびx座標152.5mm、y座標108mmの位置に設置した受電器17を前記面12に配置し、1つの送電器から3つの受電器に同時に電力を伝送する。   In the wireless power transmission system 6 shown in FIG. 3, a power receiver 16 newly installed at an x coordinate 396 mm and a y coordinate 298 mm as shown in FIG. 8, and an x coordinate 152.5 mm and a y coordinate 108 mm. The received power receiver 17 is arranged on the surface 12, and power is simultaneously transmitted from one power transmitter to three power receivers.

このとき、前記受電器3は前記受電器2の見通し内、前記受電器13、14は前記送電器2の見通し外に位置している。   At this time, the power receiver 3 is located within the line-of-sight of the power receiver 2, and the power receivers 13 and 14 are located outside the line-of-sight of the power transmitter 2.

送電周波数は、実施例1と同様に、内部に前記遮蔽物7、8、9、10、11を含む前記無線電力伝送システム6の基底共振周波数である357.5MHzである。   The power transmission frequency is 357.5 MHz, which is the base resonance frequency of the wireless power transmission system 6 including the shields 7, 8, 9, 10, 11 inside, as in the first embodiment.

前記送電器2および前記受電器3、16、17を4ポート同時整合法により基準インピーダンスでインピーダンス整合を行った場合、図9に示すように、前記送電器2から前記受電器3への電力伝送効率は47.3%となり、前記受電器16への電力伝送効率は4.5%となり、前記受電器17への電力伝送効率は6.6%となる。   When impedance matching is performed on the power transmitter 2 and the power receivers 3, 16, and 17 with reference impedance by the 4-port simultaneous matching method, power transmission from the power transmitter 2 to the power receiver 3 is performed as illustrated in FIG. 9. The efficiency is 47.3%, the power transmission efficiency to the power receiver 16 is 4.5%, and the power transmission efficiency to the power receiver 17 is 6.6%.

一方、前記送電器2および前記受電器3、16、17の回路側から見たインピーダンスが同じになるように整合を行った場合には、見通し内に位置する前記受電器3が電力を受け取りやすく、見通し外に位置する前記受電器16、17は電力を受け取りにくい。   On the other hand, when matching is performed so that the impedances seen from the circuit side of the power transmitter 2 and the power receivers 3, 16, and 17 are the same, the power receiver 3 located within line-of-sight can easily receive power. The power receivers 16 and 17 located outside the line of sight hardly receive power.

しかしながら、インピーダンス整合時に前記送電器2および前記受電器3、16、17の回路側から見たインピーダンスが異なるように整合すれば、前記受電器3、16、17に対する電力伝送効率を任意に操作することができる。よって、整合条件を操作することにより全ての受電器に対し同等な伝送効率を達成することが可能である。   However, if impedance matching is performed so that the impedances seen from the circuit side of the power transmitter 2 and the power receivers 3, 16, and 17 are different at the time of impedance matching, the power transmission efficiency for the power receivers 3, 16, and 17 is arbitrarily manipulated. be able to. Therefore, it is possible to achieve the same transmission efficiency for all the power receivers by manipulating the matching conditions.

なお、送電器と、ある1つの受電器のみに注目して整合し、該受電器以外の他の受電器が電力を受け取れない状態にすれば、特定の受電器に高効率に電力を伝送することが可能である。   In addition, if attention is paid to and matching with a power transmitter and only one power receiver, and power is received by other power receivers other than the power receiver, power can be transmitted to a specific power receiver with high efficiency. It is possible.

