JP5067653B2 - Pressurized incinerator equipment and operating method thereof - Google Patents

Pressurized incinerator equipment and operating method thereof Download PDF

Info

Publication number
JP5067653B2
JP5067653B2 JP2006201745A JP2006201745A JP5067653B2 JP 5067653 B2 JP5067653 B2 JP 5067653B2 JP 2006201745 A JP2006201745 A JP 2006201745A JP 2006201745 A JP2006201745 A JP 2006201745A JP 5067653 B2 JP5067653 B2 JP 5067653B2
Authority
JP
Japan
Prior art keywords
exhaust gas
turbine
steam
incinerator
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006201745A
Other languages
Japanese (ja)
Other versions
JP2008025965A (en
Inventor
修一 落
善三 鈴木
均 木原
和由 寺腰
英和 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Tsukishima Kikai Co Ltd
National Research and Development Agency Public Works Research Institute
Original Assignee
Sanki Engineering Co Ltd
Public Works Research Institute
National Institute of Advanced Industrial Science and Technology AIST
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Public Works Research Institute, National Institute of Advanced Industrial Science and Technology AIST, Tsukishima Kikai Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2006201745A priority Critical patent/JP5067653B2/en
Publication of JP2008025965A publication Critical patent/JP2008025965A/en
Application granted granted Critical
Publication of JP5067653B2 publication Critical patent/JP5067653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、加圧焼却炉設備、詳しは被処理物を加圧下で燃焼し、この燃焼により発生した排ガスにより駆動されるガスタービンを備え、ガスタービンによって圧縮機が駆動され、この圧縮機の駆動によって生成された圧縮空気を流動床の焼却炉内に供給する構成とされた加圧焼却炉設備及びその運転方法に関する。   The present invention includes a pressure incinerator facility, specifically, a gas turbine driven by an exhaust gas generated by combustion of a workpiece to be processed under pressure, and a compressor driven by the gas turbine. The present invention relates to a pressurized incinerator facility configured to supply compressed air generated by driving into an incinerator of a fluidized bed and an operation method thereof.

バイオマスや下水汚泥等の可燃性廃棄物の焼却において、焼却物の持つエネルギーを有効に取り出すための手段の1つとして、加圧流動焼却方法がある。
これを図4に基づいて説明する。図4は、発電用ガスタービンを運転するための従来の発電用加圧式流動床燃焼設備を示す。
図4において、発電用ガスタービンを運転するための従来の発電用加圧式流動床燃焼設備は、被処理物Pを燃焼させる流動床式の焼却炉1と、この燃焼により発生した排ガスGによって駆動されるタービン6b及びこのタービン6bによって駆動され、焼却炉1内に供給する圧縮空気Aを生成するコンブレッサ6aを有するガスタービンエンジン6を備えている。
In incineration of flammable waste such as biomass and sewage sludge, there is a pressurized fluidized incineration method as one of means for effectively taking out the energy of the incinerated material.
This will be described with reference to FIG. 4 shows a conventional pressurized fluidized bed combustion facility for power generation for operating a power generation gas turbine.
In FIG. 4, a conventional pressurized pressurized fluidized bed combustion facility for operating a power generation gas turbine is driven by a fluidized bed incinerator 1 that combusts an object P and an exhaust gas G generated by the combustion. And a gas turbine engine 6 having a compressor 6a that is driven by the turbine 6b and generates compressed air A that is supplied into the incinerator 1.

焼却炉1には、粉体状の石炭(発電ボイラーの場合)、バイオマス、都市ゴミや下水汚泥の脱水ケーキ等の被処理物Pを供給する供給器2と、内部を徐々に昇温させる昇温バーナ3とを備えている。昇温バーナ3と焼却炉1の下部の燃料供給口とには、燃焼のための燃料を供給する補助燃料供給設備4が連絡している。また、焼却炉1には、圧縮空気Aが調整弁11を介して1次空気用として炉内に吹き込まれ、圧縮空気Aの充填により、焼却炉1内は、加圧されるようになっている。この加圧下で、被処理物Pが投入されると、吹き上げられる圧縮空気Aに起因して高速で流動する砂などの流動媒体によって激しく混合・攪拌され、被処理物Pは焼却される。   The incinerator 1 is provided with a powdery coal (in the case of a power generation boiler), biomass, a debris cake such as municipal waste and sewage sludge, and a supply unit 2 for supplying a material to be processed P And a warm burner 3. An auxiliary fuel supply facility 4 that supplies fuel for combustion is in communication with the temperature raising burner 3 and the fuel supply port at the bottom of the incinerator 1. In addition, compressed air A is blown into the furnace for primary air through the regulating valve 11 into the incinerator 1, and the inside of the incinerator 1 is pressurized by filling with the compressed air A. Yes. When the workpiece P is introduced under this pressure, it is vigorously mixed and stirred by a fluid medium such as sand that flows at high speed due to the compressed air A blown up, and the workpiece P is incinerated.

焼却炉1では被処理物Pが加圧下で燃焼され、この燃焼により発生した排ガスGを駆動ガスとしてタービン6bを駆動させるようになっている。タービン6bには、コンブレッサ6aが連結されている。コンプレッサ6aはタービン6bの駆動にともなって、駆動されるようになっており、コンブレッサ6aにはエアフィルタ8を通した空気が供給されるようになっている。そして、このタービン6bによって駆動されたコンブレッサ6aの駆動によって生成された圧縮空気Aは、空気供給路12に設けた調整弁11を介して送られる。このようにして焼却炉1内には、コンブレッサ6aによって加圧された高圧の圧縮空気Aが供給されるので、炉内では常圧よりも高圧の状態(加圧下)で被処理物Pが燃焼されることになる。ガスタービンエンジン6は、回転軸を介して起動用電動機兼発電機7と連絡している。起動用電動機兼発電機7は、ガスタービンエンジン6を動作させるため、コンプレッサ作用により空気を圧縮する必要があるため、起動用電動機兼発電機7をそれに供給される電力により回転させ初期駆動される。ガスタービンエンジン6のコンプレッサ6aは、空気フィルタ8と連絡している。   In the incinerator 1, the workpiece P is combusted under pressure, and the turbine 6 b is driven using the exhaust gas G generated by this combustion as a driving gas. A turbine 6b is connected to a convolver 6a. The compressor 6a is driven as the turbine 6b is driven, and the air passing through the air filter 8 is supplied to the compressor 6a. And the compressed air A produced | generated by the drive of the compressor 6a driven by this turbine 6b is sent through the adjustment valve 11 provided in the air supply path 12. FIG. Thus, since the high-pressure compressed air A pressurized by the compressor 6a is supplied into the incinerator 1, the workpiece P burns in a state higher than normal pressure (under pressure) in the furnace. Will be. The gas turbine engine 6 is in communication with a starter motor / generator 7 via a rotating shaft. Since the starter motor / generator 7 operates the gas turbine engine 6 and needs to compress air by a compressor action, the starter motor / generator 7 is initially driven by rotating with the power supplied thereto. . The compressor 6 a of the gas turbine engine 6 is in communication with the air filter 8.

焼却炉1内は高圧・高温であることから高圧・高温状態のまま排ガスGが排ガス流路13を介して排気される。この排ガスGは、集塵機5に送られる。この集塵機5は、排ガスG中の煤塵を除去するためのものである。この集塵機5を設置しないと、排ガスG中の煤塵がタービン6bに入り込み,タービン6bを損傷させ又はタービンに付着し、安定した運転を妨げる慮があり、それを防ぐためのものである。   Since the inside of the incinerator 1 is at a high pressure and a high temperature, the exhaust gas G is exhausted through the exhaust gas passage 13 while maintaining the high pressure and high temperature. This exhaust gas G is sent to the dust collector 5. The dust collector 5 is for removing dust in the exhaust gas G. If the dust collector 5 is not installed, the dust in the exhaust gas G enters the turbine 6b, damages the turbine 6b or adheres to the turbine, and prevents stable operation.

集塵機5において煤塵の除去された清浄ガス(排ガス)Gは、駆動ガスとしてタービン6bを駆動させ、圧力(膨張)エネルギーが回収される。その後、排ガス流路13を介して排ガス処理設備9に送られ、排ガス処理設備9に送られた清浄ガス(排ガス)Gは煙突10から大気放出されるものである。タービン6Bの下流側には、タービン6bの高温排気からさらにエネルギー回収して総合熱効率を高めるため、廃熱ボイラ(またはガスタービン発電機あるいは蒸気発生ボイラまたは蒸気タービン発電機)14が設けられている。   The clean gas (exhaust gas) G from which dust is removed in the dust collector 5 drives the turbine 6b as a driving gas, and the pressure (expansion) energy is recovered. Thereafter, the clean gas (exhaust gas) G sent to the exhaust gas treatment facility 9 via the exhaust gas flow path 13 and discharged to the exhaust gas treatment facility 9 is discharged from the chimney 10 to the atmosphere. A waste heat boiler (or a gas turbine generator, a steam generation boiler, or a steam turbine generator) 14 is provided on the downstream side of the turbine 6B in order to further recover energy from the high-temperature exhaust of the turbine 6b to increase the overall thermal efficiency. .

次に、図4の発電用ガスタービンを運転するための従来の発電用加圧式流動床燃焼設備の作用を説明する。
定常運転時において、ガスタービンエンジン6のガスタービン6bが排ガスで駆動され、同軸に固定されたコンプレッサ6aの回転により吸い込まれた空気は、ガスタービンエンジン6のコンプレッサ6aで昇圧され、焼却炉1に送風される。焼却炉1には、通常、粉体状の石炭(発電ボイラーの場合、焼却炉では焼却物)が供給器2から供給され、燃焼する。焼却炉1の排ガスGは高温の加圧排ガスとなり、排ガス流路13を介して集塵機5に導かれ、排ガス中の塵埃を取り除かれた後、排ガス流路13を介してガスタービンエンジン6のガスタービン6bに導びかれ、ガスタービンエンジン6のガスタービン6bを駆動する。ガスタービンエンジン6のガスタービン6bの回転力は、通常このタービン軸に直結されたガスタービンエンジン6のコンプレッサ6aを駆動し、空気を昇圧する。このコンブレッサ6aの駆動によって生成された圧縮空気Aは、空気供給路12に設けた調整弁11を介して焼却炉1に送られる。そして、タービン6bの下流側で、廃熱ボイラ14によって蒸気を発生させて各種の用途に使用している。
Next, the operation of a conventional pressurized fluidized bed combustion facility for power generation for operating the power generation gas turbine of FIG. 4 will be described.
During steady operation, the gas turbine 6b of the gas turbine engine 6 is driven by exhaust gas, and the air sucked in by the rotation of the compressor 6a fixed coaxially is pressurized by the compressor 6a of the gas turbine engine 6 and is supplied to the incinerator 1. Be blown. The incinerator 1 is usually supplied with powdered coal (in the case of a power generation boiler, incinerated in the incinerator) from the feeder 2 and combusts. The exhaust gas G from the incinerator 1 becomes high-temperature pressurized exhaust gas, and is guided to the dust collector 5 through the exhaust gas passage 13 to remove dust in the exhaust gas, and then the gas of the gas turbine engine 6 through the exhaust gas passage 13. The gas is guided to the turbine 6b and drives the gas turbine 6b of the gas turbine engine 6. The rotational force of the gas turbine 6b of the gas turbine engine 6 usually drives the compressor 6a of the gas turbine engine 6 directly connected to the turbine shaft to increase the pressure of the air. The compressed air A generated by driving the compressor 6 a is sent to the incinerator 1 through the regulating valve 11 provided in the air supply path 12. Then, on the downstream side of the turbine 6b, steam is generated by the waste heat boiler 14 and used for various purposes.

