JP2017119373A - Method for manufacturing composite molding - Google Patents

Method for manufacturing composite molding Download PDF

Info

Publication number
JP2017119373A
JP2017119373A JP2015256180A JP2015256180A JP2017119373A JP 2017119373 A JP2017119373 A JP 2017119373A JP 2015256180 A JP2015256180 A JP 2015256180A JP 2015256180 A JP2015256180 A JP 2015256180A JP 2017119373 A JP2017119373 A JP 2017119373A
Authority
JP
Japan
Prior art keywords
molded product
cavity
thermoplastic resin
resin composition
continuous reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015256180A
Other languages
Japanese (ja)
Other versions
JP6666145B2 (en
Inventor
公彦 服部
Kimihiko Hattori
公彦 服部
政人 菅森
Masato SUGAMORI
政人 菅森
智幸 小野寺
Tomoyuki Onodera
智幸 小野寺
義人 黒田
Yoshito Kuroda
義人 黒田
英夫 松岡
Hideo Matsuoka
英夫 松岡
正三 西田
Shozo Nishida
正三 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Toray Industries Inc
Original Assignee
Japan Steel Works Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Toray Industries Inc filed Critical Japan Steel Works Ltd
Priority to JP2015256180A priority Critical patent/JP6666145B2/en
Publication of JP2017119373A publication Critical patent/JP2017119373A/en
Application granted granted Critical
Publication of JP6666145B2 publication Critical patent/JP6666145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a composite molding which can integrate a continuous reinforcing fiber base material formed from a continuous reinforcing fiber and a thermoplastic resin and an injection resin at a desired position of an injection resin molding in the same mold with a high bond strength and high accuracy, in particular, with a three-dimensional shape.SOLUTION: A method for manufacturing a composite molding includes: a primary molding step of inserting a continuous reinforcing fiber base material formed from a continuous reinforcing fiber and a thermoplastic resin A into a first cavity having a three-dimensional shape, which set in a mold having a slide mechanism, and injection-filling the inside of the first cavity with a molten thermoplastic resin composition B to mold a primary molded product; and a secondary molding step of sliding the first cavity to a second cavity together with the primary molded product, arranging the primary molded product in the second cavity, and injection-filling the inside of the second cavity with a molten thermoplastic resin composition C to integrate the resin composition C with the primary molded product.SELECTED DRAWING: Figure 2

Description

本発明は、複合成形品の製造方法に関し、とくに、連続強化繊維と熱可塑性樹脂からなる連続強化繊維基材と射出樹脂とを、3次元形状にて高接合強度と高精度をもって同一金型内で一体化可能な複合成形品の製造方法に関する。   The present invention relates to a method for producing a composite molded article, and in particular, a continuous reinforcing fiber base material made of continuous reinforcing fibers and a thermoplastic resin and an injection resin in a same mold with high bonding strength and high accuracy in a three-dimensional shape. The present invention relates to a method for manufacturing a composite molded product that can be integrated with a single unit.

繊維強化樹脂基材と他の樹脂成形品、特に他の熱可塑性樹脂成形品とを一体化した複合成形品の製造方法は各種知られている。例えば特許文献1には、炭素繊維強化樹脂(CFRP)シート材状基材を型外で仮賦形し、それを型内にインサートして高速昇降温することで賦形し、賦形体を型内にインサートし、樹脂を射出して複合成形品を得る方法が開示されている。しかしこの方法は、少なくとも仮賦形が成形型外で行われるので、同一型内で複合化できるプロセスではなく、成形プロセスが複雑になっている。   Various methods for producing a composite molded product obtained by integrating a fiber reinforced resin base material and another resin molded product, particularly, another thermoplastic resin molded product are known. For example, in Patent Document 1, a carbon fiber reinforced resin (CFRP) sheet material base material is temporarily shaped outside the mold, and then shaped by inserting it into the mold and rapidly raising and lowering the temperature. A method is disclosed in which a composite molded product is obtained by inserting the resin into the inside and injecting resin. However, in this method, at least provisional shaping is performed outside the mold, so that the molding process is complicated rather than a process that can be combined in the same mold.

また、特許文献2には、CFRP基材を射出成形型内に固定し、樹脂を射出して複合化する方法が開示されているが、単純な層状の複合成形品の記載しかなく、とくに3次元形状のCFRP基材を賦形する方法については触れられていない。   Further, Patent Document 2 discloses a method of fixing a CFRP base material in an injection mold and injecting a resin to form a composite, but there is only a description of a simple layered composite molded product. There is no mention of a method of shaping a CFRP substrate having a dimensional shape.

また、特許文献3には、CFRPを型内でスタンピング成形し、型をバックさせて空間を作り、同一型内に樹脂を射出する複合成形品の製造方法が開示されている。しかし、この方法は、強化繊維がランダムに配されたランダム繊維基材の成形には適しているが、スタンピング成形のための予熱が必要であり、連続繊維基材を成形する場合には、繊維が折れる、配向が乱れるという問題が発生するとともに、基材を複数、あるいは所定の位置に貼りあわようとする場合には、射出時にCFRPが樹脂とともに流れてしまい、CFRPを成形品の望ましい位置に精度よく貼り合わせることが困難であるという問題がある。   Patent Document 3 discloses a method for manufacturing a composite molded product in which CFRP is stamped in a mold, a space is formed by backing the mold, and a resin is injected into the same mold. However, this method is suitable for molding a random fiber base material in which reinforcing fibers are randomly arranged, but preheating for stamping molding is required. When the base material is to be stuck to a plurality of or predetermined positions, CFRP flows with the resin at the time of injection, and the CFRP is placed at a desired position of the molded product. There is a problem that it is difficult to bond together with high accuracy.

さらに、特許文献4には、射出成形品とCFRP基材を成形機内で熱溶着するようにした複合成形品の製造方法が開示されている。しかし、この方法では、射出成形品を作製した後、レーザー溶着、プレス成形等でCFRP基材を貼り合わせることとなるので、とくに射出成形品の3次元形状部分にCFRP基材を貼り合わせることが困難である。   Furthermore, Patent Document 4 discloses a method for manufacturing a composite molded product in which an injection molded product and a CFRP base material are thermally welded in a molding machine. However, in this method, after the injection molded product is manufactured, the CFRP base material is bonded by laser welding, press molding or the like. Therefore, the CFRP base material is particularly bonded to the three-dimensional shape portion of the injection molded product. Have difficulty.

