JP2017157580A - Deposition method and manufacturing method of laminate substrate - Google Patents

Deposition method and manufacturing method of laminate substrate Download PDF

Info

Publication number
JP2017157580A
JP2017157580A JP2016036579A JP2016036579A JP2017157580A JP 2017157580 A JP2017157580 A JP 2017157580A JP 2016036579 A JP2016036579 A JP 2016036579A JP 2016036579 A JP2016036579 A JP 2016036579A JP 2017157580 A JP2017157580 A JP 2017157580A
Authority
JP
Japan
Prior art keywords
film
layer
roll
metal
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016036579A
Other languages
Japanese (ja)
Other versions
JP6617607B2 (en
Inventor
寛人 渡邉
Hiroto Watanabe
寛人 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016036579A priority Critical patent/JP6617607B2/en
Priority to KR1020170023446A priority patent/KR102481145B1/en
Priority to TW106106435A priority patent/TWI736590B/en
Priority to CN201710103251.6A priority patent/CN107130218B/en
Publication of JP2017157580A publication Critical patent/JP2017157580A/en
Application granted granted Critical
Publication of JP6617607B2 publication Critical patent/JP6617607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • C23C14/5833Ion beam bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deposition method capable of making etching failure difficult to occur, by eliminating color difference of a long resin film in the width direction.SOLUTION: In a deposition method for depositing a first coat and a second coat by dry plating method, such as sputtering method, on the opposite sides of a long resin film F, transported in a vacuum chamber 10 from an unwinding roll 11 to a take-up roll 24 by roll-to-roll, surface of the first coat is subjected to dry etching by ion beam irradiation suitably from an ion source 29, between first time take-up by a take-up roll 24 after the first coat is deposited on one side of the long resin film F, and second time take-up by the take-up roll 24 after the second coat is deposited on the other side of the long resin film F where the first coat is deposited.SELECTED DRAWING: Figure 1

Description

本発明は、ロールツーロールで搬送される長尺樹脂フィルムの両面に乾式めっき法で被膜を成膜する方法、及びこの成膜方法を用いた積層体基板の製造方法に関する。   The present invention relates to a method for forming a film on both surfaces of a long resin film conveyed by roll-to-roll by a dry plating method, and a method for manufacturing a laminate substrate using this film forming method.

携帯電話、携帯電子文書機器、自動販売機、カーナビゲーション等の電子機器が具備するフラットパネルディスプレイ(FPD)の表面に「タッチパネル」を設置する技術が普及し始めている。「タッチパネル」は、抵抗型と静電容量型に大まかに分類することができ、「抵抗型」のタッチパネルは、樹脂フィルムからなる透明基板と、該基板上に設けられたX座標(またはY座標)検知電極シート及びY座標(またはX座標)検知電極シートと、これらシートの間に設けられた絶縁体スペーサーとで主要部が構成されている。   A technique for installing a “touch panel” on the surface of a flat panel display (FPD) included in electronic devices such as mobile phones, portable electronic document devices, vending machines, car navigation systems, etc. has begun to spread. The “touch panel” can be roughly classified into a resistance type and a capacitance type. The “resistance type” touch panel has a transparent substrate made of a resin film and an X coordinate (or Y coordinate) provided on the substrate. ) A main part is composed of a detection electrode sheet, a Y-coordinate (or X-coordinate) detection electrode sheet, and an insulator spacer provided between these sheets.

これらX座標検知電極シート及びY座標検知電極シートは通常は絶縁体スペーサーによって離間しているが、ペン等で押さえられたときにその部位で両座標検知電極シートが電気的に接触する。これにより、ペンの触った位置(X座標、Y座標)が検知できるようになっており、ペンを移動させればその都度座標を認識して、最終的に文字の入力が行なえる仕組みとなっている。   These X-coordinate detection electrode sheet and Y-coordinate detection electrode sheet are usually separated by an insulator spacer, but when pressed with a pen or the like, the two coordinate detection electrode sheets are in electrical contact with each other at that portion. As a result, the position (X coordinate, Y coordinate) touched by the pen can be detected, and if the pen is moved, the coordinates are recognized each time, and finally a character can be input. ing.

他方、「静電容量型」のタッチパネルは、絶縁シートを介してX座標(またはY座標)検知電極シートとY座標(またはX座標)検知電極シートとが積層されており、更にその上にガラス等の絶縁体が配置された構造を有している。そして、このガラス等の絶縁体に指を近づけた時、その近傍のX座標検知電極とY座標検知電極の電気容量が変化するため、位置検知を行なえる仕組みとなっている。   On the other hand, the “capacitance type” touch panel has an X-coordinate (or Y-coordinate) detection electrode sheet and a Y-coordinate (or X-coordinate) detection electrode sheet laminated on an insulating sheet, and further glass on It has a structure in which an insulator such as is arranged. When a finger is brought close to an insulator such as glass, the electric capacity of the X-coordinate detection electrode and the Y-coordinate detection electrode in the vicinity changes, so that the position can be detected.

上記した電極シート(電極基板フィルムとも称する)上に形成される所定の回路パターンを有する電極用の導電性材料として、従来、特許文献1に開示されているようなITO(酸化インジウム−酸化錫)等の透明導電膜が広く用いられている。また、タッチパネルの大型化に伴い、特許文献2や特許文献3等に開示されているような金属製細線からなるメッシュ構造の金属膜も使用され始めている。   As a conductive material for an electrode having a predetermined circuit pattern formed on the above electrode sheet (also referred to as an electrode substrate film), ITO (indium oxide-tin oxide) as disclosed in Patent Document 1 has been conventionally used. Such transparent conductive films are widely used. In addition, with an increase in the size of a touch panel, a metal film having a mesh structure made of a thin metal wire as disclosed in Patent Document 2, Patent Document 3, and the like has begun to be used.

上記の透明導電膜と金属製細線(金属膜)とを較べた場合、透明導電膜は、可視波長領域における透過性に優れるため電極等の回路パターンがほとんど視認されない利点を有するが、金属製細線(金属膜)よりも電気抵抗値が高いためタッチパネルの大型化や応答速度の高速化には不向きな欠点を有する。他方、金属製細線(金属膜)は、電気抵抗値が低いためタッチパネルの大型化や応答速度の高速化に向いているが、可視波長領域における反射率が高いため、微細なメッシュ構造に加工しても高輝度照明下において回路パターンが視認されることがあり、製品価値を低下させてしまう欠点を有する。   When the above transparent conductive film is compared with a thin metal wire (metal film), the transparent conductive film has an advantage that the circuit pattern such as an electrode is hardly visually recognized because of its excellent transparency in the visible wavelength region. Since the electric resistance value is higher than that of (metal film), there is a disadvantage that is not suitable for increasing the size of the touch panel and increasing the response speed. On the other hand, metal thin wires (metal films) are suitable for increasing the size of touch panels and increasing the response speed because of their low electrical resistance, but they have high reflectivity in the visible wavelength region, so they are processed into a fine mesh structure. However, the circuit pattern may be visually recognized under high-intensity illumination, which has the disadvantage of reducing the product value.

そこで、特許文献4及び特許文献5には電気抵抗値が低い上記金属製細線(金属膜)の特性を生かすため、樹脂フィルムからなる透明基板と金属製細線の金属膜との間に金属酸化物からなる金属吸収層(黒化膜とも称される)を介在させて透明基板側から観測される金属製細線(金属膜)の反射を低減させる方法が提示されている。   Therefore, in Patent Document 4 and Patent Document 5, a metal oxide is formed between a transparent substrate made of a resin film and a metal film of the metal thin wire in order to make use of the characteristics of the metal thin wire (metal film) having a low electric resistance value. There has been proposed a method for reducing the reflection of metal fine wires (metal film) observed from the transparent substrate side through a metal absorption layer (also referred to as a blackening film) made of

この金属酸化物からなる金属吸収層を備えた電極シートの作製では、金属酸化物の成膜効率の高効率化を図る観点から、通常、連続的に搬送される長尺状樹脂フィルムの表面に反応性ガス雰囲気下で金属ターゲット(金属材)を用いて反応性スパッタリングすることにより金属吸収層を連続成膜した後、不活性ガス雰囲気下で銅等の金属ターゲット(金属材)を用いてスパッタリングすることにより上記金属吸収層上に金属層を連続成膜することが行われており、これにより電極基板フィルムの基材となる積層体基板を作製している。そして、これら金属吸収層と金属層とからなる積層膜を塩化第二銅水溶液や塩化第二鉄水溶液等のエッチング液でエッチング処理することで、該積層膜(金属吸収層及び金属層)に電極等の回路パターンをパターニング加工することが行われている。   In the production of an electrode sheet having a metal absorption layer made of this metal oxide, it is usually applied to the surface of a continuous resin film that is continuously conveyed from the viewpoint of increasing the efficiency of metal oxide film formation. After forming a metal absorption layer continuously by reactive sputtering using a metal target (metal material) in a reactive gas atmosphere, sputtering using a metal target (metal material) such as copper in an inert gas atmosphere As a result, a metal layer is continuously formed on the metal absorption layer, thereby producing a laminate substrate that serves as a base material for the electrode substrate film. Then, the laminated film composed of the metal absorption layer and the metal layer is etched with an etching solution such as a cupric chloride aqueous solution or a ferric chloride aqueous solution, so that an electrode is formed on the laminated film (metal absorption layer and metal layer). A circuit pattern such as the above is patterned.

従って、電極基板フィルムの基材となる積層体基板は、金属吸収層と金属層とからなる積層膜が塩化第二銅水溶液や塩化第二鉄水溶液等のエッチング液によってエッチングされ易い特性と、該エッチングによってパターニング加工された電極等の回路パターンが高輝度照明下において視認され難い特性が要求される。   Therefore, the laminate substrate serving as the base material of the electrode substrate film has a characteristic that the laminate film composed of the metal absorption layer and the metal layer is easily etched by an etchant such as a cupric chloride aqueous solution or a ferric chloride aqueous solution, A characteristic that a circuit pattern such as an electrode patterned by etching is difficult to be visually recognized under high luminance illumination is required.