以上の説明のように、図4の設備は、全体として内燃機関の構成となっており、焼却炉1は発電ガスタービンや、航空機用ガスタービンにおける燃焼缶に当たる作用を受け持っている。タービン6bを通過した高温排ガスは、タービン6bで圧力エネルギーを放出し、低圧の排ガスとなるが、温度は断熱膨張により多少低下しただけで依然温度大きな温度エネルギーを保有している。このため、この排気熱を有効に活用する廃熱ボイラ14が熱利用設備に利用されている。また、この廃熱で蒸気ボイラ14を運転し高圧蒸気を得て、蒸気タービンを駆動・発電するハイブリッド発電を行う場合もある。この場合、最大限の電力エネルギーを設備から取り出すことが可能と考えられる。   As described above, the facility of FIG. 4 has a configuration of an internal combustion engine as a whole, and the incinerator 1 has an action corresponding to a combustion can in a power generation gas turbine or an aircraft gas turbine. The high-temperature exhaust gas that has passed through the turbine 6b releases pressure energy in the turbine 6b and becomes low-pressure exhaust gas. However, the temperature is still slightly reduced due to adiabatic expansion, and still has high temperature energy. For this reason, the waste heat boiler 14 which utilizes this exhaust heat effectively is utilized for heat utilization equipment. In some cases, the steam boiler 14 is operated with this waste heat to obtain high-pressure steam, and hybrid power generation is performed to drive and generate power for the steam turbine. In this case, it is considered possible to extract the maximum power energy from the facility.

しかしながら、図4に示す方式では、ガスタービンエンジン6のタービン6b部分で圧力開放され運動エネルギーを回収された高温の排ガス中には熱エネルギーが残存し、このエネルギーを有効に利用するとエネルギー回収効率の高い設備とすることができる。特に、廃熱ボイラ14による蒸気発生により蒸気タービンを駆動させ動力エネルギーを回収することが可能であることはすでに述べたが、このようなシステムでは2種類のタービン機関を設けるなど設備が複雑となり、その割には回収エネルギーが少なく小規模な設備では経済的に成り立たない。   However, in the system shown in FIG. 4, thermal energy remains in the high-temperature exhaust gas whose pressure is released at the turbine 6 b portion of the gas turbine engine 6 and the kinetic energy is recovered. If this energy is used effectively, the energy recovery efficiency is improved. The equipment can be high. In particular, it has already been described that it is possible to drive a steam turbine by generating steam from the waste heat boiler 14 to recover power energy. However, in such a system, facilities such as two types of turbine engines are complicated, On the other hand, there is little recovered energy, and a small-scale facility is not economically viable.

また、このような設備では、通常の流動床炉が電動機駆動の送風機・排風機を必要とするのに比べ、送風機動力を自己発生エネルギーで賄い消費電力量を大幅に節約するだけでなく、余剰のエネルギーをガスタービン機関の軸動力として取リ出し、発電することも可能である。このため、廃棄物焼却においてエネルギー回収をする手段として有望な技術であるが、前述のように加圧流動床焼却炉自体だけでなく、ガスタービン発電機や、蒸気発生ボイラ、蒸気タービン発電機の組み合わせとなり、設備が複雑になり必然的に建設コストの高いものとなる。   Also, in such facilities, compared to the normal fluidized bed furnace that requires a motor-driven blower / exhaust fan, the power of the blower is not only saved by self-generated energy, but also significantly reduces power consumption. It is also possible to take out this energy as shaft power of the gas turbine engine and generate electric power. For this reason, it is a promising technique for energy recovery in waste incineration, but not only the pressurized fluidized bed incinerator itself as described above, but also gas turbine generators, steam generating boilers, steam turbine generators Combined, the equipment becomes complicated and the construction cost is inevitably high.

そこで、本発明者は、図4に示す発電用ガスタービンを用いた加圧焼却炉設備の問題点を解決するため、ガスタービンエンジン(発電用ガスタービン)6の代わりに標準化され大量に市場供給されている内燃機関用の過給機(ターボチャージャ:TC)を利用することによって、経済的な加圧焼却炉設備を得ることを見出した。これを図5により説明する。   Therefore, in order to solve the problem of the pressure incinerator facility using the power generation gas turbine shown in FIG. 4, the present inventor standardized and supplied a large quantity instead of the gas turbine engine (power generation gas turbine) 6. It has been found that an economical pressurized incinerator facility can be obtained by using a turbocharger (TC) for an internal combustion engine. This will be described with reference to FIG.

図5は、過給機を用いた通常型加圧焼却装置の概念フローシートを示す。
図5の過給機を使用した加圧式流動床燃焼設備は、図4に示すような本格的なガスタービンエンジン6の代わりに市場で安価に供給されている過給機(ターボチャージャ:TC)15を使用している。これにはガスタービンエンジン6を起動するための起動用電動機7が装備されていない。このため、過給機15のタービン15bの起動は、過給機15の圧縮機15aの空気吸込口上流に設けた起動用送風機17からの送風により行う。
FIG. 5 shows a conceptual flow sheet of a normal pressure incinerator using a supercharger.
The pressurized fluidized bed combustion facility using the supercharger of FIG. 5 is a supercharger (turbocharger: TC) that is supplied at low cost in the market instead of the full-scale gas turbine engine 6 as shown in FIG. 15 is used. This is not equipped with a starting motor 7 for starting the gas turbine engine 6. For this reason, the start of the turbine 15b of the supercharger 15 is performed by blowing air from the starter blower 17 provided upstream of the air suction port of the compressor 15a of the supercharger 15.

図5において、過給機15の圧縮機15aの空気吸込口上流に起動用送風機17が配置されている。焼却炉1には過給機15の圧縮機15aを通じて空気供給路12を介して圧縮空気Aを送風し、焼却炉1で昇温された排ガスGは排ガス流路13を介して再度過給機15のタービン15bに導かれる構成としている。
過給機15が定常運転となった後に起動用送風機17を通じて空気を吸い込むと、空気の吸い込み抵抗が発生して過給機15の性能低下を招くため、空気フィルタ8と過給機15の間をバイパスさせ、起動用送風機17を迂回して空気を吸い込めるようにバイパス管19及びバイパス弁20を配置している。
In FIG. 5, the starter blower 17 is disposed upstream of the air suction port of the compressor 15 a of the supercharger 15. Compressed air A is blown to the incinerator 1 through the air supply path 12 through the compressor 15 a of the supercharger 15, and the exhaust gas G heated in the incinerator 1 is supercharged again through the exhaust gas path 13. 15 turbines 15b are guided.
If air is sucked through the starter blower 17 after the supercharger 15 is in a steady operation, an air suction resistance is generated and the performance of the supercharger 15 is deteriorated. The bypass pipe 19 and the bypass valve 20 are arranged so as to bypass the starter blower 17 and suck in air.

バイパス弁20の制御機構としては、1)一方通行型のチャッキ弁により、起動用送風機17が吸入抵抗要因になった場合、自動的にこの抵抗圧でチャッキ弁が開く方式、2)電気的に圧力を検出して、強制的にバイパス弁20を開く方式が使用できる。
なお、集塵機5の上流側に熱交換器からなる空気予熱器16が配置されている。過給機15の圧縮機15aと焼却炉1とを連絡する空気供給路12には、圧空利用設備21が調整弁22を介して配置され、その上流側に空気予熱器16が配置されている。また、空気供給路12を介して供給される圧縮空気Aが下部の調整弁11を介して1次空気用として炉内に吹き込まれ、その残部が上部の調整弁18を介して2次空気用として吹込まれるようになっており、圧縮空気Aの充填により、焼却炉1内は、加圧されるようになっている。この加圧下で、被処理物Pが投入されると、吹き上げられる圧縮空気Aに起因して高速で流動する砂などの流動媒体によって激しく混合・攪拌され、被処理物Pは焼却されるものである。なお、調整弁11と調整弁18により焼却炉1内に供給する圧縮空気Aの量が調節されている。
As a control mechanism of the bypass valve 20, 1) a system in which the check valve automatically opens with this resistance pressure when the starter blower 17 becomes a suction resistance factor by a one-way check valve; 2) electrically A method of detecting the pressure and forcibly opening the bypass valve 20 can be used.
Note that an air preheater 16 including a heat exchanger is disposed on the upstream side of the dust collector 5. In the air supply path 12 that connects the compressor 15a of the supercharger 15 and the incinerator 1, a pressurized air utilization facility 21 is disposed via a regulating valve 22, and an air preheater 16 is disposed upstream thereof. . Compressed air A supplied through the air supply path 12 is blown into the furnace for the primary air through the lower adjustment valve 11, and the remainder is used for the secondary air through the upper adjustment valve 18. The incinerator 1 is pressurized by filling with compressed air A. When the workpiece P is introduced under this pressure, it is vigorously mixed and stirred by a fluid medium such as sand that flows at high speed due to the compressed air A blown up, and the workpiece P is incinerated. is there. The amount of compressed air A supplied into the incinerator 1 is adjusted by the adjusting valve 11 and the adjusting valve 18.

そして、このタービン15bによって駆動されたコンブレッサ15aの駆動によって生成された圧縮空気Aは、空気供給路12の途中に設けた空気予熱器16に送られる。この空気予熱器16において、圧縮空気Aは予熱され、高温・高圧の圧縮空気(燃焼用空気)Aとして空気供給路12から調整弁11と調整弁18とに分岐する供給路に送られる。このようにして加庄流動床焼却炉1内には、コンブレッサ15aによって加圧された高圧の圧縮空気Aが供給されるので、炉内では常圧よりも高圧の状態(加圧下)で被処理物Pが燃焼されることになる。   And the compressed air A produced | generated by the drive of the compressor 15a driven by this turbine 15b is sent to the air preheater 16 provided in the middle of the air supply path 12. FIG. In the air preheater 16, the compressed air A is preheated and sent as high-temperature / high-pressure compressed air (combustion air) A to a supply path that branches from the air supply path 12 to the regulating valve 11 and the regulating valve 18. Thus, since the high-pressure compressed air A pressurized by the compressor 15a is supplied into the Kasho fluidized bed incinerator 1, the object to be treated is in a state higher than normal pressure (under pressure) in the furnace. The thing P will be burned.

図5の加圧焼却炉設備では、焼却炉1には過給機15の圧縮機15aを通じて空気供給路12を介して圧縮空気Aを送風し、焼却炉1で昇温された排ガスGは排ガス流路13を介して再度過給機15のタービン15bに導かれる構成としている。これにより、過給機15の始動用の起動用送風機17は全体の焼却炉1を始動時に昇温するために必要な燃焼(焼却炉内昇温バーナ3で行う)を維持できるだけの空気を設備に供給するのみでよくなり、加圧状態での焼却を維持するための送風機と比較して小吐出量、圧力、動力の送風機で起動可能となる。   In the pressurized incinerator facility of FIG. 5, compressed air A is blown to the incinerator 1 through the air supply path 12 through the compressor 15a of the supercharger 15, and the exhaust gas G heated in the incinerator 1 is exhaust gas. The configuration is such that it is guided again to the turbine 15 b of the supercharger 15 via the flow path 13. As a result, the starter blower 17 for starting the supercharger 15 has sufficient air to maintain the combustion necessary for raising the temperature of the entire incinerator 1 at the time of start-up (performed by the incinerator temperature raising burner 3). And can be started with a blower having a small discharge amount, pressure, and power as compared with a blower for maintaining incineration in a pressurized state.

次に、図5の加圧焼却炉設備の立上げ方法を説明する。
1)起動用送風機17を運転開始すると、起動用送風機17からの空気は過給機15の圧縮機15aを通じて空気供給路12を介して圧縮空気Aが焼却炉1に供給された後、排ガスGとなって、空気予熱器16、集塵機5を通り、過給機15のタービン15bを通過し、タービン15bを駆動した後、排出される。
Next, a method for starting up the pressure incinerator facility of FIG. 5 will be described.
1) When the operation of the starter blower 17 is started, the air from the starter blower 17 is supplied to the incinerator 1 through the compressor 15a of the supercharger 15 through the air supply path 12, and then the exhaust gas G Then, the air passes through the air preheater 16 and the dust collector 5, passes through the turbine 15 b of the supercharger 15, drives the turbine 15 b, and is discharged.