例えば、時分割で送電対象を変更することで単位時間あたりの電力伝送量を向上できる。1W出力で前記送電器2から各受電器3、16、17に電力を伝送することを考える場合、3秒間に伝送できるエネルギーは、同時給電時には前記受電器3に1,419mJ、前記受電器16に135mJ、前記受電器17に198mJとなるのに対し、1秒毎に受電器を切り替えて電力を伝送した場合には、前記受電器3に744mJ、前記受電器16に396mJ、前記受電器17に467mJとなる。これは、温度センサや照度センサ、湿度センサなどのセンサモジュールといった電子機器を駆動させるには十分な電力量である。   For example, the power transmission amount per unit time can be improved by changing the power transmission target in a time division manner. Considering that power is transmitted from the power transmitter 2 to each of the power receivers 3, 16, 17 with 1 W output, the energy that can be transmitted in 3 seconds is 1,419 mJ to the power receiver 3 during simultaneous power feeding, and the power receiver 16 135 mJ for the power receiver 17 and 198 mJ for the power receiver 17, when power is transmitted by switching the power receiver every second, 744 mJ for the power receiver 3, 396 mJ for the power receiver 16, and the power receiver 17 467mJ. This is an amount of electric power sufficient to drive an electronic device such as a sensor module such as a temperature sensor, an illuminance sensor, or a humidity sensor.

図8に示す前記無線電力伝送システム6において、図10に示すように前記電磁波反射板4の面12の対面を別の材料からなる電磁波反射板18に置き換えた無線電力伝送システム19、実施例2と同様に見通し内外の3つの受電器へ同時給電を行う。   In the wireless power transmission system 6 shown in FIG. 8, the wireless power transmission system 19 in which the facing surface 12 of the electromagnetic wave reflecting plate 4 is replaced with an electromagnetic wave reflecting plate 18 made of another material as shown in FIG. 10, Embodiment 2 In the same way as above, power is simultaneously supplied to three power receivers within and outside the line of sight.

前記電磁波反射板18は網目が約1.5mmのナイロン製の網に純銀をコーティングした金属メッシュであり、前記電磁波反射板4に絶縁テープにより貼り付けられる。   The electromagnetic wave reflecting plate 18 is a metal mesh obtained by coating pure silver on a nylon net having a mesh of about 1.5 mm, and is attached to the electromagnetic wave reflecting plate 4 with an insulating tape.

実施例2と同様に、送電器2から受電器3、16、17に同時給電を行う。前記無線電力伝送システム19の共振周波数は、全面が同一の電磁波反射板4を示すアルミニウム板から前記電磁波反射板18に置き換わったことにより、358.5MHzに変化する。したがって、前記共振周波数値で電力を伝送する。   Similarly to the second embodiment, simultaneous power feeding is performed from the power transmitter 2 to the power receivers 3, 16, and 17. The resonance frequency of the wireless power transmission system 19 is changed to 358.5 MHz by replacing the aluminum plate showing the same electromagnetic wave reflection plate 4 with the electromagnetic wave reflection plate 18 over the entire surface. Therefore, power is transmitted at the resonance frequency value.

前記送電器2および前記受電器3、16、17を基準インピーダンスにインピーダンス整合を行った場合、図11に示すように、前記送電器2から前記受電器3への電力伝送効率は45.1%となり、前記送電器2から前記受電器プローブ16への電力伝送効率は4.2%となり、前記送電器2から前記受電器17への電力伝送効率は5.8%となる。   When impedance matching is performed on the power transmitter 2 and the power receivers 3, 16, and 17 with reference impedance, as shown in FIG. 11, the power transmission efficiency from the power transmitter 2 to the power receiver 3 is 45.1%. Thus, the power transmission efficiency from the power transmitter 2 to the power receiver probe 16 is 4.2%, and the power transmission efficiency from the power transmitter 2 to the power receiver 17 is 5.8%.

本発明に係る無線電力伝送システムの開口面を電磁波反射板で遮蔽することにより、擬似的に完全な遮蔽空間と見なすことができ、高い効率を維持したまま軽量化が可能となる。   By shielding the opening surface of the wireless power transmission system according to the present invention with an electromagnetic wave reflection plate, it can be regarded as a pseudo complete shielding space, and the weight can be reduced while maintaining high efficiency.