特開2003−151358号公報JP 2003-151358 A 特開2011−018194号公報JP 2011-018194 A 特開2013−069261号公報JP 2013-0669261 A 特開2014−142462号公報JP 2014-142462 A 特開2013−225276号公報JP 2013-225276 A

ところで、前述したように長尺状樹脂フィルムの表面に酸素を含む反応性ガス雰囲気でNi系の金属ターゲット(金属材)を用いて反応性スパッタリングすることにより金属酸化物からなる金属吸収層を連続成膜した後、この金属吸収層上に銅等の金属ターゲット(金属材)を用いてスパッタリングすることにより金属層を連続成膜することで積層される積層膜を長尺状樹脂フィルムの両面に作製する場合、以下のような問題が生ずることがあった。   By the way, as described above, a metal absorption layer made of a metal oxide is continuously formed by reactive sputtering using a Ni-based metal target (metal material) in a reactive gas atmosphere containing oxygen on the surface of a long resin film. After film formation, a laminated film is formed on both sides of the long resin film by continuously forming a metal layer by sputtering using a metal target (metal material) such as copper on the metal absorption layer. When producing, the following problems may occur.

すなわち、積層される金属との密着性を向上させるために長尺樹脂フィルムの両面に易接着層を設けることがあり、その場合、先ず長尺樹脂フィルムの一方の面に第1被膜として金属吸収層及び金属層を連続的に成膜してからロール状に巻き取った後、長尺樹脂フィルムのもう一方の面に第2被膜を成膜するために巻き出すと、長尺樹脂フィルムの幅方向における中央部と端部との間を境にして金属層面上に目視で確認できるわずかな色の差が認められることがあった。このような金属層上の色の差は積層体基板の外観不良になり得る上、そのままの状態でエッチングにより電極回路をパターニング加工すると、上記の色の境界部分でエッチング速度に差が生じてエッチング不良となることがあった。   That is, an easy-adhesion layer may be provided on both sides of the long resin film in order to improve the adhesion with the laminated metal. In that case, first, metal absorption as a first coating on one side of the long resin film is performed. After the film and the metal layer are continuously formed, the film is wound into a roll shape, and then unrolled to form the second coating on the other surface of the long resin film. A slight color difference that can be visually confirmed on the metal layer surface at the boundary between the center and the end in the direction may be recognized. Such a color difference on the metal layer can lead to poor appearance of the laminate substrate, and if the electrode circuit is patterned by etching in the same state, the etching speed is different at the boundary portion of the color and etching is performed. It sometimes became defective.

本発明はこのような従来の問題点に鑑みてなされたものであり、長尺樹脂フィルムの両面に成膜を行って積層体基板を作製する際、長尺樹脂フィルムの幅方向の色の差をなくしてエッチング不良を生じにくくすることが可能な成膜方法を提供することを目的としている。   The present invention has been made in view of such conventional problems, and when a laminate substrate is produced by forming a film on both sides of a long resin film, the difference in color in the width direction of the long resin film. It is an object of the present invention to provide a film formation method that can prevent etching defects from occurring.

上記目的を達成するため、本発明が提供する成膜方法は、ロールツーロールで搬送される長尺樹脂フィルムの両面に乾式めっき法で第1被膜及び第2被膜をそれぞれ成膜する成膜方法であって、前記長尺樹脂フィルムの一方の面に前記第1被膜を成膜した後の第1回目の巻き取りと、前記第1被膜が成膜された長尺樹脂フィルムの他方の面に第2被膜を成膜した後の第2回目の巻き取りとの間に前記第1被膜の表面をドライエッチング処理することを特徴としている。   In order to achieve the above object, a film forming method provided by the present invention is a film forming method in which a first film and a second film are formed on both surfaces of a long resin film conveyed by roll-to-roll by dry plating. The first winding after the first coating is formed on one surface of the long resin film, and the other surface of the long resin film on which the first coating is formed. The surface of the first film is dry-etched between the second winding after the second film is formed.

本発明によれば、長尺樹脂フィルムの両面に成膜を行って積層体基板を作製する際、長尺樹脂フィルムの幅方向の色の差をなくすことができるので、酸化剤等の薬液を用いてエッチング加工を行う際に該幅方向のエッチング加工性の差をなくすことができる。   According to the present invention, when forming a laminate substrate by forming a film on both sides of a long resin film, the difference in color in the width direction of the long resin film can be eliminated. The difference in etching processability in the width direction can be eliminated when etching is performed.

本発明の成膜方法を好適に実施可能な成膜装置(スパッタリングウェブコータ)の模式的な正面図である。It is a typical front view of the film-forming apparatus (sputtering web coater) which can implement suitably the film-forming method of this invention. 従来の成膜方法で作製した積層体基板に生じる外観上の不具合を模式的に示した斜視図である。It is the perspective view which showed typically the malfunction on the external appearance which arises in the laminated substrate produced with the conventional film-forming method. 本発明の成膜方法によって作製された第1層目の金属吸収層と第2層目の金属層とを透明基板の両面に有する積層体基板の模式的断面図である。It is typical sectional drawing of the laminated body board | substrate which has the 1st metal absorption layer produced by the film-forming method of this invention, and the 2nd metal layer on both surfaces of a transparent substrate. 図3の金属層の上に更に湿式成膜法で金属層を成膜することで得られる厚膜化された金属層を有する積層体基板の模式的断面図である。FIG. 4 is a schematic cross-sectional view of a multilayer substrate having a thickened metal layer obtained by further forming a metal layer on the metal layer of FIG. 3 by a wet film formation method. 図4の厚膜化された金属層の上に更に乾式めっき法で第3層目の第2金属吸収層を成膜することで得られる第2の積層体基板の模式的断面図である。FIG. 5 is a schematic cross-sectional view of a second laminate substrate obtained by further forming a third metal absorption layer as a third layer on the thickened metal layer of FIG. 4 by dry plating. 金属製の積層細線が透明基板の両面にそれぞれ形成された電極基板フィルムの模式的断明図である。It is a typical clear view of the electrode board | substrate film in which the metal laminated thin wires were each formed in both surfaces of the transparent substrate.

以下、本発明の成膜方法の一具体例としてスパッタリングによる成膜方法を採り挙げ、この成膜方法を好適に実施可能な成膜装置について図1を参照しながら説明する。この図1に示す成膜装置はスパッタリングウェブコータとも称され、巻出ロール11からキャンロール16を経て巻取ロール24まで長尺樹脂フィルムFをロールツーロール方式で搬送する搬送手段と、長尺樹脂フィルムFがキャンロール16の外周面に巻き付いている時にその表面に連続的に効率よくスパッタリング成膜を施す成膜手段と、これら手段を収容する真空チャンバー10とから主に構成されている。   Hereinafter, a film forming method by sputtering is taken as a specific example of the film forming method of the present invention, and a film forming apparatus capable of suitably implementing this film forming method will be described with reference to FIG. The film forming apparatus shown in FIG. 1 is also called a sputtering web coater, and includes a conveying means for conveying the long resin film F from the unwinding roll 11 through the can roll 16 to the winding roll 24 in a roll-to-roll manner, When the resin film F is wound around the outer peripheral surface of the can roll 16, it mainly comprises a film forming means for continuously and efficiently forming a film on the surface of the can roll 16, and a vacuum chamber 10 for accommodating these means.

具体的に説明すると、真空チャンバー10にはドライポンプ、ターボ分子ポンプ、クライオコイル等の種々の装置(図示せず)が組み込まれており、スパッタリング成膜の際に真空チャンバー10内を到達圧力10−4Pa程度までの減圧した後、スパッタリングガスの導入により0.1〜10Pa程度に圧力調整できるようになっている。スパッタリングガスにはアルゴン等公知のガスが使用され、目的に応じて更に酸素等のガスが添加される。真空チャンバー10の形状や材質はこのような減圧状態に耐え得るものであれば特に限定はなく、種々のものを使用することができる。真空チャンバー内には、スパッタリング成膜を行う空間を搬送用ロール群が設けられている空間から隔離するため、仕切板10aが設けられている。 More specifically, the vacuum chamber 10 incorporates various devices (not shown) such as a dry pump, a turbo molecular pump, a cryocoil, and the like. After the pressure is reduced to about -4 Pa, the pressure can be adjusted to about 0.1 to 10 Pa by introducing a sputtering gas. A known gas such as argon is used as the sputtering gas, and a gas such as oxygen is further added depending on the purpose. The shape and material of the vacuum chamber 10 are not particularly limited as long as they can withstand such a reduced pressure state, and various types can be used. A partition plate 10a is provided in the vacuum chamber in order to isolate the space for sputtering film formation from the space in which the transport roll group is provided.

巻出ロール11からキャンロール16までの搬送経路には、長尺樹脂フィルムFを案内するフリーロール12a、12b、長尺樹脂フィルムFを巻き付けて冷却する冷却ロール13、キャンロール16よりも上流側の長尺樹脂フィルムFの張力の測定を行う張力センサロール14、及びキャンロール16に送り込まれる長尺樹脂フィルムFをキャンロール16の外周面に密着させるべくキャンロール16の周速度に対する調整が行われるモータ駆動の前フィードロール15がこの順に配置されている。   On the transport path from the unwinding roll 11 to the can roll 16, free rolls 12 a and 12 b that guide the long resin film F, a cooling roll 13 that winds and cools the long resin film F, and an upstream side of the can roll 16. The tension sensor roll 14 for measuring the tension of the long resin film F and the peripheral speed of the can roll 16 are adjusted so that the long resin film F fed to the can roll 16 is brought into close contact with the outer peripheral surface of the can roll 16. The motor-driven front feed roll 15 is arranged in this order.

