JP2017170351A - Waste treatment equipment and furnace operation method for waste treatment equipment - Google Patents

Waste treatment equipment and furnace operation method for waste treatment equipment Download PDF

Info

Publication number
JP2017170351A
JP2017170351A JP2016060051A JP2016060051A JP2017170351A JP 2017170351 A JP2017170351 A JP 2017170351A JP 2016060051 A JP2016060051 A JP 2016060051A JP 2016060051 A JP2016060051 A JP 2016060051A JP 2017170351 A JP2017170351 A JP 2017170351A
Authority
JP
Japan
Prior art keywords
heat exchanger
air
heat
cooling air
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016060051A
Other languages
Japanese (ja)
Other versions
JP6800594B2 (en
Inventor
晃治 坂田
Koji Sakata
晃治 坂田
良太 都築
Ryota Tsuzuki
良太 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2016060051A priority Critical patent/JP6800594B2/en
Publication of JP2017170351A publication Critical patent/JP2017170351A/en
Application granted granted Critical
Publication of JP6800594B2 publication Critical patent/JP6800594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Treatment Of Sludge (AREA)
  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide waste treatment equipment and a furnace operation method for waste treatment equipment, enabling a furnace to be safely and highly efficiently operated without damaging a high-temperature heat exchanger.SOLUTION: There is provided waste treatment equipment 100 comprising a heat treatment furnace 2 for combusting wastes such as sludge. The equipment 100 comprises: a first heat exchanger 5 for preheating combustion air using heat of an exhaust gas led to a flue of the heat treatment furnace 2; superchargers 40, 50 each comprising a turbine driven by the combustion air preheated in the first heat exchanger 5 and a compressor driven by the turbine and for supplying the combustion air to the first heat exchanger 5; a second heat exchanger 4 that is arranged in series with the first heat exchanger 5 and further preheats the combustion air exhausted from the turbine; a supply line for supplying the combustion air preheated in the second heat exchanger 4 to the heat treatment furnace 2; and a cooling air supply mechanism 60 for supplying cooling air for protection to the second heat exchanger 4.SELECTED DRAWING: Figure 1

Description

本発明は、廃棄物処理設備及び廃棄物処理設備の操炉方法に関する。   The present invention relates to a waste treatment facility and a furnace operation method for the waste treatment facility.

様々な汚水が微生物を用いた生物処理により浄化された後に河川等に放流され、或いは再利用されている。このような生物処理によって発生する大量の汚泥は脱水処理された後に最終処分場に埋め立てられ、または焼却処理若しくは溶融処理されている。   Various sewage is purified by biological treatment using microorganisms and then discharged into rivers or reused. A large amount of sludge generated by such biological treatment is dehydrated and then buried in a final disposal site, or is incinerated or melted.

特許文献1には、過給機を用いた廃棄物処理設備であって、補助燃料の使用量を効率的に削減することを目的とした廃棄物処理設備が開示されている。   Patent Document 1 discloses a waste treatment facility that uses a supercharger and that is intended to efficiently reduce the amount of auxiliary fuel used.

当該廃棄物処理設備は、焼却炉と、回転軸を介して接続されたコンプレッサ及びタービンを有する過給機と、焼却炉から排出される排ガスと過給機から供給される酸素含有気体との間で熱交換する第1熱交換器とを備え、コンプレッサは回転軸を介して伝達される動力を利用して吸引した酸素含有気体を第1熱交換器に供給可能に構成され、タービンは第1熱交換器を通った酸素含有気体のエネルギーを利用して回転軸を回転させると共にエネルギーを利用した後の酸素含有気体を焼却炉に供給可能に構成されている。そして、タービンでエネルギーを利用した後の酸素含有気体と排ガスとの間で熱交換が可能な第2熱交換器がさらに設けられている。   The waste treatment facility includes an incinerator, a supercharger having a compressor and a turbine connected via a rotating shaft, an exhaust gas discharged from the incinerator and an oxygen-containing gas supplied from the supercharger. The compressor is configured to be able to supply the oxygen-containing gas sucked using the power transmitted through the rotating shaft to the first heat exchanger, and the turbine has the first heat exchanger. The rotating shaft is rotated using the energy of the oxygen-containing gas that has passed through the heat exchanger, and the oxygen-containing gas after using the energy is supplied to the incinerator. And the 2nd heat exchanger in which heat exchange is possible between the oxygen-containing gas after using energy with a turbine and exhaust gas is further provided.

特開2015−152258号公報JP2015-152258A

上述した従来の廃棄物処理設備では、過給機の耐熱温度以上に酸素含有気体を予熱することができるように、コンプレッサで圧縮され第1熱交換器を通過した酸素含有気体がタービンに送られて一部のエネルギーが消費された後にさらに第2熱交換器で予熱するように構成されているため、補助燃料の使用量を削減することができるようになる。   In the conventional waste treatment facility described above, the oxygen-containing gas compressed by the compressor and passed through the first heat exchanger is sent to the turbine so that the oxygen-containing gas can be preheated to a temperature higher than the heat resistance temperature of the supercharger. In addition, since the second heat exchanger is further preheated after part of the energy is consumed, the amount of auxiliary fuel used can be reduced.

しかし、第1熱交換器を通過した高温の酸素含有気体をさらに第2熱交換器で予熱するため、第2熱交換器が厳しい高温環境に晒されることになり、第2熱交換器の要部が熱応力による大きな反力を受けることがあった。   However, since the high-temperature oxygen-containing gas that has passed through the first heat exchanger is further preheated by the second heat exchanger, the second heat exchanger is exposed to a severe high temperature environment. The part may receive a large reaction force due to thermal stress.

本発明の目的は、上述した問題点に鑑み、高温熱交換器が破損することなく安全且つ高効率に操炉できる廃棄物処理設備及び廃棄物処理設備の操炉方法を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide a waste treatment facility that can operate safely and efficiently without damaging a high-temperature heat exchanger and a method for operating the waste treatment facility.

上述の目的を達成するため、本発明による廃棄物処理設備の第一特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、汚泥等の廃棄物を焼却処理する熱処理炉を備えている廃棄物処理設備であって、前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する第1熱交換器と、前記第1熱交換器で予熱された燃焼用空気により回転するタービンと、前記タービンの回転により前記第1熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、前記第1熱交換器と直列または並列に配置され、前記タービンから排気された燃焼用空気をさらに予熱する第2熱交換器と、前記第2熱交換器で予熱された燃焼用空気を前記熱処理炉へ供給する給気路と、保護用の冷却空気を前記第2熱交換器に供給する冷却空気供給機構と、を備えている点にある。   In order to achieve the above object, the first characteristic configuration of the waste treatment facility according to the present invention includes a heat treatment furnace for incinerating waste such as sludge as described in claim 1 of the claims. A first heat exchanger that preheats combustion air with in-furnace combustion heat of the heat treatment furnace and / or retained heat of exhaust gas that is led to a flue, and the first heat exchanger. And a turbocharger that is rotated by the combustion air preheated in the above, a compressor that supplies combustion air to the first heat exchanger by the rotation of the turbine, and the first heat exchanger in series or in parallel. And a second heat exchanger that further preheats the combustion air exhausted from the turbine, an air supply passage that supplies the combustion air preheated by the second heat exchanger to the heat treatment furnace, and protection Cooling air for the second heat exchange In that it includes a cooling air supply mechanism for supplying the.

コンプレッサによって圧縮され第1熱交換器で予熱された燃焼用空気は、第2熱交換器でさらに予熱された後に燃焼用空気として熱処理炉に供給されるので、熱処理炉では化石燃料等の補助燃料の使用を抑制しつつ安定的に汚泥等の廃棄物を焼却処理することができるようになる。そして、第1熱交換器で高温に予熱された燃焼用空気をさらに予熱する第2熱交換器が熱応力による大きな反力を受ける虞がある場合でも、保護用の冷却空気が冷却空気供給機構を介して第2熱交換器に供給されるので反力が抑制され、破損を招くことなく安定的に燃焼用空気が予熱できるようになる。   The combustion air compressed by the compressor and preheated by the first heat exchanger is further preheated by the second heat exchanger and then supplied to the heat treatment furnace as combustion air. Therefore, in the heat treatment furnace, auxiliary fuel such as fossil fuel is used. It becomes possible to incinerate wastes such as sludge stably while suppressing the use of. Even when the second heat exchanger that further preheats the combustion air preheated to a high temperature by the first heat exchanger may receive a large reaction force due to thermal stress, the protective cooling air is used as the cooling air supply mechanism. Therefore, the reaction force is suppressed and the combustion air can be preheated stably without causing damage.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記冷却空気供給機構は前記コンプレッサと前記コンプレッサで圧縮された圧縮空気の一部を前記冷却空気として前記第2熱交換器に分岐供給する分岐路とを備えている点にある。   According to the second characteristic configuration, as described in claim 2, in addition to the first characteristic configuration described above, the cooling air supply mechanism is configured such that the cooling air and a part of the compressed air compressed by the compressor are And a branch passage that branches and supplies the cooling heat to the second heat exchanger.

コンプレッサで圧縮された圧縮空気の一部が分岐路を介して第2熱交換器に分岐供給されるので、他の送風機や圧縮機を準備しなくても、第2熱交換器が適切に冷却することができるようになる。   Since a part of the compressed air compressed by the compressor is branched and supplied to the second heat exchanger via the branch passage, the second heat exchanger can be appropriately cooled without preparing another blower or compressor. Will be able to.