特開2012−153069号公報JP 2012-153069 A 特開2013−252644号公報JP 2013-252644 A 特開平5−185466号公報JP-A-5-185466 特開2011−143559号公報JP 2011-143559 A

そこで本発明の課題は、上記のような従来技術における問題点に着目し、連続強化繊維と熱可塑性樹脂からなる連続強化繊維基材と射出樹脂を、とくに3次元形状にて、射出樹脂成形品の所望位置に高接合強度と高精度をもって同一金型内で一体化可能な複合成形品の製造方法を提供することにある。   Therefore, the object of the present invention is to pay attention to the problems in the prior art as described above, and to form a continuous reinforcing fiber base material and injection resin composed of continuous reinforcing fiber and thermoplastic resin, particularly in a three-dimensional shape, an injection resin molded product. Another object of the present invention is to provide a method for manufacturing a composite molded product that can be integrated in the same mold with high bonding strength and high accuracy at a desired position.

上記課題を解決するために、本発明に係る複合成形品の製造方法は、連続強化繊維と熱可塑性樹脂Aからなる連続強化繊維基材を、スライド機構を備えた金型内に設定された、3次元形状を有する第1のキャビティ内に挿入した後、該第1のキャビティ内に溶融した熱可塑性樹脂組成物Bを射出充填して1次成形品を成形する1次成形工程と、
前記第1のキャビティを1次成形品とともに第2のキャビティにスライドさせ、前記1次成形品を前記第2のキャビティ内に配置し、該第2のキャビティ内に溶融した熱可塑性樹脂組成物Cを射出充填して該溶融熱可塑性樹脂組成物Cと前記1次成形品とを一体化する2次成形工程と、
を有することを特徴とする方法からなる。
In order to solve the above-mentioned problem, a method for producing a composite molded article according to the present invention is a continuous reinforcing fiber base composed of continuous reinforcing fibers and a thermoplastic resin A, set in a mold having a slide mechanism, A primary molding step of molding a primary molded article by injection filling the molten thermoplastic resin composition B into the first cavity after being inserted into the first cavity having a three-dimensional shape;
The first cavity is slid into the second cavity together with the primary molded product, the primary molded product is placed in the second cavity, and the thermoplastic resin composition C melted in the second cavity is obtained. A secondary molding step in which the molten thermoplastic resin composition C and the primary molded product are integrated by injection filling,
It consists of the method characterized by having.

このような本発明に係る複合成形品の製造方法においては、先ず、1次成形工程において、連続強化繊維と熱可塑性樹脂Aからなる連続強化繊維基材が、3次元形状を有する第1のキャビティ内の所定位置に挿入され、連続強化繊維基材が挿入された第1のキャビティ内に溶融した熱可塑性樹脂組成物Bが射出充填されて、射出樹脂圧によって連続繊維基材が3次元形状に賦形されると同時に熱可塑性樹脂組成物Bが溶着し、連続強化繊維基材と熱可塑性樹脂組成物Bが同一金型内で一体化された3次元形状の1次成形品が成形される。そして、2次成形工程において、第1のキャビティが先に成形された1次成形品とともに第2のキャビティに(より具体的には第2のキャビティ形成位置に)スライド機構によりスライドされ、1次成形品が第2のキャビティ内に(つまり、新たに設定された第2のキャビティ内に)配置され、該第2のキャビティ内に溶融した熱可塑性樹脂組成物Cが射出充填されて、該溶融熱可塑性樹脂組成物Cと1次成形品とが一体化され、目標とする複合成形品が成形される。このように、先に3次元形状を有する第1のキャビティを用いて3次元形状の1次成形品が成形されるので、連続繊維基材と1次成形品の双方は2次成形の前に精度よく目標とする3次元形状に成形される。先に高精度に成形された1次成形品は、第2のキャビティ内にて射出充填された熱可塑性樹脂組成物Cと溶着一体化されるが、第1のキャビティが先に成形された1次成形品とともに第2のキャビティに(より具体的には第2のキャビティ形成位置に)スライド機構によりスライドされることで、1次成形品を第2のキャビティの所定の位置に精度良く設置することができ、かつ1次成形品は既に所望の3次元形状に成形済みのものであるから、溶融熱可塑性樹脂組成物Cが射出充填される際にも形状が崩れたり、流出したりすることはなく、射出充填された溶融熱可塑性樹脂組成物Cにより成形されようとする成形部分に対し、所定の位置に高精度で位置決めされた状態にて高い接合強度をもって一体化される。したがって、最終的に成形される複合成形品においては、2次成形工程で溶融した熱可塑性樹脂組成物Cによって成形された成形部分に対し、目標とする3次元形状を有する1次成形品、とくに該1次成形品を構成する連続強化繊維基材が、目標とする所定の位置に高精度で高い接合強度をもって一体化された形態の複合成形品が実現されることになる。また、3次元形状の1次成形品が成形される1次成形工程と、最終的な複合成形品が成形される2次成形工程とは、スライド機構を備えた同一の金型内で実行できるので、成形工程全体の簡素化が可能になり、自動化も可能になる。   In such a method of manufacturing a composite molded article according to the present invention, first, in the primary molding step, the continuous reinforcing fiber base material composed of the continuous reinforcing fiber and the thermoplastic resin A has a first cavity having a three-dimensional shape. The melted thermoplastic resin composition B is injected and filled into the first cavity where the continuous reinforcing fiber base is inserted, and the continuous fiber base is made into a three-dimensional shape by the injection resin pressure. At the same time as shaping, the thermoplastic resin composition B is welded to form a three-dimensional primary molded product in which the continuous reinforcing fiber base material and the thermoplastic resin composition B are integrated in the same mold. . Then, in the secondary molding step, the first cavity is slid into the second cavity (more specifically, at the second cavity forming position) together with the previously molded primary molded product by the slide mechanism. The molded article is placed in the second cavity (that is, in the newly set second cavity), and the molten thermoplastic resin composition C is injected and filled in the second cavity, and the melt The thermoplastic resin composition C and the primary molded product are integrated to form a target composite molded product. As described above, since the primary molded product having the three-dimensional shape is formed using the first cavity having the three-dimensional shape in advance, both the continuous fiber base material and the primary molded product are subjected to the secondary molding. It is accurately formed into a target three-dimensional shape. The primary molded product previously molded with high accuracy is welded and integrated with the thermoplastic resin composition C injected and filled in the second cavity, but the first cavity has been molded first. The primary molded product is accurately placed at a predetermined position of the second cavity by being slid by the slide mechanism (more specifically, at the second cavity forming position) together with the next molded product. Since the primary molded product is already molded into a desired three-dimensional shape, the shape may collapse or flow out when the molten thermoplastic resin composition C is injected and filled. Rather, it is integrated with a high bonding strength in a state of being accurately positioned at a predetermined position with respect to a molded part to be molded by the injection-filled molten thermoplastic resin composition C. Therefore, in the composite molded product finally molded, the primary molded product having a target three-dimensional shape with respect to the molded part molded by the thermoplastic resin composition C melted in the secondary molding process, particularly A composite molded article in which the continuous reinforcing fiber base constituting the primary molded article is integrated with high accuracy and high bonding strength at a predetermined target position is realized. Moreover, the primary molding process in which the three-dimensional primary molded product is molded and the secondary molding process in which the final composite molded product is molded can be executed in the same mold having a slide mechanism. As a result, the entire molding process can be simplified and automated.