キャンロール16はその内部に真空チャンバー10の外部で温調された冷媒が循環しており、外周面に巻き付いた長尺樹脂フィルムFに成膜手段によって熱負荷のかかる処理を施す際に冷却できるようになっている。冷却ロール13も内部に冷媒が循環しており、その外周面に対向して配されているドライエッチング手段29で長尺樹脂フィルムFに熱負荷のかかる処理を施す際に該長尺樹脂フィルムFを冷却できるようになっている。尚、ドライエッチング手段29を起動させない場合は、冷却ロール13内の冷媒の循環を停止してもよい。   The can roll 16 has a coolant whose temperature is adjusted outside the vacuum chamber 10 circulated in the can roll 16 and can be cooled when the long resin film F wound around the outer peripheral surface is subjected to a process with a heat load by a film forming means. It is like that. The coolant also circulates inside the cooling roll 13, and when the long resin film F is subjected to a heat-loading process by the dry etching means 29 arranged facing the outer peripheral surface, the long resin film F Can be cooled. When the dry etching means 29 is not activated, the circulation of the refrigerant in the cooling roll 13 may be stopped.

キャンロール16から巻取ロール24までの搬送経路も、上記した冷却ロール13と2つめのフリーロール12bに対応するロールがないこと以外は上記と同様に、キャンロール16の周速度に対する調整を行うモータ駆動の後フィードロール21、キャンロール16よりも下流側の長尺樹脂フィルムFの張力の測定を行う張力センサロール22、及び長尺樹脂フィルムFを案内するフリーロール23がこの順に配置されている。   The conveyance path from the can roll 16 to the take-up roll 24 is also adjusted for the peripheral speed of the can roll 16 in the same manner as described above except that there is no roll corresponding to the cooling roll 13 and the second free roll 12b. After the motor drive, the feed roll 21, the tension sensor roll 22 for measuring the tension of the long resin film F on the downstream side of the can roll 16, and the free roll 23 for guiding the long resin film F are arranged in this order. Yes.

上記巻出ロール11及び巻取ロール24では、パウダークラッチ等によるトルク制御によって長尺樹脂フィルムFの張力バランスが保たれている。また、モータ駆動のキャンロール16の回転とこれに連動して回転するモータ駆動の前フィードロール15及び後フィードロール21により、巻出ロール11から巻き出された長尺樹脂フィルムFは、上記したキャンロール16等のロール群で画定される搬送経路に沿って搬送された後、巻取ロール24で巻き取られるようになっている。   In the unwinding roll 11 and the winding roll 24, the tension balance of the long resin film F is maintained by torque control using a powder clutch or the like. Further, the long resin film F unwound from the unwinding roll 11 by the rotation of the motor-driven can roll 16 and the motor-driven front feed roll 15 and the rear feed roll 21 that rotate in conjunction with the rotation of the motor-driven can roll 16 is described above. After being transported along a transport path defined by a group of rolls such as a can roll 16, it is wound up by a winding roll 24.

キャンロール16の外周面のうち長尺樹脂フィルムFが巻き付けられる領域に対向する位置に、キャンロール16の搬送経路に沿って成膜手段として4つのマグネトロンスパッタリングカソード17、18、19及び20がこの順に設けられており、それぞれ反応性ガスを放出可能な4対のガス放出パイプ25a・25b、26a・26b、27a・27b、及び28a・28bが近傍に設置されている。尚、板状のターゲットを用いて、上記の金属吸収層や金属層のスパッタリング成膜を行うと、該ターゲット上にノジュール(異物の成長)が発生することがある。これが問題になる場合は、ノジュールの発生がなくかつターゲットの使用効率も高い円筒形のロータリーターゲットを使用することが好ましい。   Four magnetron sputtering cathodes 17, 18, 19, and 20 are formed as film forming means along the conveyance path of the can roll 16 at a position facing the region where the long resin film F is wound on the outer peripheral surface of the can roll 16. Four pairs of gas discharge pipes 25a and 25b, 26a and 26b, 27a and 27b, and 28a and 28b that are capable of discharging reactive gas are installed in the vicinity. Note that when the above-described metal absorption layer or metal layer is formed by sputtering using a plate-like target, nodules (growth of foreign matter) may occur on the target. When this becomes a problem, it is preferable to use a cylindrical rotary target that generates no nodules and has high target use efficiency.

上記した4つのマグネトロンスパッタリングカソード17〜20のうち、例えば最初の2つのカソード17〜18のターゲットに金属吸収層形成用のターゲットを設け、残る2つのカソード19〜20のターゲットに金属層用のターゲットを設けることで、長尺樹脂フィルムFの片面に金属酸化物からなる金属吸収層と金属層とを連続的に成膜することができる。この金属吸収層の成膜の際、金属吸収層の形成用ターゲットに金属酸化物ターゲットを用いた場合、成膜速度が遅くなって量産に適さない。そこで、高速成膜が可能なNi系の金属ターゲット(金属材)を用いると共に酸素を含む反応性ガスを制御しながら導入する反応性スパッタリング等の反応成膜法が採られている。   Of the four magnetron sputtering cathodes 17 to 20 described above, for example, a target for forming a metal absorption layer is provided on the target of the first two cathodes 17 to 18 and a target for the metal layer is provided on the remaining two cathodes 19 to 20. By providing, a metal absorption layer and a metal layer made of a metal oxide can be continuously formed on one side of the long resin film F. When forming the metal absorbing layer, if a metal oxide target is used as the target for forming the metal absorbing layer, the film forming speed is slow and not suitable for mass production. Accordingly, a reactive film formation method such as reactive sputtering is employed in which a Ni-based metal target (metal material) capable of high-speed film formation is used and a reactive gas containing oxygen is introduced while being controlled.

上記の反応性ガスを制御する方法としては、(1)一定流量の反応性ガスを放出する方法、(2)真空チャンバー内の圧力を一定圧力に保つように反応性ガスを放出する方法、(3)スパッタリングカソードのインピーダンスが一定になるように反応性ガスを放出する(インピーダンス制御)方法、及び(4)スパッタリングのプラズマ強度が一定になるように反応性ガスを放出する(プラズマエミッション制御)方法の4つの方法が知られている。   As a method of controlling the reactive gas, (1) a method of releasing a reactive gas at a constant flow rate, (2) a method of releasing a reactive gas so as to keep the pressure in the vacuum chamber constant, ( 3) Method of releasing reactive gas so that the impedance of the sputtering cathode is constant (impedance control), and (4) Method of releasing reactive gas so that the plasma intensity of sputtering is constant (plasma emission control). The following four methods are known.

上記したように反応性スパッタリング等により金属吸収層を成膜する際、スパッタリング雰囲気となる反応性ガスはアルゴン等に酸素を添加した混合ガスとなる。このように酸素を含んだ反応性ガス雰囲気下でNi系の金属ターゲット(金属材)を用いて反応性スパッタリングを行うことで、NiO膜(完全に酸化しているのではない)等を形成することができる。反応性ガス中の好適な酸素濃度は、成膜装置や金属ターゲット(金属材)の種類によって変わりうるが、金属吸収層における反射率等の光学特性やエッチング液によるエッチング性を考慮して適宜設定すればよく、一般的には15体積%以下が望ましい。   As described above, when the metal absorption layer is formed by reactive sputtering or the like, the reactive gas serving as the sputtering atmosphere is a mixed gas obtained by adding oxygen to argon or the like. Thus, NiO film (not completely oxidized) or the like is formed by performing reactive sputtering using a Ni-based metal target (metal material) in a reactive gas atmosphere containing oxygen. be able to. The preferred oxygen concentration in the reactive gas may vary depending on the type of film forming device and metal target (metal material), but it is set as appropriate in consideration of optical characteristics such as reflectivity in the metal absorption layer and etchability with an etchant. In general, it is preferably 15% by volume or less.

透明基板としての長尺樹脂フィルムF側から数えて第1層目の金属吸収層の成膜に前述したように2つのスパッタリングカソード17及び18を使用する場合は、2対のガス放出パイプ25a・25b及び26a・26bから反応性ガスを導入することになる。尚、長尺樹脂フィルムFの両面に各々金属吸収層と金属層とを成膜する場合は、図1に示すように巻出ロール11及び巻取ロール24を白矢印で示す反時計回りに回転させて長尺樹脂フィルムFの一方の面に成膜して巻取ロール24に巻き取った後、この巻き取られたロールを巻取ロール24から外して巻出ロール11に取り付け、巻出ロール11を図1の黒矢印で示す時計回りに回転させると共に巻出ロール11からフリーロール12aに向けて点線のように長尺樹脂フィルムFを巻き出すことでもう一方の面に成膜すればよい。   When the two sputtering cathodes 17 and 18 are used to form the first metal absorption layer as counted from the side of the long resin film F as the transparent substrate, two pairs of gas discharge pipes 25a. The reactive gas is introduced from 25b and 26a and 26b. When forming a metal absorption layer and a metal layer on both sides of the long resin film F, the unwinding roll 11 and the winding roll 24 are rotated counterclockwise as indicated by white arrows as shown in FIG. After the film is formed on one surface of the long resin film F and wound on the winding roll 24, the wound roll is detached from the winding roll 24 and attached to the winding roll 11, and the winding roll 11 11 is rotated clockwise as indicated by the black arrow in FIG. 1, and the long resin film F is unwound from the unwinding roll 11 toward the free roll 12a as shown by a dotted line, and the film is formed on the other surface. .