2)この時、過給機15の圧縮機15aへの通風と、焼却炉1を通過した排ガスGのタービン15bへの通風により過給機15のロータに回転力が発生する。これにより、圧縮機15aはその回転数に応じて空気を昇圧する。
3)この状態で、昇温バーナ3を運転すると、排ガスGは次第に昇温され、これにつれてタービン15bの入口ガス温度が上昇し、よって排ガス容積が膨張し、タービン15bの駆動力が増加する。
2) At this time, rotational force is generated in the rotor of the supercharger 15 by the ventilation of the supercharger 15 to the compressor 15a and the ventilation of the exhaust gas G that has passed through the incinerator 1 to the turbine 15b. Thereby, the compressor 15a pressurizes air according to the rotation speed.
3) When the temperature raising burner 3 is operated in this state, the exhaust gas G is gradually heated, and the temperature of the inlet gas of the turbine 15b rises accordingly, thereby expanding the exhaust gas volume and increasing the driving force of the turbine 15b.

4)焼却炉1の温度が上昇するに従って、排ガス流路13を流れる排ガス温度が上昇し、排ガスGの体積が増加すると、タービン15bのガス通過速度が加速され次第にタービン15bの回転は増加する。
5)タービン15bの回転数の増加に従って、焼却炉1の内圧が上昇するとともに通風量も増加するため、これに応じて昇温バーナ3への供給燃料量を増加させると、さらにタービン15bの回転数が上がり、排ガス流路13の温度、又は送風量を検知して燃料量を増減することにより安定な運転を維持することができるようになる。そして、焼却炉1の温度が所定の焼却温度(通常800℃〜1000℃程度)になる。従って、タービン15bは所定の回転数となり、焼却炉1への圧縮空気Aは所定圧力及び風量を得ることができる。なお、この時点で起動用送風機17は停止することが可能となる。
4) As the temperature of the incinerator 1 rises, the temperature of the exhaust gas flowing through the exhaust gas passage 13 rises, and when the volume of the exhaust gas G increases, the gas passage speed of the turbine 15b is accelerated and the rotation of the turbine 15b gradually increases.
5) As the rotational speed of the turbine 15b increases, the internal pressure of the incinerator 1 increases and the air flow rate also increases. Accordingly, if the amount of fuel supplied to the temperature rising burner 3 is increased accordingly, the rotation of the turbine 15b further increases. The number increases, and stable operation can be maintained by detecting the temperature of the exhaust gas flow path 13 or the amount of blown air to increase or decrease the amount of fuel. And the temperature of the incinerator 1 becomes predetermined | prescribed incineration temperature (usually about 800 to 1000 degreeC). Accordingly, the turbine 15b has a predetermined rotational speed, and the compressed air A to the incinerator 1 can obtain a predetermined pressure and air volume. At this time, the starter blower 17 can be stopped.

6)排ガス温度、焼却炉1の圧力が所定の状態になった時点で、起動+昇温運転は完了となるので、以後焼却物を徐々に投入し、昇温バーナ3用補助燃料を絞って行き、運転のバランスを取る。その後、被処理物Pを焼却炉1に投入開始し、必要ならば補助燃料を添加して、炉内温度を所定温度に維持することにより、運転を継続できる。
以上のように、図5の加圧焼却炉設備によれば、起動用送風機17と過給機15の圧縮機15aが同一ラインに直列に配置されているため、起動時のラインの切替操作が不要となり、起動操作、設備が簡素化されるだけでなく、起動用送風機17で発生させた圧縮空気Aの運転エネルギーは過給機15の圧縮機15aを通過時及び焼却設備を経由し過給機15のタービン15b内を通過時、ともに過給機15のロータに回転力を発生させるため、動力エネルギー回収が行われ、より小容量の起動用送風機17で起動可能となる。また、加圧焼却炉設備では、その排ガスGの保持エネルギーで過給機15を駆動するため、焼却対象物の保有熱量の変動などにより、炉内温度が低下し一時的に運転が不安定になることがある。この場合、通常は補助燃料の量を制御することで安定運転を維持可能であるが、この加圧焼却炉設備では、起動用送風機17による過給機供給空気の与圧力を制御することにより、安定な運転を維持することが可能で、補助燃料を使用しない運転制御が可能となる。すなわち、起動用送風機17を炉内圧力維持のための昇圧装置(ブースタ)として作用させることにより、安定な運転を維持させることが可能となる。また、設備の起動後(起動送風機17の停止時)の過給機15単独による送風時に、空気吸入側に直結した起動送風機17による吸い込み抵抗を減らし、エネルギーロスを減じることができる。
特開2002−39517号公報 特開2006−811号公報
6) When the exhaust gas temperature and the pressure of the incinerator 1 reach a predetermined state, the start-up + temperature raising operation is completed. Thereafter, the incinerated substances are gradually added and the auxiliary fuel for the temperature raising burner 3 is narrowed down. Go and balance driving. Thereafter, the operation can be continued by starting to put the workpiece P into the incinerator 1, adding auxiliary fuel if necessary, and maintaining the furnace temperature at a predetermined temperature.
As described above, according to the pressurized incinerator facility of FIG. 5, the starter blower 17 and the compressor 15a of the supercharger 15 are arranged in series on the same line. Not only is the operation unnecessary and the equipment is simplified, but the operating energy of the compressed air A generated by the starter blower 17 is supercharged when passing through the compressor 15a of the supercharger 15 and via the incineration equipment. When passing through the turbine 15 b of the machine 15, both generate a rotational force in the rotor of the supercharger 15, so that the motive energy is recovered and can be started with a smaller capacity starter blower 17. Further, in the pressurized incinerator facility, since the supercharger 15 is driven by the retained energy of the exhaust gas G, the in-furnace temperature decreases due to fluctuations in the amount of heat held by the incineration object, and the operation becomes temporarily unstable. May be. In this case, normally, stable operation can be maintained by controlling the amount of auxiliary fuel, but in this pressurized incinerator facility, by controlling the pressure of the supercharger supply air by the starter blower 17, Stable operation can be maintained, and operation control without using auxiliary fuel becomes possible. That is, by making the starter blower 17 act as a booster (booster) for maintaining the pressure in the furnace, it is possible to maintain a stable operation. Further, when the air is blown by the supercharger 15 alone after the equipment is started (when the starter blower 17 is stopped), the suction resistance by the starter blower 17 directly connected to the air suction side can be reduced, and the energy loss can be reduced.
JP 2002-39517 A JP 2006-811 A

しかし、図5の加圧焼却炉設備では、本格的なガスタービン機関の代わりに市場で安価に供給されている過給機15を使用するので、運転圧力も2〜4Kg/cm2程度と、通常のガスタービン機関に比べて大幅に低い圧力で運転し、余剰エネルギーは加圧空気で回収することにより大幅に設備の簡素化をはかることができるが、エネルギー回収率は相対的に低いきらいがある。 However, in the pressurized incinerator facility of FIG. 5, instead of a full-fledged gas turbine engine, a supercharger 15 that is supplied at a low price in the market is used, so the operating pressure is about 2 to 4 kg / cm 2 . Although the equipment can be operated at a significantly lower pressure than normal gas turbine engines and the excess energy can be recovered with pressurized air, the equipment can be greatly simplified, but the energy recovery rate is relatively low. is there.

本発明は、斯かる従来の問題点を解決するために為されたもので、その目的は、より簡素な設備によりタービン排気の熱エネルギーを回収できるようにした加圧焼却炉設備及びその運転方法を提供することにある。   The present invention has been made to solve such conventional problems, and an object of the present invention is to provide a pressurized incinerator facility capable of recovering thermal energy of turbine exhaust by a simpler facility and a method for operating the same. Is to provide.

請求項1に係る発明は、冷却状態から始動するため炉内部を徐々に昇温する昇温バーナを備えた加圧式流動床焼却炉と、前記加圧式流動床焼却炉から排出される高温排ガスを煙突へ導く排ガス流路と、前記加圧式流動床焼却炉へ向け圧縮空気を、燃焼用空気及び流動媒体を吹き上げて混合攪拌する流動空気として導入する空気供給路と、前記排ガス流路にタービンを、前記空気供給路に前記タービンと同軸で連結したコンプレッサをそれぞれ位置させて、高温排ガスのエネルギを利用して圧縮空気の生成と送風のみを行う過給機とを備えた加圧式流動床焼却炉設備において、前記過給機タービン下流の排ガス流路に廃熱蒸気ボイラを設けるとともに、前記廃熱ボイラで発生する蒸気を前記過給機のタービン入口上流の排ガス流路に排ガスと混合するために切替弁機構を設けて蒸気吹込み点で吹き込む蒸気供給路を設け、さらに、前記排ガス流路の前記タービンの上流で且つ前記蒸気吹込み点より上流に接続し且つ前記コンプレッサ下流の空気供給路を接続する、高温排ガス及び圧縮空気を間接熱交換する空気予熱器を備え、前記加圧式流動床焼却炉の排ガス出口と前記空気予熱器の間の排ガス流路に、切替弁機構を介して前記蒸気供給路から前記廃熱ボイラで発生する蒸気を吹き込むことを特徴とする。
The invention according to claim 1 is a pressurized fluidized bed incinerator provided with a temperature rising burner that gradually raises the temperature inside the furnace in order to start from a cooled state, and high-temperature exhaust gas discharged from the pressurized fluidized bed incinerator. An exhaust gas channel leading to the chimney, an air supply channel for introducing compressed air toward the pressurized fluidized bed incinerator as fluidized air that blows up and stirs combustion air and a fluid medium, and a turbine in the exhaust gas channel , A pressurized fluidized bed incinerator equipped with a turbocharger that positions compressors coaxially connected to the turbine in the air supply path and generates only compressed air and blows air using the energy of high-temperature exhaust gas in facilities, the provided with a waste heat steam boiler turbocharger turbine downstream exhaust gas flow path of the exhaust gas and mixing the steam generated in the waste heat boiler in the flow path of an exhaust gas turbine inlet upstream of the turbocharger The steam supply passage for blowing in steam blowing point is provided a switching valve mechanism for providing further said connected upstream from the upstream in and the steam blowing point of the turbine of the exhaust gas flow path and the compressor downstream of the air An air preheater for indirectly heat-exchanging high-temperature exhaust gas and compressed air is connected to the supply path, and is connected to the exhaust gas passage between the exhaust gas outlet of the pressurized fluidized bed incinerator and the air preheater via a switching valve mechanism. The steam generated in the waste heat boiler is blown from the steam supply path .

請求項2に係る発明は、請求項1に記載の加圧式焼却炉設備において、前記蒸気供給路に、前記加圧式焼却炉内と連絡する切替弁機構を設けて成ることを特徴とする。
請求項3に係る発明は、請求項1または請求項2に記載の加圧式焼却炉設備において、前記廃熱ボイラにボイラ昇温バーナを設けて成ることを特徴とする。
請求項4に係る発明は、請求項1乃至請求項3の何れか記載の加圧式焼却炉設備において、前記過給機のタービン入口上流に起動用燃焼缶を設けて成ることを特徴とする。
The invention according to claim 2 is characterized in that, in the pressurized incinerator facility according to claim 1, a switching valve mechanism communicating with the inside of the pressurized incinerator is provided in the steam supply path .
According to a third aspect of the present invention, in the pressurized incinerator facility according to the first or second aspect, the waste heat boiler is provided with a boiler temperature raising burner .
According to a fourth aspect of the present invention, in the pressurized incinerator facility according to any one of the first to third aspects, an activation combustion can is provided upstream of a turbine inlet of the supercharger .