同第三の特徴構成は、同請求項3に記載した通り、上述した第二の特徴構成に加えて、前記過給機は直列接続された複数の過給機を備えて構成され、前記冷却空気供給機構は初段または中間段のコンプレッサと当該コンプレッサで圧縮された圧縮空気の一部を前記冷却空気として前記第2熱交換器に分岐供給する分岐路とを備えている点にある。   In the third feature configuration, as described in claim 3, in addition to the second feature configuration described above, the supercharger is configured to include a plurality of superchargers connected in series, and the cooling The air supply mechanism is provided with a first-stage or intermediate-stage compressor and a branch passage that branches and supplies a part of the compressed air compressed by the compressor as the cooling air to the second heat exchanger.

単一の過給機を用いる場合に、コンプレッサによる圧縮空気の一部を冷却空気として第2熱交換器に供給するとタービンでの膨張仕事量が低下して、過給機の使用効率が低下するのであるが、複数の過給機を直列接続すれば、初段または中間段のコンプレッサで圧縮された燃焼用空気の一部を第2熱交換器の冷却空気として用いても、残余の圧縮空気をさらに後段のコンプレッサで圧縮した後に第1熱交換器によって予熱することで、タービンでの十分な膨張仕事量が確保できるようになる。そのため、設備費用や動力費用の嵩む他の送風機や圧縮機を準備しなくても、第2熱交換器の保護用の冷却空気として良好に用いることができる。   When a single supercharger is used, if a part of the compressed air from the compressor is supplied as cooling air to the second heat exchanger, the work of expansion in the turbine is reduced and the use efficiency of the supercharger is reduced. However, if a plurality of turbochargers are connected in series, the remaining compressed air can be used even if a part of the combustion air compressed by the first stage or intermediate stage compressor is used as cooling air for the second heat exchanger. Furthermore, after compressing with the compressor of a back | latter stage, it preheats with a 1st heat exchanger, and it becomes possible to ensure now sufficient expansion work in a turbine. Therefore, it is possible to satisfactorily use the cooling air for protecting the second heat exchanger without preparing other blowers and compressors that increase equipment costs and power costs.

同第四の特徴構成は、同請求項4に記載した通り、上述した第三の特徴構成に加えて、前記過給機は直列接続された二段の過給機を備えて構成され、前記冷却空気供給機構は初段のコンプレッサと当該コンプレッサで圧縮された圧縮空気の一部を前記冷却空気として前記第2熱交換器に分岐供給する分岐路とを備えている点にある。   In the fourth feature configuration, as described in claim 4, in addition to the third feature configuration described above, the supercharger is configured to include a two-stage supercharger connected in series, The cooling air supply mechanism is provided with a first stage compressor and a branch passage that branches and supplies a part of the compressed air compressed by the compressor as the cooling air to the second heat exchanger.

二段の過給機を直列接続すれば、初段のコンプレッサで圧縮された燃焼用空気の一部を第2熱交換器の冷却空気として用いても、残余の圧縮空気をさらに後段のコンプレッサで圧縮した後に第1熱交換器によって予熱することで、タービンでの十分な膨張仕事量が確保できるようになる。   If two-stage turbochargers are connected in series, the remaining compressed air is further compressed by the subsequent compressor even if part of the combustion air compressed by the first compressor is used as the cooling air for the second heat exchanger. Then, by preheating with the first heat exchanger, a sufficient work of expansion in the turbine can be secured.

同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記冷却空気により冷却される前記第2熱交換器の温度を測定する温度センサと、該温度センサの計測値により前記分岐路を通風する冷却風量を調整する冷却風量調整機構と、を備えている点にある。   In the fifth feature configuration, as described in claim 5, in addition to any of the first to fourth feature configurations described above, the temperature of the second heat exchanger cooled by the cooling air is set. There is a temperature sensor to be measured, and a cooling air volume adjusting mechanism that adjusts the cooling air volume that flows through the branch path according to the measured value of the temperature sensor.

冷却風量調整機構によって、温度センサで測定された第2熱交換器の温度を指標にして分岐路を通風する冷却風量が調整されることにより、第2熱交換器が破損するような厳しい温度条件下での動作が未然に防止されると共に、分岐路を通風する冷却風量を必要最小限に調整できるようになるので、十分に予熱された燃焼用空気を熱処理炉に供給できるようになる。さらに、例えばコンプレッサへ燃焼用空気を予備圧縮して供給する押込み送風機を備える場合には、押し込み送風機の回転数上昇を必要最小限に調整して動力を抑えることができる。   Severe temperature conditions that cause damage to the second heat exchanger by adjusting the amount of cooling air flowing through the branch path using the cooling air volume adjustment mechanism as an index of the temperature of the second heat exchanger measured by the temperature sensor The operation below can be prevented in advance, and the amount of cooling air flowing through the branch path can be adjusted to the minimum necessary, so that sufficiently preheated combustion air can be supplied to the heat treatment furnace. Furthermore, for example, when a pusher blower that precompresses and supplies combustion air to the compressor is provided, the increase in the rotational speed of the pusher blower can be adjusted to a necessary minimum to suppress power.

同第六の特徴構成は、同請求項6に記載した通り、上述の第一から第五の何れかの特徴構成に加えて、前記第1熱交換機をバイパスするバイパス送風路を備え、前記バイパス送風路を通風する燃焼用空気を加熱する熱風炉を備えている点にある。   In addition to any one of the first to fifth feature configurations described above, the sixth feature configuration includes a bypass air passage that bypasses the first heat exchanger, and the bypass It is in the point provided with the hot stove which heats the combustion air which ventilates a ventilation path.

熱処理炉の始動時には炉の廃熱を利用することができず、また送風路や熱交換器の通風による圧力損失も生じる。しかし、熱処理炉の始動時に第1熱交換機をバイパスすることにより送風経路を短縮することができ、熱風炉によって燃焼用空気を加熱することにより、タービンへの熱供給と熱処理炉の昇温が可能になる。尚、熱処理炉の立上げの後でもバイパス送風路への送風量を調整することにより、予熱空気温度を調整できるようになるため、過給機による増圧量や熱処理炉の温度調整も可能になる。   When the heat treatment furnace is started, waste heat of the furnace cannot be used, and pressure loss due to ventilation of the air passage or the heat exchanger also occurs. However, the air flow path can be shortened by bypassing the first heat exchanger when starting the heat treatment furnace, and the combustion air can be heated by the hot air furnace to supply heat to the turbine and raise the temperature of the heat treatment furnace. become. In addition, since the preheated air temperature can be adjusted by adjusting the air flow rate to the bypass air passage even after the heat treatment furnace is started up, the amount of pressure increase by the turbocharger and the heat treatment furnace temperature can be adjusted. Become.

同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記コンプレッサへ燃焼用空気を予備圧縮して供給する押込み送風機をさらに備えている点にある。   In addition to any one of the first to sixth feature configurations described above, the seventh feature configuration includes a pusher blower that precompresses and supplies combustion air to the compressor. Furthermore, it is in the point provided.

送風路を経由して押込み送風機により予備圧縮された燃焼用空気がコンプレッサに供給されるので、コンプレッサのみならず押込み送風機でも圧縮された空気が第1熱交換器で予熱されるようになる。つまり、コンプレッサによる圧縮仕事に押込み送風機による圧縮仕事が嵩上げされるので、熱処理炉に燃焼用空気を供給する際に生じる通気圧損等の損失分を差し引いても、十分に燃焼用空気を供給することができる。また、そのために要する押込み送風機の動力は、燃焼用空気が過給機と第1熱交換器を経ることによる作用を受けることによって抑えられるため、全体として運転コストを下げることができる。   Since the combustion air pre-compressed by the forced air blower is supplied to the compressor via the air passage, the air compressed not only by the compressor but also by the forced air blower is preheated by the first heat exchanger. In other words, since the compression work by the forced air blower is increased to the compression work by the compressor, the combustion air can be sufficiently supplied even if a loss such as a ventilation pressure loss generated when supplying the combustion air to the heat treatment furnace is subtracted. Can do. In addition, since the power of the forced blower required for this is suppressed by the action of the combustion air through the supercharger and the first heat exchanger, the operating cost can be reduced as a whole.

本発明による廃棄物処理設備の操炉方法の特徴構成は、同請求項8に記載した通り、汚泥等の廃棄物を焼却処理する熱処理炉を備えている廃棄物処理設備の操炉方法であって、燃焼用空気をコンプレッサで圧縮する圧縮工程と、前記圧縮工程で圧縮された燃焼用空気を、前記熱処理炉及び/または前記熱処理炉の煙道に備えた第1熱交換器に導いて排ガスの保有熱により予熱する第1予熱工程と、前記第1予熱工程で予熱された燃焼用空気でタービンを回転させて動力を前記コンプレッサへ伝える圧縮動力生成工程と、前記圧縮動力生成工程で前記タービンから排気された燃焼用空気を、前記第1熱交換器と直列または並列に配置された第2熱交換器に導いて、排ガスの保有熱によりさらに予熱する第2予熱工程と、前記第2予熱工程で再度予熱された燃焼用空気を前記熱処理炉に供給する燃焼用空気供給工程と、保護用の冷却空気を前記第2熱交換器に供給する冷却空気供給工程と、前記冷却空気により冷却される前記第2熱交換器の温度により前記冷却空気の風量を調整する冷却風量調整工程と、を含む点にある。   The characteristic configuration of the method for operating a waste treatment facility according to the present invention is the method for operating a waste treatment facility including a heat treatment furnace for incinerating waste such as sludge as described in claim 8. A compression step of compressing the combustion air with a compressor, and the combustion air compressed in the compression step is led to the first heat exchanger provided in the heat treatment furnace and / or the flue of the heat treatment furnace to exhaust gas A first preheating step for preheating with the retained heat, a compression power generating step for rotating the turbine with combustion air preheated in the first preheating step and transmitting power to the compressor, and the turbine in the compression power generating step A second preheating step of introducing the combustion air exhausted from the second heat exchanger to a second heat exchanger arranged in series or in parallel with the first heat exchanger, and further preheating the retained heat of the exhaust gas; and the second preheating Again in the process A combustion air supply step for supplying heated combustion air to the heat treatment furnace, a cooling air supply step for supplying protective cooling air to the second heat exchanger, and the first air cooled by the cooling air And a cooling air volume adjustment step of adjusting the air volume of the cooling air according to the temperature of the two heat exchangers.