ところで、上記したスパッタリング成膜などの乾式めっきに用いられる長尺樹脂フィルムの表面には、めっき層との密着性を高めるため易接着層が形成されることがある。易接着層はシラン化合物やイソシアネート化合物などの化合物を塗布することで形成する化学的形成法や、コロナ放電などにより表面の構成分子を分解したり表面を粗面化などして形成する機械的形成法がある。この易接着層が両面に設けられている長尺樹脂フィルムの一方の面に先ず第1被膜として上記した金属吸収層と金属層とを成膜してから長尺樹脂フィルムを巻き取ると、第1被膜と長尺樹脂フィルムのもう一方の未成膜側の表面とが接触し、当該易接着層が第1被膜に部分的に転写するなどの化学的な影響を第1被膜が受けるおそれがある。この過程について以下に詳細に説明する。   By the way, an easy-adhesion layer may be formed on the surface of a long resin film used for dry plating such as the above-described sputtering film formation in order to improve adhesion to the plating layer. The easy-adhesion layer is formed by applying a chemical compound such as a silane compound or an isocyanate compound, or by mechanical formation by decomposing surface constituent molecules or roughening the surface by corona discharge, etc. There is a law. When the above-described metal absorption layer and metal layer are first formed as a first coating on one surface of the long resin film provided with both of the easy adhesion layers, There is a risk that the first coating film is subjected to a chemical effect such that one coating film and the other non-deposited surface of the long resin film come into contact with each other and the easy adhesion layer is partially transferred to the first coating film. . This process will be described in detail below.

乾式めっき法で長尺樹脂フィルムに成膜するとその巻き取りも減圧雰囲気下で行われる。そのため、第1被膜が成膜された長尺樹脂フィルムを巻き取った時、第1被膜と長尺樹脂フィルムの未成膜の表面とは気体分子がほとんど介在することなく接触する。更に、巻き取られた長尺樹脂フィルムは、自身が巻き取られる際の搬送張力で巻き締められる。この場合の搬送張力は長尺樹脂フィルムの幅方向で異なっており、幅方向の両端部の張力が最も弱く、幅方向の中央部が最も強い。つまり、第1被膜のみが成膜された長尺樹脂フィルムを成膜装置内で巻き取ると、第1被膜の金属面と易接着層が接する部分の当接状態が長尺樹脂フィルムの幅方向の位置によって異なるため、図2に示すように幅方向で色の差が認められることがある。尚、第2被膜を成膜した後の巻き取りでは、第2被膜と第1被膜とが接するので、上記した幅方向の色の差の問題は生じない。   When a film is formed on a long resin film by a dry plating method, the winding is also performed under a reduced pressure atmosphere. Therefore, when the long resin film on which the first coating film is formed is wound, the first coating film and the non-film-forming surface of the long resin film are in contact with each other with almost no gas molecules interposed. Furthermore, the wound up long resin film is wound up by the conveyance tension when it is wound up. The transport tension in this case is different in the width direction of the long resin film, the tension at both ends in the width direction is the weakest, and the center in the width direction is the strongest. That is, when a long resin film on which only the first coating film is formed is wound in the film forming apparatus, the contact state of the portion where the metal surface of the first coating film is in contact with the easy-adhesion layer is the width direction of the long resin film. Therefore, there may be a color difference in the width direction as shown in FIG. In the winding after the second film is formed, the second film and the first film are in contact with each other, so that the problem of the color difference in the width direction does not occur.

第1被膜の表面に上記の幅方向の色の差が認められると、第1被膜を酸化剤等の薬液による化学エッチング等の加工を施す際に加工性に差が生じる恐れがある。そこで、図1の成膜装置では、第2被膜を成膜した後の長尺樹脂フィルムFを巻き取る前に、第1被膜の表面をドライエッチング手段29でドライエッチング処理できるようになっている。尚、図1の成膜装置では第1被膜をドライエッチング処理してから第2被膜の成膜を行うようになっているが、第2被膜を成膜してから第1被膜をドライエッチング処理してもよい。   If the color difference in the width direction is recognized on the surface of the first coating, there is a possibility that a difference in workability occurs when the first coating is processed by chemical etching or the like with a chemical solution such as an oxidizing agent. Therefore, in the film forming apparatus of FIG. 1, the surface of the first film can be dry-etched by the dry etching means 29 before winding the long resin film F after forming the second film. . In the film forming apparatus of FIG. 1, the first film is dry-etched and then the second film is formed. However, after the second film is formed, the first film is dry-etched. May be.

上記のように第1被膜をドライエッチング処理することにより当該第1被膜の幅方向の色の差の生じた表面部を除去できる。これにより長尺樹脂フィルムの幅方向のエッチング性に差が生じなくなる。ドライエッチング処理には、第1被膜の表面にアルゴンイオンなどをぶつけて行う逆スパッタリング処理、プラズマ照射処理、イオンビーム照射処理等を挙げることができる。これらの中では、指向性が強いことから効率よくドライエッチング処理が行えるのでイオンビーム照射処理が望ましい。尚、第1被膜の幅方向の色の差が生じた表面部が除去されていれば、第1被膜の表面に更に乾式めっきや湿式めっきで被膜を形成した場合にも、長尺樹脂フィルムの幅方向でエッチング性の差が生じにくくなるが、必要に応じて第1被膜の上に設けた被膜にドライエッチング処理を施してもよい。   As described above, the surface portion where the color difference in the width direction of the first coating film is removed can be removed by dry etching the first coating film. Thereby, a difference does not arise in the etching property of the width direction of a long resin film. Examples of the dry etching process include a reverse sputtering process, a plasma irradiation process, and an ion beam irradiation process performed by hitting the surface of the first coating with argon ions. Among these, ion beam irradiation processing is desirable because dry etching processing can be performed efficiently because of its strong directivity. In addition, if the surface part which the color difference of the width direction of the 1st film produced has been removed, even when a film is further formed on the surface of the 1st film by dry plating or wet plating, the long resin film Although the difference in etching property is less likely to occur in the width direction, a dry etching process may be performed on the coating provided on the first coating as necessary.

イオンビーム処理は被処理物である長尺樹脂フィルムに対してイオン源からイオンを照射することで行われる。イオンビームに用いるガス種には、酸素、アルゴン、窒素、二酸化炭素、又は水蒸気を用いることができ、これらの2種以上の混合ガスを用いてもよい。イオンビームはほぼ直線状に照射され、照射される有効幅が処理を受ける長尺樹脂フィルムの幅に相当するようにドライエッチング手段29を設置するのが好ましい。尚、イオンビームの照射時間は長尺樹脂フィルムの搬送速度に依存する。イオンビーム処理を行うイオン源に供給する電力[W]は、成膜装置の構造や第1被膜の化学種等により影響を受けるので、第1被膜の加工性等を考慮して適宜定めればよい。その際、下記式1で定義される照射電力[W/(m・m/min)]に基づいてイオン源への供給電力を定めるのが好ましい。   The ion beam treatment is performed by irradiating ions from an ion source onto a long resin film that is an object to be processed. As the gas species used for the ion beam, oxygen, argon, nitrogen, carbon dioxide, or water vapor can be used, and a mixture of two or more of these may be used. It is preferable to install the dry etching means 29 so that the ion beam is irradiated substantially linearly and the effective width of irradiation is equivalent to the width of the long resin film to be processed. The ion beam irradiation time depends on the transport speed of the long resin film. The electric power [W] supplied to the ion source for performing the ion beam treatment is affected by the structure of the film forming apparatus, the chemical species of the first film, and the like. Good. At that time, it is preferable to determine the supply power to the ion source based on the irradiation power [W / (m · m / min)] defined by the following formula 1.

[式1]
照射電力=イオン源への供給電力[W]/(有効幅[m]×搬送速度[m/min])
[Formula 1]
Irradiation power = Power supplied to ion source [W] / (effective width [m] × conveying speed [m / min])

長尺樹脂フィルムFに成膜した第1被膜の表面にイオンビーム処理を行う時は、その反対側部分を冷却ロール13の外周面に接触させて冷却することが望ましい。イオンビーム処理は指向性が高く、長尺樹脂フィルムFのイオンビーム照射部が局部的に高温になってシワが発生するおそれがあるからである。尚、イオンビーム処理が過剰になったり冷却ロール13による冷却が不十分であったりする場合もシワが生じやすくなるので、イオンビームの供給電力や冷媒の温度等を適宜調整するのが望ましい。   When performing ion beam treatment on the surface of the first coating film formed on the long resin film F, it is desirable to cool the surface by bringing the opposite side portion into contact with the outer peripheral surface of the cooling roll 13. This is because the ion beam treatment has high directivity, and the ion beam irradiation part of the long resin film F may be locally heated to cause wrinkles. In addition, wrinkles are likely to occur when the ion beam treatment becomes excessive or the cooling by the cooling roll 13 is insufficient, so it is desirable to appropriately adjust the ion beam supply power, the coolant temperature, and the like.

上記成膜装置により、タッチパネル用などの電極基板フィルムの基材に用いる積層構造の積層体基板を作製する際、品質のばらつきを抑えることができる。この積層体基板は、例えば図3に示すような長尺樹脂フィルムからなる透明基板50と、該透明基板50の両面に上記成膜装置により形成された金属吸収層51及び金属層52からなる。   When the above-described film forming apparatus is used to produce a laminated substrate having a laminated structure used as a base material for an electrode substrate film for a touch panel or the like, variation in quality can be suppressed. The laminate substrate includes a transparent substrate 50 made of a long resin film as shown in FIG. 3, for example, and a metal absorption layer 51 and a metal layer 52 formed on both surfaces of the transparent substrate 50 by the film forming apparatus.