請求項5に係る発明は、冷却状態から始動するため炉内部を徐々に昇温する昇温バーナを備えた加圧式流動床焼却炉と、前記加圧式流動床焼却炉から排出される高温排ガスを煙突へ導く排ガス流路と、前記加圧式流動床焼却炉へ向け圧縮空気を、燃焼用空気及び流動媒体を吹き上げて混合攪拌する流動空気として導入する空気供給路と、前記排ガス流路にタービンを、前記空気供給路に前記タービンと同軸で連結したコンプレッサをそれぞれ位置させて、高温排ガスのエネルギを利用して圧縮空気の生成と送風のみを行う過給機と、前記排ガス流路の前記タービンの下流に位置する廃熱蒸気ボイラと、前記廃熱蒸気ボイラから発生する蒸気を導く蒸気供給路とを備えた加圧式流動床焼却炉設備の運転方法において、冷却状態から炉内部を徐々に昇温する昇温バーナを運転する始動時に、前記タービンを出た排ガスによって前記廃熱ボイラで発生する蒸気を前記タービン入口上流の排ガス流路に吹き込むことでタービン出力を高め、前記加圧式流動床焼却炉の定常運転への時間を短縮することを特徴とする。
According to a fifth aspect of the present invention, there is provided a pressurized fluidized bed incinerator having a temperature rising burner that gradually raises the temperature inside the furnace in order to start from a cooled state , and a high temperature exhaust gas discharged from the pressurized fluidized bed incinerator. An exhaust gas channel leading to the chimney, an air supply channel for introducing compressed air toward the pressurized fluidized bed incinerator as fluidized air that blows up and stirs combustion air and a fluid medium, and a turbine in the exhaust gas channel A compressor connected coaxially with the turbine in the air supply path, and a turbocharger that only generates and blows compressed air using the energy of high-temperature exhaust gas; and the turbine in the exhaust gas path. In a method of operating a pressurized fluidized bed incinerator having a waste heat steam boiler located downstream and a steam supply passage for guiding steam generated from the waste heat steam boiler, the interior of the furnace is gradually moved from a cooled state. At the start of operating the temperature rising burner, the steam output from the waste heat boiler is blown into the exhaust gas flow path upstream of the turbine inlet by the exhaust gas discharged from the turbine, thereby increasing the turbine output, and the pressurized fluidized bed It is characterized by shortening the time to steady operation of the incinerator .

請求項6に係る発明は、冷却状態から始動するため炉内部を徐々に昇温する昇温バーナを備えた加圧式流動床焼却炉と、前記加圧式流動床焼却炉から排出される高温排ガスを煙突へ導く排ガス流路と、前記加圧式流動床焼却炉へ向け圧縮空気を、燃焼用空気及び流動媒体を吹き上げて混合攪拌する流動空気として導入する空気供給路と、前記排ガス流路にタービンを、前記空気供給路に前記タービンと同軸で連結したコンプレッサをそれぞれ位置させて、高温排ガスのエネルギを利用して圧縮空気の生成と送風のみを行う過給機と、前記排ガス流路の前記タービンの下流に位置する廃熱蒸気ボイラと、前記廃熱蒸気ボイラから発生する蒸気を導く蒸気供給路とを備えた加圧式流動床焼却炉設備の運転方法において、前記過給機タービン下流に設けたボイラ昇温バーナ付き廃熱ボイラにて前記加圧式焼却炉設備の起動の前に蒸気を発生させ、この蒸気で前記過給機を始動させることを特徴とする。
According to a sixth aspect of the present invention, there is provided a pressurized fluidized bed incinerator having a temperature rising burner that gradually raises the temperature inside the furnace in order to start from a cooled state, and a high-temperature exhaust gas discharged from the pressurized fluidized bed incinerator. An exhaust gas channel leading to the chimney, an air supply channel for introducing compressed air toward the pressurized fluidized bed incinerator as fluidized air that blows up and stirs combustion air and a fluid medium, and a turbine in the exhaust gas channel A compressor connected coaxially with the turbine in the air supply path, and a turbocharger that only generates and blows compressed air using the energy of high-temperature exhaust gas; and the turbine in the exhaust gas path. and a waste heat steam boiler located downstream, in the method of operating a steam supply passage and a pressurized fluidized bed incinerator equipment provided with a guiding steam generated from the waste heat steam boiler, the supercharger turbine downstream To generate steam before activation of the pressurized incinerator facility at only boiler heating burner with waste-heat boiler, characterized in that for starting the supercharger in this steam.

請求項7に係る発明は、冷却状態から始動するため炉内部を徐々に昇温する昇温バーナを備えた加圧式流動床焼却炉と、前記加圧式流動床焼却炉から排出される高温排ガスを煙突へ導く排ガス流路と、前記加圧式流動床焼却炉へ向け圧縮空気を、燃焼用空気及び流動媒体を吹き上げて混合攪拌する流動空気として導入する空気供給路と、前記排ガス流路にタービンを、前記空気供給路に前記タービンと同軸で連結したコンプレッサをそれぞれ位置させて、高温排ガスのエネルギを利用して圧縮空気の生成と送風のみを行う過給機と、前記排ガス流路の前記タービンの下流に位置する廃熱蒸気ボイラと、前記廃熱蒸気ボイラから発生する蒸気を導く蒸気供給路とを備えた加圧式流動床焼却炉設備の運転方法において、前記過給機タービン下流に設けたボイラ昇温バーナ付き廃熱ボイラにて前記加圧式焼却炉設備の起動の前に蒸気を発生させ、この蒸気で前記過給機を始動させるとともに、前記過給機のタービン入口上流に設けた起動用燃焼缶にて前記過給機のタービン入口側のガス温度を高めて前記過給機の始動を早めることを特徴とする。
According to a seventh aspect of the present invention, there is provided a pressurized fluidized bed incinerator having a temperature rising burner that gradually raises the temperature inside the furnace in order to start from a cooled state, and a high temperature exhaust gas discharged from the pressurized fluidized bed incinerator. An exhaust gas channel leading to the chimney, an air supply channel for introducing compressed air toward the pressurized fluidized bed incinerator as fluidized air that blows up and stirs combustion air and a fluid medium, and a turbine in the exhaust gas channel A compressor connected coaxially with the turbine in the air supply path, and a turbocharger that only generates and blows compressed air using the energy of high-temperature exhaust gas; and the turbine in the exhaust gas path. In a method for operating a pressurized fluidized bed incinerator having a waste heat steam boiler located downstream and a steam supply passage for guiding steam generated from the waste heat steam boiler, To generate steam before activation of the pressurized incinerator facility at only boiler heating burner with waste-heat boiler, it causes starting the supercharger in the steam, formed in the turbine inlet upstream of the turbocharger The start-up of the supercharger is accelerated by increasing the gas temperature on the turbine inlet side of the supercharger with a start-up combustion can .

本発明によれば、簡素な設備により過給機のタービン排気の熱エネルギーを回収することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to collect | recover the thermal energy of the turbine exhaust of a supercharger with simple equipment.

以下、図面を参照して本発明に係る加圧焼却炉設備の実施形態について説明する。
図1は、本発明の第一実施形態に係る加圧焼却炉設備を示す。本実施形態に係る加圧焼却炉設備は、図5の加圧焼却炉設備に、廃熱ボイラ23を設け、過給機15の排ガス(低圧高温の排ガス)を廃熱ボイラ23に導き、排ガスから熱エネルギーを回収して水蒸気を発生させ、過給機15のタービン15b上流に吹き込むことにより、タービン15bの通過ガス量を増量させてタービン15bの出力の増強を図るものである。具体的には、廃熱ボイラ23に蒸気供給路24を設け、この蒸気供給路24に、過給機15のタービン15bの直上の排ガス流路13に水蒸気を吹き込むための切替弁機構25と、空気予熱器16と流動床式の焼却炉1とを連絡する空気供給路12(焼却炉1の空気吹込口)に水蒸気を吹き込むための切替弁機構26と、焼却炉1の内部に水蒸気を吹き込むための切替弁機構27と、焼却炉1の直後の排ガス流路13(焼却炉1の出口)に水蒸気を吹き込むための切替弁機構28とを設けている。
Hereinafter, an embodiment of a pressure incinerator facility according to the present invention will be described with reference to the drawings.
FIG. 1 shows a pressurized incinerator facility according to the first embodiment of the present invention. The pressurized incinerator facility according to the present embodiment is provided with a waste heat boiler 23 in the pressurized incinerator facility of FIG. 5, and guides the exhaust gas (low pressure and high temperature exhaust gas) of the supercharger 15 to the waste heat boiler 23. The heat energy is recovered from the steam to generate water vapor and blown upstream of the turbine 15b of the supercharger 15, thereby increasing the amount of gas passing through the turbine 15b and increasing the output of the turbine 15b. Specifically, a steam supply passage 24 is provided in the waste heat boiler 23, and a switching valve mechanism 25 for blowing water vapor into the exhaust gas passage 13 directly above the turbine 15b of the supercharger 15 in the steam supply passage 24, A switching valve mechanism 26 for blowing water vapor into an air supply path 12 (an air blowing port of the incinerator 1) that connects the air preheater 16 and the fluidized bed incinerator 1, and water vapor is blown into the incinerator 1. And a switching valve mechanism 28 for injecting water vapor into the exhaust gas passage 13 immediately after the incinerator 1 (the outlet of the incinerator 1).

廃熱ボイラ23から発生する蒸気の圧力は、焼却炉1の運転圧力より高い必要があるが、本実施形態では、2〜4kg/cm2程度と比較的低いため、同程度の圧力の蒸気を発生させればよい。この蒸気はタービン15b出口の残圧により過熱状態であり、それを過給機15のタービン15b上流に切替弁機構25,26,27,28によって吹き込むことにより、タービン15bを通過するガス量を増大させ、タービン15bの出力を増やすことができる。 The pressure of the steam generated from the waste heat boiler 23 needs to be higher than the operating pressure of the incinerator 1, but in this embodiment, it is relatively low at about 2 to 4 kg / cm 2, and therefore steam of the same pressure is used. It only has to be generated. This steam is overheated due to the residual pressure at the outlet of the turbine 15b, and the amount of gas passing through the turbine 15b is increased by blowing it into the upstream of the turbine 15b of the supercharger 15 by the switching valve mechanisms 25, 26, 27, and 28. And the output of the turbine 15b can be increased.

本実施形態では、蒸気の吹込位置を変えることによりプロセス運転上、様々な特性を得ることが可能となり、焼却炉1の使用目的によって選択できる。
次に、本実施形態に係る加圧焼却炉設備の作用を説明する。
1)起動用送風機17を運転開始すると、過給機15の圧縮機15aを通じて焼却炉1に送風される。
In the present embodiment, by changing the steam blowing position, various characteristics can be obtained in the process operation, and can be selected according to the purpose of use of the incinerator 1.
Next, the operation of the pressure incinerator facility according to this embodiment will be described.
1) When the operation of the starter blower 17 is started, the blower 17 is blown into the incinerator 1 through the compressor 15a of the supercharger 15.

2)この時、過給機15の圧縮機15aへの通風と、焼却炉1を通過した排ガスのタービン15bへの通風により過給機15のロータに回転力が発生する。これにより、圧縮機15aはその回転数に応じて空気を昇圧する。
3)焼却炉1の昇温バーナ3を起動し、焼却炉1及び排ガス系統の管路内空気、管路及び装置を昇温させる。
2) At this time, rotational force is generated in the rotor of the supercharger 15 by the ventilation of the supercharger 15 to the compressor 15a and the ventilation of the exhaust gas that has passed through the incinerator 1 to the turbine 15b. Thereby, the compressor 15a pressurizes air according to the rotation speed.
3) The temperature raising burner 3 of the incinerator 1 is started to raise the temperature of the in-furnace 1 and the air in the pipelines of the exhaust gas system, the pipelines, and the apparatus.