同第二の特徴構成は、同請求項9に記載した通り、上述の第一の特徴構成に加えて、前記圧縮工程は直列接続された複数段のコンプレッサで圧縮されるように構成されるとともに、前記圧縮動力生成工程は直列接続された複数段のタービンを回転させて動力を各コンプレッサへ伝えるように構成され、前記冷却空気供給工程は初段または中間段のコンプレッサで圧縮された圧縮空気の一部を前記冷却空気として前記第2熱交換器に分岐供給するように構成されている点にある。   In the second feature configuration, as described in claim 9, in addition to the first feature configuration described above, the compression step is configured to be compressed by a plurality of stages of compressors connected in series. The compressed power generation step is configured to transmit a power to each compressor by rotating a plurality of stages of turbines connected in series, and the cooling air supply step is one of compressed air compressed by a first stage or intermediate stage compressor. A portion is supplied to the second heat exchanger as the cooling air.

同第三の特徴構成は、同請求項10に記載した通り、上述の第一または第二の特徴構成に加えて、前記圧縮工程に導かれる燃焼用空気を押込み送風機により予備圧縮する予備圧縮工程をさらに備えている点にある。   In addition to the first or second characteristic configuration described above, the third characteristic configuration is a pre-compression step of pre-compressing the combustion air guided to the compression step with a forced air blower, as described in claim 10. Is further provided.

以上説明した通り、本発明によれば、高温熱交換器が破損することなく安全且つ高効率に操炉できる廃棄物処理設備及び廃棄物処理設備の操炉方法を提供することができるようになった。   As described above, according to the present invention, it is possible to provide a waste treatment facility that can operate safely and efficiently without damaging the high-temperature heat exchanger and a furnace operation method for the waste treatment facility. It was.

本発明による廃棄物処理設備の説明図Explanatory drawing of the waste treatment facility according to the present invention (a)は第2熱交換器の説明図、(b)は第2熱交換器の要部の拡大説明図(A) is explanatory drawing of a 2nd heat exchanger, (b) is expansion explanatory drawing of the principal part of a 2nd heat exchanger. 別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of the waste disposal facility showing another embodiment 別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of the waste disposal facility showing another embodiment 別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of the waste disposal facility showing another embodiment 別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of the waste disposal facility showing another embodiment 別実施形態を示す第2熱交換器の説明図Explanatory drawing of the 2nd heat exchanger which shows another embodiment 別実施形態を示す第2熱交換器の説明図Explanatory drawing of the 2nd heat exchanger which shows another embodiment 別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of the waste disposal facility showing another embodiment

以下、本発明による廃棄物処理設備及び廃棄物処理設備の操炉方法の実施形態を説明する。   Hereinafter, embodiments of the waste treatment facility and the furnace operation method of the waste treatment facility according to the present invention will be described.

図1には、汚泥等の廃棄物を焼却処理する廃棄物処理設備100が示されている。廃棄物処理設備100は、被焼却物である汚泥が貯留された汚泥貯留槽1と、汚泥投入機構11と、廃棄物処理炉の一例である流動床式焼却炉2と、排ガス処理設備等を備えている。   FIG. 1 shows a waste treatment facility 100 for incinerating waste such as sludge. The waste treatment facility 100 includes a sludge storage tank 1 in which sludge as an incinerator is stored, a sludge charging mechanism 11, a fluidized bed incinerator 2 which is an example of a waste treatment furnace, an exhaust gas treatment facility, and the like. I have.

流動床式焼却炉2は、空気供給機構3から供給される高温空気によって形成される流動床に汚泥投入機構11から供給される汚泥を投入して加熱し、ガス化された汚泥をフリーボード部20で燃焼させる処理炉である。フリーボード部20の下方には立上げ時に炉内を加熱する昇温バーナ21が配置され、炉が昇温した後に汚泥の燃焼に必要な熱量を補う補助バーナ22が設けられている。   The fluidized bed incinerator 2 heats the sludge supplied from the sludge input mechanism 11 to the fluidized bed formed by the high-temperature air supplied from the air supply mechanism 3, and heats the gasified sludge to the free board section. 20 is a processing furnace to be burned. A temperature raising burner 21 for heating the inside of the furnace at the time of start-up is disposed below the free board portion 20, and an auxiliary burner 22 is provided to supplement the amount of heat necessary for the combustion of sludge after the temperature of the furnace is raised.

流動床式焼却炉2の煙道10に沿って順に、排ガスの保有熱により燃焼用空気を予熱する第2熱交換器4、第1熱交換器5、煤塵を捕集する集塵装置6、アルカリ剤を噴霧して排ガス中の酸性ガス成分を中和する排煙処理塔7等が配置されている。   In order along the flue 10 of the fluidized bed incinerator 2, a second heat exchanger 4 that preheats combustion air by the retained heat of the exhaust gas, a first heat exchanger 5, and a dust collector 6 that collects dust. A flue gas treatment tower 7 or the like is disposed for spraying an alkaline agent to neutralize acidic gas components in the exhaust gas.

排煙処理塔7の下流側には煙道10の排ガスを誘引して炉内を負圧に維持する誘引送風機8が設けられ、誘引送風機8によって誘引された排ガスが各排ガス処理設備で浄化された後に煙突9から排気される。   At the downstream side of the flue gas treatment tower 7, an induction blower 8 that attracts the exhaust gas from the flue 10 and maintains the inside of the furnace at a negative pressure is provided, and the exhaust gas attracted by the induction blower 8 is purified by each exhaust gas treatment facility. After that, it is exhausted from the chimney 9.

上述した空気供給機構3は、押込み送風機30と、直列に接続された2段の過給機40,50と、第1熱交換器5及び第2熱交換器4の2段の熱交換器を備えて構成されている。   The air supply mechanism 3 described above includes a push-in blower 30, a two-stage supercharger 40, 50 connected in series, and a two-stage heat exchanger of the first heat exchanger 5 and the second heat exchanger 4. It is prepared for.

燃焼用空気の流れに沿って上流側に位置する初段の過給機40は駆動軸40aで一体に回転可能に連結されたコンプレッサ40c及びタービン40tを備え、下流側の過給機50は駆動軸50aで一体に回転可能に連結されたコンプレッサ50c及びタービン50tを備えている。   The first-stage supercharger 40 located on the upstream side along the flow of combustion air includes a compressor 40c and a turbine 40t that are rotatably connected to each other by a drive shaft 40a, and the downstream supercharger 50 includes a drive shaft. 50a includes a compressor 50c and a turbine 50t that are rotatably connected together.

本実施形態では、押込み送風機30により約5kPaに予備圧縮された燃焼用空気が過給機40を構成するコンプレッサ40cの給気口に供給されて約70kPaに圧縮され、圧縮後の燃焼用空気はさらに後段の過給機50を構成するコンプレッサ50cの給気口に供給されて約300〜400kPaに圧縮された後に第1熱交換器5に供給される。   In the present embodiment, the combustion air pre-compressed to about 5 kPa by the forced air blower 30 is supplied to the air supply port of the compressor 40 c constituting the supercharger 40 and compressed to about 70 kPa, and the compressed combustion air is Further, the air is supplied to the air supply port of the compressor 50 c constituting the subsequent supercharger 50, compressed to about 300 to 400 kPa, and then supplied to the first heat exchanger 5.

第1熱交換器5で700〜900℃の排ガスと熱交換されて500〜750℃に予熱された燃焼用空気が後段のタービン50tに供給されて、タービン50tが回転駆動され、さらに駆動軸50aと連結されたコンプレッサ50cが回転駆動されるようになる。   Combustion air, which is heat-exchanged with exhaust gas at 700 to 900 ° C. in the first heat exchanger 5 and preheated to 500 to 750 ° C., is supplied to the turbine 50t at the subsequent stage, and the turbine 50t is rotationally driven, and further a drive shaft 50a. The compressor 50c connected to the motor is rotationally driven.

タービン50tから排出された400〜650℃、約70kPaの燃焼用空気がさらにタービン40tに供給されて、タービン40tが回転駆動され、同様に駆動軸40aと連結されたコンプレッサ40cが回転駆動されるようになる。   Combustion air of 400 to 650 ° C. and about 70 kPa discharged from the turbine 50t is further supplied to the turbine 40t, so that the turbine 40t is driven to rotate, and similarly, the compressor 40c connected to the drive shaft 40a is driven to rotate. become.

タービン40tから排出された300〜550℃、約40kPaの圧縮空気は、さらに第2熱交換器4に供給されて800〜1000℃の排ガスと熱交換されて500〜750℃に再度予熱された後に、流動用及び燃焼用空気として流動床式焼却炉2に供給されて流動床が形成される。尚、本明細書で説明する圧力はゲージ圧である。   After the compressed air of 300 to 550 ° C. and about 40 kPa discharged from the turbine 40t is further supplied to the second heat exchanger 4 and subjected to heat exchange with the exhaust gas of 800 to 1000 ° C. and preheated again to 500 to 750 ° C. The fluidized bed and the combustion air are supplied to the fluidized bed incinerator 2 to form a fluidized bed. In addition, the pressure demonstrated in this specification is a gauge pressure.