上記積層体基板に適用される長尺樹脂フィルムの材質としては特に限定はないが、好適にはポリエチレンテレフタレート(PET)、ポリエーテルスルフォン(PES)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリオレフィン(PO)、トリアセチルセルロース(TAC)、及びノルボルネン等の樹脂材料から選択された樹脂フィルムの単体、あるいは上記樹脂材料から選択された樹脂フィルム単体とこの単体の片面又は両面を覆うアクリル系有機膜との複合体が用いられる。ノルボルネン樹脂材料については代表的なものとして日本ゼオン社のゼオノア(商品名)やJSR社のアートン(商品名)等が挙げられる。尚、本発明に係る積層体基板を用いて作製される電極基板フィルムは主にタッチパネルに使用されるため、上記樹脂フィルムの中でも可視波長領域での透明性に優れるものが望ましい。   The material of the long resin film applied to the laminate substrate is not particularly limited, but preferably polyethylene terephthalate (PET), polyethersulfone (PES), polyarylate (PAR), polycarbonate (PC), polyolefin (PO), triacetyl cellulose (TAC), a resin film selected from resin materials such as norbornene, or a resin film selected from the above resin materials and an acrylic organic film covering one or both surfaces of the resin And a complex is used. Representative examples of the norbornene resin material include ZEONOR (trade name) manufactured by Nippon Zeon Co., Ltd. and Arton (trade name) manufactured by JSR Corporation. In addition, since the electrode substrate film produced using the laminated substrate which concerns on this invention is mainly used for a touchscreen, what is excellent in the transparency in a visible wavelength region among the said resin films is desirable.

上記の金属吸収層51は、Cu単体、Ni単体、又はNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加されたNi系合金からなる金属材を用いて酸素を含む反応性ガス雰囲気において反応成膜法によって成膜して得た金属酸化物層からなるのが好ましい。Ni系合金の場合は、Ni−Cu合金が好ましい。   Said metal absorption layer 51 is one or more elements selected from the group consisting of Cu alone, Ni alone, or Ni with Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn. It is preferable that the metal oxide layer is formed by a reactive film formation method in a reactive gas atmosphere containing oxygen using a metal material made of a Ni-based alloy to which is added. In the case of a Ni-based alloy, a Ni—Cu alloy is preferable.

一方、金属層52は一般的な不活性ガス雰囲気において成膜することができ、その構成材料としては、電気抵抗値が低い金属であれば特に限定されず、例えば、Cu単体、若しくはCuにTi、Al、V、W、Ta、Si、Cr、Agより選ばれる1種以上の元素が添加されたCu系合金、又はAg単体、若しくはAgにTi、Al、V、W、Ta、Si、Cr、Cuより選ばれる1種以上の元素が添加されたAg系合金が挙げられ、これらの中ではCu単体が回路パターンの加工性や抵抗値の観点から望ましい。   On the other hand, the metal layer 52 can be formed in a general inert gas atmosphere, and the constituent material thereof is not particularly limited as long as it is a metal having a low electric resistance value. , Al, V, W, Ta, Si, Cr, Ag-based Cu alloy with one or more elements added, or Ag alone, or Ag with Ti, Al, V, W, Ta, Si, Cr And Ag-based alloys to which one or more elements selected from Cu are added. Among these, Cu alone is desirable from the viewpoint of circuit pattern workability and resistance.

金属吸収層51の膜厚は15〜30nm程度が好ましい。金属層の膜厚は電気特性に影響を及ぼすので光学的な要件のみから決定されるものではないが、透過光が測定不能なレベルの膜厚に設定するのが好ましい。一般的には金属層の膜厚を50〜5000nmとするのが好ましく、金属層を配線パターンに加工する加工性の観点からは3μm(3000nm)以下がより好ましい。   The film thickness of the metal absorption layer 51 is preferably about 15 to 30 nm. Since the thickness of the metal layer affects the electrical characteristics, it is not determined only by optical requirements, but it is preferable to set the thickness to a level at which transmitted light cannot be measured. Generally, the thickness of the metal layer is preferably 50 to 5000 nm, and more preferably 3 μm (3000 nm) or less from the viewpoint of workability for processing the metal layer into a wiring pattern.

尚、上記の乾式めっき法による金属層52の上に更に電気めっき法などの湿式めっき法により金属層を形成して厚膜化してもよい。すなわち、図4に示すように、長尺樹脂フィルムから成る透明基板50の両面に乾式めっき法により金属吸収層51及び金属層52を形成した後、該金属層52の上に湿式めっき法により金属層53を形成してもよい。   In addition, a metal layer may be further formed on the metal layer 52 by the dry plating method by a wet plating method such as an electroplating method to increase the thickness. That is, as shown in FIG. 4, after forming a metal absorbing layer 51 and a metal layer 52 on both surfaces of a transparent substrate 50 made of a long resin film by a dry plating method, a metal is formed on the metal layer 52 by a wet plating method. The layer 53 may be formed.

上記の金属層53の上に更に第2金属吸収層を形成してもよい。すなわち、図5に示すように、長尺樹脂フィルムから成る透明基板50の両面に乾式めっき法により例えば膜厚15〜30nmの金属吸収層51と例えば膜厚50〜1000nmの金属層52とを形成した後、湿式めっき法により金属層53を形成し、この金属層53の上に乾式めっき法により例えば膜厚15〜30nmの第2金属吸収層54を形成してもよい。この第2金属吸収層は、上記金属吸収層51と同様にCu単体、Ni単体、又はNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれる1種以上の元素が添加されたNi系合金から成る金属材を用いて酸素を含む反応性ガス雰囲気において反応成膜法によって成膜することで得られる。   A second metal absorption layer may be further formed on the metal layer 53. That is, as shown in FIG. 5, a metal absorbing layer 51 having a film thickness of, for example, 15 to 30 nm and a metal layer 52 having a film thickness of, for example, 50 to 1000 nm are formed on both surfaces of a transparent substrate 50 made of a long resin film by a dry plating method. Then, the metal layer 53 may be formed by a wet plating method, and the second metal absorption layer 54 having a film thickness of, for example, 15 to 30 nm may be formed on the metal layer 53 by a dry plating method. This second metal absorption layer is selected from Cu simple substance, Ni simple substance, or Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, Zn similarly to the metal absorption layer 51. It is obtained by forming a film by a reactive film formation method in a reactive gas atmosphere containing oxygen using a metal material made of a Ni-based alloy to which elements of more than one species are added.

このように乾式めっき法と湿式めっき法により厚膜化した金属層の両面に金属吸収層を形成することで、この積層体基板を用いて作製した電極基板フィルムをタッチパネルに組み込んだときに金属製積層細線からなるメッシュ構造の回路パターンを反射により見えにくくすることができる。尚、長尺樹脂フィルムからなる透明基板の片面のみに金属吸収層及び金属層を形成して得た積層体基板を用いて電極基板フィルムを作製した場合でも、該透明基板から回路パターンを見えにくくすることができる。   By forming a metal absorption layer on both sides of the metal layer thickened by the dry plating method and the wet plating method in this way, when the electrode substrate film produced using this laminate substrate is incorporated into the touch panel, it is made of metal. A circuit pattern having a mesh structure made of laminated thin wires can be made difficult to see by reflection. Even when an electrode substrate film is produced using a laminate substrate obtained by forming a metal absorption layer and a metal layer only on one side of a transparent substrate made of a long resin film, it is difficult to see a circuit pattern from the transparent substrate. can do.

尚、反応成膜法で成膜した金属吸収層を構成する金属酸化物の酸化が進み過ぎると金属吸収層が透明になってしまうため、視覚的に黒化膜になる程度の酸化レベルに抑えるのが望ましい。反応成膜法で金属吸収層を成膜すると、各金属元素は酸素原子と不定比の化合物を形成し、このような不定比の酸化物により視覚では黒色に映る。   In addition, since the metal absorption layer becomes transparent when the oxidation of the metal oxide constituting the metal absorption layer formed by the reactive film formation method proceeds excessively, the oxidation level is suppressed to such a level that it becomes a blackened film visually. Is desirable. When the metal absorption layer is formed by the reactive film formation method, each metal element forms a non-stoichiometric compound with oxygen atoms, and the non-stoichiometric oxide is visually black.

上記反応成膜法としては、図1に示すようなマグネトロンスパッタリングカソード17〜20を用いたスパッタリング法のほか、イオンビームスパッタリング、真空蒸着、イオンプレーティング、CVD等の乾式めっき法がある。金属吸収層の各波長における光学定数(屈折率、消衰係数)は、反応の度合い、すなわち酸化度に大きく影響され、Ni系合金からなる金属材だけで決定されるものではない。また、Ni−Cu合金の場合はNiとCuの配合割合によっては反応成膜法を用いない方法(すなわち反応性ガスを用いない成膜法)であっても黒色膜と視認される金属吸収層が成膜されることがある。   Examples of the reactive film forming method include a sputtering method using magnetron sputtering cathodes 17 to 20 as shown in FIG. 1 and a dry plating method such as ion beam sputtering, vacuum deposition, ion plating, and CVD. The optical constant (refractive index, extinction coefficient) at each wavelength of the metal absorption layer is greatly influenced by the degree of reaction, that is, the degree of oxidation, and is not determined only by a metal material made of a Ni-based alloy. In the case of a Ni—Cu alloy, depending on the mixing ratio of Ni and Cu, a metal absorption layer that is visually recognized as a black film even if a method that does not use a reactive film formation method (that is, a film formation method that does not use a reactive gas). May be deposited.

上記にて作製した積層体基板の積層膜をパターニング加工して線幅が例えば20μm以下である金属製の積層細線を形成することにより、電極基板フィルムを得ることができる。具体的には、図5に示す積層体フィルムの積層膜を後述するエッチング処理等でパターニング加工することで図6に示すような電極基板フィルムを得ることができる。この図6に示す電極基板フィルムは、樹脂フィルムから成る透明基板50の両面に設けられた例えば線幅20μm以下の金属製の積層細線から成るメッシュ構造の回路パターンを有し、この金属製の積層細線は透明基板50側から数えて第1層目の金属吸収層51aと、第2層目の金属層52a、53aと、第3層目の第2金属吸収層54aとで構成されている。   An electrode substrate film can be obtained by patterning the laminated film of the laminated substrate produced above to form a metal laminated thin wire having a line width of, for example, 20 μm or less. Specifically, an electrode substrate film as shown in FIG. 6 can be obtained by patterning the laminated film of the laminate film shown in FIG. The electrode substrate film shown in FIG. 6 has a circuit pattern having a mesh structure made of, for example, metal laminated thin wires having a line width of 20 μm or less provided on both surfaces of a transparent substrate 50 made of a resin film. The thin line is composed of a first metal absorption layer 51a, a second metal layer 52a, 53a, and a third metal absorption layer 54a as counted from the transparent substrate 50 side.