4)焼却炉1の温度が上昇するに従って、排ガスGの温度が上昇し、排ガスGの容積が増加すると、タービン15bのガス通過速度が加速され次第にタービン15b回転は増加する。
5)タービン15b回転数の増加に従って、焼却炉1の内圧が上昇するとともに通風量も増加するため、これに応じて昇温バーナ3への供給燃料量を増加させると、さらにタービン15b回転数が上がってくるので、排ガスGの温度、又は送風量を検知して燃料量を増減することにより安定な運転を維持することができるようになる。なお、この時点で起動用送風機17は停止することが可能となる。
4) As the temperature of the incinerator 1 rises, the temperature of the exhaust gas G rises, and when the volume of the exhaust gas G increases, the gas passage speed of the turbine 15b is accelerated and the rotation of the turbine 15b gradually increases.
5) As the rotational speed of the turbine 15b increases, the internal pressure of the incinerator 1 increases and the ventilation rate also increases. Therefore, if the amount of fuel supplied to the temperature raising burner 3 is increased accordingly, the rotational speed of the turbine 15b is further increased. Since it rises, it becomes possible to maintain a stable operation by detecting the temperature of the exhaust gas G or the amount of blown air to increase or decrease the amount of fuel. At this time, the starter blower 17 can be stopped.

6)排ガス温度、炉内圧力が所定の状態になった時点で、起動+昇温運転は完了となるので、以後焼却物を徐々に投入し、昇温バーナ用補助燃料を絞って行き、運転のバランスを取る。
7)一方、過給機15のタービン15bを通過した低圧高温の排ガスGは、廃熱ボイラ23で回収され蒸気を発生させた後、排ガス処理設備9にて処理され煙突10から大気中に排出される。
6) When the exhaust gas temperature and the pressure in the furnace reach the specified state, the start-up and temperature rising operation is completed. After that, gradually add incinerators and throttle the auxiliary fuel for the temperature rising burner. To balance.
7) On the other hand, the low-pressure and high-temperature exhaust gas G that has passed through the turbine 15b of the supercharger 15 is recovered by the waste heat boiler 23 to generate steam, which is then processed by the exhaust gas treatment facility 9 and discharged from the chimney 10 to the atmosphere. Is done.

8)廃熱ボイラ23で発生した水蒸気は、切替弁30を介して蒸気利用段備29に供給される他、過給機15のタービン15bの上流部に設けた切替弁機構25,26,27,28を通じて吹き込まれ、タービン15bの出力増加に寄与する。
9)このとき、蒸気の吹込位置により、プロセスに与える効果が異なるため、目的により選択する。以下、順に説明する。
8) The steam generated in the waste heat boiler 23 is supplied to the steam utilization stage 29 through the switching valve 30 and the switching valve mechanisms 25, 26, 27 provided in the upstream portion of the turbine 15 b of the supercharger 15. , 28, and contributes to an increase in the output of the turbine 15b.
9) At this time, the effect on the process varies depending on the steam injection position, so the selection is made according to the purpose. Hereinafter, it demonstrates in order.

切替弁機構25を開いて廃熱ボイラ23で発生した蒸気を過給機15のタービン15bの入口側直近に吹き込む方法について説明する。
廃熱ボイラ23で発生させた蒸気の吹い込みを過給機15のタービン15b入口とすることにより、蒸気吹き込みによる排ガス流路13の通過排ガス量の増大を防ぎ、空気予熱器16および集塵機5での圧力損失増加、あるいは装置の大型化を抑制しつつタービン15b出力を高める方法でもっとも簡便な方法である。
A method of opening the switching valve mechanism 25 and blowing the steam generated in the waste heat boiler 23 to the inlet side of the turbine 15b of the supercharger 15 will be described.
By using the steam blown in the waste heat boiler 23 as an inlet of the turbine 15b of the supercharger 15, an increase in the amount of exhaust gas passing through the exhaust gas passage 13 due to the steam blow is prevented, and the air preheater 16 and the dust collector 5 This is the simplest method for increasing the output of the turbine 15b while suppressing an increase in pressure loss or an increase in the size of the apparatus.

切替弁機構26を開いて廃熱ボイラ23で発生した蒸気を焼却炉1に燃焼用空気ともに吹き込む方法について説明する。
これは、焼却物の種類・カロリーの変動幅が大きく焼却炉1に吹き込む空気の必要量が燃焼に必要な空気量を大幅に上回る事態が発生する場合に有効な方法である。即ち、焼却炉1の形式が流動床などの場合、焼却物のカロリーが低く燃焼に必要な空気量は比較的少ないが、流動床を維持するために必要な吹込ガス量(通常スペースレートとして規定される流動床内の空塔速度に比例)が比較的大きくなる場合がある。このような場合は、通常は必要以上に空気を吹き込み、空塔速度を維持し、大過剰空気状態での焼却運転を余儀なくされる。その結果、必要以上に空気を吹き込むため、それに応じて余剰圧縮空気の収量が減少し、他用途への利用が制限される。本実施形態では、焼却炉1に蒸気を吹き込むことにより、必要空塔速度を維持するとともに、過給機15のタービン15bヘのガス量も維持することが可能となる。
A method for opening the switching valve mechanism 26 and blowing the steam generated in the waste heat boiler 23 into the incinerator 1 together with the combustion air will be described.
This is an effective method when a situation in which the required amount of air blown into the incinerator 1 greatly exceeds the amount of air necessary for combustion is large because the variation range of the type and calories of the incinerated product is large. That is, when the type of the incinerator 1 is a fluidized bed or the like, the calorific value of the incinerated product is low and the amount of air required for combustion is relatively small, but the amount of blown gas necessary to maintain the fluidized bed (usually specified as a space rate) (Proportional to the superficial velocity in the fluidized bed) may be relatively large. In such a case, normally, air is blown more than necessary, the superficial velocity is maintained, and incineration operation in a large excess air state is forced. As a result, since air is blown more than necessary, the yield of surplus compressed air is reduced accordingly, and its use for other purposes is restricted. In the present embodiment, by blowing steam into the incinerator 1, it is possible to maintain the required superficial velocity and also maintain the gas amount to the turbine 15 b of the supercharger 15.

切替弁機構27を開いて廃熱ボイラ23で発生した蒸気を焼却炉1内部に吹き込む方法について説明する。
この場合は、排ガス系に蒸気を吹き込み、排ガス量を増加させて過給機15のタービン15bの出力を増大させる目的以外に以下の作用効果が期待できる。
蒸気を焼却炉1内に吹き込む効果としては、流動床の維持及び燃焼のため必要な空気量を吹込ながら、焼却炉1内に直接蒸気を吹き込むことにより焼却炉1内に強い乱流を発生させて、低空気比燃焼時の不完全燃焼を回避させる効果が期待できる。特に、含窒素有機質を焼却時に発生する窒素酸化物(NOx)を抑制するためには低空気比での燃焼が効果的であるが、過剰空気の少ない状態での燃焼はCOあるいはCNなどの生成を促すことがある。このような場合、低空気比での燃焼を達成するために、燃焼火炎に強い攪拌作用を与えることが重要である。このため二次空気を高圧で吹き込み乱流を発生させる方法や、火炎気流への水噴霧などが提案されているが、これらと同様に蒸気を高速で吹き込むことにより火炎に強い攪拌流を与えることは低空気比での焼却に有効な方法である。
A method of opening the switching valve mechanism 27 and blowing the steam generated in the waste heat boiler 23 into the incinerator 1 will be described.
In this case, the following effects can be expected in addition to the purpose of blowing steam into the exhaust gas system and increasing the amount of exhaust gas to increase the output of the turbine 15b of the supercharger 15.
As an effect of blowing steam into the incinerator 1, strong turbulent flow is generated in the incinerator 1 by blowing steam directly into the incinerator 1 while blowing an air amount necessary for maintaining and burning the fluidized bed. Therefore, an effect of avoiding incomplete combustion at the time of low air ratio combustion can be expected. In particular, combustion at a low air ratio is effective to suppress nitrogen oxides (NOx) generated during incineration of nitrogen-containing organic matter, but combustion in a state where there is little excess air produces CO or CN. May be encouraged. In such a case, it is important to give a strong stirring action to the combustion flame in order to achieve combustion at a low air ratio. For this reason, methods of generating turbulent flow by blowing secondary air at a high pressure and water spraying to the flame air flow have been proposed, but in the same way, a strong stirring flow is given to the flame by blowing steam at high speed. Is an effective method for incineration at low air ratios.

切替弁機構28を開いて廃熱ボイラ23で発生した蒸気を焼却炉1の排ガス出口近辺に吹き込む方法について説明する。
この方法は、焼却炉1内温度を高い状態(通常850℃以上)に維持しつつ、空気予熱器16への排ガス流入温度を下げ、空気予熱器16の運転温度を下げる方法である。
前述したように廃棄物等の焼却過程では、燃焼状況により高酸化+高温状態ではNOxの発生、低空気比+低温状態ではCO、CN、ダイオキシンの生成が起きる可能性が高い。これは高温高酸化性状態では燃焼物中の室素分やアンモニアがN2に分解される以上に酸化作用を受け、窒素酸化物NOxまで酸化されるためで、この反応には焼却物に含まれる灰分の触媒作用も関与しており、単純に温度だけの制御では防止することが困難である。同様にCO、CNは燃焼空気が不足した不完全燃焼が原因であり、また、ダイオキシンは多くの複雑な要因で生成されることがわかってきている。このため、これらの発生を抑制しながら変動する組成の廃棄物などを焼却するためには、低空気比での完全燃焼が求められ、必然的に高温での乱流燃焼が有効な手段となる。しかしながら、低空気比燃焼下では空気予熱器16への流入排ガス温度が高温になり易く、通常の耐熱鋼の耐熱温度を超え、空気予熱器16の破損にいたる危険が生じる。このため、通常は空気予熱器16への排ガス流入温度を850℃以下に制限するため、冷却空気の吹き込みを行うが、本実施形態では廃熱ボイラ23で得た蒸気を吹き込み、空気予熱器16を冷却するとともに、合わせて排ガス量を増大させ、過給機15のタービン15bの出力の向上も図ることが可能となる。
A method of opening the switching valve mechanism 28 and blowing the steam generated in the waste heat boiler 23 near the exhaust gas outlet of the incinerator 1 will be described.
This method is a method of lowering the operating temperature of the air preheater 16 by lowering the exhaust gas inflow temperature to the air preheater 16 while maintaining the temperature in the incinerator 1 at a high state (usually 850 ° C. or higher).
As described above, in the incineration process of waste or the like, there is a high possibility that NOx is generated in a high oxidation + high temperature state and CO, CN, and dioxin are generated in a low air ratio + low temperature state depending on the combustion state. This is because in the high-temperature and high-oxidation state, the chamber element and ammonia in the combustion product are oxidized more than being decomposed into N 2 and are oxidized to nitrogen oxide NOx. The catalytic action of ash is also involved, and it is difficult to prevent it by simply controlling the temperature alone. Similarly, CO and CN are caused by incomplete combustion with a shortage of combustion air, and dioxins are generated by many complicated factors. For this reason, in order to incinerate wastes with varying compositions while suppressing these occurrences, complete combustion at a low air ratio is required, and turbulent combustion at high temperatures is necessarily an effective means. . However, under low air ratio combustion, the temperature of the exhaust gas flowing into the air preheater 16 tends to be high, exceeds the heat resistance temperature of normal heat resistant steel, and there is a risk of the air preheater 16 being damaged. For this reason, normally, in order to limit the exhaust gas inflow temperature to the air preheater 16 to 850 ° C. or less, cooling air is blown. In this embodiment, the steam obtained by the waste heat boiler 23 is blown, and the air preheater 16 is blown. In addition, the exhaust gas amount is increased and the output of the turbine 15b of the supercharger 15 can be improved.