上流側のコンプレッサ40cと下流側のコンプレッサ50cとを接続する管路に、コンプレッサ40cで圧縮された圧縮空気の一部を保護用の冷却空気として第2熱交換器4に供給する送風管41として機能する分岐路が設けられている。送風管41を介して供給される圧縮空気の圧力は約70kPaとなり、タービン40tから第2熱交換器4に供給される燃焼用空気の圧力は約40kPaとなる。つまり、冷却空気の圧力は燃焼用空気の圧力より高くなるように設定されている。尚、上述した各部の温度や圧力等の運転条件は本発明を実施する際の一例であり、運転条件はこれらの値に限るものではない。   As a blower pipe 41 for supplying a part of the compressed air compressed by the compressor 40c to the second heat exchanger 4 as protective cooling air in a pipe line connecting the upstream compressor 40c and the downstream compressor 50c. A functioning branch is provided. The pressure of the compressed air supplied through the blower pipe 41 is about 70 kPa, and the pressure of the combustion air supplied from the turbine 40t to the second heat exchanger 4 is about 40 kPa. That is, the pressure of the cooling air is set to be higher than the pressure of the combustion air. The operating conditions such as the temperature and pressure of each part described above are examples when the present invention is carried out, and the operating conditions are not limited to these values.

図2に示すように、第2熱交換器4は筒状のケーシング4aに複数本の伝熱管4eが立姿勢で配置され、上下の管板4c,4dで各伝熱管4eが溶接支持された向流式の多管式熱交換器である。   As shown in FIG. 2, in the second heat exchanger 4, a plurality of heat transfer tubes 4e are arranged in a standing position on a cylindrical casing 4a, and the heat transfer tubes 4e are welded and supported by upper and lower tube plates 4c and 4d. This is a counter-flow multi-tube heat exchanger.

流動床式焼却炉2から流出した排ガスは煙道10を通って流下し、ケーシング4aの上部に設けられた排ガス流入ヘッダ4fに流入し、各伝熱管4eを通ってケーシング4aの下部に設けられた排ガス流出ヘッダ4gに流出し、燃焼用空気はケーシング4aの下方に設けられた空気流入部4hからケーシング4a内に流入し、ケーシング4aの上方に設けられた空気流出部4iから流出するように構成されている。さらに、ケーシング4a内には空気と伝熱管4eとの間で効率的に熱交換できるように複数枚のバッフルプレート4jが配設されている。   The exhaust gas flowing out from the fluidized bed incinerator 2 flows down through the flue 10, flows into the exhaust gas inflow header 4f provided at the upper part of the casing 4a, and is provided at the lower part of the casing 4a through the heat transfer tubes 4e. So that the combustion air flows into the casing 4a from the air inflow portion 4h provided below the casing 4a, and flows out from the air outflow portion 4i provided above the casing 4a. It is configured. Further, a plurality of baffle plates 4j are disposed in the casing 4a so that heat can be efficiently exchanged between the air and the heat transfer tubes 4e.

上部管板4cは内部に冷却空間Sが形成されるように二重に構成され、下方の管板4cの中央部には冷却用空気の流出管4mが設けられている。上述した送風管41からの冷却空気がケーシング4aの上部に配置された冷却空気流入部4nから供給され、冷却空間Sに流入した冷却空気が管板4cに設けられた流出管4mを経て燃焼用空気と合流し、空気流出部4iから燃焼用空気とともに流出するように構成されている。   The upper tube sheet 4c is doubled so that a cooling space S is formed therein, and a cooling air outflow tube 4m is provided at the center of the lower tube sheet 4c. The cooling air from the above-described blast pipe 41 is supplied from the cooling air inflow portion 4n disposed in the upper portion of the casing 4a, and the cooling air that has flowed into the cooling space S passes through the outflow pipe 4m provided in the tube plate 4c for combustion. It is configured to merge with air and to flow out from the air outflow portion 4i together with combustion air.

つまり、コンプレッサ40cと送風管41によって第2熱交換器4に供給される燃焼用空気より高圧の保護用の冷却空気を第2熱交換器4に供給する冷却空気供給機構60が構成されている。   That is, a cooling air supply mechanism 60 that supplies the second heat exchanger 4 with cooling air for protection higher in pressure than the combustion air supplied to the second heat exchanger 4 by the compressor 40c and the blower pipe 41 is configured. .

図1に戻り、押込み送風機30により予備圧縮された燃焼用空気は、過給機40のコンプレッサ40c及び後段の過給機50のコンプレッサ50cによって高圧に圧縮された後に第1熱交換器5に導かれて予熱される。   Returning to FIG. 1, the combustion air pre-compressed by the forced air blower 30 is compressed to a high pressure by the compressor 40 c of the supercharger 40 and the compressor 50 c of the supercharger 50 in the subsequent stage, and then introduced into the first heat exchanger 5. It is preheated.

コンプレッサ40cで得られる圧縮空気の一部が第2熱交換器4の冷却空気として分岐供給されても、押込み送風機30及びコンプレッサ50cを備えているため、タービン50t及びタービン40tの膨張仕事量が十分に確保でき、過給機40,50を安定稼働させながらも流動床式焼却炉2に流動床を形成する際の通気圧損より高い圧力で燃焼用空気を供給することができるようになる。   Even if a part of the compressed air obtained by the compressor 40c is branched and supplied as the cooling air of the second heat exchanger 4, since the forced blower 30 and the compressor 50c are provided, the expansion work of the turbine 50t and the turbine 40t is sufficient. Thus, the combustion air can be supplied at a pressure higher than the aeration pressure loss when the fluidized bed incinerator 2 is formed while the superchargers 40 and 50 are stably operated.

廃棄物処理設備100には制御部70が備えられている。制御部70は、フリーボード部20の出口部に備えた酸素ガスセンサSgにより検出される排ガスの酸素濃度に基づいて押込み送風機30の回転数を制御することにより、流動床式焼却炉2が適切な燃焼状態に維持されるように、流動床式焼却炉2への燃焼用空気の供給量を調整するように構成されている。   The waste treatment facility 100 is provided with a control unit 70. The control unit 70 controls the rotational speed of the forced blower 30 based on the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg provided at the outlet of the free board unit 20, so that the fluidized bed incinerator 2 is appropriate. The supply amount of combustion air to the fluidized bed incinerator 2 is adjusted so that the combustion state is maintained.

制御部70は、酸素ガスセンサSgにより検出される排ガスの酸素濃度と目標酸素濃度との偏差に基づいて所定の制御演算を行なうことにより、炉内に供給されるべき目標空気量を算出する。予め想定される理論空気量に基づいて完全燃焼に要する空気量を設定し、そのときに排ガスに残存する基準酸素濃度が算出されている。酸素ガスセンサSgにより検出される排ガスの酸素濃度が基準酸素濃度より高い場合に目標空気量を減少し、排ガスの酸素濃度が基準酸素濃度より低い場合に目標空気量を増加するようにフィードバック演算が行なわれる。   The controller 70 calculates a target air amount to be supplied into the furnace by performing a predetermined control calculation based on the deviation between the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg and the target oxygen concentration. An air amount required for complete combustion is set based on a theoretical air amount assumed in advance, and a reference oxygen concentration remaining in the exhaust gas at that time is calculated. Feedback calculation is performed so that the target air amount is decreased when the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg is higher than the reference oxygen concentration, and is increased when the oxygen concentration of the exhaust gas is lower than the reference oxygen concentration. It is.

さらに、制御部70は、押込み送風機30とコンプレッサ40Cとの間に設置された流量計Mで検知された空気量と目標空気量との偏差に基づいて押込み送風機30の目標回転数を算出し、押込み送風機30が当該目標回転数となるようにインバータ75を制御する。   Furthermore, the control unit 70 calculates the target rotational speed of the forced air blower 30 based on the deviation between the air amount detected by the flow meter M installed between the forced air blower 30 and the compressor 40C and the target air amount, The inverter 75 is controlled so that the pushing air blower 30 becomes the said target rotation speed.

排ガスに含まれる酸素濃度を指標に用いることにより、流動床式焼却炉2で燃焼する汚泥の有機成分に対して適正な量の燃焼用空気量が把握でき、その指標に基づいて目標量が設定されるので、必要量に対して大きく過不足することなく燃焼用空気を供給することができるようになる。   By using the oxygen concentration contained in the exhaust gas as an indicator, it is possible to grasp the appropriate amount of combustion air for the organic components of the sludge combusted in the fluidized bed incinerator 2, and the target amount is set based on the indicator. Therefore, it becomes possible to supply the combustion air without greatly exceeding the required amount.

制御部70は、冷却空気により冷却される第2熱交換器4の温度を測定する温度センサTと、該温度センサTの計測値により分岐路を通風する冷却風量を調整する冷却風量調整機構としてのバルブV2を備え、温度センサTで測定された第2熱交換器4の温度を指標にして分岐路を通風する冷却風量を調整することにより、第2熱交換器4が破損するような厳しい温度条件下での動作を未然に防止するように構成されている。   The control unit 70 includes a temperature sensor T that measures the temperature of the second heat exchanger 4 that is cooled by the cooling air, and a cooling air amount adjustment mechanism that adjusts the amount of cooling air that flows through the branch path using the measurement value of the temperature sensor T. The second heat exchanger 4 is severely damaged by adjusting the amount of cooling air flowing through the branch passage using the temperature of the second heat exchanger 4 measured by the temperature sensor T as an index. It is configured to prevent operation under temperature conditions.