このように電極基板フィルムの電極(配線)パターンをストライプ状若しくは格子状とすることでタッチパネルに用いることができる。このようにして電極(配線)パターンに配線加工された金属製の積層細線は、積層体基板の積層構造を維持していることから、高輝度照明下においても透明基板に設けられた電極等の回路パターンが極めて視認され難い特徴を有している。すなわち、アルゴンに酸素を添加して得た反応性ガス雰囲気で反応性スパッタリング成膜すると、金属吸収層として黒色膜が得られるので照射された時に光の反射率を低く抑えることが可能になり、よって金属吸収層をエッチング加工して得た電極等の回路パターンは高輝度照明下において視認されにくくなる。   Thus, it can use for a touch panel by making the electrode (wiring) pattern of an electrode substrate film into stripe form or a grid | lattice form. In this way, the metal multilayer thin wire processed into the electrode (wiring) pattern maintains the multilayer structure of the multilayer substrate, so that the electrodes and the like provided on the transparent substrate can be used even under high luminance illumination. The circuit pattern has a feature that is extremely difficult to see. That is, when reactive sputtering film formation is performed in a reactive gas atmosphere obtained by adding oxygen to argon, a black film is obtained as a metal absorption layer, so that it becomes possible to suppress the reflectance of light when irradiated, Therefore, a circuit pattern such as an electrode obtained by etching the metal absorption layer is hardly visible under high-intensity illumination.

上記の積層体基板をパターニング加工して電極基板フィルムを形成する方法としては、公知のサブトラクティブ法を挙げることができる。サブトラクティブ法は積層体基板の積層膜表面にフォトレジスト膜を形成し、電極パターンを形成したい箇所にフォトレジスト膜が残るように露光及び現像処理を行い、フォトレジスト膜から露出している積層膜部分を化学エッチングにより除去し、電極パターンを形成する方法である。上記記化学エッチングのエッチング液としては、塩化第二鉄水溶液や塩化第二銅水溶液を用いることができる。   A known subtractive method can be used as a method for forming the electrode substrate film by patterning the laminate substrate. In the subtractive method, a photoresist film is formed on the laminate film surface of the laminate substrate, and exposure and development processes are performed so that the photoresist film remains at a position where an electrode pattern is to be formed, and the laminate film exposed from the photoresist film. In this method, the portion is removed by chemical etching to form an electrode pattern. As an etching solution for the above chemical etching, an aqueous solution of ferric chloride or an aqueous solution of cupric chloride can be used.

以上、本発明の一具体例の電極基板フィルム用の積層体基板の製造方法について説明したが、積層体基板の用途はタッチパネル用の電極基板フィルムに限定されるものではなく、フレキシブル配線基板などにも用いることができる。積層体基板をフレキシブル配線基板に用いる場合には、積層体基板は、第1被膜及び第2被膜が各々少なくとも2層の積層構造であって、例えば第1層目はNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加されたNi系合金層であり、第2層目は銅層からなる金属層で構成されるのが好ましい。   As mentioned above, although the manufacturing method of the laminated substrate for electrode substrate films of one specific example of this invention was demonstrated, the use of a laminated substrate is not limited to the electrode substrate film for touch panels, but to a flexible wiring board etc. Can also be used. When the laminated substrate is used for a flexible wiring substrate, the laminated substrate has a laminated structure in which the first coating and the second coating are each at least two layers. For example, the first layer is Ni, Ti, Al, V , W, Ta, Si, Cr, Ag, Mo, Cu, and Zn, a Ni-based alloy layer to which one or more elements selected from the group consisting of Zn are added, and the second layer is a metal layer made of a copper layer It is preferable that it is comprised.

この第2層目の金属層の上には更に第3層目が設けられていてもよく、この第3層目は例えばNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加された第2Ni系合金層からなるのが好ましい。これら第1及び第2のNi合金層はNi−Cr系合金が望ましく、その膜厚は好適には3〜50nmである。また、銅層の膜厚は50nm以上が好ましく、15μm以下がより好ましい。長尺樹脂フィルムには、電気基板フィルム用の積層体フィルムで用いた透明基板を構成する樹脂フィルムのほか、透明性が要求されない場合は着色したフィルムを用いることができる。例えば、ポリイミドフィルム等の樹脂フィルムを用いることができる。   A third layer may be further provided on the second metal layer. For example, the third layer may be made of Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, It is preferable to consist of the 2nd Ni type alloy layer to which 1 or more types of elements chosen from the group which consists of Mo, Cu, and Zn were added. The first and second Ni alloy layers are preferably Ni—Cr alloys, and the film thickness is preferably 3 to 50 nm. The film thickness of the copper layer is preferably 50 nm or more, and more preferably 15 μm or less. In addition to the resin film constituting the transparent substrate used in the laminate film for the electric substrate film, a colored film can be used as the long resin film when transparency is not required. For example, a resin film such as a polyimide film can be used.

図1に示すような成膜装置(スパッタリングウェブコータ)を用い、酸素ガスを含んだ反応性ガス雰囲気で反応スパッタリングを行うことで長尺樹脂フィルムFの両面にそれぞれ第1被膜及び第2被膜を成膜した。具体的に説明すると、キャンロール16には、外径600mm、幅750mmのステンレス製の円筒部材を用い、その表面にハードクロムめっきを施した。前フィードロール15と後フィードロール21は各々外径150mm、幅750mmのステンレス製の円筒部材を用い、その表面にハードクロムめっきを施した。マグネトロンスパッタリングカソード17、18には金属吸収層用のNi−Cuターゲットを取り付け、マグネトロンスパッタリングカソード19、20には金属層用のCuターゲットを取り付けた。   Using a film forming apparatus (sputtering web coater) as shown in FIG. 1, reactive sputtering is performed in a reactive gas atmosphere containing oxygen gas, whereby the first coating and the second coating are respectively applied to both sides of the long resin film F. A film was formed. Specifically, for the can roll 16, a stainless steel cylindrical member having an outer diameter of 600 mm and a width of 750 mm was used, and the surface thereof was hard chrome plated. The front feed roll 15 and the rear feed roll 21 were made of stainless steel cylindrical members each having an outer diameter of 150 mm and a width of 750 mm, and the surfaces thereof were subjected to hard chrome plating. The magnetron sputtering cathodes 17 and 18 were attached with a Ni—Cu target for the metal absorption layer, and the magnetron sputtering cathodes 19 and 20 were attached with a Cu target for the metal layer.

透明基板を構成する長尺樹脂フィルムFには、幅600mm、長さ1200mのPETフィルムを用いた。これを巻出ロール11にセットし、その先端部を各種ロール群を経て巻取ロール24に巻き付けた。キャンロール16に循環させる冷媒は0℃で温度制御した。この状態で、真空チャンバー10内を複数台のドライポンプにより5Paまで排気した後、複数台のターボ分子ポンプとクライオコイルを用いて1×10−4Paまで排気した。そして、長尺樹脂フィルムFを搬送速度2m/分で搬送してスパッタリング成膜を行った。 For the long resin film F constituting the transparent substrate, a PET film having a width of 600 mm and a length of 1200 m was used. This was set on the unwinding roll 11 and its tip was wound around the winding roll 24 through various roll groups. The temperature of the refrigerant circulating in the can roll 16 was controlled at 0 ° C. In this state, the inside of the vacuum chamber 10 was evacuated to 5 Pa by a plurality of dry pumps, and then evacuated to 1 × 10 −4 Pa using a plurality of turbo molecular pumps and cryocoils. And the long resin film F was conveyed with the conveyance speed of 2 m / min, and sputtering film-forming was performed.

スパッタリング成膜の際、金属吸収層の成膜を行うマグネトロンスパッタリングカソード17、18では、その近傍にそれぞれ配されているガス放出パイプ25a・25b、26a・26bからアルゴンガスを300sccm、酸素ガスを15sccmの流量で導入し、膜厚30nmのNi−Cu酸化層が得られるように電力制御を行った。一方、金属層(銅層)の成膜を行うマグネトロンスパッタリングカソード19、20では、その近傍にそれぞれ配されているガス放出パイプ27a・27b、28a・28bからアルゴンガスを300sccmの流量で導入し、膜厚80nmのCu層が得られるように電力制御を行った。   At the time of sputtering film formation, in the magnetron sputtering cathodes 17 and 18 for forming the metal absorption layer, argon gas is 300 sccm and oxygen gas is 15 sccm from the gas discharge pipes 25 a, 25 b, 26 a, and 26 b arranged in the vicinity thereof. The power was controlled so that a Ni—Cu oxide layer having a thickness of 30 nm was obtained. On the other hand, in the magnetron sputtering cathodes 19 and 20 for forming a metal layer (copper layer), argon gas is introduced at a flow rate of 300 sccm from gas discharge pipes 27a and 27b and 28a and 28b arranged in the vicinity thereof, respectively. Power control was performed so that a Cu layer with a thickness of 80 nm was obtained.