10)蒸気の吹込みにより、過給機15のタービン15bを通過するガス量が増加し、過給機15で送給される圧縮空気Aの量を増やすことができ、他用途に使用できる空気量が増えることとなる。この増加量は、蒸気の吹込位置、燃焼条件で変わってくるが、75%水分含有量の下水汚泥の焼却運転では10%程度と効果は低い。これは、高含水物の燃焼では焼却炉1内で大量に水蒸気が発生し、燃焼温度維持のためには、元々過剰空気率の低い運転を行う必要があり、焼却炉1内に別途蒸気を吹き込み加熱する余裕が少ないためである。この場合、蒸気吹込位置は、空気予熱器16以降とならざるを得ず、蒸気吹込みにより増量されるガス量も、比較的低温の蒸気で希釈され全体の温度が低下するため、過給機15のタービン15b入口でのガス容積はあまり増加しないからである。   10) The amount of gas passing through the turbine 15b of the supercharger 15 increases due to the blowing of steam, and the amount of compressed air A fed by the supercharger 15 can be increased, so that the air can be used for other purposes. The amount will increase. The amount of increase varies depending on the steam injection position and combustion conditions, but the effect is low at about 10% in the incineration operation of sewage sludge having a 75% water content. This is because a large amount of water vapor is generated in the incinerator 1 in the combustion of the high water content, and in order to maintain the combustion temperature, it is necessary to perform an operation with a low excess air rate originally. This is because there is little room for blowing and heating. In this case, the steam blowing position must be after the air preheater 16, and the amount of gas increased by the steam blowing is also diluted with relatively low-temperature steam and the overall temperature is lowered. This is because the gas volume at the inlet of the 15 turbines 15b does not increase so much.

一方、焼却物にカロリー的に余裕のある場合には、蒸気吹込位置を焼却炉1前、あるいは焼却炉1内部とし、吹込蒸気を加熱することが可能で、過給機15のタービン15bの入口のガスは高温を維持でき、ガス容積も大きくなるため、蒸気吹込によるタービン15bの出力の増加は顕著なものとなる。
これにより、1)過給機15の圧縮機15aで発生する圧縮空気を増大させることができ、焼却炉1の運転に必要な空気量を差し引いた余剰空気も増やすことが可能となり、水処理設備のための曝気空気として利用する場合など、曝気ブロワ動力の削減率向上に寄与することが可能となる。2)また、蒸気の吹込場所としては、過給機15のタービン15bの直上だけでなく、焼却炉1の空気吹込口、焼却炉1の内部、焼却炉1の出口など、タービン15の上流各所に吹き込むことにより、焼却炉1の運転上、様々な効果を得ることが可能となる。
On the other hand, when the incinerated product has a calorie margin, the steam blowing position can be set in front of the incinerator 1 or in the incinerator 1 to heat the injected steam, and the inlet of the turbine 15b of the supercharger 15 can be heated. Since the gas can maintain a high temperature and the gas volume increases, the increase in the output of the turbine 15b due to the steam injection becomes remarkable.
As a result, 1) the compressed air generated in the compressor 15a of the supercharger 15 can be increased, and surplus air obtained by subtracting the amount of air necessary for the operation of the incinerator 1 can be increased. It is possible to contribute to an improvement in the reduction rate of the aeration blower power when used as aeration air for the purpose. 2) Further, the steam injection location is not only directly above the turbine 15 b of the supercharger 15, but also upstream of the turbine 15 such as the air injection port of the incinerator 1, the inside of the incinerator 1, and the outlet of the incinerator 1. It is possible to obtain various effects on the operation of the incinerator 1 by blowing into the incinerator.

図2は、本発明の第二実施形態に係る加圧焼却炉設備を示す。本実施形態に係る加圧焼却炉設備は、廃熱ボイラ23で発生した蒸気を使用してこの設備の起動を行うことを可能とした。
本実施形態では、廃熱ボイラ23に起動用バーナ31を設置したものである。本実施形態では、第一実施形態と比較して起動用送風機17を必要としない構成となり、設備の運転に必要な電気設備を大幅に簡素化することが可能となる。特に、大電力を消費するブロワ、ファンなどの電動の空気機器が無く、電力は制御、マテリアルハンドリング機器に必要なだけで運転可能となる。
FIG. 2 shows a pressure incinerator facility according to the second embodiment of the present invention. The pressure incinerator facility according to the present embodiment can start up the facility using the steam generated in the waste heat boiler 23.
In the present embodiment, the activation burner 31 is installed in the waste heat boiler 23. In this embodiment, it becomes a structure which does not require the starter blower 17 compared with 1st embodiment, and it becomes possible to greatly simplify the electrical installation required for operation | movement of an installation. In particular, there is no electric air device such as a blower or a fan that consumes a large amount of electric power, and the electric power can be operated only as necessary for the control and material handling device.

次に、本施形態に係る加圧焼却炉設備設備の起動方法について説明する。
1)廃熱ボイラ23内に設置した起動用バーナ31を運転し、蒸気を発生させる。
2)発生蒸気を切替弁機構25から吹き込む。このとき切替弁32を開放すると同時に切替弁33は閉じておく。
3)蒸気発生量が増加し、過給機15の圧縮機15aで発生する空気圧が焼却炉1の圧力損失をカバーできるほどになると、焼却炉1内の起動バーナ3を点火し、焼却炉1、排ガスダクト系統の昇温を開始する。
Next, a method for starting up the pressure incinerator facility equipment according to this embodiment will be described.
1) The starter burner 31 installed in the waste heat boiler 23 is operated to generate steam.
2) The generated steam is blown from the switching valve mechanism 25. At this time, the switching valve 32 is opened and simultaneously the switching valve 33 is closed.
3) When the amount of steam generated increases and the air pressure generated in the compressor 15a of the supercharger 15 can cover the pressure loss of the incinerator 1, the start burner 3 in the incinerator 1 is ignited, and the incinerator 1 Then, start up the temperature of the exhaust gas duct system.

4)全体の系統が昇温するにしたがって排ガス温度が上昇し、系内の圧力も上昇する。(過給機15の回転数が上昇する。)
5)焼却炉1の排ガスの圧力が過給機15のタービン15b入口圧力より大きくなった時点で、切替弁33を開放すると同時に切替弁32を閉じ、焼却排ガスをタービン15bに導く。
4) As the temperature of the entire system rises, the exhaust gas temperature rises and the pressure in the system also rises. (The rotational speed of the supercharger 15 increases.)
5) When the pressure of the exhaust gas in the incinerator 1 becomes higher than the inlet pressure of the turbine 15b of the supercharger 15, the switching valve 33 is opened and the switching valve 32 is closed at the same time, and the incineration exhaust gas is guided to the turbine 15b.

6)以後必要に応じて起動用バーナ31の出力を(焼却量)を調整して、タービン15bの圧力を調整する。
7)焼却炉1のヒートアップが完了した時点で、焼却物供給を開始し、炉内温度は補助燃料供給路34への量や、切替弁機構26からの蒸気吹込量を調整し、炉内温度を制卸する。過給機15の回転数は、圧空利用設備21への放風量で制御する。
6) Thereafter, the output of the start burner 31 (incineration amount) is adjusted as necessary to adjust the pressure of the turbine 15b.
7) When the heat up of the incinerator 1 is completed, the incineration supply is started, and the furnace temperature is adjusted by adjusting the amount to the auxiliary fuel supply path 34 and the amount of steam blown from the switching valve mechanism 26. Control the temperature. The number of rotations of the supercharger 15 is controlled by the amount of air discharged to the compressed air utilization facility 21.

以上のように、本実施形態によれば、廃熱ボイラ23内に起動用バーナ31を、過給機15のタービン15b入口側直近に排ガス流路切替弁32,33とそれぞれ設けることにより、短時聞での過給機15のタービン15bの立ち上げを可能としたので、制御用及び焼却物の搬送や水・補助撚料などのユーティリティ供給などを除き全ての動力を自己で賄うことが可能となり、大電力電源の供給の無い地域でも、大きな焼却設備を運転可能となる。   As described above, according to the present embodiment, the startup burner 31 is provided in the waste heat boiler 23 in the vicinity of the turbine 15b inlet side of the supercharger 15 and the exhaust gas flow path switching valves 32 and 33, respectively. The turbine 15b of the turbocharger 15 can be started up at any time, so it is possible to supply all power by itself except for control and transportation of incinerated products and supply of utilities such as water and auxiliary twisting materials. Thus, large incineration facilities can be operated even in areas where there is no supply of high power.

また、本実施形態では、過給機15のタービン15bの廃熱で蒸気を発生する廃熱ボイラ23に独自の起動用バーナ31を設置し、全体段備の起動に先立ち廃熱ボイラ23を運転し、発生蒸気で過給機15のタービン15bを駆動、これにより焼却炉1への送風を賄うことにより設備の起動運転を開始することができる。
図3は、本発明の第三実施形態に係る加圧焼却炉設備を示す。
Moreover, in this embodiment, the original heat burner 31 is installed in the waste heat boiler 23 which generates steam by the waste heat of the turbine 15b of the supercharger 15, and the waste heat boiler 23 is operated prior to the start-up of the entire equipment. Then, the start-up operation of the equipment can be started by driving the turbine 15b of the supercharger 15 with the generated steam and thereby supplying air to the incinerator 1.
FIG. 3 shows a pressure incinerator facility according to the third embodiment of the present invention.

図2に示す加圧焼却炉設備では、過給機15のタービン15b廃熱で蒸気を発生する廃熱ボイラ23に独自のバーナ31を設置し、全体段備の起動に先立ちボイラ31を運転し、発生蒸気で過給機15のタービン15bを駆動し、これにより焼却炉1への送風をまかない、設備の起動運転を開始することができる。しかしながら、送風開始より焼却炉1の起動バーナ(昇温バーナ3)を運転し、徐々に系内の温度を上げ、最終的に過給機15が自立運転可能な状態になるためには長時間を要する。特に、起動初期は過給機15の回転速度も遅く十分な空気を焼却炉1に送り込めないため、昇温バーナ3の負荷は小さくして運転しなければならないため、余計に昇温時間が必要となる。   In the pressurized incinerator facility shown in FIG. 2, a unique burner 31 is installed in the waste heat boiler 23 that generates steam by the waste heat of the turbine 15b of the supercharger 15, and the boiler 31 is operated prior to the start of the entire setup. The turbine 15b of the supercharger 15 is driven by the generated steam so that the start-up operation of the equipment can be started without blowing air to the incinerator 1. However, it takes a long time for the start-up burner (temperature raising burner 3) of the incinerator 1 to be operated from the start of air blowing, to gradually raise the temperature in the system, and to finally allow the supercharger 15 to operate independently. Cost. In particular, since the rotational speed of the supercharger 15 is slow at the initial stage of startup and sufficient air cannot be sent to the incinerator 1, the temperature rising burner 3 must be operated with a small load. Necessary.

本実施形態に係る加圧焼却炉設備は、図2に示す加圧焼却炉設備の課題を解決するために、焼却炉1と過給機15のタービン15b入口との間に燃焼缶35を設け、設備の起動・昇温を加速することを目的としている。
次に、本施形態に係る加圧焼却炉設備設備の起動方法について説明する。
1)廃熱ボイラ23内に設置した起動用バーナ31を運転し、蒸気を発生させる。
In the pressurized incinerator facility according to the present embodiment, a combustion can 35 is provided between the incinerator 1 and the turbine 15b inlet of the supercharger 15 in order to solve the problem of the pressurized incinerator facility shown in FIG. The purpose is to accelerate the start-up and temperature rise of equipment.
Next, a method for starting up the pressure incinerator facility equipment according to this embodiment will be described.
1) The starter burner 31 installed in the waste heat boiler 23 is operated to generate steam.