上記本発明に係る複合成形品の製造方法において、好ましい形態として、上記連続強化繊維基材が、連続強化繊維を一方向に配列させた一方向基材からなる形態を挙げることができる。このような一方向基材は、連続強化繊維が配列された特定の方向に対して特に高い機械特性を発現できるので、複合成形体に用いるのに最も適している。その一方で、3次元形状への賦形性に劣る課題があったが、本発明の製造方法を用いることにより、3次元形状への賦形性が大幅に向上するとともに、連続強化繊維基材が目標とする所定の位置にて高精度で貼り合わせ一体化されることで、複合成形品全体として所望の特定の方向に対して効率よく高い機械特性を発現できるようになる。この一方向基材としては、布帛状の広く面方向に広がる基材とすることも可能であるが、一方向基材がテープ状基材からなる場合、最終的に成形される複合成形品に対し、補強が要求される部位に的を絞って効率良く所定の補強を行うことが可能になる。   In the method for producing a composite molded article according to the present invention, as a preferred embodiment, the continuous reinforcing fiber substrate may be a unidirectional substrate in which continuous reinforcing fibers are arranged in one direction. Such a unidirectional substrate is most suitable for use in a composite molded article because it can exhibit particularly high mechanical properties in a specific direction in which continuous reinforcing fibers are arranged. On the other hand, there was a problem inferior in formability to a three-dimensional shape, but by using the manufacturing method of the present invention, the shapeability into a three-dimensional shape was greatly improved, and a continuous reinforcing fiber base material Is bonded and integrated with high precision at a predetermined target position, so that the entire composite molded product can efficiently exhibit high mechanical properties in a desired specific direction. As this unidirectional base material, it is possible to use a fabric-like base material that spreads widely in the surface direction, but when the unidirectional base material is a tape-like base material, On the other hand, it is possible to efficiently perform a predetermined reinforcement by focusing on a portion where reinforcement is required.

また、本発明に係る複合成形品の製造方法においては、上記熱可塑性樹脂組成物Bとしては、樹脂単独であってもよく、必要に応じて機械強度その他の特性を付与するために、さらに充填材を配合することが可能である。充填材は特に限定されるものでないが、繊維状、非繊維状(板状、鱗片状、粒状、不定形状、破砕品など)などのいずれの充填剤も使用することができる。   In the method for producing a composite molded article according to the present invention, the thermoplastic resin composition B may be a resin alone, and further filled to give mechanical strength and other characteristics as necessary. It is possible to mix materials. Although a filler is not specifically limited, Any fillers, such as fibrous form and non-fibrous form (a plate shape, scale shape, a granular form, an indefinite shape, a crushed product, etc.), can be used.

本発明に係る複合成形品の製造方法においては、上記熱可塑性樹脂組成物Bに用いる熱可塑性樹脂としては、特に制限はないが、機械特性に優れることから、ポリアミド系樹脂、ポリアリーレンサルファイド系樹脂、ポリオレフィン系樹脂から選ばれる少なくとも1種の樹脂であることが好ましい。また、上記熱可塑性樹脂組成物Cに用いる熱可塑性樹脂としては、上記熱可塑性樹脂組成物Bと同様のものを用いることができる。   In the method for producing a composite molded article according to the present invention, the thermoplastic resin used in the thermoplastic resin composition B is not particularly limited, but is excellent in mechanical properties, so that a polyamide-based resin and a polyarylene sulfide-based resin are used. It is preferably at least one resin selected from polyolefin resins. Moreover, as a thermoplastic resin used for the said thermoplastic resin composition C, the thing similar to the said thermoplastic resin composition B can be used.