この様な構成を採用することにより、分岐路を通風する冷却風量を必要最小限に調整して、十分に予熱された燃焼用空気を流動床式燃焼炉2に供給でき、また押し込み送風機30の回転数上昇を必要最小限として動力を抑えることができるようになる。尚、図1では、温度センサTとバルブV2とが信号線を示す破線で接続された簡略化された態様で示されているが、実際には温度センサTの出力信号が制御部70に入力され、制御部70によってバルブV2の開度が制御される。   By adopting such a configuration, it is possible to adjust the amount of cooling air flowing through the branch path to the minimum necessary, and to supply sufficiently preheated combustion air to the fluidized bed combustion furnace 2. The power can be suppressed with the minimum increase in the number of revolutions being necessary. In FIG. 1, the temperature sensor T and the valve V <b> 2 are shown in a simplified manner in which the temperature sensor T and the valve V <b> 2 are connected by a broken line indicating a signal line, but actually, the output signal of the temperature sensor T is input to the control unit 70. The opening degree of the valve V2 is controlled by the control unit 70.

温度センサTは第2熱交換器4のうちで熱負荷が最大となる部位に設置されることが好ましく、図2に示した例では、上部管板4cに設置されることが好ましい。上部管板4cの温度が例えば約600℃に維持されるように、制御部70によってバルブV2の開度が調整される。   The temperature sensor T is preferably installed in a portion of the second heat exchanger 4 where the heat load is maximized, and in the example shown in FIG. 2, it is preferably installed on the upper tube sheet 4c. The opening degree of the valve V2 is adjusted by the control unit 70 so that the temperature of the upper tube sheet 4c is maintained at about 600 ° C., for example.

気体は温度と圧力が変化することにより体積が変化するため、流量を計測する場合は温度と圧力に応じて補正をかける必要がある。そのため温度や圧力が想定域から外れた場合は誤差が大きくなるので、できれば温度や圧力の変化が少ないところに流量計Mを設置することが望ましい。尚、押込み送風機への空気の流入側は温度及び圧力の変化が最も小さいが、流量計Mを設置するための新たな配管が必要になる。また、コンプレッサの出口側、熱交換器の出口側、タービンの出口側の何れであっても温度及び/または圧力が上昇するため、押込み送風機からコンプレッサへの送風路に流量計Mを備えるのが好ましい。   Since the volume of gas changes due to changes in temperature and pressure, it is necessary to make corrections according to temperature and pressure when measuring the flow rate. For this reason, if the temperature or pressure deviates from the assumed range, the error increases. Therefore, it is desirable to install the flow meter M where there is little change in temperature or pressure if possible. In addition, although the change of temperature and pressure is the smallest in the inflow side of the air to a forced air blower, the new piping for installing the flow meter M is needed. Further, since the temperature and / or pressure rises at any of the outlet side of the compressor, the outlet side of the heat exchanger, and the outlet side of the turbine, a flow meter M is provided in the air passage from the pusher fan to the compressor. preferable.

また、押込み送風機30による燃焼用空気の供給量の調整方法は、動力コストが嵩む要因となるダンパ機構等の抵抗を受けて調整する方法ではなく、押込み送風機30の回転数を制御する方法による。この方法により、動力コストや装置コストの抑制を図れることに加えて、より簡便な制御方法を提供できることになる。   Moreover, the adjustment method of the supply amount of the combustion air by the pusher blower 30 is not a method of adjusting by the resistance of a damper mechanism or the like that causes the power cost to increase, but is a method of controlling the rotational speed of the pusher blower 30. This method can provide a simpler control method in addition to the power cost and the apparatus cost.

即ち、上述の廃棄物処理設備で、燃焼用空気をコンプレッサで圧縮する圧縮工程と、圧縮工程で圧縮された燃焼用空気を、熱処理炉の煙道に備えた第1熱交換器に導いて排ガスの保有熱により予熱する第1予熱工程と、第1予熱工程で予熱された燃焼用空気でタービンを回転させて動力をコンプレッサへ伝える圧縮動力生成工程と、圧縮動力生成工程でタービンから排気された燃焼用空気を、第1熱交換器と直列に配置された第2熱交換器に導いて、排ガスの保有熱によりさらに予熱する第2予熱工程と、第2予熱工程で再度予熱された燃焼用空気を熱処理炉に供給する燃焼用空気供給工程と、第2熱交換器に供給される燃焼用空気より高圧の保護用の冷却空気を第2熱交換器に供給する冷却空気供給工程と、冷却空気により冷却される第2熱交換器の温度により冷却空気の風量を調整する冷却風量調整工程と、を含む廃棄物処理設備の操炉方法が実現される。   That is, in the above-described waste treatment facility, a compression process in which combustion air is compressed by a compressor, and the combustion air compressed in the compression process is led to the first heat exchanger provided in the flue of the heat treatment furnace to exhaust gas. The first preheating step that preheats by the retained heat of the engine, the compression power generation step that rotates the turbine with the combustion air preheated in the first preheating step and transmits the power to the compressor, and the exhausted from the turbine in the compression power generation step Combustion air is led to a second heat exchanger arranged in series with the first heat exchanger, and further preheated by the retained heat of the exhaust gas, and the combustion preheated again in the second preheat process A combustion air supply step for supplying air to the heat treatment furnace, a cooling air supply step for supplying cooling air for protection higher in pressure than the combustion air supplied to the second heat exchanger to the second heat exchanger, and cooling Second cooled by air Furnace operation method of waste disposal plant comprising a cooling air amount adjustment step of adjusting the air volume of the cooling air by the temperature of the exchanger is realized.

そして、圧縮工程は直列接続された複数段のコンプレッサで圧縮されるように構成されるとともに、圧縮動力生成工程は直列接続された複数段のタービンを回転させて動力を各コンプレッサへ伝えるように構成され、冷却空気供給工程は初段または中間段のコンプレッサで圧縮された圧縮空気の一部を前記冷却空気として第2熱交換器に分岐供給するように構成されている。   The compression process is configured to be compressed by a plurality of stages of compressors connected in series, and the compression power generation process is configured to transmit power to each compressor by rotating a plurality of stages of turbines connected in series. The cooling air supply step is configured to branch and supply a part of the compressed air compressed by the first stage or intermediate stage compressor to the second heat exchanger as the cooling air.

以下、本発明の別実施形態を説明する。
図3に示すように、炉内に供給する圧縮空気の温度を調整すべく、第2熱交換器4に配した伝熱管を流れる排ガスの流れ方向に沿って最下流側と最下流側よりも上流側の2か所に燃焼用空気を供給する空気流入部4h,4h´を設けて、空気流入部4h及び空気流入部4h´から流入する空気量を空気流入部4h,4h´間に設けたバルブV1で調整可能に構成してもよい。
Hereinafter, another embodiment of the present invention will be described.
As shown in FIG. 3, in order to adjust the temperature of the compressed air supplied into the furnace, the most downstream side and the most downstream side along the flow direction of the exhaust gas flowing through the heat transfer pipe arranged in the second heat exchanger 4 Air inflow portions 4h and 4h ′ for supplying combustion air are provided at two locations on the upstream side, and the amount of air flowing in from the air inflow portion 4h and the air inflow portion 4h ′ is provided between the air inflow portions 4h and 4h ′. The valve V1 may be adjustable.

バルブV1の開度を調整することにより、流動床式焼却炉2に供給される燃焼用空気の温度を目標温度に調整することができる。   By adjusting the opening degree of the valve V1, the temperature of the combustion air supplied to the fluidized bed incinerator 2 can be adjusted to the target temperature.

上述した実施形態では押込み送風機30が目標回転数となるようにインバータ75を制御する例を説明したが、インバータ75を用いずに構成することも可能である。   In the above-described embodiment, the example in which the inverter 75 is controlled so that the forced air blower 30 reaches the target rotation speed has been described. However, it is possible to configure without using the inverter 75.

図4に示すように、例えば押込み送風機30とコンプレッサ40cとの間の通風経路にバルブV3を設けるとともに、通風経路を大気開放可能なバルブV4を設けて、制御部70によってバルブV3,V4の開度を制御することにより送風量を調整してもよい。   As shown in FIG. 4, for example, a valve V3 is provided in the ventilation path between the pusher blower 30 and the compressor 40c, and a valve V4 capable of opening the ventilation path to the atmosphere is provided, and the control unit 70 opens the valves V3 and V4. You may adjust ventilation volume by controlling a degree.

また、炉の立上げ時にはバルブV3を開いて押込み送風機30から送風し、炉が立ち上がった後にはバルブV4を開放して外気の吸引を許容することで押込み送風機30により送風しなくても必要な燃焼用空気の供給量が確保できるように構成してもよい。   Further, when the furnace is started up, the valve V3 is opened and air is blown from the pusher blower 30. After the furnace is started up, the valve V4 is opened to allow the outside air to be sucked so that it is not necessary to blow by the pusher blower 30. You may comprise so that supply_amount | feed_rate of the combustion air can be ensured.

さらに、流動床式焼却炉2で発熱量が高い被処理物を焼却する場合には、燃焼温度を抑えるために、炉内温度を低下させる冷却機構や抽熱機構を備えればよい。   Furthermore, when incinerating an object to be processed having a high calorific value in the fluidized bed incinerator 2, a cooling mechanism or a heat extraction mechanism for lowering the furnace temperature may be provided in order to suppress the combustion temperature.

例えば、流動床部に2流体ノズルを備えた冷却装置を設置したり、フリーボード部に水噴霧機構を備えた冷却装置を配置したりすればよい。制御部70によって2流体ノズルからの水噴霧量や水噴霧機構からの水噴霧量を調整し、蒸発潜熱を利用して温度を調整することができる。   For example, a cooling device including a two-fluid nozzle may be installed in the fluidized bed portion, or a cooling device including a water spray mechanism may be disposed in the free board portion. The controller 70 can adjust the water spray amount from the two-fluid nozzle and the water spray amount from the water spray mechanism, and adjust the temperature using latent heat of vaporization.

図5に示すように、煙道10に配置される第2熱交換器4と第1熱交換器5とが排ガスの流れ方向に沿って並列配置されるように配置されていてもよい。   As shown in FIG. 5, the second heat exchanger 4 and the first heat exchanger 5 arranged in the flue 10 may be arranged in parallel along the flow direction of the exhaust gas.