2)発生蒸気を切替弁機構25から吹き込む。このとき切替弁32を開放すると同時に切替弁33は閉じておく。
3)蒸気発生量が増加し、過給機15の圧縮機15aで発生する空気圧が焼却炉1の圧力損失をカバーできるほどになると、燃焼缶35内のバーナを点火し、燃焼缶35で発生する高温ガスを過給機15のタービン15bに導入する。
2) The generated steam is blown from the switching valve mechanism 25. At this time, the switching valve 32 is opened and simultaneously the switching valve 33 is closed.
3) When the amount of steam generated increases and the air pressure generated in the compressor 15a of the supercharger 15 can cover the pressure loss of the incinerator 1, the burner in the combustion can 35 is ignited and generated in the combustion can 35. The hot gas to be introduced is introduced into the turbine 15b of the supercharger 15.

4)過給機15の回転数が増加するに従って、過給機15の圧縮機15aの発生空気量・圧ともに次第に増加し、焼却炉1に必要な空気量が供給されるようになった時点で、焼却炉1内の昇温バーナ3を点火し、設備の昇温を開始する。
5)焼却炉1の排ガスの圧力が過給機15のタービン15b入口圧力より大きくなった時点で、切替弁33を開放すると同時に切替弁32閉じ、焼却排ガスをタービン15bに導く。
4) When the rotational speed of the supercharger 15 increases, both the amount of air generated and the pressure of the compressor 15a of the supercharger 15 gradually increase, and the required amount of air is supplied to the incinerator 1. Then, the temperature raising burner 3 in the incinerator 1 is ignited and the temperature raising of the equipment is started.
5) When the pressure of the exhaust gas in the incinerator 1 becomes higher than the inlet pressure of the turbine 15b of the supercharger 15, the switching valve 33 is opened and simultaneously the switching valve 32 is closed to guide the incineration exhaust gas to the turbine 15b.

6)以後必要に応じて起動用バーナ31の出力及び燃焼缶35内のバーナ出力を(焼却量)を調整して、タービン15bの圧力を調整する。
7)焼却炉1のヒートアッブが完了した時点で、焼却物供給を開始し、炉内温度は補助燃料供給路34への量や、切替弁機構26からの蒸気吹込量を調整し、炉内温度を制御する。過給機15の回転数は、圧空利用設備21への放風量で制御する。
6) Thereafter, the output of the start burner 31 and the burner output in the combustion can 35 (incineration amount) are adjusted as necessary to adjust the pressure of the turbine 15b.
7) When the heat up of the incinerator 1 is completed, the incineration supply is started, and the in-furnace temperature is adjusted by adjusting the amount to the auxiliary fuel supply path 34 and the amount of steam blown from the switching valve mechanism 26, and the in-furnace temperature. To control. The number of rotations of the supercharger 15 is controlled by the amount of air discharged to the compressed air utilization facility 21.

以上のように、本実施形態では、過給機15のタービン15bの上流に焼却炉1とは別の起動用の燃焼缶35を段置し、過給機15のタービン15bを蒸気で起動した直後から、燃焼缶25のバーナに点火して過給機15のタービン15b入口側ガス温度を過熱することにより、直ちに過給機15の回転速度を上げて大量の空気を焼却炉1に送り込めることが可能となり、設備全体の昇温時間を大幅に短くできる。   As described above, in this embodiment, the starting combustion can 35 different from the incinerator 1 is placed upstream of the turbine 15b of the supercharger 15, and the turbine 15b of the supercharger 15 is started with steam. Immediately after that, by igniting the burner of the combustion can 25 and heating the gas temperature on the inlet side of the turbine 15b of the supercharger 15, the rotational speed of the supercharger 15 is immediately increased and a large amount of air can be sent to the incinerator 1. This makes it possible to significantly shorten the heating time of the entire facility.

本発明の第一実施形態に係る加圧焼却炉設備のブロック図である。It is a block diagram of the pressure incinerator equipment concerning a first embodiment of the present invention. 本発明の第二実施形態に係る加圧焼却炉設備のブロック図である。It is a block diagram of the pressure incinerator equipment which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る加圧焼却炉設備のブロック図である。It is a block diagram of the pressure incinerator equipment which concerns on 3rd embodiment of this invention. ガスタービン機関を使用した従来の発電用加圧燃焼設備のブロック図である。It is a block diagram of the conventional pressurized combustion equipment for electric power generation which uses a gas turbine engine. 過給機を使用した加圧式流動床式燃焼炉設備のブロック図である。It is a block diagram of a pressurized fluidized bed combustion furnace facility using a supercharger.

符号の説明Explanation of symbols

1 焼却炉
2 供給器
3 昇温バーナ
4 補助燃料供給設備
5 集塵機
9 排ガス処理設備
10 煙突
12 空気供給路
13 排ガス流路
15 過給機
15a 圧縮機
15b タービン
16 空気予熱器
23 廃熱ボイラ
24 蒸気供給炉
25,26,27,28 切替弁機構
29 蒸気利用段備
31 起動用バーナ
32,33 切替弁
34 補助燃料供給路
35 燃焼缶
A 圧縮空気
G 排ガス
DESCRIPTION OF SYMBOLS 1 Incinerator 2 Feeder 3 Temperature rising burner 4 Auxiliary fuel supply equipment 5 Dust collector 9 Exhaust gas treatment equipment 10 Chimney 12 Air supply path 13 Exhaust gas flow path 15 Supercharger 15a Compressor 15b Turbine 16 Air preheater 23 Waste heat boiler 24 Steam Supply furnace 25, 26, 27, 28 Switching valve mechanism 29 Steam utilization stage 31 Startup burner 32, 33 Switching valve 34 Auxiliary fuel supply path 35 Combustion can A Compressed air G Exhaust gas

Claims (7)

冷却状態から始動するため炉内部を徐々に昇温する昇温バーナを備えた加圧式流動床焼却炉と、
前記加圧式流動床焼却炉から排出される高温排ガスを煙突へ導く排ガス流路と、
前記加圧式流動床焼却炉へ向け圧縮空気を、燃焼用空気及び流動媒体を吹き上げて混合攪拌する流動空気として導入する空気供給路と、
前記排ガス流路にタービンを、前記空気供給路に前記タービンと同軸で連結したコンプレッサをそれぞれ位置させて、高温排ガスのエネルギを利用して圧縮空気の生成と送風のみを行う過給機と
を備えた加圧式流動床焼却炉設備において、
前記過給機タービン下流の排ガス流路に廃熱蒸気ボイラを設けるとともに、前記廃熱ボイラで発生する蒸気を前記過給機のタービン入口上流の排ガス流路に排ガスと混合するために切替弁機構を設けて蒸気吹込み点で吹き込む蒸気供給路を設け、
さらに、前記排ガス流路の前記タービンの上流で且つ前記蒸気吹込み点より上流に接続し且つ前記コンプレッサ下流の空気供給路を接続する、高温排ガス及び圧縮空気を間接熱交換する空気予熱器を備え、
前記加圧式流動床焼却炉の排ガス出口と前記空気予熱器の間の排ガス流路に、切替弁機構を介して前記蒸気供給路から前記廃熱ボイラで発生する蒸気を吹き込む
ことを特徴とする加圧式焼却炉設備。
A pressurized fluidized bed incinerator equipped with a temperature raising burner that gradually raises the temperature inside the furnace to start from a cooling state;
An exhaust gas passage for guiding the high temperature exhaust gas discharged from the pressurized fluidized bed incinerator to the chimney;
An air supply path for introducing compressed air to the pressurized fluidized bed incinerator as fluidized air that blows up and stirs combustion air and a fluid medium; and
A turbocharger that positions a turbine in the exhaust gas flow path and a compressor that is coaxially connected to the turbine in the air supply path, and that only generates and blows compressed air using the energy of the high-temperature exhaust gas. In a pressurized fluidized bed incinerator facility
The provided with a waste heat steam boiler turbocharger turbine downstream exhaust gas flow path, the switching valve mechanism for mixing with the exhaust gas of steam generated in the waste heat boiler in the flow path of an exhaust gas turbine inlet upstream of the turbocharger And provide a steam supply path to blow at the steam blowing point ,
And an air preheater for indirectly heat-exchanging the high-temperature exhaust gas and the compressed air, connected to the exhaust gas flow channel upstream of the turbine and upstream of the steam injection point and connected to the air supply channel downstream of the compressor. ,
Steam generated in the waste heat boiler is blown into the exhaust gas passage between the exhaust gas outlet of the pressurized fluidized bed incinerator and the air preheater from the steam supply passage through a switching valve mechanism. Pressure incinerator equipment.
前記蒸気供給路に、前記加圧式焼却炉内と連絡する切替弁機構を設けて成ることを特徴とする請求項1に記載の加圧式焼却炉設備。 The pressurized incinerator facility according to claim 1, wherein a switching valve mechanism communicating with the inside of the pressurized incinerator is provided in the steam supply path . 前記廃熱ボイラにボイラ昇温バーナを設けて成ることを特徴とする請求項1または請求項2に記載の加圧式焼却炉設備。 The pressurized incinerator facility according to claim 1 or 2, wherein a boiler heating burner is provided in the waste heat boiler . 前記過給機のタービン入口上流に起動用燃焼缶を設けて成ることを特徴とする請求項1乃至請求項3の何れか記載の加圧式焼却炉設備。 The pressurized incinerator facility according to any one of claims 1 to 3, wherein a startup combustion can is provided upstream of a turbine inlet of the supercharger . 冷却状態から始動するため炉内部を徐々に昇温する昇温バーナを備えた加圧式流動床焼却炉と、
前記加圧式流動床焼却炉から排出される高温排ガスを煙突へ導く排ガス流路と、
前記加圧式流動床焼却炉へ向け圧縮空気を、燃焼用空気及び流動媒体を吹き上げて混合攪拌する流動空気として導入する空気供給路と、
前記排ガス流路にタービンを、前記空気供給路に前記タービンと同軸で連結したコンプレッサをそれぞれ位置させて、高温排ガスのエネルギを利用して圧縮空気の生成と送風のみを行う過給機と、
前記排ガス流路の前記タービンの下流に位置する廃熱蒸気ボイラと、
前記廃熱蒸気ボイラから発生する蒸気を導く蒸気供給路と
を備えた加圧式流動床焼却炉設備の運転方法において、
冷却状態から炉内部を徐々に昇温する昇温バーナを運転する始動時に、
前記タービンを出た排ガスによって前記廃熱ボイラで発生する蒸気を前記タービン入口上流の排ガス流路に吹き込むことでタービン出力を高め、前記加圧式流動床焼却炉の定常運転への時間を短縮する
ことを特徴とする加圧式流動床焼却炉設備の運転方法。
A pressurized fluidized bed incinerator equipped with a temperature raising burner that gradually raises the temperature inside the furnace to start from a cooling state;
An exhaust gas passage for guiding the high temperature exhaust gas discharged from the pressurized fluidized bed incinerator to the chimney;
An air supply path for introducing compressed air to the pressurized fluidized bed incinerator as fluidized air that blows up and stirs combustion air and a fluid medium; and
A turbocharger that positions a turbine in the exhaust gas flow path and a compressor that is coaxially connected to the turbine in the air supply path, and only generates and blows compressed air using the energy of high-temperature exhaust gas,
A waste heat steam boiler located downstream of the turbine in the exhaust gas flow path;
A steam supply path for guiding steam generated from the waste heat steam boiler;
In a method of operating a pressurized fluidized bed incinerator facility equipped with
At start-up, when operating a temperature rising burner that gradually raises the temperature inside the furnace from the cooling state,
Increasing the turbine output by blowing the steam generated in the waste heat boiler by the exhaust gas exiting the turbine into the exhaust gas passage upstream of the turbine inlet, and shortening the time for steady operation of the pressurized fluidized bed incinerator A method of operating a pressurized fluidized bed incinerator facility characterized by
冷却状態から始動するため炉内部を徐々に昇温する昇温バーナを備えた加圧式流動床焼却炉と、
前記加圧式流動床焼却炉から排出される高温排ガスを煙突へ導く排ガス流路と、
前記加圧式流動床焼却炉へ向け圧縮空気を、燃焼用空気及び流動媒体を吹き上げて混合攪拌する流動空気として導入する空気供給路と、
前記排ガス流路にタービンを、前記空気供給路に前記タービンと同軸で連結したコンプレッサをそれぞれ位置させて、高温排ガスのエネルギを利用して圧縮空気の生成と送風のみを行う過給機と、
前記排ガス流路の前記タービンの下流に位置する廃熱蒸気ボイラと、
前記廃熱蒸気ボイラから発生する蒸気を導く蒸気供給路と
を備えた加圧式流動床焼却炉設備の運転方法において、
前記過給機タービン下流に設けたボイラ昇温バーナ付き廃熱ボイラにて前記加圧式焼却炉設備の起動の前に蒸気を発生させ、この蒸気で前記過給機を始動させる
ことを特徴とする加圧式流動床焼却炉設備の運転方法。
A pressurized fluidized bed incinerator equipped with a temperature raising burner that gradually raises the temperature inside the furnace to start from a cooling state;
An exhaust gas passage for guiding the high temperature exhaust gas discharged from the pressurized fluidized bed incinerator to the chimney;
An air supply path for introducing compressed air to the pressurized fluidized bed incinerator as fluidized air that blows up and stirs combustion air and a fluid medium; and
A turbocharger that positions a turbine in the exhaust gas flow path and a compressor that is coaxially connected to the turbine in the air supply path, and only generates and blows compressed air using the energy of high-temperature exhaust gas,
A waste heat steam boiler located downstream of the turbine in the exhaust gas flow path;
In a method for operating a pressurized fluidized bed incinerator facility comprising a steam supply path for guiding steam generated from the waste heat steam boiler,
A waste heat boiler with a boiler heating burner provided downstream of the turbocharger turbine generates steam before starting the pressurized incinerator facility, and starts the turbocharger with this steam. Operation method of pressurized fluidized bed incinerator equipment.
冷却状態から始動するため炉内部を徐々に昇温する昇温バーナを備えた加圧式流動床焼却炉と、
前記加圧式流動床焼却炉から排出される高温排ガスを煙突へ導く排ガス流路と、
前記加圧式流動床焼却炉へ向け圧縮空気を、燃焼用空気及び流動媒体を吹き上げて混合攪拌する流動空気として導入する空気供給路と、
前記排ガス流路にタービンを、前記空気供給路に前記タービンと同軸で連結したコンプレッサをそれぞれ位置させて、高温排ガスのエネルギを利用して圧縮空気の生成と送風のみを行う過給機と、
前記排ガス流路の前記タービンの下流に位置する廃熱蒸気ボイラと、
前記廃熱蒸気ボイラから発生する蒸気を導く蒸気供給路と
を備えた加圧式流動床焼却炉設備の運転方法において、
前記過給機タービン下流に設けたボイラ昇温バーナ付き廃熱ボイラにて前記加圧式焼却炉設備の起動の前に蒸気を発生させ、この蒸気で前記過給機を始動させるとともに、
前記過給機のタービン入口上流に設けた起動用燃焼缶にて前記過給機のタービン入口側のガス温度を高めて前記過給機の始動を早める
ことを特徴とする加圧式流動床焼却炉設備の運転方法。
A pressurized fluidized bed incinerator equipped with a temperature raising burner that gradually raises the temperature inside the furnace to start from a cooling state;
An exhaust gas passage for guiding the high temperature exhaust gas discharged from the pressurized fluidized bed incinerator to the chimney;
An air supply path for introducing compressed air to the pressurized fluidized bed incinerator as fluidized air that blows up and stirs combustion air and a fluid medium; and
A turbocharger that positions a turbine in the exhaust gas flow path and a compressor that is coaxially connected to the turbine in the air supply path, and only generates and blows compressed air using the energy of high-temperature exhaust gas,
A waste heat steam boiler located downstream of the turbine in the exhaust gas flow path;
In a method for operating a pressurized fluidized bed incinerator facility comprising a steam supply path for guiding steam generated from the waste heat steam boiler,
In the waste heat boiler with a boiler heating burner provided downstream of the turbocharger turbine, steam is generated before starting the pressurized incinerator facility, and the steam is started with the steam ,
A pressurized fluidized bed incinerator characterized in that the start-up of the supercharger is accelerated by increasing the gas temperature on the turbine inlet side of the supercharger with a starting combustion can provided upstream of the turbine inlet of the supercharger How to operate the equipment.
JP2006201745A 2006-07-25 2006-07-25 Pressurized incinerator equipment and operating method thereof Active JP5067653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006201745A JP5067653B2 (en) 2006-07-25 2006-07-25 Pressurized incinerator equipment and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006201745A JP5067653B2 (en) 2006-07-25 2006-07-25 Pressurized incinerator equipment and operating method thereof