また、本発明に係る複合成形品の製造方法において、上記熱可塑性樹脂Aとしては、連続強化繊維基材を構成できるものであれば特に限定されないが、機械特性、軽量性に優れることから、ポリアミド系樹脂、ポリアリーレンサルファイド系樹脂、ポリオレフィン系樹脂から選ばれる少なくとも1種の樹脂であることが好ましい。ポリアミド系樹脂としては、例えば、ポリカプロアミド(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリウンデカミド(ナイロン11)、ポリカプロアミド/ポリウンデカミドコポリマー(ナイロン6/11)、ポリドデカミド(ナイロン12)、ポリカプロアミド/ポリドデカミドコポリマー(ナイロン6/12)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカメチレンアジパミド(ナイロン116)およびこれらの混合物ないし共重合体等が挙げることができる。中でもナイロン6が特に好ましい。ポリアリーレンサルファイド系樹脂の代表例としては、ポリフェニレンサルファイド(以下、PPSと略す場合もある)、ポリフェニレンサルファイドスルホン、ポリフェニレンサルファイドケトン、これらのランダム共重合体、ブロック共重合体およびそれらの混合物などが挙げられ、中でもポリフェニレンサルファイドが特に好ましく使用される。また、ポリオレフィン系樹脂の代表例としては、ポリプロピレン系樹脂が挙げられ、ポリプロピレン系樹脂としては、プロピレン単独重合体、またはプロピレンとエチレンもしくは炭素数が4〜20のα−オレフィンとの共重合体である。また、ポリオレフィン系樹脂として、炭素数が4〜20のα−オレフィン系樹脂が挙げられ、炭素数が4〜20のα−オレフィンとしては、1 −ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどが挙げられる。これらの中ではエチレンまたは炭素数が4〜10のα−オレフィンが好ましい。これらのα−オレフィンは、プロピレンとランダム共重合体を形成してもよく、またブロック共重合体を形成してもよい。   Further, in the method for producing a composite molded article according to the present invention, the thermoplastic resin A is not particularly limited as long as it can constitute a continuous reinforcing fiber base material. Preferably, the resin is at least one resin selected from a resin based on polysulfene, a polyarylene sulfide based resin, and a polyolefin based resin. Examples of polyamide resins include polycaproamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polycaproamide / polyhexamethylene adipamide copolymer ( Nylon 6/66), polyundecamide (nylon 11), polycaproamide / polyundecamide copolymer (nylon 6/11), polydodecamide (nylon 12), polycaproamide / polydodecamide copolymer (nylon 6/12), poly Examples thereof include hexamethylene sebamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyundecamethylene adipamide (nylon 116), and mixtures or copolymers thereof. Of these, nylon 6 is particularly preferable. Typical examples of polyarylene sulfide resins include polyphenylene sulfide (hereinafter sometimes abbreviated as PPS), polyphenylene sulfide sulfone, polyphenylene sulfide ketone, random copolymers thereof, block copolymers, and mixtures thereof. Among them, polyphenylene sulfide is particularly preferably used. A typical example of a polyolefin resin is a polypropylene resin, and the polypropylene resin is a propylene homopolymer or a copolymer of propylene and ethylene or an α-olefin having 4 to 20 carbon atoms. is there. Further, examples of the polyolefin resin include α-olefin resins having 4 to 20 carbon atoms. Examples of the α-olefin having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 4- Examples thereof include methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene and the like. Among these, ethylene or an α-olefin having 4 to 10 carbon atoms is preferable. These α-olefins may form a random copolymer with propylene, or may form a block copolymer.

また、本発明に係る複合成形品の製造方法において、連続強化繊維基材に用いられる強化繊維の種類としては、炭素繊維やガラス繊維、アラミド繊維、あるいは他の強化繊維、さらにはこれら強化繊維の組み合わせのいずれも採用可能であるが、最終的に成形される複合成形品の特定の部位の機械特性を連続強化繊維基材によって効率よく向上させるためには、連続強化繊維として炭素繊維を含むことが好ましい。   In the method for producing a composite molded article according to the present invention, the types of reinforcing fibers used for the continuous reinforcing fiber substrate include carbon fibers, glass fibers, aramid fibers, or other reinforcing fibers, and further these reinforcing fibers. Any combination can be adopted, but in order to efficiently improve the mechanical properties of a specific part of the composite molded article to be finally formed by the continuous reinforcing fiber base material, carbon fibers should be included as continuous reinforcing fibers. Is preferred.

さらに、本発明に係る複合成形品の製造方法においては、上記1次成形工程において、第1のキャビティ内に挿入した連続強化繊維基材を、必要に応じて、該第1のキャビティ内でピン等の固定具により固定することが好ましい。1次成形品を高精度で効率よく所望の3次元形状に成形するためには、連続強化繊維基材が第1のキャビティ内で第1のキャビティの内面に沿って所定の3次元形状に保たれていることが好ましいので、連続強化繊維基材を第1のキャビティ内に挿入した後、その位置や姿勢をピン等の固定具により固定しておくのである。このように固定しておくと、溶融熱可塑性樹脂Bの射出充填の際にも、連続強化繊維基材の第1のキャビティ内での位置ずれを防ぐことができる。   Furthermore, in the method for producing a composite molded article according to the present invention, the continuous reinforcing fiber base material inserted into the first cavity in the primary molding step is inserted into the first cavity as necessary. It is preferable to fix with fixing tools, such as. In order to form the primary molded product into a desired three-dimensional shape with high accuracy and efficiency, the continuous reinforcing fiber substrate is maintained in a predetermined three-dimensional shape along the inner surface of the first cavity in the first cavity. Since it is preferable, after inserting a continuous reinforcement fiber base material in a 1st cavity, the position and attitude | position are fixed with fixing tools, such as a pin. When fixed in this manner, it is possible to prevent the positional displacement of the continuous reinforcing fiber base material in the first cavity even during the injection filling of the molten thermoplastic resin B.

このように、本発明に係る複合成形品の製造方法によれば、連続繊維基材を3次元形状に賦形すると同時に熱可塑性樹脂組成物Bと高い接合強度をもって一体化することができるとともに、1次成形品の形状精度を高めることができる。さらに、高精度で目標とする3次元形状に賦形される1次成形品を成形する1次成形工程と、射出成形を伴う2次成形工程とを同一型内で行うことができるので、最終的に成形される複合成形品においては、3次元形状の連続強化繊維基材を目標とする特定の部位に高精度をもって一体化することができる。連続強化繊維基材の高精度配置により、複合成形品の機械特性を効率よく向上させることが可能になる。また、連続強化繊維基材が3次元形状を有する場合にあっても、複合成形品における連続強化繊維基材位置の設計自由度も高い。なお、射出成形品を一旦作製した後、レーザー溶着、プレス成形等で強化繊維基材を溶着する場合、3次元形状部分に強化繊維基材を溶着することは困難である。   Thus, according to the method for producing a composite molded article according to the present invention, the continuous fiber substrate can be shaped into a three-dimensional shape and simultaneously integrated with the thermoplastic resin composition B with high bonding strength, The shape accuracy of the primary molded product can be increased. Furthermore, since the primary molding process for molding the primary molded product shaped into the target three-dimensional shape with high accuracy and the secondary molding process with injection molding can be performed in the same mold, the final In a composite molded product that is molded in an automated manner, a three-dimensional continuous reinforcing fiber substrate can be integrated with high accuracy into a specific portion targeted. The high-precision arrangement of the continuous reinforcing fiber base makes it possible to efficiently improve the mechanical properties of the composite molded product. Further, even when the continuous reinforcing fiber base has a three-dimensional shape, the degree of freedom in designing the position of the continuous reinforcing fiber base in the composite molded product is high. In addition, when a reinforcing fiber base material is welded by laser welding, press molding or the like after once producing an injection molded product, it is difficult to weld the reinforcing fiber base material to a three-dimensional shape portion.