図6には、図1に示した廃棄物処理設備を円滑に立ち上げるための好ましい構成が示されている。第1熱交換機5をバイパスするバイパス送風路13を備え、バイパス送風路13を通風する燃焼用空気を加熱する熱風炉15を備えている。さらに、第1熱交換機5の上流側近傍にバルブV5、バイパス送風路13の熱風炉15上流側にバルブV6を備えている。   FIG. 6 shows a preferred configuration for smoothly starting up the waste treatment facility shown in FIG. A bypass air passage 13 that bypasses the first heat exchanger 5 is provided, and a hot air furnace 15 that heats the combustion air passing through the bypass air passage 13 is provided. Further, a valve V5 is provided in the vicinity of the upstream side of the first heat exchanger 5, and a valve V6 is provided on the upstream side of the hot stove 15 in the bypass air passage 13.

立上げ時にバルブV5を閉じるとともにバルブV6を開放して、押込み送風機30からの燃焼用空気を熱風炉15で加熱してタービン50t,40tに供給する。炉内の昇温の程度に応じてバルブV5の開度を次第に大きく、バルブV6の開度を次第に小さく調整することにより、第1熱交換機5への空気分配量を増し、定常運転時には熱風炉15を停止して燃料消費量を抑制する。   When starting up, the valve V5 is closed and the valve V6 is opened, and the combustion air from the forced air blower 30 is heated by the hot stove 15 and supplied to the turbines 50t and 40t. The amount of air distribution to the first heat exchanger 5 is increased by gradually increasing the opening of the valve V5 and gradually decreasing the opening of the valve V6 according to the degree of temperature rise in the furnace. 15 is stopped to reduce fuel consumption.

バイパス送風路13への通気量を調整することによって、予熱空気温度を調整することができるので、過給機40,50による増圧量や流動床式焼却炉の燃焼温度の制御も可能になる。尚、立ち上げ時に炉の昇温バーナ21を同時に用いることも可能であり、何れか一方のみ用いてもよい。何れか一方のみ用いる場合には炉内の均一な加熱という観点で熱風炉15を用いる方が好ましい。   Since the preheated air temperature can be adjusted by adjusting the amount of ventilation to the bypass air passage 13, it becomes possible to control the pressure increase by the superchargers 40 and 50 and the combustion temperature of the fluidized bed incinerator. . In addition, it is also possible to use the temperature raising burner 21 of the furnace at the time of startup, and only one of them may be used. When only one of them is used, it is preferable to use the hot stove 15 from the viewpoint of uniform heating in the furnace.

熱処理炉の立上げ時には炉の廃熱を利用することができず、また送風路や熱交換器の通風による圧力損失も生じる。しかし、熱処理炉の立上げ時に第1熱交換機をバイパスすることにより送風経路を短縮することができ、熱風炉によって燃焼用空気を加熱することにより、タービンへの熱供給と熱処理炉の昇温が可能になる。尚、熱処理炉の立上げの後でもバイパス送風路への送風量を調整することにより、予熱空気温度を調整できるようになるため、過給機による増圧量や熱処理炉の温度調整も可能になる。   When the heat treatment furnace is started up, waste heat of the furnace cannot be used, and pressure loss due to ventilation of the air passage or the heat exchanger occurs. However, by bypassing the first heat exchanger when starting up the heat treatment furnace, the air flow path can be shortened, and by heating the combustion air with the hot air furnace, the heat supply to the turbine and the temperature rise of the heat treatment furnace can be reduced. It becomes possible. In addition, since the preheated air temperature can be adjusted by adjusting the air flow rate to the bypass air passage even after the heat treatment furnace is started up, the amount of pressure increase by the turbocharger and the heat treatment furnace temperature can be adjusted. Become.

上述した実施形態では、何れも第1熱交換器5及び第2熱交換器4が煙道10に導かれる排ガスの保有熱により圧縮空気を予熱するように構成された例を説明したが、第1熱交換器5及び第2熱交換器4の双方または何れか一方を流動床式焼却炉2のフリーボード部に設置して炉内燃焼熱により圧縮空気を予熱するように構成してもよい。   In the above-described embodiments, the first heat exchanger 5 and the second heat exchanger 4 have been described as examples in which the compressed air is preheated by the retained heat of the exhaust gas led to the flue 10. Either or either one of the first heat exchanger 5 and the second heat exchanger 4 may be installed on the free board portion of the fluidized bed incinerator 2 so that the compressed air is preheated by the heat of combustion in the furnace. .

上述した実施形態では、直列接続された二段の過給機を備え、冷却空気供給機構が初段のコンプレッサと当該コンプレッサで圧縮された圧縮空気の一部を冷却空気として第2熱交換器に分岐供給する分岐路とで構成された例を説明したが、過給機の段数は2段に制限されるものではない。   In the embodiment described above, a two-stage turbocharger connected in series is provided, and the cooling air supply mechanism branches to the second heat exchanger using the first stage compressor and a part of the compressed air compressed by the compressor as cooling air. Although the example comprised with the supply branch path was demonstrated, the number of stages of a supercharger is not restrict | limited to two stages.

つまり、直列接続された複数の過給機を備え、冷却空気供給機構が初段または中間段のコンプレッサと当該コンプレッサで圧縮された圧縮空気の一部を冷却空気として第2熱交換器に分岐供給する分岐路とで構成されていてもよい。   In other words, a plurality of superchargers connected in series are provided, and the cooling air supply mechanism branches and supplies the first stage or intermediate stage compressor and a part of the compressed air compressed by the compressor as cooling air to the second heat exchanger. You may be comprised with the branch path.

さらに、第2熱交換器に燃焼用空気より高圧の保護用の冷却空気を供給する専用のコンプレッサやブロワファンを冷却空気供給機構として構成してもよい。つまり、熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する第1熱交換器と、第1熱交換器で予熱された燃焼用空気により回転するタービンと、タービンの回転により第1熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、第1熱交換器と並列または直列に配置され、タービンから排気された燃焼用空気をさらに予熱する第2熱交換器と、第2熱交換器で予熱された燃焼用空気を前記熱処理炉へ供給する給気路と、第2熱交換器に供給される燃焼用空気より高圧の保護用の冷却空気を前記第2熱交換器に供給する冷却空気供給機構と、を備えていればよい。   Further, a dedicated compressor or blower fan that supplies the second heat exchanger with cooling air for protection higher in pressure than the combustion air may be configured as the cooling air supply mechanism. That is, it rotates by the 1st heat exchanger which preheats combustion air with the combustion heat in the furnace of a heat treatment furnace, and / or the retained heat of the exhaust gas led to a flue, and the combustion air preheated with the 1st heat exchanger A turbocharger including a turbine and a compressor for supplying combustion air to the first heat exchanger by rotation of the turbine; and the combustion air exhausted from the turbine disposed in parallel or in series with the first heat exchanger. Furthermore, a second heat exchanger for preheating, a supply passage for supplying combustion air preheated in the second heat exchanger to the heat treatment furnace, and a higher pressure protection than the combustion air supplied to the second heat exchanger And a cooling air supply mechanism for supplying cooling air to the second heat exchanger.

上述した実施形態では、何れも直列接続された複数の過給機を備え、冷却空気供給機構が、初段または中間段のコンプレッサと当該コンプレッサで圧縮された圧縮空気の一部を冷却空気として第2熱交換器に分岐供給する分岐路とで構成された例を説明したが、冷却空気供給機構としては、図9に示すように、単一の過給機40を備え、当該過給機40を構成するコンプレッサ40cとコンプレッサ40cで圧縮された圧縮空気の一部を冷却空気として第2熱交換器4に分岐供給する分岐路としての送風管41(60)とで構成してもよい。   In the above-described embodiment, each includes a plurality of superchargers connected in series, and the cooling air supply mechanism uses the first stage or intermediate stage compressor and a part of the compressed air compressed by the compressor as the second cooling air. Although the example comprised by the branch path which branches and supplies to a heat exchanger was demonstrated, as shown in FIG. 9, as a cooling air supply mechanism, the single supercharger 40 is provided, and the said supercharger 40 is equipped with the said supercharger 40. You may comprise by the compressor 40c which comprises and the ventilation pipe 41 (60) as a branch path which branches and supplies a part of compressed air compressed with the compressor 40c to the 2nd heat exchanger 4 as cooling air.

図7には、第2熱交換器4の別実施形態が示されている。以下、図2に示した構成との相違点を主に説明する。上部管板4cは内部に冷却空間Sが形成されるように二重に構成され、下方の管板4cの中央部には冷却用空気の流入管4rが設けられている。上述した送風管41からの冷却空気がケーシング4aの上部に配置された冷却空気流入部4nから供給され、一部の冷却空気が管板4cに設けられた流入管4rを経て冷却空間Sに流入し、冷却空気流出部4pから外部に流出するように構成されている。冷却空気流入部4nから供給された冷却空気の残りは燃焼用空気に合流して空気流出部4iから流出する。尚、本構成を採用する場合には、冷却空気流入部4nから供給された冷却空気のうち燃焼用空気に戻す分を含めた量を送風管41からの分岐空気量に設定する必要がある。   FIG. 7 shows another embodiment of the second heat exchanger 4. Hereinafter, differences from the configuration shown in FIG. 2 will be mainly described. The upper tube sheet 4c is doubled so that a cooling space S is formed therein, and a cooling air inflow tube 4r is provided at the center of the lower tube sheet 4c. The cooling air from the above-described blast pipe 41 is supplied from the cooling air inflow portion 4n disposed in the upper part of the casing 4a, and a part of the cooling air flows into the cooling space S through the inflow pipe 4r provided in the tube plate 4c. The cooling air outflow portion 4p is configured to flow out to the outside. The remainder of the cooling air supplied from the cooling air inflow portion 4n joins the combustion air and flows out from the air outflow portion 4i. In addition, when employ | adopting this structure, it is necessary to set the quantity including the part returned to combustion air among the cooling air supplied from the cooling air inflow part 4n to the branch air quantity from the ventilation pipe 41.

