JP6666145B2 - Manufacturing method of composite molded products - Google Patents

Manufacturing method of composite molded products Download PDF

Info

Publication number
JP6666145B2
JP6666145B2 JP2015256180A JP2015256180A JP6666145B2 JP 6666145 B2 JP6666145 B2 JP 6666145B2 JP 2015256180 A JP2015256180 A JP 2015256180A JP 2015256180 A JP2015256180 A JP 2015256180A JP 6666145 B2 JP6666145 B2 JP 6666145B2
Authority
JP
Japan
Prior art keywords
cavity
thermoplastic resin
molded article
continuous reinforcing
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015256180A
Other languages
Japanese (ja)
Other versions
JP2017119373A (en
Inventor
公彦 服部
公彦 服部
政人 菅森
政人 菅森
智幸 小野寺
智幸 小野寺
黒田 義人
義人 黒田
松岡 英夫
英夫 松岡
西田 正三
正三 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Toray Industries Inc
Original Assignee
Japan Steel Works Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Toray Industries Inc filed Critical Japan Steel Works Ltd
Priority to JP2015256180A priority Critical patent/JP6666145B2/en
Publication of JP2017119373A publication Critical patent/JP2017119373A/en
Application granted granted Critical
Publication of JP6666145B2 publication Critical patent/JP6666145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、複合成形品の製造方法に関し、とくに、連続強化繊維と熱可塑性樹脂からなる連続強化繊維基材と射出樹脂とを、3次元形状にて高接合強度と高精度をもって同一金型内で一体化可能な複合成形品の製造方法に関する。   The present invention relates to a method for producing a composite molded article, and particularly to a method in which a continuous reinforcing fiber base made of a continuous reinforcing fiber and a thermoplastic resin and an injection resin are molded in a same mold with high bonding strength and high precision in a three-dimensional shape. The present invention relates to a method for producing a composite molded product that can be integrated by using the method.

繊維強化樹脂基材と他の樹脂成形品、特に他の熱可塑性樹脂成形品とを一体化した複合成形品の製造方法は各種知られている。例えば特許文献1には、炭素繊維強化樹脂(CFRP)シート材状基材を型外で仮賦形し、それを型内にインサートして高速昇降温することで賦形し、賦形体を型内にインサートし、樹脂を射出して複合成形品を得る方法が開示されている。しかしこの方法は、少なくとも仮賦形が成形型外で行われるので、同一型内で複合化できるプロセスではなく、成形プロセスが複雑になっている。   There are various known methods for producing a composite molded article in which a fiber-reinforced resin substrate and another resin molded article, particularly another thermoplastic resin molded article, are integrated. For example, Patent Document 1 discloses that a carbon fiber reinforced resin (CFRP) sheet material base material is temporarily shaped outside a mold, and is inserted into the mold and shaped by rapidly raising and lowering the temperature. A method is disclosed in which a composite molded article is obtained by injecting a resin into the molded article. However, in this method, since at least the temporary shaping is performed outside the mold, it is not a process capable of compounding in the same mold, but the molding process is complicated.

また、特許文献2には、CFRP基材を射出成形型内に固定し、樹脂を射出して複合化する方法が開示されているが、単純な層状の複合成形品の記載しかなく、とくに3次元形状のCFRP基材を賦形する方法については触れられていない。   Patent Document 2 discloses a method of fixing a CFRP base material in an injection mold and injecting a resin to form a composite. However, there is only a description of a simple layered composite molded product. No mention is made of a method of forming a three-dimensional CFRP substrate.

また、特許文献3には、CFRPを型内でスタンピング成形し、型をバックさせて空間を作り、同一型内に樹脂を射出する複合成形品の製造方法が開示されている。しかし、この方法は、強化繊維がランダムに配されたランダム繊維基材の成形には適しているが、スタンピング成形のための予熱が必要であり、連続繊維基材を成形する場合には、繊維が折れる、配向が乱れるという問題が発生するとともに、基材を複数、あるいは所定の位置に貼りあわようとする場合には、射出時にCFRPが樹脂とともに流れてしまい、CFRPを成形品の望ましい位置に精度よく貼り合わせることが困難であるという問題がある。   Patent Document 3 discloses a method of manufacturing a composite molded article in which CFRP is stamped and molded in a mold, a space is created by backing the mold, and a resin is injected into the same mold. However, this method is suitable for molding a random fiber base material in which reinforcing fibers are randomly arranged, but requires preheating for stamping molding. In addition to the problem that the substrate is broken and the orientation is disturbed, when a plurality of substrates are to be bonded to each other or at a predetermined position, the CFRP flows together with the resin at the time of injection, and the CFRP is moved to a desired position of the molded article. There is a problem that it is difficult to bond them with high accuracy.

さらに、特許文献4には、射出成形品とCFRP基材を成形機内で熱溶着するようにした複合成形品の製造方法が開示されている。しかし、この方法では、射出成形品を作製した後、レーザー溶着、プレス成形等でCFRP基材を貼り合わせることとなるので、とくに射出成形品の3次元形状部分にCFRP基材を貼り合わせることが困難である。   Further, Patent Document 4 discloses a method of manufacturing a composite molded article in which an injection molded article and a CFRP base material are heat-welded in a molding machine. However, in this method, after the injection molded article is manufactured, the CFRP base material is bonded by laser welding, press molding, or the like. Therefore, it is particularly necessary to bond the CFRP base material to the three-dimensional shape portion of the injection molded product. Have difficulty.