なお、前記電磁波反射板18は金属箱1の壁面に用いられる金属板より軽量であり、網目が電力伝送に使用する周波数の波長より十分短い銅や鉄などの金属や高い比透磁率を有する導電性材料など電磁波を反射する材料でも代用できる。これにより、軽量化や通気性の確保が可能であり、より広い用途に適用することができる。
The electromagnetic wave reflection plate 18 is lighter than the metal plate used for the wall surface of the metal box 1, and the mesh is sufficiently shorter than the wavelength of the frequency used for power transmission, such as copper or iron, or a conductive material having a high relative permeability. A material that reflects electromagnetic waves, such as a conductive material, can be substituted. Thereby, weight saving and air permeability can be ensured, and it can be applied to wider applications.

1、6、19 無線電力伝送システム
2 送電器
3、16、17 受電器
4、18 電磁波反射板
5 金属体
7、8、9、10、11 遮蔽物

1, 6, 19 Wireless power transmission system 2 Power transmitter 3, 16, 17 Power receiver 4, 18 Electromagnetic wave reflector 5 Metal body 7, 8, 9, 10, 11 Shield

Claims (10)

適宜な比透磁率を有する材料で形成された電磁波反射部材によって全体が包囲された構造体と、該構造体の内部に設置された少なくとも1つの送電部および少なくとも1つの受電部とを備え、
前記送電部は、前記設備本体を導波路共振器と想定する場合における共振周波数による電磁波を送信するものであることを特徴とする無線電力伝送システム。
A structure body entirely surrounded by an electromagnetic wave reflecting member formed of a material having an appropriate relative magnetic permeability, and at least one power transmission unit and at least one power reception unit installed inside the structure,
The wireless power transmission system, wherein the power transmission unit transmits an electromagnetic wave having a resonance frequency when the equipment body is assumed to be a waveguide resonator.
前記構造体は、一部が他と異なる種類の電磁波反射部材が使用されていることを特徴とする請求項1に記載の無線電力伝送システム。   The wireless power transmission system according to claim 1, wherein an electromagnetic wave reflection member of a part different from others is used for the structure. 前記構造体を包囲する電磁波反射部材は、一部の領域または全体に貫通孔を有するものであることを特徴とする請求項1または2に記載の無線電力伝送システム。   3. The wireless power transmission system according to claim 1, wherein the electromagnetic wave reflecting member surrounding the structure has a through hole in a partial region or the whole. 4. 前記貫通孔は、前記電磁波反射部材の一部または全部が、適宜な比透磁率を有する材料によって網目状に形成することによって設けられるものであることを特徴とする請求項3に記載の無線電力伝送システム。   4. The wireless power according to claim 3, wherein the through hole is provided by forming a part or all of the electromagnetic wave reflecting member in a mesh shape with a material having an appropriate relative magnetic permeability. Transmission system. 前記共振周波数は、基底共振周波数に設定されていることを特徴とする請求項1ないし4のいずれかに記載の無線電力伝送システム。   The wireless power transmission system according to claim 1, wherein the resonance frequency is set to a base resonance frequency. 前記ケーシングの内部に金属体および/または絶縁体からなる遮蔽物が設置される場合における前記共振周波数は、前記遮蔽物をリアクタンス素子とみなして算出される基底共振周波数に設定されていることを特徴とする請求項1ないし5のいずれかに記載の無線電力伝送システム。   The resonance frequency when a shield made of a metal body and / or an insulator is installed inside the casing is set to a base resonance frequency calculated by regarding the shield as a reactance element. A wireless power transmission system according to any one of claims 1 to 5. 前記送電部と前記受電部との間における伝送路間でインピーダンス整合させていることを特徴とする請求項1ないし6のいずれかに記載の無線電力伝送システム。   The wireless power transmission system according to claim 1, wherein impedance matching is performed between transmission paths between the power transmission unit and the power reception unit. 前記受電部が複数である場合における前記インピーダンス整合は、任意の受電部を選択し、該受電部と前記送電部との間における伝送路間でインピーダンス整合したものであることを特徴とする請求項7に記載の無線電力伝送システム。   The impedance matching in the case where there are a plurality of the power receiving units is an impedance matching between transmission paths between the power receiving unit and the power transmitting unit by selecting an arbitrary power receiving unit. 8. The wireless power transmission system according to 7. 前記受電部が複数である場合における前記インピーダンス整合は、複数ポート同時整合法による基準インピーダンスによりインピーダンス整合したものであることを特徴とする請求項7に記載の無線電力伝送システム。   The wireless power transmission system according to claim 7, wherein the impedance matching when there are a plurality of power reception units is impedance matching based on a reference impedance based on a multiple port simultaneous matching method. 前記受電部が複数である場合における前記インピーダンス整合は、前記送電部と個別の受電部との間における伝送路間でインピーダンス整合させるものであって、適宜時間を単位として異なる伝送路間のインピーダンス整合に切り替えるものであることを特徴とする請求項7に記載の無線電力伝送システム。