図8には、第2熱交換器4のさらに別の実施形態が示されている。以下、図2に示した構成との相違点を主に説明する。管板4cには各伝熱管4eを外嵌または内嵌するスリーブ管4kが溶接され、軸方向に熱膨張する伝熱管4eがスリーブ管4kに対して摺動移動することで管板4c,4dの歪みを抑制するように構成されている。   FIG. 8 shows still another embodiment of the second heat exchanger 4. Hereinafter, differences from the configuration shown in FIG. 2 will be mainly described. The tube plate 4c is welded with a sleeve tube 4k that externally or internally fits each heat transfer tube 4e, and the heat transfer tube 4e that thermally expands in the axial direction slides and moves with respect to the sleeve tube 4k so that the tube plates 4c and 4d. It is comprised so that distortion of may be suppressed.

さらに、排ガス流入ヘッダ4f側の管板4cと対向して仕切り管板4qが配置され、両管板4c,4qで挟まれた空隙に冷却空気が投入される冷却空間Sが形成され、熱応力に対する反力で発生する管板4cの歪みが抑制されるように構成されている。そして、仕切り管板4qは各伝熱管4eまたはケーシング4aの何れか一方にのみ溶接されている。   Further, a partition tube plate 4q is arranged facing the tube plate 4c on the exhaust gas inflow header 4f side, and a cooling space S is formed in which cooling air is introduced into a gap sandwiched between both tube plates 4c and 4q, and thermal stress is formed. It is comprised so that distortion of the tube sheet 4c which generate | occur | produces with the reaction force with respect to may be suppressed. The partition tube plate 4q is welded only to either one of the heat transfer tubes 4e or the casing 4a.

上述したように、第2熱交換器4の内部では冷却空気の圧力より燃焼用空気の圧力が低くなるため、冷却空間Sに供給された冷却空気は各伝熱管4eまたはケーシング4aのうちの非溶接部位の隙間から燃焼用空気に混入し、或いはスリーブ管4kと伝熱管4eとの隙間から排ガス側に混入するようになる。尚、排ガスの圧力は誘引送風機8によって負圧に維持されている。   As described above, since the pressure of the combustion air is lower than the pressure of the cooling air inside the second heat exchanger 4, the cooling air supplied to the cooling space S is not in the heat transfer tubes 4e or the casing 4a. It enters the combustion air from the gap at the welding site, or enters the exhaust gas side through the gap between the sleeve tube 4k and the heat transfer tube 4e. The pressure of the exhaust gas is maintained at a negative pressure by the induction fan 8.

上述した実施形態は、熱処理炉として流動床式焼却炉2を採用した場合について説明したが、本発明が適用される焼却炉は流動床式焼却炉2に限らず、流動床式焼却炉2と同様に通気圧損が大きいシャフト炉等の他の形式の工業炉にも適用可能である。例えば、底部にコークスベッドが形成され、当該コークスベッドに燃焼用空気を供給する羽口が形成されたシャフト炉の上方から汚泥を投入して溶融するような熱処理炉やスクラップを投入して溶解するキュポラ等であっても、本発明が適用可能である。   Although embodiment mentioned above demonstrated the case where the fluidized-bed type incinerator 2 was employ | adopted as a heat treatment furnace, the incinerator to which this invention is applied is not restricted to the fluidized-bed type incinerator 2, Similarly, the present invention can be applied to other types of industrial furnaces such as a shaft furnace having a large airflow pressure loss. For example, a coke bed is formed at the bottom, and a heat treatment furnace or scrap that melts by pouring sludge from above the shaft furnace in which the tuyere that supplies combustion air to the coke bed is formed is melted by charging. The present invention can also be applied to a cupola or the like.

上述した実施形態は、何れも本発明の一例であり、当該記載により本発明が限定されるものではなく、夫々の特徴構成を適宜向き合わせてもよく、また各部の具体的構成を本発明の作用効果が奏される範囲で適宜変更設計してもよいことはいうまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. Each characteristic configuration may be appropriately faced, and the specific configuration of each part may be the same as that of the present invention. Needless to say, the design may be changed as appropriate within the range in which the effects are exhibited.

100:廃棄物処理設備
2:流動床式焼却炉
3:空気供給機構
4:第2熱交換器
5:第1熱交換器
10:煙道
30:押込み送風機
40:過給機
40c:コンプレッサ
40t:タービン
50:過給機
50c:コンプレッサ
50t:タービン
60:冷却空気供給機構
70:制御部
100: Waste treatment facility 2: Fluidized bed incinerator 3: Air supply mechanism 4: Second heat exchanger 5: First heat exchanger 10: Flue 30: Pushing fan 40: Supercharger 40c: Compressor 40t: Turbine 50: Supercharger 50c: Compressor 50t: Turbine 60: Cooling air supply mechanism 70: Control unit

Claims (10)

汚泥等の廃棄物を焼却処理する熱処理炉を備えている廃棄物処理設備であって、
前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する第1熱交換器と、
前記第1熱交換器で予熱された燃焼用空気により回転するタービンと、前記タービンの回転により前記第1熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、
前記第1熱交換器と直列または並列に配置され、前記タービンから排気された燃焼用空気をさらに予熱する第2熱交換器と、
前記第2熱交換器で予熱された燃焼用空気を前記熱処理炉へ供給する給気路と、
保護用の冷却空気を前記第2熱交換器に供給する冷却空気供給機構と、
を備えている廃棄物処理設備。
A waste treatment facility equipped with a heat treatment furnace for incinerating waste such as sludge,
A first heat exchanger that preheats combustion air using in-furnace combustion heat of the heat treatment furnace and / or retained heat of exhaust gas guided to a flue;
A turbocharger comprising: a turbine rotating by combustion air preheated by the first heat exchanger; and a compressor for supplying combustion air to the first heat exchanger by rotation of the turbine;
A second heat exchanger disposed in series or in parallel with the first heat exchanger and further preheating the combustion air exhausted from the turbine;
An air supply path for supplying combustion air preheated in the second heat exchanger to the heat treatment furnace;
A cooling air supply mechanism for supplying cooling air for protection to the second heat exchanger;
Waste treatment facility equipped with.
前記冷却空気供給機構は前記コンプレッサと前記コンプレッサで圧縮された圧縮空気の一部を前記冷却空気として前記第2熱交換器に分岐供給する分岐路とを備えている請求項1記載の廃棄物処理設備。   2. The waste treatment according to claim 1, wherein the cooling air supply mechanism includes the compressor and a branch passage that supplies a part of the compressed air compressed by the compressor to the second heat exchanger as the cooling air. Facility. 前記過給機は直列接続された複数の過給機を備えて構成され、
前記冷却空気供給機構は初段または中間段のコンプレッサと当該コンプレッサで圧縮された圧縮空気の一部を前記冷却空気として前記第2熱交換器に分岐供給する分岐路とを備えている請求項2記載の廃棄物処理設備。
The supercharger comprises a plurality of superchargers connected in series,
3. The cooling air supply mechanism includes a first-stage or intermediate-stage compressor, and a branch passage that branches and supplies a part of the compressed air compressed by the compressor as the cooling air to the second heat exchanger. Waste disposal equipment.
前記過給機は直列接続された二段の過給機を備えて構成され、
前記冷却空気供給機構は初段のコンプレッサと当該コンプレッサで圧縮された圧縮空気の一部を前記冷却空気として前記第2熱交換器に分岐供給する分岐路とを備えている請求項3記載の廃棄物処理設備。
The supercharger comprises a two-stage supercharger connected in series,
4. The waste according to claim 3, wherein the cooling air supply mechanism includes a first stage compressor and a branch passage that branches and supplies a part of the compressed air compressed by the compressor as the cooling air to the second heat exchanger. Processing equipment.
前記冷却空気により冷却される前記第2熱交換器の温度を測定する温度センサと、
該温度センサの計測値により前記分岐路を通風する冷却風量を調整する冷却風量調整機構と、
を備えている請求項1から4の何れかに記載の廃棄物処理設備。
A temperature sensor for measuring the temperature of the second heat exchanger cooled by the cooling air;
A cooling air volume adjusting mechanism that adjusts the cooling air volume that flows through the branch passage according to the measured value of the temperature sensor;
The waste treatment facility according to any one of claims 1 to 4, further comprising:
前記第1熱交換機をバイパスするバイパス送風路を備え、前記バイパス送風路を通風する燃焼用空気を加熱する熱風炉を備えている請求項1から5の何れかに記載の廃棄物処理設備。   The waste treatment facility according to any one of claims 1 to 5, further comprising a bypass air passage that bypasses the first heat exchanger, and a hot air furnace that heats combustion air passing through the bypass air passage. 前記コンプレッサへ燃焼用空気を予備圧縮して供給する押込み送風機をさらに備えている請求項1から6の何れかに記載の廃棄物処理設備。   The waste treatment facility according to any one of claims 1 to 6, further comprising a pusher blower for precompressing and supplying combustion air to the compressor. 汚泥等の廃棄物を焼却処理する熱処理炉を備えている廃棄物処理設備の操炉方法であって、
燃焼用空気をコンプレッサで圧縮する圧縮工程と、
前記圧縮工程で圧縮された燃焼用空気を、前記熱処理炉及び/または前記熱処理炉の煙道に備えた第1熱交換器に導いて排ガスの保有熱により予熱する第1予熱工程と、
前記第1予熱工程で予熱された燃焼用空気でタービンを回転させて動力を前記コンプレッサへ伝える圧縮動力生成工程と、
前記圧縮動力生成工程で前記タービンから排気された燃焼用空気を、前記第1熱交換器と直列または並列に配置された第2熱交換器に導いて、排ガスの保有熱によりさらに予熱する第2予熱工程と、
前記第2予熱工程で再度予熱された燃焼用空気を前記熱処理炉に供給する燃焼用空気供給工程と、
前記第2熱交換器4に供給される保護用の冷却空気を前記第2熱交換器に供給する冷却空気供給工程と、
前記冷却空気により冷却される前記第2熱交換器の温度により前記冷却空気の風量を調整する冷却風量調整工程と、
を含む廃棄物処理設備の操炉方法。
A furnace operation method for a waste treatment facility equipped with a heat treatment furnace for incinerating waste such as sludge,
A compression step of compressing combustion air with a compressor;
A first preheating step in which the combustion air compressed in the compression step is guided to a first heat exchanger provided in the heat treatment furnace and / or a flue of the heat treatment furnace and preheated by the retained heat of the exhaust gas;
A compression power generation step of rotating a turbine with combustion air preheated in the first preheating step and transmitting power to the compressor;
The combustion air exhausted from the turbine in the compression power generation step is guided to a second heat exchanger disposed in series or in parallel with the first heat exchanger, and further preheated by the retained heat of the exhaust gas. A preheating process;
A combustion air supply step for supplying the combustion air preheated again in the second preheating step to the heat treatment furnace;
A cooling air supply step for supplying the cooling heat for protection supplied to the second heat exchanger 4 to the second heat exchanger;
A cooling air volume adjustment step of adjusting the air volume of the cooling air according to the temperature of the second heat exchanger cooled by the cooling air;
Of waste treatment facilities including
前記圧縮工程は直列接続された複数段のコンプレッサで圧縮されるように構成されるとともに、
前記圧縮動力生成工程は直列接続された複数段のタービンを回転させて動力を各コンプレッサへ伝えるように構成され、
前記冷却空気供給工程は初段または中間段のコンプレッサで圧縮された圧縮空気の一部を前記冷却空気として前記第2熱交換器に分岐供給するように構成されている請求項8記載の廃棄物処理設備の操炉方法。
The compression process is configured to be compressed by a plurality of compressors connected in series,
The compression power generation process is configured to rotate a plurality of turbines connected in series to transmit power to each compressor,
9. The waste treatment according to claim 8, wherein the cooling air supply step is configured to branch and supply a part of the compressed air compressed by a first stage or intermediate stage compressor as the cooling air to the second heat exchanger. How to operate the equipment.
前記圧縮工程に導かれる燃焼用空気を押込み送風機により予備圧縮する予備圧縮工程をさらに備えている請求項8または9記載の廃棄物処理設備の操炉方法。   The furnace operation method for a waste treatment facility according to claim 8 or 9, further comprising a pre-compression step of pre-compressing the combustion air guided to the compression step with a forced blower.
JP2016060051A 2016-03-24 2016-03-24 Waste treatment equipment and how to operate the waste treatment equipment Active JP6800594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016060051A JP6800594B2 (en) 2016-03-24 2016-03-24 Waste treatment equipment and how to operate the waste treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060051A JP6800594B2 (en) 2016-03-24 2016-03-24 Waste treatment equipment and how to operate the waste treatment equipment