また、本発明に係る複合成形品の製造方法では、2次成形工程の前に行われる1次成形工程において、溶融した熱可塑性樹脂組成物Bの射出により、予め高精度の3次元形状を有する1次成形品が成形されるので、予めプリフォームした強化繊維基材を金型内にインサートして射出成形する場合と比べて、プリフォームのための専用設備を用いる必要がなくなるだけでなく、1次成形品と2次成形工程における射出樹脂、ひいては、連続強化繊維基材と溶融熱可塑性樹脂組成物B、さらには溶融熱可塑性樹脂組成物Cで形成される樹脂部とが良好に溶着できるようになり、高い溶着強度を達成できることもできる。   Moreover, in the manufacturing method of the composite molded product which concerns on this invention, it has a highly accurate three-dimensional shape beforehand by injection | pouring of the molten thermoplastic resin composition B in the primary molding process performed before a secondary molding process. Since the primary molded product is molded, it is not only necessary to use a dedicated equipment for preforming, as compared with the case where a preformed reinforcing fiber base is inserted into a mold and injection molded, The primary molded product and the injection resin in the secondary molding process, and hence the continuous reinforcing fiber base, the molten thermoplastic resin composition B, and the resin portion formed of the molten thermoplastic resin composition C can be welded well. As a result, high welding strength can be achieved.

本発明の一実施態様に係る複合成形品の製造方法における1次成形工程を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the primary shaping | molding process in the manufacturing method of the composite molded product which concerns on one embodiment of this invention. 図1に示した1次成形工程に続いて行われる2次成形工程を示す概略縦断面図(図2(A))および縦断面図とは直角方向の概略横断面図(図2(B)〜(D))である。FIG. 2 is a schematic longitudinal sectional view (FIG. 2A) showing a secondary molding process performed subsequent to the primary molding process shown in FIG. 1 and a schematic transverse sectional view perpendicular to the longitudinal sectional view (FIG. 2B). To (D)). 1次成形品の一例を示す斜視図である。It is a perspective view which shows an example of a primary molded product. 2次成形品としての複合成形品の一例を示す斜視図である。It is a perspective view which shows an example of the composite molded product as a secondary molded product.

以下に、本発明の実施の形態について、図面を参照しながら説明する。
本発明に係る複合成形品の製造方法は、1次成形工程と2次成形工程を有する。1次成形工程では、連続強化繊維と熱可塑性樹脂Aからなる連続強化繊維基材が、スライド機構を備えた金型内に設定された、3次元形状を有する第1のキャビティ内に挿入された後、該第1のキャビティ内に溶融熱可塑性樹脂組成物Bが射出充填されて1次成形品が成形され、2次成形工程では、第1のキャビティが1次成形品とともに第2のキャビティにスライドされ、1次成形品が第2のキャビティ内に配置され、該第2のキャビティ内に溶融熱可塑性樹脂組成物Cが射出充填されて該溶融熱可塑性樹脂組成物Cと1次成形品とが一体化される。
Embodiments of the present invention will be described below with reference to the drawings.
The method for producing a composite molded product according to the present invention includes a primary molding step and a secondary molding step. In the primary molding step, a continuous reinforcing fiber base material composed of continuous reinforcing fibers and thermoplastic resin A was inserted into a first cavity having a three-dimensional shape set in a mold provided with a slide mechanism. Thereafter, the molten thermoplastic resin composition B is injected and filled into the first cavity to form a primary molded product, and in the secondary molding process, the first cavity and the primary molded product become the second cavity. Slided, the primary molded product is placed in the second cavity, and the molten thermoplastic resin composition C is injected and filled in the second cavity, so that the molten thermoplastic resin composition C, the primary molded product, Are integrated.

(1)1次成形工程(1次成形品の成形)
本発明に係る複合成形品の製造方法に用いられる金型は、例えば図1(A)に示すように構成されている。図1(A)に型開きされた状態の金型1を示すように、金型1は、複数の構成部材で構成されているが、これら構成部材を大きく分けて、金型1は上型2と下型3から構成されている。また、金型1は、後述するようなスライド機構を備えている。本実施態様では、上型2内に、3次元形状を有する第1のキャビティ4を形成する空間を有しており、下型3内には、溶融熱可塑性樹脂組成物Bの射出用樹脂注入路5を有している。第1のキャビティ4は、本実施態様では、横断面が狭幅板状の空間で、それが環状に、あるいは環状形状の一部分として延び、該延設部位の一部において図に示す縦断面における姿勢、とくに傾きが変わるように形成されている。
(1) Primary molding process (molding of primary molded products)
The metal mold | die used for the manufacturing method of the composite molded product which concerns on this invention is comprised as shown, for example to FIG. 1 (A). As shown in FIG. 1A, the mold 1 is in a state where the mold is opened. The mold 1 is composed of a plurality of constituent members. 2 and lower mold 3. Further, the mold 1 is provided with a slide mechanism as will be described later. In this embodiment, the upper mold 2 has a space for forming the first cavity 4 having a three-dimensional shape, and the lower mold 3 is injected with an injection resin for injecting the molten thermoplastic resin composition B. It has a path 5. In the present embodiment, the first cavity 4 is a space having a narrow plate-like cross section, which extends in a ring shape or as a part of the ring shape, and in a vertical cross section shown in the drawing at a part of the extended portion. The posture, especially the tilt, is changed.

上記金型1が開かれた状態にて、図1(B)に示すように、金型1内に設定された第1のキャビティ4内に、連続強化繊維と熱可塑性樹脂Aからなる連続強化繊維基材6が挿入される。このとき、第1のキャビティ4内に挿入された連続強化繊維基材6を、例えば次の型閉じまで、第1のキャビティ4内でピン等の固定具(図示略)により固定しておくこともできる。連続強化繊維基材6は、本実施態様では、テープ状に延び、そのテープ状長手方向に連続強化繊維(例えば、連続炭素繊維)が一方向に配列された一方向基材に構成されている。   In the state where the mold 1 is opened, as shown in FIG. 1 (B), the continuous reinforced fiber and the thermoplastic resin A are continuously strengthened in the first cavity 4 set in the mold 1. A fiber substrate 6 is inserted. At this time, the continuous reinforcing fiber base 6 inserted into the first cavity 4 is fixed by a fixing tool (not shown) such as a pin in the first cavity 4 until the next mold closing, for example. You can also. In the present embodiment, the continuous reinforcing fiber base 6 is configured as a unidirectional base material extending in a tape shape and having continuous reinforcing fibers (for example, continuous carbon fibers) arranged in one direction in the longitudinal direction of the tape. .