The impedance matching in the case where there are a plurality of power receiving units is impedance matching between transmission lines between the power transmission unit and individual power receiving units, and impedance matching between different transmission lines as appropriate in units of time. The wireless power transmission system according to claim 7, wherein the wireless power transmission system is switched to

JP2016074656A 2016-04-01 2016-04-01 Wireless power transmission system Active JP6782953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016074656A JP6782953B2 (en) 2016-04-01 2016-04-01 Wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074656A JP6782953B2 (en) 2016-04-01 2016-04-01 Wireless power transmission system

Publications (2)

Publication Number Publication Date
JP2017188985A true JP2017188985A (en) 2017-10-12
JP6782953B2 JP6782953B2 (en) 2020-11-11

Family

ID=60046604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074656A Active JP6782953B2 (en) 2016-04-01 2016-04-01 Wireless power transmission system

Country Status (1)

Country Link
JP (1) JP6782953B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092251A (en) * 2017-11-13 2019-06-13 国立大学法人豊橋技術科学大学 Power reception apparatus and wireless power transmission system
JP2020089209A (en) * 2018-11-30 2020-06-04 国立大学法人豊橋技術科学大学 Power transmitter and receiver, and wireless power transmission system using the same
WO2022168401A1 (en) * 2021-02-02 2022-08-11 株式会社村田製作所 Wireless power transmission system and resonance frequency adjustment unit for wireless power transmission system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11125144A (en) * 1997-07-12 1999-05-11 Temic Telefunken Microelectron Gmbh Internal combustion engine having electronic part controlled by central unit
US20090184877A1 (en) * 2008-01-17 2009-07-23 The Boeing Company Wireless data communication and power transmission using aircraft structures having properties of an electromagnetic cavity
US20090303693A1 (en) * 2008-06-09 2009-12-10 Shau-Gang Mao Wireless Power Transmitting Apparatus
JP2014193086A (en) * 2013-03-28 2014-10-06 Panasonic Corp Wireless grid and wireless sensor network system using the same
JP2015521459A (en) * 2012-05-29 2015-07-27 ヒューマヴォックス リミテッド Wireless charger
WO2016027007A1 (en) * 2014-08-21 2016-02-25 Stealthcase Oy Device and method for guiding electromagnetic waves
US20160072179A1 (en) * 2013-04-12 2016-03-10 Sikorsky Aircraft Corporation Hollow composite structure used as waveguide
JP2016048979A (en) * 2014-08-27 2016-04-07 株式会社デンソー Non-contact power supply device
US20160164301A1 (en) * 2014-12-08 2016-06-09 Disney Enterprises, Inc. Resonant cavity mode enabled wireless power transfer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11125144A (en) * 1997-07-12 1999-05-11 Temic Telefunken Microelectron Gmbh Internal combustion engine having electronic part controlled by central unit
US20090184877A1 (en) * 2008-01-17 2009-07-23 The Boeing Company Wireless data communication and power transmission using aircraft structures having properties of an electromagnetic cavity
US20090303693A1 (en) * 2008-06-09 2009-12-10 Shau-Gang Mao Wireless Power Transmitting Apparatus
JP2015521459A (en) * 2012-05-29 2015-07-27 ヒューマヴォックス リミテッド Wireless charger
JP2014193086A (en) * 2013-03-28 2014-10-06 Panasonic Corp Wireless grid and wireless sensor network system using the same