Publications (2)

Publication Number Publication Date
JP2017170351A true JP2017170351A (en) 2017-09-28
JP6800594B2 JP6800594B2 (en) 2020-12-16

Family

ID=59969815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060051A Active JP6800594B2 (en) 2016-03-24 2016-03-24 Waste treatment equipment and how to operate the waste treatment equipment

Country Status (1)

Country Link
JP (1) JP6800594B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6363311B1 (en) * 2018-01-31 2018-07-25 株式会社神鋼環境ソリューション Waste treatment facility
JP6363310B1 (en) * 2018-01-30 2018-07-25 株式会社神鋼環境ソリューション Waste treatment facility
JP6404506B1 (en) * 2018-01-30 2018-10-10 株式会社神鋼環境ソリューション Waste treatment facility
JP2020085387A (en) * 2018-11-29 2020-06-04 株式会社クボタ Waste treatment facility and operating method for waste treatment facility
JP2020085386A (en) * 2018-11-29 2020-06-04 株式会社クボタ Waste treatment facility and operating method for waste treatment facility
JP2021038736A (en) * 2019-09-05 2021-03-11 株式会社神鋼環境ソリューション Waste treatment facility and method for operating the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102525A (en) * 1980-12-17 1982-06-25 Ishikawajima Harima Heavy Ind Co Ltd Gas turbine
JPS6112560Y2 (en) * 1981-09-02 1986-04-18
JPH04129696U (en) * 1991-05-08 1992-11-27 大同特殊鋼株式会社 Heat exchanger protection device
JP2003292964A (en) * 2002-04-02 2003-10-15 Meidensha Corp Apparatus and facility for heat treatment
JP2011137575A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2013083384A (en) * 2011-10-07 2013-05-09 Alstom Technology Ltd Operation method and device of multitubular heat exchanger in fluidized incinerator system
JP2015152258A (en) * 2014-02-17 2015-08-24 メタウォーター株式会社 Waste treatment plant
JP2015194308A (en) * 2014-03-31 2015-11-05 株式会社クボタ Incineration equipment and incineration method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102525A (en) * 1980-12-17 1982-06-25 Ishikawajima Harima Heavy Ind Co Ltd Gas turbine
JPS6112560Y2 (en) * 1981-09-02 1986-04-18
JPH04129696U (en) * 1991-05-08 1992-11-27 大同特殊鋼株式会社 Heat exchanger protection device
JP2003292964A (en) * 2002-04-02 2003-10-15 Meidensha Corp Apparatus and facility for heat treatment
JP2011137575A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2013083384A (en) * 2011-10-07 2013-05-09 Alstom Technology Ltd Operation method and device of multitubular heat exchanger in fluidized incinerator system
JP2015152258A (en) * 2014-02-17 2015-08-24 メタウォーター株式会社 Waste treatment plant
JP2015194308A (en) * 2014-03-31 2015-11-05 株式会社クボタ Incineration equipment and incineration method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6363310B1 (en) * 2018-01-30 2018-07-25 株式会社神鋼環境ソリューション Waste treatment facility
JP6404506B1 (en) * 2018-01-30 2018-10-10 株式会社神鋼環境ソリューション Waste treatment facility
JP2019132480A (en) * 2018-01-30 2019-08-08 株式会社神鋼環境ソリューション Waste treatment facility
JP2019132482A (en) * 2018-01-30 2019-08-08 株式会社神鋼環境ソリューション Waste treatment facility
JP6363311B1 (en) * 2018-01-31 2018-07-25 株式会社神鋼環境ソリューション Waste treatment facility
JP2019132523A (en) * 2018-01-31 2019-08-08 株式会社神鋼環境ソリューション Waste treatment facility
JP2020085387A (en) * 2018-11-29 2020-06-04 株式会社クボタ Waste treatment facility and operating method for waste treatment facility
JP2020085386A (en) * 2018-11-29 2020-06-04 株式会社クボタ Waste treatment facility and operating method for waste treatment facility
JP7156923B2 (en) 2018-11-29 2022-10-19 株式会社クボタ Waste treatment equipment and operation method of waste treatment equipment
JP7156922B2 (en) 2018-11-29 2022-10-19 株式会社クボタ Waste treatment equipment and operation method of waste treatment equipment
JP2021038736A (en) * 2019-09-05 2021-03-11 株式会社神鋼環境ソリューション Waste treatment facility and method for operating the same

Also Published As

Publication number Publication date
JP6800594B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP6800594B2 (en) Waste treatment equipment and how to operate the waste treatment equipment
JP6490466B2 (en) Waste treatment facility and method of operating waste treatment facility
JP6655467B2 (en) Furnace operation method of waste treatment equipment and waste treatment equipment
JP5067653B2 (en) Pressurized incinerator equipment and operating method thereof
US20200095899A1 (en) Apparatus for extracting energy from waste heat
JP6266440B2 (en) Waste treatment facility and waste treatment method
JP6580398B2 (en) Waste treatment facility and operation method of waste treatment facility
JP6333021B2 (en) Incineration processing equipment and incineration processing method
JP4991986B2 (en) Pressure incinerator equipment and its startup method
JP2017190929A (en) Waste treatment facility
JP7156922B2 (en) Waste treatment equipment and operation method of waste treatment equipment
JP2000054855A (en) External heating type gas turbine
JP6678265B1 (en) Apparatus and method for treating flue gas
JP6947608B2 (en) How to operate waste treatment equipment and waste treatment equipment
JP7254438B2 (en) Operation method of waste disposal facility and waste disposal facility
JP2015194307A (en) Incineration equipment and incineration method
JP2022097537A (en) Incinerator with supercharger
JP5574911B2 (en) Incineration equipment and its operating method
JP7156923B2 (en) Waste treatment equipment and operation method of waste treatment equipment
JP5711795B2 (en) Pressurized fluidized incinerator equipment and control method of pressurized fluidized incinerator equipment
JP4833774B2 (en) An atmospheric combustion turbine system for industrial heat treatment furnaces.
CN104595906B (en) Remains sacrificial offerings incinerator
CN218565436U (en) Laughing gas burning device
JPS61284508A (en) Method for utilizing exhaust gas of blast furnace gas turbine
CN215637308U (en) Waste gas oxygenation circulating combustion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201125

R150 Certificate of patent or registration of utility model

Ref document number: 6800594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150