特開2012−153069号公報JP 2012-153069 A 特開2013−252644号公報JP 2013-252644 A 特開平5−185466号公報JP-A-5-185466 特開2011−143559号公報JP 2011-143559 A

そこで本発明の課題は、上記のような従来技術における問題点に着目し、連続強化繊維と熱可塑性樹脂からなる連続強化繊維基材と射出樹脂を、とくに3次元形状にて、射出樹脂成形品の所望位置に高接合強度と高精度をもって同一金型内で一体化可能な複合成形品の製造方法を提供することにある。   Therefore, an object of the present invention is to focus on the problems in the prior art as described above, and to form a continuous reinforcing fiber base made of a continuous reinforcing fiber and a thermoplastic resin and an injection resin, particularly in a three-dimensional shape, into an injection resin molded product. It is an object of the present invention to provide a method of manufacturing a composite molded article which can be integrated in a desired position with high bonding strength and high precision in the same mold.

上記課題を解決するために、本発明に係る複合成形品の製造方法は、連続強化繊維と熱可塑性樹脂Aからなる連続強化繊維基材を、スライド機構を備えた金型内に設定された、3次元形状を有する第1のキャビティ内に挿入した後、該第1のキャビティ内に溶融した熱可塑性樹脂組成物Bを射出充填して1次成形品を成形する1次成形工程と、
前記第1のキャビティを1次成形品とともに第2のキャビティにスライドさせ、前記1次成形品を前記第2のキャビティ内に配置し、該第2のキャビティ内に溶融した熱可塑性樹脂組成物Cを射出充填して該溶融熱可塑性樹脂組成物Cと前記1次成形品とを一体化する2次成形工程と、
を有することを特徴とする方法からなる。
In order to solve the above problems, the method for producing a composite molded product according to the present invention is to set a continuous reinforcing fiber base made of a continuous reinforcing fiber and a thermoplastic resin A in a mold having a slide mechanism, A primary molding step of inserting the molten thermoplastic resin composition B into the first cavity after being inserted into the first cavity having a three-dimensional shape to form a primary molded product;
The first cavity is slid together with the primary molded product into the second cavity, and the primary molded product is disposed in the second cavity, and the thermoplastic resin composition C melted in the second cavity Injection molding to integrate the molten thermoplastic resin composition C and the primary molded article,
The method comprises:

このような本発明に係る複合成形品の製造方法においては、先ず、1次成形工程において、連続強化繊維と熱可塑性樹脂Aからなる連続強化繊維基材が、3次元形状を有する第1のキャビティ内の所定位置に挿入され、連続強化繊維基材が挿入された第1のキャビティ内に溶融した熱可塑性樹脂組成物Bが射出充填されて、射出樹脂圧によって連続繊維基材が3次元形状に賦形されると同時に熱可塑性樹脂組成物Bが溶着し、連続強化繊維基材と熱可塑性樹脂組成物Bが同一金型内で一体化された3次元形状の1次成形品が成形される。そして、2次成形工程において、第1のキャビティが先に成形された1次成形品とともに第2のキャビティに(より具体的には第2のキャビティ形成位置に)スライド機構によりスライドされ、1次成形品が第2のキャビティ内に(つまり、新たに設定された第2のキャビティ内に)配置され、該第2のキャビティ内に溶融した熱可塑性樹脂組成物Cが射出充填されて、該溶融熱可塑性樹脂組成物Cと1次成形品とが一体化され、目標とする複合成形品が成形される。このように、先に3次元形状を有する第1のキャビティを用いて3次元形状の1次成形品が成形されるので、連続繊維基材と1次成形品の双方は2次成形の前に精度よく目標とする3次元形状に成形される。先に高精度に成形された1次成形品は、第2のキャビティ内にて射出充填された熱可塑性樹脂組成物Cと溶着一体化されるが、第1のキャビティが先に成形された1次成形品とともに第2のキャビティに(より具体的には第2のキャビティ形成位置に)スライド機構によりスライドされることで、1次成形品を第2のキャビティの所定の位置に精度良く設置することができ、かつ1次成形品は既に所望の3次元形状に成形済みのものであるから、溶融熱可塑性樹脂組成物Cが射出充填される際にも形状が崩れたり、流出したりすることはなく、射出充填された溶融熱可塑性樹脂組成物Cにより成形されようとする成形部分に対し、所定の位置に高精度で位置決めされた状態にて高い接合強度をもって一体化される。したがって、最終的に成形される複合成形品においては、2次成形工程で溶融した熱可塑性樹脂組成物Cによって成形された成形部分に対し、目標とする3次元形状を有する1次成形品、とくに該1次成形品を構成する連続強化繊維基材が、目標とする所定の位置に高精度で高い接合強度をもって一体化された形態の複合成形品が実現されることになる。また、3次元形状の1次成形品が成形される1次成形工程と、最終的な複合成形品が成形される2次成形工程とは、スライド機構を備えた同一の金型内で実行できるので、成形工程全体の簡素化が可能になり、自動化も可能になる。   In the method for producing a composite molded article according to the present invention, first, in the primary molding step, the continuous reinforcing fiber base made of the continuous reinforcing fibers and the thermoplastic resin A has a first cavity having a three-dimensional shape. The melted thermoplastic resin composition B is injected and filled into the first cavity into which the continuous reinforcing fiber base material is inserted, and the continuous fiber base material is formed into a three-dimensional shape by the injection resin pressure. Simultaneously with the shaping, the thermoplastic resin composition B is welded to form a three-dimensional primary molded article in which the continuous reinforcing fiber base and the thermoplastic resin composition B are integrated in the same mold. . Then, in the secondary molding step, the first cavity is slid by the slide mechanism into the second cavity (more specifically, to the second cavity forming position) together with the previously molded primary molded product, and The molded article is placed in the second cavity (that is, in the newly set second cavity), and the molten thermoplastic resin composition C is injected and filled in the second cavity, and The thermoplastic resin composition C and the primary molded product are integrated, and a target composite molded product is molded. As described above, since the three-dimensional primary molded article is molded using the first cavity having the three-dimensional shape first, both the continuous fiber base material and the primary molded article are formed before the second molding. It is accurately formed into a target three-dimensional shape. The primary molded product previously molded with high precision is welded and integrated with the thermoplastic resin composition C injected and filled in the second cavity. The primary molded product is accurately placed at a predetermined position in the second cavity by being slid by the slide mechanism together with the next molded product into the second cavity (more specifically, to the second cavity forming position). And the primary molded article has already been molded into a desired three-dimensional shape, so that the shape may collapse or flow out even when the molten thermoplastic resin composition C is injected and filled. However, it is integrated with a molding part to be molded from the injection-filled molten thermoplastic resin composition C with high bonding strength while being positioned at a predetermined position with high precision. Therefore, in a composite molded product that is finally molded, a primary molded product having a target three-dimensional shape, particularly a molded portion molded with the thermoplastic resin composition C melted in the secondary molding step, Thus, a composite molded product in which the continuous reinforcing fiber base material constituting the primary molded product is integrated at a target predetermined position with high accuracy and high bonding strength is realized. The primary molding step of molding a three-dimensional primary molded article and the secondary molding step of molding a final composite molded article can be performed in the same mold having a slide mechanism. Therefore, the entire molding process can be simplified and automation can be performed.