Publications (2)

Publication Number Publication Date
JP2008025965A JP2008025965A (en) 2008-02-07
JP5067653B2 true JP5067653B2 (en) 2012-11-07

Family

ID=39116765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201745A Active JP5067653B2 (en) 2006-07-25 2006-07-25 Pressurized incinerator equipment and operating method thereof

Country Status (1)

Country Link
JP (1) JP5067653B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045923A (en) * 2012-03-26 2015-04-29 츠키시마기카이가부시키가이샤 Operating method for pressurized fluidized furnace system
KR20150133718A (en) * 2013-03-26 2015-11-30 츠키시마기카이가부시키가이샤 Pressurized fluidized furnace equipment

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494344A (en) * 2011-12-29 2012-06-13 曹先科 Garbage incinerator for power generation
JP5438146B2 (en) * 2012-01-31 2014-03-12 月島機械株式会社 Pressurized flow furnace system
JP5491550B2 (en) * 2012-01-31 2014-05-14 月島機械株式会社 Pressurized flow furnace system and control method thereof
JP5438145B2 (en) * 2012-01-31 2014-03-12 月島機械株式会社 Pressurized flow furnace system
JP5956210B2 (en) 2012-03-26 2016-07-27 月島機械株式会社 Start-up method of pressurized flow furnace system
JP5711795B2 (en) * 2013-09-03 2015-05-07 月島機械株式会社 Pressurized fluidized incinerator equipment and control method of pressurized fluidized incinerator equipment
JP6178254B2 (en) * 2014-01-31 2017-08-09 メタウォーター株式会社 Waste treatment facility and method for controlling waste treatment facility
JP2015194308A (en) * 2014-03-31 2015-11-05 株式会社クボタ Incineration equipment and incineration method
JP6266440B2 (en) * 2014-05-30 2018-01-24 メタウォーター株式会社 Waste treatment facility and waste treatment method
JP6490466B2 (en) * 2015-03-24 2019-03-27 株式会社クボタ Waste treatment facility and method of operating waste treatment facility
JP6507006B2 (en) * 2015-03-26 2019-04-24 月島機械株式会社 Fluidized bed incinerator
JP6523007B2 (en) * 2015-03-26 2019-05-29 月島機械株式会社 Fluidized bed incinerator
JP6701577B2 (en) * 2016-12-27 2020-05-27 Jfeエンジニアリング株式会社 Waste incineration system
JP6914696B2 (en) * 2017-03-31 2021-08-04 三菱重工業株式会社 How to start a waste treatment plant and a waste treatment plant
JP6623319B1 (en) * 2019-09-05 2019-12-18 株式会社神鋼環境ソリューション Waste treatment facility and operation method thereof
JP7246293B2 (en) * 2019-11-26 2023-03-27 株式会社神鋼環境ソリューション Waste treatment equipment and its operation method
JP7373427B2 (en) 2020-02-13 2023-11-02 株式会社神鋼環境ソリューション Waste treatment equipment and how to start up waste treatment equipment
CN113901382B (en) * 2021-11-19 2024-03-26 西安热工研究院有限公司 Method for calculating real-time garbage incineration amount of three-furnace two-machine household garbage incineration power generation project

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128513U (en) * 1985-01-23 1986-08-12
JPS6291713A (en) * 1986-03-22 1987-04-27 Kuraray Co Ltd Fluidized-bed type incinerator
JP3530344B2 (en) * 1997-05-28 2004-05-24 三菱重工業株式会社 Compressor surging prevention device for pressurized fluidized bed combined cycle system
JP2000329346A (en) * 1999-05-20 2000-11-30 Tokyo Gas Co Ltd Premixture combustor and co-generation system having the combustor
JP4209060B2 (en) * 2000-01-21 2009-01-14 三菱重工業株式会社 Steam cooling rapid start system
JP3831588B2 (en) * 2000-05-15 2006-10-11 三菱重工業株式会社 Waste gasification treatment facility and gasification power generation facility using the same
JP2002162012A (en) * 2000-11-21 2002-06-07 Kogi Corp Process of treating wastes containing dioxins
JP2003322310A (en) * 2002-04-24 2003-11-14 Ishikawajima Harima Heavy Ind Co Ltd BOILER NOx REDUCING DEVICE
JP3783024B2 (en) * 2003-07-09 2006-06-07 独立行政法人土木研究所 Sludge treatment system and method
JP2006000811A (en) * 2004-06-21 2006-01-05 Ishikawajima Harima Heavy Ind Co Ltd Sewage sludge treatment system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045923A (en) * 2012-03-26 2015-04-29 츠키시마기카이가부시키가이샤 Operating method for pressurized fluidized furnace system
KR102086185B1 (en) 2012-03-26 2020-03-06 츠키시마기카이가부시키가이샤 Operating method for pressurized fluidized furnace system
KR20150133718A (en) * 2013-03-26 2015-11-30 츠키시마기카이가부시키가이샤 Pressurized fluidized furnace equipment
KR102085125B1 (en) 2013-03-26 2020-03-05 츠키시마기카이가부시키가이샤 Pressurized fluidized furnace equipment

Also Published As

Publication number Publication date
JP2008025965A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP5067653B2 (en) Pressurized incinerator equipment and operating method thereof
EP1872002B1 (en) Energy recovery system
JP4538077B2 (en) Lean fuel intake gas turbine
JP5428102B2 (en) Fuel oxidation in multiple modes of operation
JP4991986B2 (en) Pressure incinerator equipment and its startup method
JP6490466B2 (en) Waste treatment facility and method of operating waste treatment facility
EP1917469B1 (en) Method using a cogeneration system with oxygen-enriched air assisting system
JP4771309B2 (en) Pressurized fluidized incineration equipment and its startup method
CN107849976A (en) System and method for starting generating equipment
JP6580398B2 (en) Waste treatment facility and operation method of waste treatment facility
JP5187731B2 (en) Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment
JP4714912B2 (en) Pressurized fluidized incineration equipment and its startup method
JP5187732B2 (en) Operation method of pressurized fluidized incineration equipment and pressurized fluidized incineration equipment
JP7418491B2 (en) Incinerator with supercharger
JP6914696B2 (en) How to start a waste treatment plant and a waste treatment plant
JP7008296B2 (en) Air gas turbine device by reverse Brayton cycle and its control method
Takano et al. Design for the 145-MW blast furnace gas firing gas turbine combined cycle plant
JPH10213317A (en) Refuse incinerator operation method
JP2001090510A (en) Power generating system having external heating type micro gas turbine
JP5392739B2 (en) Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment
JP2000008878A (en) Co-generation equipment
JPH08166109A (en) Pressurized fluidized bed plant
JP7099804B2 (en) Incinerator with turbocharger and how to start it up
JP7254438B2 (en) Operation method of waste disposal facility and waste disposal facility
CN115917214A (en) Combustor with gas turbine for generating a flame for a heat generating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090409

AA91 Notification that invitation to amend document was cancelled

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20090602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5067653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350