連続強化繊維基材6が第1のキャビティ4内に挿入された後、図1(C)に示すように、金型1が閉じられ、連続強化繊維基材6は第1のキャビティ4内に保持される。金型1が所定温度に加熱されるとともに、閉じられた金型1の第1のキャビティ4内に、図1(D)に示すように、下型3に設けられた射出用樹脂注入路5を通して溶融熱可塑性樹脂組成物B(7)が射出されて充填され、1次成形品8が成形される。   After the continuous reinforcing fiber base 6 is inserted into the first cavity 4, as shown in FIG. 1C, the mold 1 is closed, and the continuous reinforcing fiber base 6 is placed in the first cavity 4. Retained. While the mold 1 is heated to a predetermined temperature, an injection resin injection path 5 provided in the lower mold 3 is provided in the first cavity 4 of the closed mold 1 as shown in FIG. The molten thermoplastic resin composition B (7) is injected and filled through, and the primary molded product 8 is molded.

例えば、連続強化繊維基材6の熱可塑性樹脂A(マトリクス樹脂)がポリアミド6からなり、熱可塑性樹脂組成物B(7)がガラス繊維40%強化ポリアミド6からなる場合、射出成形機のシリンダー温度は270℃、金型1の温度は150℃程度に設定され、充填された溶融熱可塑性樹脂B(7)の熱と樹脂圧および金型1の熱により、1次成形品8が賦形されて成形される。   For example, when the thermoplastic resin A (matrix resin) of the continuous reinforcing fiber base 6 is made of polyamide 6 and the thermoplastic resin composition B (7) is made of glass fiber 40% reinforced polyamide 6, the cylinder temperature of the injection molding machine Is set to about 270 ° C. and the temperature of the mold 1 is set to about 150 ° C., and the primary molded product 8 is shaped by the heat and pressure of the molten thermoplastic resin B (7) and the heat of the mold 1. To be molded.

この1次成形工程においては、3次元形状を有する第1のキャビティ4内の所定位置に挿入された連続強化繊維基材6が、第1のキャビティ4内に射出充填される溶融熱可塑性樹脂組成物B(7)の射出樹脂圧によって第1のキャビティ4内面に押し付けられて所定の3次元形状に精度よく賦形される同時に熱可塑性樹脂組成物Bが溶着され、連続強化繊維基材6と熱可塑性樹脂組成物Bが一体化された3次元形状の1次成形品8が高精度で成形される。   In this primary molding step, a molten thermoplastic resin composition in which a continuous reinforcing fiber base material 6 inserted into a predetermined position in the first cavity 4 having a three-dimensional shape is injected and filled into the first cavity 4. The thermoplastic resin composition B is pressed to the inner surface of the first cavity 4 by the injection resin pressure of the object B (7) and accurately shaped into a predetermined three-dimensional shape. At the same time, the continuous reinforcing fiber base 6 and A three-dimensional primary molded product 8 in which the thermoplastic resin composition B is integrated is molded with high accuracy.

(2)2次成形工程(2次成形品としての複合成形品の成形)
上記のような1次成形工程に続き、同一の金型1を使用して、例えば図2に示すように2次成形工程が実施される。図2(A)に示すように、1次成形後に金型1が開かれ、図2(B)(図2(A)に対し直角方向(90度異なる方向)からみた横断面図)に示すように、金型1のスライド機構(あるいはスライド兼回動機構)により、金型部位11が金型部位12に対し矢印のように回動されるとともに紙面における手前側にスライド移動され、これら金型部位11、12に対し金型部位13が開かれる。
(2) Secondary molding process (molding of composite molded products as secondary molded products)
Subsequent to the primary molding step as described above, using the same mold 1, for example, a secondary molding step is performed as shown in FIG. 2. As shown in FIG. 2 (A), the mold 1 is opened after the primary molding, and shown in FIG. 2 (B) (a cross-sectional view seen from a direction perpendicular to the direction (90 degrees different from FIG. 2A)). In this way, the mold part 11 is rotated as indicated by an arrow with respect to the mold part 12 by the slide mechanism (or slide / rotation mechanism) of the mold 1 and is slid to the front side in the drawing. The mold part 13 is opened with respect to the mold parts 11 and 12.

次いで、図2(C)に示すように、金型1が閉じられて、該金型1内に上記1次成形品8とともに第1のキャビティ4がスライドされて形成される2次成形用の第2のキャビティ14が設定され、該第2のキャビティ14内の所定位置に、1次成形品8が配置され、第2のキャビティ14内に射出用樹脂注入路15を介して溶融熱可塑性樹脂組成物C(16)が射出されて充填され、該溶融熱可塑性樹脂組成物C(16)と1次成形品8が一体化され、2次成形品としての複合成形品17が成形される。   Next, as shown in FIG. 2 (C), the mold 1 is closed, and the first cavity 4 is formed in the mold 1 by sliding the first cavity 4 together with the primary molded product 8. The second cavity 14 is set, the primary molded product 8 is disposed at a predetermined position in the second cavity 14, and the molten thermoplastic resin is injected into the second cavity 14 via the injection resin injection path 15. The composition C (16) is injected and filled, and the molten thermoplastic resin composition C (16) and the primary molded product 8 are integrated to form a composite molded product 17 as a secondary molded product.

成形された複合成形品17は、図2(D)に示すように、金型1が開かれて、外部に取り出される。このとき、より容易に取り出すことができるように、金型1に取り出し用の押し出しピン18等を設けておいてもよい。なお、図2(D)における取り出された複合成形品17に一点鎖線を付してあるのは、この一点鎖線に対し反対側にも対称に複合成形品17の部位が存在していることを示しており、複合成形品17の一形状例を示すためである。   As shown in FIG. 2D, the molded composite article 17 is taken out by opening the mold 1. At this time, an extrusion push pin 18 or the like may be provided in the mold 1 so that the die 1 can be taken out more easily. In addition, what is attached | subjected with the dashed-dotted line to the taken out composite molded product 17 in FIG.2 (D) is that the site | part of the composite molded product 17 exists symmetrically also on the opposite side with respect to this dashed-dotted line. It is for showing a shape example of the composite molded product 17.