上記本発明に係る複合成形品の製造方法において、好ましい形態として、上記連続強化繊維基材が、連続強化繊維を一方向に配列させた一方向基材からなる形態を挙げることができる。このような一方向基材は、連続強化繊維が配列された特定の方向に対して特に高い機械特性を発現できるので、複合成形体に用いるのに最も適している。その一方で、3次元形状への賦形性に劣る課題があったが、本発明の製造方法を用いることにより、3次元形状への賦形性が大幅に向上するとともに、連続強化繊維基材が目標とする所定の位置にて高精度で貼り合わせ一体化されることで、複合成形品全体として所望の特定の方向に対して効率よく高い機械特性を発現できるようになる。この一方向基材としては、布帛状の広く面方向に広がる基材とすることも可能であるが、一方向基材がテープ状基材からなる場合、最終的に成形される複合成形品に対し、補強が要求される部位に的を絞って効率良く所定の補強を行うことが可能になる。   In a preferred embodiment of the method for producing a composite molded article according to the present invention, the continuous reinforcing fiber base may include a unidirectional base in which continuous reinforcing fibers are arranged in one direction. Such a unidirectional substrate is most suitable for use in a composite molded article because it can exhibit particularly high mechanical properties in a specific direction in which continuous reinforcing fibers are arranged. On the other hand, there was a problem that the shapeability to a three-dimensional shape was inferior, but by using the manufacturing method of the present invention, the shapeability to a three-dimensional shape was significantly improved, and the continuous reinforcing fiber base material was used. By being bonded and integrated at a target predetermined position with high precision, it is possible to efficiently exhibit high mechanical properties in a desired specific direction as the whole composite molded article. As this one-way substrate, it is possible to use a fabric-like substrate that spreads widely in the surface direction. On the other hand, it is possible to efficiently perform predetermined reinforcement by focusing on a portion where reinforcement is required.

また、本発明に係る複合成形品の製造方法においては、上記熱可塑性樹脂組成物Bとしては、樹脂単独であってもよく、必要に応じて機械強度その他の特性を付与するために、さらに充填材を配合することが可能である。充填材は特に限定されるものでないが、繊維状、非繊維状(板状、鱗片状、粒状、不定形状、破砕品など)などのいずれの充填剤も使用することができる。   In the method for producing a composite molded article according to the present invention, the thermoplastic resin composition B may be a resin alone, and may be further filled to impart mechanical strength and other properties as necessary. It is possible to mix materials. The filler is not particularly limited, but any filler such as fibrous and non-fibrous (plate-like, flake-like, granular, irregular-shaped, crushed, etc.) can be used.

本発明に係る複合成形品の製造方法においては、上記熱可塑性樹脂組成物Bに用いる熱可塑性樹脂としては、特に制限はないが、機械特性に優れることから、ポリアミド系樹脂、ポリアリーレンサルファイド系樹脂、ポリオレフィン系樹脂から選ばれる少なくとも1種の樹脂であることが好ましい。また、上記熱可塑性樹脂組成物Cに用いる熱可塑性樹脂としては、上記熱可塑性樹脂組成物Bと同様のものを用いることができる。   In the method for producing a composite molded article according to the present invention, the thermoplastic resin used in the thermoplastic resin composition B is not particularly limited, but is excellent in mechanical properties, and therefore, a polyamide resin and a polyarylene sulfide resin. And at least one resin selected from polyolefin resins. Further, as the thermoplastic resin used for the thermoplastic resin composition C, the same thermoplastic resin as the thermoplastic resin composition B can be used.