長尺樹脂フィルムFの片面に第1被膜の成膜が完了した後、真空チャンバー10に大気を導入し、巻き取られた長尺樹脂フィルムを巻取ロール24から外して巻出ロール11にセットした。そして、第1被膜の成膜の場合と同様の方法で真空排気を行った後、搬送速度2m/分で長尺樹脂フィルムFを搬送し、下記のイオンビーム処理を行ったことを除いて上記第1被膜の成膜の場合と同様にして第2被膜の成膜を行った。   After the first film is formed on one side of the long resin film F, the atmosphere is introduced into the vacuum chamber 10, and the wound long resin film is removed from the winding roll 24 and set on the unwinding roll 11. did. Then, after evacuating in the same manner as in the case of forming the first film, the long resin film F was transported at a transport speed of 2 m / min, and the above ion beam treatment was performed. The second film was formed in the same manner as the first film.

すなわち、この第2被膜の成膜では上記第1被膜の成膜の場合と異なり、長尺樹脂フィルムFに対して0℃に温度制御された冷媒が循環する冷却ロール13で冷却しながらドライエッチング手段29としてのイオン源を起動させて、イオンビーム用ガスの供給量100sccmで第1被膜の成膜面側にイオンビーム処理を施した。尚、ドライエッチング処理条件を変えた時の効果を調べるため、一定の時間ごとにイオン源への供給電力及びイオンビーム用供給ガスの種類を変えてイオンビーム処理を行った。また、比較のため、イオン源を停止すると共にイオンビーム用供給ガスを供給しない条件で第2被膜の成膜を行った。   That is, in the film formation of the second film, unlike the case of the film formation of the first film, dry etching is performed while the long resin film F is cooled by the cooling roll 13 in which the coolant whose temperature is controlled to 0 ° C. is circulated. The ion source as the means 29 was activated, and the ion beam treatment was performed on the film-forming surface side of the first coating with an ion beam gas supply amount of 100 sccm. In order to investigate the effect of changing the dry etching treatment conditions, ion beam treatment was performed by changing the power supplied to the ion source and the type of ion beam supply gas at regular intervals. For comparison, the second film was formed under the condition that the ion source was stopped and the ion beam supply gas was not supplied.

第2被膜の成膜が完了した後、巻き取られた積層体基板を大気中で巻き出して、第1被膜の幅方向の両端の色の差を目視で確認した。次に、第1被膜と第2被膜の両方に電気めっきで銅厚みが1μmになるよう成膜し、再度成膜装置にて、上記と同様の方法で第1被膜及び第2被膜の上に膜厚30nmの第2金属吸収層を成膜した。尚、この第2金属吸収層の成膜時はイオンビーム処理は行わなかった。このようにして、透明基板の両面に該透明基板から数えて第1層目の金属吸収層としてのNi−Cu酸化膜と第2層目の金属層としてのCu膜と第3層目の第2金属吸収層としてのNi−Cu酸化膜とからなる積層膜が積層された試料1〜7の積層体基板を製造した。   After the film formation of the second film was completed, the wound laminate substrate was unwound in the air, and the difference in color between both ends in the width direction of the first film was visually confirmed. Next, a film is formed on both the first film and the second film by electroplating so that the copper thickness becomes 1 μm, and again on the first film and the second film by a film forming apparatus in the same manner as described above. A second metal absorption layer having a thickness of 30 nm was formed. In addition, the ion beam process was not performed at the time of film-forming of this 2nd metal absorption layer. In this way, the Ni—Cu oxide film as the first metal absorption layer, the Cu film as the second metal layer, and the third layer of the third layer are counted on both sides of the transparent substrate from the transparent substrate. The laminated body substrates of Samples 1 to 7 in which laminated films composed of Ni—Cu oxide films as two metal absorption layers were laminated were manufactured.

得られた試料1〜7の積層体基板の各々に対して、成膜を開始してから100m、500m及び900mの位置をサンプリングし、エッチング液として塩化第二鉄水溶液を用いてエッチングすることでエッチング性の評価を行った。評価基準としては、幅方向の中央部と端部から50mmの部分とのエッチング速度差が3秒未満の場合は「合格」と判断し、この速度差が3秒以上の場合は「不合格」と判断した。また、目視によりシワ発生の有無を確認した。これら評価結果を、上記の目視による色の差の評価及びイオン源への供給電力とその値から式1を用いて算出した照射電力と共に下記表1に示す。   By sampling the positions of 100 m, 500 m and 900 m for each of the obtained laminated substrates of Samples 1 to 7 and starting etching, and etching using ferric chloride aqueous solution as an etching solution The etching property was evaluated. As an evaluation standard, if the etching rate difference between the central portion in the width direction and the portion 50 mm from the end portion is less than 3 seconds, it is judged as “pass”, and if this speed difference is 3 seconds or more, it is judged as “fail”. It was judged. In addition, the presence or absence of wrinkles was visually confirmed. These evaluation results are shown in Table 1 below together with the evaluation of the color difference by visual observation and the power supplied to the ion source and the irradiation power calculated using Equation 1 from the value.

Figure 2017157580
Figure 2017157580

上記表1から、第1被膜の成膜面側にイオンビーム処理を施した試料1〜6ではいずれも色の差を有しておらず、また、エッチング性も良好であることが分かる。これに対してイオンビーム処理を施さなかった試料7ではシワの発生は試料1〜6と同様に認められなかったが、第1被膜の両端部に色の差が認められた。また、エッチング性の評価では試料7はサンプル全てにおいて不合格となった。   From Table 1 above, it can be seen that none of the samples 1 to 6 in which the ion beam treatment is performed on the film-forming surface side of the first coating has a color difference and has good etching properties. On the other hand, in the sample 7 which was not subjected to the ion beam treatment, generation of wrinkles was not recognized as in the samples 1 to 6, but a color difference was recognized at both ends of the first coating. Moreover, in the evaluation of etching property, the sample 7 failed in all the samples.

F 長尺樹脂フィルム
10 真空チャンバー
11 巻出ロール
12a、12b、23 フリーロール
13 冷却ロール
14、22 張力センサロール
15 前フィードロール
16 キャンロール
17,18,19,20 マグネトロンスパッタリングカソード
21 後フィードロール
24 巻取ロール
25a・25b、26a・26b、27a・27b、28a・28b ガス放出パイプ
29 ドライエッチング手段
50 樹脂フィルム(透明基板)
51 金属吸収層
52 乾式成膜法による金属層(銅層)
53 湿式成膜法による金属層(銅層)
54 第2金属吸収層
51a パターニング加工された金属吸収層
52a パターニング加工された乾式成膜法で形成された金属層(銅層)
53a 湿式成膜法で形成された金属層(銅層)
54a パターニング加工された第2金属吸収層
F Long resin film 10 Vacuum chamber 11 Unwind roll 12a, 12b, 23 Free roll 13 Cooling roll 14, 22 Tension sensor roll 15 Front feed roll 16 Can roll 17, 18, 19, 20 Magnetron sputtering cathode 21 Rear feed roll 24 Winding rolls 25a, 25b, 26a, 26b, 27a, 27b, 28a, 28b Gas release pipe 29 Dry etching means 50 Resin film (transparent substrate)
51 Metal absorption layer 52 Metal layer (copper layer) by dry film formation
53 Metal layer (copper layer) by wet deposition method
54 Second metal absorption layer 51a Patterned metal absorption layer 52a Patterned metal layer (copper layer) formed by dry deposition method
53a Metal layer (copper layer) formed by wet film-forming method
54a Patterned second metal absorption layer

Claims (9)

ロールツーロールで搬送される長尺樹脂フィルムの両面に乾式めっき法で第1被膜及び第2被膜をそれぞれ成膜する成膜方法であって、前記長尺樹脂フィルムの一方の面に前記第1被膜を成膜した後の第1回目の巻き取りと、前記第1被膜が成膜された長尺樹脂フィルムの他方の面に第2被膜を成膜した後の第2回目の巻き取りとの間に前記第1被膜の表面をドライエッチング処理することを特徴とする成膜方法。   A film forming method for forming a first coating and a second coating on both sides of a long resin film conveyed by roll-to-roll by a dry plating method, wherein the first coating is formed on one surface of the long resin film. The first winding after the film is formed and the second winding after the second film is formed on the other surface of the long resin film on which the first film is formed A film forming method comprising performing a dry etching process on the surface of the first coating in between. 前記ドライエッチング処理がイオンビーム照射であることを特徴とする、請求項1に記載の成膜方法。   The film forming method according to claim 1, wherein the dry etching process is ion beam irradiation. 前記ドライエッチング処理を行っている時にその反対側部分を冷却ロールに接触させることを特徴とする、請求項1又は2に記載の成膜方法。   The film forming method according to claim 1, wherein when the dry etching process is performed, the opposite side portion is brought into contact with a cooling roll. 前記乾式めっき法がスパッタリング法であることを特徴とする、請求項1から3のいずれか1項に記載の成膜方法。   The film forming method according to claim 1, wherein the dry plating method is a sputtering method. 長尺樹脂フィルムの両面にそれぞれ第1被膜及び第2被膜を成膜する積層体基板の製造方法であって、
前記第1被膜及び第2被膜の各々は少なくとも2層の積層構造を有しており、請求項1から4のいずれか1項に記載の成膜方法によりこれら第1被膜及び第2被膜を成膜することを特徴とする積層体基板の製造方法。
A method for manufacturing a laminate substrate in which a first coating and a second coating are formed on both sides of a long resin film, respectively,
Each of the first coating and the second coating has a laminated structure of at least two layers, and the first coating and the second coating are formed by the film forming method according to any one of claims 1 to 4. A method for producing a laminated substrate, comprising filming.
前記積層構造は、長尺樹脂フィルムから数えて第1層目がNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加されたNi系合金層であり、第2層目が銅層であることを特徴とする、請求項5に記載の積層体基板の製造方法。   The laminated structure is one or more selected from the group consisting of Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn as counted from the long resin film. 6. The method for manufacturing a multilayer substrate according to claim 5, wherein the second alloy layer is a Ni-based alloy layer to which the above element is added, and the second layer is a copper layer. 前記第2層目の上に更に第3層目としてNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加された第2Ni系合金層が設けられていることを特徴とする、請求項6に記載の積層体基板の製造方法。   On the second layer, as the third layer, Ni contains at least one element selected from the group consisting of Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn. The method for producing a laminated substrate according to claim 6, wherein an added second Ni-based alloy layer is provided. 前記積層構造は、長尺樹脂フィルムから数えて第1層目が、Cu単体、Ni単体、又はNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加されたNi系合金からなる金属材を用いて酸素を含む反応性ガス雰囲気で反応成膜法によって成膜される金属吸収層であり、第2層目が不活性ガス雰囲気で成膜した銅層であることを特徴とする、請求項5に記載の積層体基板の製造方法。   In the laminated structure, the first layer counted from the long resin film is composed of Cu, Ni, Ni, or Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn. A metal absorption layer formed by a reactive film formation method in a reactive gas atmosphere containing oxygen using a metal material made of a Ni-based alloy to which one or more elements selected from the group consisting of 6. The method for manufacturing a laminated substrate according to claim 5, wherein the eyes are copper layers formed in an inert gas atmosphere. 前記第2層目の上に更に第3層目としてCu単体、Ni単体、又は、NiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加されたNi系合金から成る金属材を用いて酸素を含む反応性ガス雰囲気で反応成膜法によって成膜される第2金属吸収層が設けられていることを特徴とする、請求項8に記載の積層体基板の製造方法。   From the group consisting of Cu alone, Ni alone, or Ni on Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn as the third layer on the second layer. A second metal absorption layer formed by a reactive film formation method in a reactive gas atmosphere containing oxygen using a metal material made of a Ni-based alloy to which at least one element selected from the above is added; The method for producing a laminated substrate according to claim 8, characterized in that it is characterized in that
JP2016036579A 2016-02-29 2016-02-29 Film-forming method and method for manufacturing laminate substrate using the same Active JP6617607B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016036579A JP6617607B2 (en) 2016-02-29 2016-02-29 Film-forming method and method for manufacturing laminate substrate using the same
KR1020170023446A KR102481145B1 (en) 2016-02-29 2017-02-22 Method for forming a film and method for manufacturing a laminate substrate using the same
TW106106435A TWI736590B (en) 2016-02-29 2017-02-24 Film forming method and manufacturing method of laminate substrate using the same
CN201710103251.6A CN107130218B (en) 2016-02-29 2017-02-24 Film forming method and method for manufacturing laminated substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016036579A JP6617607B2 (en) 2016-02-29 2016-02-29 Film-forming method and method for manufacturing laminate substrate using the same