このような2次成形工程においては、先に1次成形工程で高精度に3次元形状を有する1次成形品8が成形されており、先に高精度に成形された1次成形品8は、第2のキャビティ14内にて射出充填された溶融熱可塑性樹脂組成物C(16)と一体化される際に、形状が崩れたり、流出したりすることはなく、射出充填された溶融熱可塑性樹脂組成物C(16)と所定の位置にて、つまり、高精度で位置決めされた状態にて、高い接合強度をもって一体化される。したがって、最終的に成形される2次成形品としての複合成形品17においては、3次元形状を有する1次成形品8、とくに該1次成形品8を構成する連続強化繊維基材6が、目標とする所定の位置に高精度で高い接合強度をもって一体化された形態の複合成形品17が実現される。   In such a secondary molding step, the primary molded product 8 having a three-dimensional shape with high accuracy is formed in the primary molding step first, and the primary molded product 8 molded with high accuracy first is When the molten thermoplastic resin composition C (16) injected and filled in the second cavity 14 is integrated with the molten thermoplastic resin composition C (16), the shape does not collapse or flow out. It is integrated with the plastic resin composition C (16) with a high bonding strength at a predetermined position, that is, in a state of being positioned with high accuracy. Therefore, in the composite molded product 17 as the secondary molded product finally molded, the primary molded product 8 having a three-dimensional shape, in particular, the continuous reinforcing fiber base 6 constituting the primary molded product 8 is A composite molded product 17 is realized that is integrated at a predetermined target position with high accuracy and high bonding strength.

上記のような成形工程により成形される成形品の例を図3、図4に示す。図3は、1次成形工程により成形された1次成形品21の一例を示しており、図4は、2次成形工程により成形された最終的な複合成形品22の一例を示している。図3、図4に例示されるように、本発明では複雑な3次元形状を有し、その3次元形状の所望の部位、とくに3次元形状を有する所望の部位に高精度で高い接合強度をもって連続強化繊維基材を一体化した複合成形品を得ることができる。   Examples of molded products molded by the molding process as described above are shown in FIGS. FIG. 3 shows an example of the primary molded product 21 molded by the primary molding process, and FIG. 4 shows an example of the final composite molded product 22 molded by the secondary molding process. As illustrated in FIGS. 3 and 4, the present invention has a complicated three-dimensional shape, and has a high accuracy and high bonding strength to a desired portion of the three-dimensional shape, particularly a desired portion having a three-dimensional shape. A composite molded product in which the continuous reinforcing fiber base is integrated can be obtained.

本発明に係る複合成形品の製造方法は、連続強化繊維基材を3次元形状にて高接合強度と高精度をもって射出樹脂成形品と一体化することが望まれるあらゆる複合成形品の製造に適用可能である。   The method for producing a composite molded product according to the present invention is applied to the production of any composite molded product in which a continuous reinforcing fiber base material is desired to be integrated with an injection resin molded product in a three-dimensional shape with high bonding strength and high accuracy. Is possible.

1 金型
2 上型
3 下型
4 第1のキャビティ
5 射出用樹脂注入路
6 連続強化繊維基材
7 溶融熱可塑性樹脂組成物B
8 1次成形品
11、12、13 金型部位
14 第2のキャビティ
15 射出用樹脂注入路
16 溶融熱可塑性樹脂組成物C
17 複合成形品
18 押し出しピン
21 1次成形品
22 複合成形品
DESCRIPTION OF SYMBOLS 1 Mold 2 Upper mold | type 3 Lower mold | type 4 1st cavity 5 Injection resin injection path 6 Continuous reinforcement fiber base material 7 Melt thermoplastic resin composition B
8 Primary molded article 11, 12, 13 Mold part 14 Second cavity 15 Injection resin injection path 16 Molten thermoplastic resin composition C
17 Composite molded product 18 Extruded pin 21 Primary molded product 22 Composite molded product

Claims (9)

連続強化繊維と熱可塑性樹脂Aからなる連続強化繊維基材を、スライド機構を備えた金型内に設定された、3次元形状を有する第1のキャビティ内に挿入した後、該第1のキャビティ内に溶融した熱可塑性樹脂組成物Bを射出充填して1次成形品を成形する1次成形工程と、
前記第1のキャビティを1次成形品とともに第2のキャビティにスライドさせ、前記1次成形品を前記第2のキャビティ内に配置し、該第2のキャビティ内に溶融した熱可塑性樹脂組成物Cを射出充填して該溶融熱可塑性樹脂組成物Cと前記1次成形品とを一体化する2次成形工程と、
を有することを特徴とする複合成形品の製造方法。
After inserting a continuous reinforcing fiber base composed of continuous reinforcing fiber and thermoplastic resin A into a first cavity having a three-dimensional shape set in a mold having a slide mechanism, the first cavity A primary molding step of injecting and filling the molten thermoplastic resin composition B into a primary molded product;
The first cavity is slid into the second cavity together with the primary molded product, the primary molded product is placed in the second cavity, and the thermoplastic resin composition C melted in the second cavity is obtained. A secondary molding step in which the molten thermoplastic resin composition C and the primary molded product are integrated by injection filling,
A method for producing a composite molded product comprising:
前記連続強化繊維基材が、連続強化繊維を一方向に配列させた一方向基材からなる、請求項1に記載の複合成形品の製造方法。   The method for producing a composite molded article according to claim 1, wherein the continuous reinforcing fiber base is a unidirectional base material in which continuous reinforcing fibers are arranged in one direction. 前記一方向基材が、テープ状基材からなる、請求項2に記載の複合成形品の製造方法。   The method for producing a composite molded article according to claim 2, wherein the unidirectional base material comprises a tape-shaped base material. 前記熱可塑性樹脂組成物Bが、不連続強化繊維を含んでいる、請求項1〜3のいずれかに記載の複合成形品の製造方法。   The manufacturing method of the composite molded product in any one of Claims 1-3 in which the said thermoplastic resin composition B contains the discontinuous reinforcement fiber. 前記熱可塑性樹脂Aが、ポリアミド系樹脂、ポリアリーレンサルファイド系樹脂、ポリオレフィン系樹脂から選ばれる少なくとも1種の樹脂からなる、請求項1〜4のいずれかに記載の複合成形品の製造方法。   The manufacturing method of the composite molded product in any one of Claims 1-4 in which the said thermoplastic resin A consists of at least 1 sort (s) of resin chosen from polyamide-type resin, polyarylene sulfide-type resin, and polyolefin-type resin. 前記熱可塑性樹脂組成物Bに用いる熱可塑性樹脂が、ポリアミド系樹脂、ポリアリーレンサルファイド系樹脂、ポリオレフィン系樹脂から選ばれる少なくとも1種の樹脂からなる、請求項1〜5のいずれかに記載の複合成形品の製造方法。   The composite according to any one of claims 1 to 5, wherein the thermoplastic resin used in the thermoplastic resin composition B is composed of at least one resin selected from polyamide resins, polyarylene sulfide resins, and polyolefin resins. Manufacturing method of molded products. 前記熱可塑性樹脂組成物Cに用いる熱可塑性樹脂が、ポリアミド系樹脂、ポリアリーレンサルファイド系樹脂、ポリオレフィン系樹脂から選ばれる少なくとも1種の樹脂からなる、請求項1〜6のいずれかに記載の複合成形品の製造方法。   The composite according to any one of claims 1 to 6, wherein the thermoplastic resin used in the thermoplastic resin composition C is composed of at least one resin selected from a polyamide-based resin, a polyarylene sulfide-based resin, and a polyolefin-based resin. Manufacturing method of molded products. 前記連続強化繊維が炭素繊維を含む、請求項1〜7のいずれかに記載の複合成形品の製造方法。   The manufacturing method of the composite molded product in any one of Claims 1-7 in which the said continuous reinforcement fiber contains carbon fiber. 前記1次成形工程において、前記第1のキャビティ内に挿入した連続強化繊維基材を該第1のキャビティ内でピン等の固定具により固定する、請求項1〜8のいずれかに記載の複合成形品の製造方法。   The composite according to any one of claims 1 to 8, wherein, in the primary molding step, the continuous reinforcing fiber base inserted into the first cavity is fixed by a fixing tool such as a pin in the first cavity. Manufacturing method of molded products.
JP2015256180A 2015-12-28 2015-12-28 Manufacturing method of composite molded products Active JP6666145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015256180A JP6666145B2 (en) 2015-12-28 2015-12-28 Manufacturing method of composite molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256180A JP6666145B2 (en) 2015-12-28 2015-12-28 Manufacturing method of composite molded products