また、本発明に係る複合成形品の製造方法において、上記熱可塑性樹脂Aとしては、連続強化繊維基材を構成できるものであれば特に限定されないが、機械特性、軽量性に優れることから、ポリアミド系樹脂、ポリアリーレンサルファイド系樹脂、ポリオレフィン系樹脂から選ばれる少なくとも1種の樹脂であることが好ましい。ポリアミド系樹脂としては、例えば、ポリカプロアミド(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリウンデカミド(ナイロン11)、ポリカプロアミド/ポリウンデカミドコポリマー(ナイロン6/11)、ポリドデカミド(ナイロン12)、ポリカプロアミド/ポリドデカミドコポリマー(ナイロン6/12)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカメチレンアジパミド(ナイロン116)およびこれらの混合物ないし共重合体等が挙げることができる。中でもナイロン6が特に好ましい。ポリアリーレンサルファイド系樹脂の代表例としては、ポリフェニレンサルファイド(以下、PPSと略す場合もある)、ポリフェニレンサルファイドスルホン、ポリフェニレンサルファイドケトン、これらのランダム共重合体、ブロック共重合体およびそれらの混合物などが挙げられ、中でもポリフェニレンサルファイドが特に好ましく使用される。また、ポリオレフィン系樹脂の代表例としては、ポリプロピレン系樹脂が挙げられ、ポリプロピレン系樹脂としては、プロピレン単独重合体、またはプロピレンとエチレンもしくは炭素数が4〜20のα−オレフィンとの共重合体である。また、ポリオレフィン系樹脂として、炭素数が4〜20のα−オレフィン系樹脂が挙げられ、炭素数が4〜20のα−オレフィンとしては、1 −ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどが挙げられる。これらの中ではエチレンまたは炭素数が4〜10のα−オレフィンが好ましい。これらのα−オレフィンは、プロピレンとランダム共重合体を形成してもよく、またブロック共重合体を形成してもよい。   In the method for producing a composite molded article according to the present invention, the thermoplastic resin A is not particularly limited as long as it can constitute a continuous reinforcing fiber base material. Preferably, the resin is at least one resin selected from the group consisting of a resin, a polyarylene sulfide resin, and a polyolefin resin. Examples of the polyamide resin include polycaproamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), and polycaproamide / polyhexamethylene adipamide copolymer ( Nylon 6/66), polyundecamide (nylon 11), polycaproamide / polyundecamide copolymer (nylon 6/11), polydodecamide (nylon 12), polycaproamide / polydodecamide copolymer (nylon 6/12), poly Hexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyundecamethylene adipamide (nylon 116), and mixtures or copolymers thereof can be given. Among them, nylon 6 is particularly preferred. Representative examples of the polyarylene sulfide-based resin include polyphenylene sulfide (hereinafter sometimes abbreviated as PPS), polyphenylene sulfide sulfone, polyphenylene sulfide ketone, a random copolymer thereof, a block copolymer and a mixture thereof. In particular, polyphenylene sulfide is particularly preferably used. In addition, typical examples of the polyolefin resin include a polypropylene resin, and the polypropylene resin is a propylene homopolymer or a copolymer of propylene and ethylene or an α-olefin having 4 to 20 carbon atoms. is there. Examples of the polyolefin resin include α-olefin resins having 4 to 20 carbon atoms, and examples of α-olefins having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, and 4-hexene. Examples thereof include methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene. Among them, ethylene or an α-olefin having 4 to 10 carbon atoms is preferable. These α-olefins may form a random copolymer with propylene, or may form a block copolymer.

また、本発明に係る複合成形品の製造方法において、連続強化繊維基材に用いられる強化繊維の種類としては、炭素繊維やガラス繊維、アラミド繊維、あるいは他の強化繊維、さらにはこれら強化繊維の組み合わせのいずれも採用可能であるが、最終的に成形される複合成形品の特定の部位の機械特性を連続強化繊維基材によって効率よく向上させるためには、連続強化繊維として炭素繊維を含むことが好ましい。   Further, in the method for producing a composite molded product according to the present invention, as the type of reinforcing fiber used for the continuous reinforcing fiber substrate, carbon fiber, glass fiber, aramid fiber, or other reinforcing fibers, and furthermore, Any combination can be adopted, but in order to efficiently improve the mechanical properties of a specific part of the composite molded article to be finally molded by the continuous reinforcing fiber base material, it is necessary to include carbon fiber as the continuous reinforcing fiber. Is preferred.