US20160072179A1 (en) * 2013-04-12 2016-03-10 Sikorsky Aircraft Corporation Hollow composite structure used as waveguide
WO2016027007A1 (en) * 2014-08-21 2016-02-25 Stealthcase Oy Device and method for guiding electromagnetic waves
JP2016048979A (en) * 2014-08-27 2016-04-07 株式会社デンソー Non-contact power supply device
US20160164301A1 (en) * 2014-12-08 2016-06-09 Disney Enterprises, Inc. Resonant cavity mode enabled wireless power transfer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
渡邊耀介,高野一平,田村昌也: "散乱体を有する遮蔽空間における空洞共振器理論を用いた無線電力伝送の基礎検討", 電子情報通信学会技術研究報告, vol. 115, no. 446, JPN6020011152, 5 February 2016 (2016-02-05), JP, pages 17 - 20, ISSN: 0004238944 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092251A (en) * 2017-11-13 2019-06-13 国立大学法人豊橋技術科学大学 Power reception apparatus and wireless power transmission system
JP7039000B2 (en) 2017-11-13 2022-03-22 国立大学法人豊橋技術科学大学 Power receiving device and wireless power transmission system using it
JP2020089209A (en) * 2018-11-30 2020-06-04 国立大学法人豊橋技術科学大学 Power transmitter and receiver, and wireless power transmission system using the same
JP7307933B2 (en) 2018-11-30 2023-07-13 国立大学法人豊橋技術科学大学 Transmitter and receiver and wireless power transmission system using the same
WO2022168401A1 (en) * 2021-02-02 2022-08-11 株式会社村田製作所 Wireless power transmission system and resonance frequency adjustment unit for wireless power transmission system

Also Published As

Publication number Publication date
JP6782953B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
US10038253B2 (en) High dielectric antenna array
JP6468817B2 (en) Antenna structure and radio communication apparatus using the same
KR101767266B1 (en) Direct feeding apparatus for impedance matching of wireless power transmission device and transmitter/receiver for the same
JP2021529500A (en) Power wave transmission method that concentrates the power delivered wirelessly in the receiving device
TW201728001A (en) 3D ceramic mold antenna
WO2015024006A1 (en) High dielectric antenna array
JP6973781B2 (en) Wireless power transmission system
JP6782953B2 (en) Wireless power transmission system
JP2017522759A (en) Switchable rectangular antenna
CN106605335A (en) Antenna and electric device
JP7307933B2 (en) Transmitter and receiver and wireless power transmission system using the same
JP2004096572A (en) Indoor mobile communication apparatus
JP5556716B2 (en) Electromagnetic coupler and wireless terminal equipped with the same
JP6221937B2 (en) Antenna device
CN108987922A (en) A kind of antenna
JP5505794B2 (en) Electromagnetic coupler and information communication device equipped with the same
KR20180093601A (en) Antenna apparatus
KR20060095372A (en) Antenna being in structure of all way radiation
CN103427149B (en) Antenna and electronic installation
KR102109104B1 (en) Apparatus for transferring power
CN108475844B (en) Antenna, unmanned aerial vehicle's ground control system and unmanned aerial vehicle system
TWI577086B (en) Antenna device with continuous bending structure and application system using the same
WO2015008483A1 (en) Wireless apparatus
WO2022168376A1 (en) Wireless power transmission system
CN112736413B (en) Antenna device and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201014

R150 Certificate of patent or registration of utility model

Ref document number: 6782953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250