Publications (2)

Publication Number Publication Date
JP2017157580A true JP2017157580A (en) 2017-09-07
JP6617607B2 JP6617607B2 (en) 2019-12-11

Family

ID=59721893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016036579A Active JP6617607B2 (en) 2016-02-29 2016-02-29 Film-forming method and method for manufacturing laminate substrate using the same

Country Status (4)

Country Link
JP (1) JP6617607B2 (en)
KR (1) KR102481145B1 (en)
CN (1) CN107130218B (en)
TW (1) TWI736590B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009813A (en) * 2018-07-03 2020-01-16 新光電気工業株式会社 Wiring board, semiconductor package, and manufacturing method of wiring board

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6950506B2 (en) * 2017-12-11 2021-10-13 住友金属鉱山株式会社 Processing equipment and processing method for long substrates
KR102025484B1 (en) * 2017-12-28 2019-09-25 (주)제이 앤 엘 테크 Manufacturing method and system of large area nanostructure by plasma surface treatment
CN110944460B (en) * 2018-08-09 2022-09-23 江门市勤智电路有限公司 Electroplating cleaning machine for circuit board manufacturing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290292A (en) * 1991-03-19 1992-10-14 Nec Corp Manufacture of printed circuit board
JPH05283844A (en) * 1992-04-02 1993-10-29 Matsushita Electric Works Ltd Method for cleaning laminated plate
JP2010053447A (en) * 2008-07-31 2010-03-11 Sumitomo Metal Mining Co Ltd Method and device for forming film
JP2010260328A (en) * 2009-04-10 2010-11-18 Jx Nippon Mining & Metals Corp Method of manufacturing two-layer copper clad laminated sheet, and two-layer copper clad laminated sheet
JP2014053410A (en) * 2012-09-06 2014-03-20 Sumitomo Metal Mining Co Ltd Production method and production apparatus of double side metal laminate film, and manufacturing method of flexible double side printed wiring board
JP2014222689A (en) * 2013-05-13 2014-11-27 住友金属鉱山株式会社 Method and apparatus for manufacturing double-side metal laminated film, and manufacturing method of flexible double-side printed wiring board
JP2015040324A (en) * 2013-08-21 2015-03-02 住友金属鉱山株式会社 Surface treatment method of resin film, and method of manufacturing copper-clad laminate including the surface treatment method
JP2015221938A (en) * 2014-04-30 2015-12-10 日東電工株式会社 Transparent conductive film and production method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046181B2 (en) * 1980-06-10 1985-10-15 松下電器産業株式会社 Vacuum deposition method
JP4086132B2 (en) 2001-11-16 2008-05-14 株式会社ブリヂストン Transparent conductive film and touch panel
CN201372309Y (en) * 2009-03-31 2009-12-30 兰州真空设备有限责任公司 Dual-cooling film coating roller suspended vacuum continue winding coater
JP5361579B2 (en) 2009-07-09 2013-12-04 信越ポリマー株式会社 Sensor panel for large display and manufacturing method thereof
JP5267379B2 (en) * 2009-08-18 2013-08-21 住友金属鉱山株式会社 Metal-coated polyimide film and method for producing the same
JP5473990B2 (en) * 2011-06-17 2014-04-16 日東電工株式会社 A conductive laminate, a transparent conductive laminate with a patterned wiring, and an optical device.
JP2013069261A (en) 2011-09-08 2013-04-18 Dainippon Printing Co Ltd Electrode substrate for touch panel, touch panel, and image display device
KR20130118082A (en) 2012-04-19 2013-10-29 삼성전기주식회사 Touch panel and method for manufacturing the same
KR20140015870A (en) * 2012-07-26 2014-02-07 도레이첨단소재 주식회사 Process for preparing a flexible metal-clad film by double side sputter metalizing method
JP2014142462A (en) 2013-01-23 2014-08-07 Dainippon Printing Co Ltd Electrode part for touch panel with optical functional layer, electrode part for touch panel with circular polarizing plate, touch panel, and image display device
TWI568865B (en) * 2013-10-23 2017-02-01 Sumitomo Metal Mining Co Layer 2 flexible wiring substrate and manufacturing method thereof, and two-layer flexible wiring board and manufacturing method thereof
CN104166491B (en) * 2014-08-11 2017-06-16 深圳市宇顺电子股份有限公司 The preparation method and touch screen of touch screen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290292A (en) * 1991-03-19 1992-10-14 Nec Corp Manufacture of printed circuit board
JPH05283844A (en) * 1992-04-02 1993-10-29 Matsushita Electric Works Ltd Method for cleaning laminated plate
JP2010053447A (en) * 2008-07-31 2010-03-11 Sumitomo Metal Mining Co Ltd Method and device for forming film
JP2010260328A (en) * 2009-04-10 2010-11-18 Jx Nippon Mining & Metals Corp Method of manufacturing two-layer copper clad laminated sheet, and two-layer copper clad laminated sheet
JP2014053410A (en) * 2012-09-06 2014-03-20 Sumitomo Metal Mining Co Ltd Production method and production apparatus of double side metal laminate film, and manufacturing method of flexible double side printed wiring board
JP2014222689A (en) * 2013-05-13 2014-11-27 住友金属鉱山株式会社 Method and apparatus for manufacturing double-side metal laminated film, and manufacturing method of flexible double-side printed wiring board
JP2015040324A (en) * 2013-08-21 2015-03-02 住友金属鉱山株式会社 Surface treatment method of resin film, and method of manufacturing copper-clad laminate including the surface treatment method
JP2015221938A (en) * 2014-04-30 2015-12-10 日東電工株式会社 Transparent conductive film and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009813A (en) * 2018-07-03 2020-01-16 新光電気工業株式会社 Wiring board, semiconductor package, and manufacturing method of wiring board
JP7261545B2 (en) 2018-07-03 2023-04-20 新光電気工業株式会社 Wiring board, semiconductor package, and method for manufacturing wiring board

Also Published As

Publication number Publication date
CN107130218B (en) 2020-07-10
JP6617607B2 (en) 2019-12-11
CN107130218A (en) 2017-09-05
TW201741481A (en) 2017-12-01
KR20170101796A (en) 2017-09-06
TWI736590B (en) 2021-08-21
KR102481145B1 (en) 2022-12-23

Similar Documents

Publication Publication Date Title
JP6617607B2 (en) Film-forming method and method for manufacturing laminate substrate using the same
TWI665080B (en) Laminated film and electrode substrate film and manufacturing methods thereof
TWI676549B (en) Laminate film and electrode substrate film and manufacturing method thereof
JP6249101B2 (en) LAMINATE FILM, ELECTRODE SUBSTRATE FILM, AND METHOD FOR PRODUCING THE SAME
JP6233618B2 (en) LAMINATE FILM, ELECTRODE SUBSTRATE FILM, AND METHOD FOR PRODUCING THE SAME
JP2016069684A (en) Film deposition device and each manufacturing method of laminate film and electrode substrate film
TWI668506B (en) Electrode substrate film and manufacturing method thereof
JP6330708B2 (en) Method for forming film and method for producing laminate film
JP6613995B2 (en) Laminate film having substrate with cured layer
JP6891418B2 (en) Electrode substrate film and its manufacturing method
JP6330709B2 (en) Deposition method and method for producing laminate film and electrode substrate film
JP2019034253A (en) Printing method on long body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R150 Certificate of patent or registration of utility model

Ref document number: 6617607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150