さらに、本発明に係る複合成形品の製造方法においては、上記1次成形工程において、第1のキャビティ内に挿入した連続強化繊維基材を、必要に応じて、該第1のキャビティ内でピン等の固定具により固定することが好ましい。1次成形品を高精度で効率よく所望の3次元形状に成形するためには、連続強化繊維基材が第1のキャビティ内で第1のキャビティの内面に沿って所定の3次元形状に保たれていることが好ましいので、連続強化繊維基材を第1のキャビティ内に挿入した後、その位置や姿勢をピン等の固定具により固定しておくのである。このように固定しておくと、溶融熱可塑性樹脂Bの射出充填の際にも、連続強化繊維基材の第1のキャビティ内での位置ずれを防ぐことができる。   Further, in the method for manufacturing a composite molded product according to the present invention, in the primary molding step, the continuous reinforcing fiber base material inserted into the first cavity may be pinned in the first cavity as necessary. It is preferable to fix with a fixing tool such as. In order to form the primary molded article into a desired three-dimensional shape with high precision and efficiency, the continuous reinforcing fiber base is kept in a predetermined three-dimensional shape in the first cavity along the inner surface of the first cavity. Since it is preferable that the continuous reinforcing fiber base is inserted into the first cavity, the position and the posture thereof are fixed by a fixing tool such as a pin. By fixing in this way, it is possible to prevent the continuous reinforcing fiber base material from being displaced in the first cavity even when the molten thermoplastic resin B is injected and filled.

このように、本発明に係る複合成形品の製造方法によれば、連続繊維基材を3次元形状に賦形すると同時に熱可塑性樹脂組成物Bと高い接合強度をもって一体化することができるとともに、1次成形品の形状精度を高めることができる。さらに、高精度で目標とする3次元形状に賦形される1次成形品を成形する1次成形工程と、射出成形を伴う2次成形工程とを同一型内で行うことができるので、最終的に成形される複合成形品においては、3次元形状の連続強化繊維基材を目標とする特定の部位に高精度をもって一体化することができる。連続強化繊維基材の高精度配置により、複合成形品の機械特性を効率よく向上させることが可能になる。また、連続強化繊維基材が3次元形状を有する場合にあっても、複合成形品における連続強化繊維基材位置の設計自由度も高い。なお、射出成形品を一旦作製した後、レーザー溶着、プレス成形等で強化繊維基材を溶着する場合、3次元形状部分に強化繊維基材を溶着することは困難である。   As described above, according to the method for producing a composite molded product according to the present invention, the continuous fiber base material can be formed into a three-dimensional shape and simultaneously integrated with the thermoplastic resin composition B with high bonding strength. The shape accuracy of the primary molded product can be improved. Furthermore, the primary molding step of molding a primary molded article to be formed into a target three-dimensional shape with high accuracy and the secondary molding step involving injection molding can be performed in the same mold. In a composite molded product that is formed in a typical manner, a three-dimensional continuous reinforcing fiber base can be integrated with a target specific site with high precision. The high-precision arrangement of the continuous reinforcing fiber base makes it possible to efficiently improve the mechanical properties of the composite molded article. Further, even when the continuous reinforcing fiber base has a three-dimensional shape, the degree of freedom in designing the position of the continuous reinforcing fiber base in the composite molded article is high. In addition, when the reinforcing fiber base is welded by laser welding, press molding, or the like after the injection molded article is once manufactured, it is difficult to weld the reinforcing fiber base to the three-dimensional shape portion.

また、本発明に係る複合成形品の製造方法では、2次成形工程の前に行われる1次成形工程において、溶融した熱可塑性樹脂組成物Bの射出により、予め高精度の3次元形状を有する1次成形品が成形されるので、予めプリフォームした強化繊維基材を金型内にインサートして射出成形する場合と比べて、プリフォームのための専用設備を用いる必要がなくなるだけでなく、1次成形品と2次成形工程における射出樹脂、ひいては、連続強化繊維基材と溶融熱可塑性樹脂組成物B、さらには溶融熱可塑性樹脂組成物Cで形成される樹脂部とが良好に溶着できるようになり、高い溶着強度を達成できることもできる。   In the method of manufacturing a composite molded product according to the present invention, in the primary molding step performed before the secondary molding step, the molten thermoplastic resin composition B is injected to have a highly accurate three-dimensional shape in advance. Since the primary molded article is molded, it is not only unnecessary to use dedicated equipment for the preform, but also compared to the case where the preformed reinforcing fiber base material is inserted into a mold and injection molded. The primary molded article and the injection resin in the secondary molding step, and eventually, the continuous reinforcing fiber base and the resin portion formed of the molten thermoplastic resin composition B and further the molten thermoplastic resin composition C can be welded well. As a result, a high welding strength can be achieved.

本発明の一実施態様に係る複合成形品の製造方法における1次成形工程を示す概略縦断面図である。FIG. 2 is a schematic longitudinal sectional view showing a primary molding step in a method for producing a composite molded product according to one embodiment of the present invention. 図1に示した1次成形工程に続いて行われる2次成形工程を示す概略縦断面図(図2(A))および縦断面図とは直角方向の概略横断面図(図2(B)〜(D))である。A schematic longitudinal sectional view (FIG. 2A) showing a secondary molding step performed after the primary molding step shown in FIG. 1 and a schematic transverse sectional view perpendicular to the longitudinal sectional view (FIG. 2B) -(D)). 1次成形品の一例を示す斜視図である。It is a perspective view which shows an example of a primary molded article. 2次成形品としての複合成形品の一例を示す斜視図である。It is a perspective view which shows an example of the composite molded article as a secondary molded article.