Publications (2)

Publication Number Publication Date
JP2017119373A true JP2017119373A (en) 2017-07-06
JP6666145B2 JP6666145B2 (en) 2020-03-13

Family

ID=59271472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256180A Active JP6666145B2 (en) 2015-12-28 2015-12-28 Manufacturing method of composite molded products

Country Status (1)

Country Link
JP (1) JP6666145B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171739A (en) * 2018-03-29 2019-10-10 東レ株式会社 Manufacturing method of composite molded product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134105A (en) * 1997-07-24 1999-02-09 Mitsubishi Rayon Co Ltd Fiber reinforced hollow molded article and manufacture thereof
JP2001293745A (en) * 2000-04-14 2001-10-23 Denso Corp Resin molded article
JP2011218757A (en) * 2010-04-14 2011-11-04 Cap Co Ltd Fiber reinforced resin structure member, and method for manufacturing the same
JP2014000885A (en) * 2012-06-19 2014-01-09 Toray Ind Inc Vehicle seat back frame
JP2014240185A (en) * 2013-05-15 2014-12-25 東芝機械株式会社 Molding production device, method for producing molding, and molding
WO2015046290A1 (en) * 2013-09-26 2015-04-02 東レ株式会社 Unidirectional fiber-reinforced tape and method for manufacturing same, molded article using same, and method for manufacturing molded article
JP2015093425A (en) * 2013-11-12 2015-05-18 日立化成株式会社 Method for manufacturing molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134105A (en) * 1997-07-24 1999-02-09 Mitsubishi Rayon Co Ltd Fiber reinforced hollow molded article and manufacture thereof
JP2001293745A (en) * 2000-04-14 2001-10-23 Denso Corp Resin molded article
JP2011218757A (en) * 2010-04-14 2011-11-04 Cap Co Ltd Fiber reinforced resin structure member, and method for manufacturing the same
JP2014000885A (en) * 2012-06-19 2014-01-09 Toray Ind Inc Vehicle seat back frame
JP2014240185A (en) * 2013-05-15 2014-12-25 東芝機械株式会社 Molding production device, method for producing molding, and molding
WO2015046290A1 (en) * 2013-09-26 2015-04-02 東レ株式会社 Unidirectional fiber-reinforced tape and method for manufacturing same, molded article using same, and method for manufacturing molded article
JP2015093425A (en) * 2013-11-12 2015-05-18 日立化成株式会社 Method for manufacturing molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171739A (en) * 2018-03-29 2019-10-10 東レ株式会社 Manufacturing method of composite molded product

Also Published As

Publication number Publication date
JP6666145B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
CN103358566B (en) Method for manufacturing substantially shelly-shaped fibre-inforced plastic parts
EP2598312B1 (en) Method for the riveted fastening of an accessory
CN101678594B (en) Method for the production of a container made of thermoplastic plastic by extrusion blow molding and connection element for use in such a method
CN108290328B (en) Method for producing composite molded body
US7824173B2 (en) Apparatus for molding a hollow molded article
KR102413622B1 (en) Hollow profile composite technology
US11938659B2 (en) Insert to reduce weld line appearance defect in injection molding
US20200061887A1 (en) Hollow profile composite technology
US20190283294A1 (en) Hollow profile composite technology
JP2017119373A (en) Method for manufacturing composite molding
CN101276920B (en) A manufacturing method of membrane electrode assembly, membrane electrode assembly and manufacturing device thereof
JP2019171739A (en) Manufacturing method of composite molded product
US20220305706A1 (en) Hollow-profile Composite Technology
JPWO2005023513A1 (en) Molding method, mold for molding, molded article and molding machine
JP2018192730A (en) Fiber reinforced resin member and method for manufacturing fiber reinforced resin member
JP2018140528A (en) Method for manufacturing resin molding
CN209999571U (en) Temperature field controllable ultrasonic plasticizing flexible forming device with runner
CN114286742A (en) Molding process for forming thermoplastic articles
US10786933B2 (en) Process for producing a plastic-metal composite component
JP2019130843A (en) Mold and method for producing resin molded product
CN105697976A (en) carbon fiber reinforced polymer plate and manufacturing method
Penumetsa Effects of Overmolding Process Parameters on Bondzone Quality
KR20230017956A (en) High pressure container, apparatus for manufacturing high pressure container, and method for manufacturing high pressure container
JP2012176508A (en) Method of manufacturing thick-walled molded article

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170223

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200220

R150 Certificate of patent or registration of utility model

Ref document number: 6666145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250