以下に、本発明の実施の形態について、図面を参照しながら説明する。
本発明に係る複合成形品の製造方法は、1次成形工程と2次成形工程を有する。1次成形工程では、連続強化繊維と熱可塑性樹脂Aからなる連続強化繊維基材が、スライド機構を備えた金型内に設定された、3次元形状を有する第1のキャビティ内に挿入された後、該第1のキャビティ内に溶融熱可塑性樹脂組成物Bが射出充填されて1次成形品が成形され、2次成形工程では、第1のキャビティが1次成形品とともに第2のキャビティにスライドされ、1次成形品が第2のキャビティ内に配置され、該第2のキャビティ内に溶融熱可塑性樹脂組成物Cが射出充填されて該溶融熱可塑性樹脂組成物Cと1次成形品とが一体化される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The method for producing a composite molded article according to the present invention includes a primary molding step and a secondary molding step. In the primary molding step, a continuous reinforcing fiber base made of continuous reinforcing fibers and thermoplastic resin A was inserted into a first cavity having a three-dimensional shape set in a mold having a slide mechanism. Thereafter, the molten thermoplastic resin composition B is injected and filled into the first cavity to form a primary molded product. In the secondary molding process, the first cavity is placed in the second cavity together with the primary molded product. The first molded article is slid, the first molded article is placed in the second cavity, and the molten thermoplastic resin composition C is injected and filled in the second cavity, and the molten thermoplastic resin composition C and the first molded article are combined. Are integrated.

(1)1次成形工程(1次成形品の成形)
本発明に係る複合成形品の製造方法に用いられる金型は、例えば図1(A)に示すように構成されている。図1(A)に型開きされた状態の金型1を示すように、金型1は、複数の構成部材で構成されているが、これら構成部材を大きく分けて、金型1は上型2と下型3から構成されている。また、金型1は、後述するようなスライド機構を備えている。本実施態様では、上型2内に、3次元形状を有する第1のキャビティ4を形成する空間を有しており、下型3内には、溶融熱可塑性樹脂組成物Bの射出用樹脂注入路5を有している。第1のキャビティ4は、本実施態様では、横断面が狭幅板状の空間で、それが環状に、あるいは環状形状の一部分として延び、該延設部位の一部において図に示す縦断面における姿勢、とくに傾きが変わるように形成されている。
(1) Primary molding process (molding of primary molded product)
The mold used in the method of manufacturing a composite molded product according to the present invention is configured, for example, as shown in FIG. As shown in FIG. 1 (A), the mold 1 is shown in an open state, and the mold 1 is composed of a plurality of constituent members. 2 and a lower mold 3. The mold 1 has a slide mechanism as described later. In this embodiment, the upper mold 2 has a space for forming the first cavity 4 having a three-dimensional shape, and the lower mold 3 has an injection resin injection of the molten thermoplastic resin composition B. The road 5 is provided. In the present embodiment, the first cavity 4 is a space having a narrow plate-like cross section, which extends annularly or as a part of an annular shape. The posture, especially the inclination, is formed so as to change.

上記金型1が開かれた状態にて、図1(B)に示すように、金型1内に設定された第1のキャビティ4内に、連続強化繊維と熱可塑性樹脂Aからなる連続強化繊維基材6が挿入される。このとき、第1のキャビティ4内に挿入された連続強化繊維基材6を、例えば次の型閉じまで、第1のキャビティ4内でピン等の固定具(図示略)により固定しておくこともできる。連続強化繊維基材6は、本実施態様では、テープ状に延び、そのテープ状長手方向に連続強化繊維(例えば、連続炭素繊維)が一方向に配列された一方向基材に構成されている。   In the state where the mold 1 is opened, as shown in FIG. 1 (B), a continuous reinforcing fiber and a thermoplastic resin A are formed in a first cavity 4 set in the mold 1. The fiber base material 6 is inserted. At this time, the continuous reinforcing fiber base material 6 inserted into the first cavity 4 is fixed in the first cavity 4 by a fixture (not shown) such as a pin until the next mold closing, for example. Can also. In the present embodiment, the continuous reinforcing fiber base 6 extends in a tape shape, and is configured as a unidirectional base in which continuous reinforcing fibers (for example, continuous carbon fibers) are arranged in one direction in the tape-like longitudinal direction. .

連続強化繊維基材6が第1のキャビティ4内に挿入された後、図1(C)に示すように、金型1が閉じられ、連続強化繊維基材6は第1のキャビティ4内に保持される。金型1が所定温度に加熱されるとともに、閉じられた金型1の第1のキャビティ4内に、図1(D)に示すように、下型3に設けられた射出用樹脂注入路5を通して溶融熱可塑性樹脂組成物B(7)が射出されて充填され、1次成形品8が成形される。   After the continuous reinforcing fiber base material 6 is inserted into the first cavity 4, the mold 1 is closed as shown in FIG. 1C, and the continuous reinforcing fiber base material 6 is inserted into the first cavity 4. Will be retained. While the mold 1 is heated to a predetermined temperature, the injection resin injection path 5 provided in the lower mold 3 is provided in the first cavity 4 of the closed mold 1 as shown in FIG. The molten thermoplastic resin composition B (7) is injected and filled through, and the primary molded article 8 is molded.

例えば、連続強化繊維基材6の熱可塑性樹脂A(マトリクス樹脂)がポリアミド6からなり、熱可塑性樹脂組成物B(7)がガラス繊維40%強化ポリアミド6からなる場合、射出成形機のシリンダー温度は270℃、金型1の温度は150℃程度に設定され、充填された溶融熱可塑性樹脂B(7)の熱と樹脂圧および金型1の熱により、1次成形品8が賦形されて成形される。   For example, when the thermoplastic resin A (matrix resin) of the continuous reinforcing fiber base 6 is made of polyamide 6 and the thermoplastic resin composition B (7) is made of 40% glass fiber reinforced polyamide 6, the cylinder temperature of the injection molding machine is changed. Is set to 270 ° C., the temperature of the mold 1 is set to about 150 ° C., and the primary molded article 8 is shaped by the heat of the filled molten thermoplastic resin B (7), the resin pressure and the heat of the mold 1. Molded.

この1次成形工程においては、3次元形状を有する第1のキャビティ4内の所定位置に挿入された連続強化繊維基材6が、第1のキャビティ4内に射出充填される溶融熱可塑性樹脂組成物B(7)の射出樹脂圧によって第1のキャビティ4内面に押し付けられて所定の3次元形状に精度よく賦形される同時に熱可塑性樹脂組成物Bが溶着され、連続強化繊維基材6と熱可塑性樹脂組成物Bが一体化された3次元形状の1次成形品8が高精度で成形される。   In this primary molding step, the continuous reinforcing fiber base material 6 inserted into a predetermined position in the first cavity 4 having a three-dimensional shape is injected and filled into the first cavity 4 by a molten thermoplastic resin composition. The thermoplastic resin composition B is pressed against the inner surface of the first cavity 4 by the injection resin pressure of the object B (7) to be accurately formed into a predetermined three-dimensional shape, and the thermoplastic resin composition B is simultaneously welded. The three-dimensional primary molded product 8 in which the thermoplastic resin composition B is integrated is molded with high precision.

(2)2次成形工程(2次成形品としての複合成形品の成形)
上記のような1次成形工程に続き、同一の金型1を使用して、例えば図2に示すように2次成形工程が実施される。図2(A)に示すように、1次成形後に金型1が開かれ、図2(B)(図2(A)に対し直角方向(90度異なる方向)からみた横断面図)に示すように、金型1のスライド機構(あるいはスライド兼回動機構)により、金型部位11が金型部位12に対し矢印のように回動されるとともに紙面における手前側にスライド移動され、これら金型部位11、12に対し金型部位13が開かれる。
(2) Secondary molding step (molding of composite molded article as secondary molded article)
Subsequent to the primary molding process as described above, a secondary molding process is performed using the same mold 1 as shown in FIG. 2, for example. As shown in FIG. 2 (A), the mold 1 is opened after the primary molding, and is shown in FIG. 2 (B) (a cross-sectional view as viewed from a direction perpendicular to FIG. 2 (A) (a direction different by 90 degrees)). As described above, the slide mechanism (or the slide and rotation mechanism) of the mold 1 rotates the mold part 11 with respect to the mold part 12 as indicated by an arrow and slides the mold part 11 toward the front side of the drawing. The mold part 13 is opened with respect to the mold parts 11 and 12.

次いで、図2(C)に示すように、金型1が閉じられて、該金型1内に上記1次成形品8とともに第1のキャビティ4がスライドされて形成される2次成形用の第2のキャビティ14が設定され、該第2のキャビティ14内の所定位置に、1次成形品8が配置され、第2のキャビティ14内に射出用樹脂注入路15を介して溶融熱可塑性樹脂組成物C(16)が射出されて充填され、該溶融熱可塑性樹脂組成物C(16)と1次成形品8が一体化され、2次成形品としての複合成形品17が成形される。   Next, as shown in FIG. 2C, the mold 1 is closed, and the first cavity 4 is slid together with the primary molded product 8 in the mold 1 for secondary molding. The second cavity 14 is set, the primary molded article 8 is arranged at a predetermined position in the second cavity 14, and the molten thermoplastic resin is injected into the second cavity 14 via the injection resin injection path 15. The composition C (16) is injected and filled, the molten thermoplastic resin composition C (16) and the primary molded product 8 are integrated, and a composite molded product 17 as a secondary molded product is molded.

成形された複合成形品17は、図2(D)に示すように、金型1が開かれて、外部に取り出される。このとき、より容易に取り出すことができるように、金型1に取り出し用の押し出しピン18等を設けておいてもよい。なお、図2(D)における取り出された複合成形品17に一点鎖線を付してあるのは、この一点鎖線に対し反対側にも対称に複合成形品17の部位が存在していることを示しており、複合成形品17の一形状例を示すためである。   As shown in FIG. 2 (D), the mold 1 is opened and the molded composite article 17 is taken out. At this time, the mold 1 may be provided with a push-out pin 18 or the like for taking out so that the mold 1 can be taken out more easily. In FIG. 2 (D), the taken-out composite molded product 17 is indicated by a dashed line because a portion of the composite molded product 17 is also symmetrically present on the opposite side of the dashed line. This is to show an example of the shape of the composite molded product 17.

このような2次成形工程においては、先に1次成形工程で高精度に3次元形状を有する1次成形品8が成形されており、先に高精度に成形された1次成形品8は、第2のキャビティ14内にて射出充填された溶融熱可塑性樹脂組成物C(16)と一体化される際に、形状が崩れたり、流出したりすることはなく、射出充填された溶融熱可塑性樹脂組成物C(16)と所定の位置にて、つまり、高精度で位置決めされた状態にて、高い接合強度をもって一体化される。したがって、最終的に成形される2次成形品としての複合成形品17においては、3次元形状を有する1次成形品8、とくに該1次成形品8を構成する連続強化繊維基材6が、目標とする所定の位置に高精度で高い接合強度をもって一体化された形態の複合成形品17が実現される。   In such a secondary molding step, a primary molded article 8 having a three-dimensional shape is molded with high precision in the primary molding step first, and the primary molded article 8 molded with high precision is first used. When integrated with the molten thermoplastic resin composition C (16) injected and filled in the second cavity 14, the shape does not collapse or flow out, and the molten heat injected and filled does not collapse. It is integrated with the plastic resin composition C (16) at a predetermined position, that is, with high bonding strength in a state of being positioned with high precision. Therefore, in the composite molded article 17 as a secondary molded article to be finally molded, the primary molded article 8 having a three-dimensional shape, in particular, the continuous reinforcing fiber base 6 constituting the primary molded article 8 includes: The composite molded article 17 is realized in a form integrated with a target predetermined position with high accuracy and high bonding strength.

上記のような成形工程により成形される成形品の例を図3、図4に示す。図3は、1次成形工程により成形された1次成形品21の一例を示しており、図4は、2次成形工程により成形された最終的な複合成形品22の一例を示している。図3、図4に例示されるように、本発明では複雑な3次元形状を有し、その3次元形状の所望の部位、とくに3次元形状を有する所望の部位に高精度で高い接合強度をもって連続強化繊維基材を一体化した複合成形品を得ることができる。   FIGS. 3 and 4 show examples of molded products formed by the above-described molding process. FIG. 3 shows an example of a primary molded article 21 formed by the primary molding step, and FIG. 4 shows an example of a final composite molded article 22 formed by the secondary molding step. As illustrated in FIGS. 3 and 4, the present invention has a complicated three-dimensional shape, and has high precision and high bonding strength to a desired portion of the three-dimensional shape, particularly to a desired portion having the three-dimensional shape. A composite molded article in which the continuous reinforcing fiber base is integrated can be obtained.

本発明に係る複合成形品の製造方法は、連続強化繊維基材を3次元形状にて高接合強度と高精度をもって射出樹脂成形品と一体化することが望まれるあらゆる複合成形品の製造に適用可能である。   INDUSTRIAL APPLICABILITY The method for producing a composite molded article according to the present invention is applicable to the production of any composite molded article in which it is desired to integrate a continuous reinforcing fiber base with a three-dimensional shape with high bonding strength and high precision with an injection resin molded article. It is possible.

1 金型
2 上型
3 下型
4 第1のキャビティ
5 射出用樹脂注入路
6 連続強化繊維基材
7 溶融熱可塑性樹脂組成物B
8 1次成形品
11、12、13 金型部位
14 第2のキャビティ
15 射出用樹脂注入路
16 溶融熱可塑性樹脂組成物C
17 複合成形品
18 押し出しピン
21 1次成形品
22 複合成形品
REFERENCE SIGNS LIST 1 mold 2 upper mold 3 lower mold 4 first cavity 5 injection resin injection path 6 continuous reinforcing fiber base material 7 molten thermoplastic resin composition B
8 Primary molded articles 11, 12, 13 Mold part 14 Second cavity 15 Injection resin injection path 16 Molten thermoplastic resin composition C
17 Composite molded product 18 Extrusion pin 21 Primary molded product 22 Composite molded product

Claims (9)

連続強化繊維と熱可塑性樹脂Aからなる連続強化繊維基材を、スライド機構を備えた金型内に設定された、横断面が狭幅板状の空間で、それが環状に、あるいは環状形状の一部分として延び、該延設部位の一部において傾きが変わるように形成された3次元形状を有する第1のキャビティ内に挿入した後、該第1のキャビティ内に溶融した熱可塑性樹脂組成物Bを射出充填して1次成形品を成形する1次成形工程と、
前記第1のキャビティを1次成形品とともに第2のキャビティにスライドさせ、前記1次成形品を前記第2のキャビティ内に配置し、該第2のキャビティ内に溶融した熱可塑性樹脂組成物Cを射出充填して該溶融した熱可塑性樹脂組成物Cと前記1次成形品とを一体化する2次成形工程と、
を有することを特徴とする複合成形品の製造方法。
A continuous reinforcing fiber base made of a continuous reinforcing fiber and a thermoplastic resin A is set in a mold having a slide mechanism, in a space having a narrow plate-like cross section, which is annular or annular. A thermoplastic resin composition B that extends as a part and is inserted into a first cavity having a three-dimensional shape formed so that the inclination is changed at a part of the extending portion , and then melted in the first cavity. Injection molding to form a primary molded product,
The first cavity is slid together with the primary molded product into the second cavity, and the primary molded product is disposed in the second cavity, and the thermoplastic resin composition C melted in the second cavity and a secondary molding step of injection filling integrating the said molten thermoplastic resin composition C the primary molded article,
A method for producing a composite molded article, comprising:
前記連続強化繊維基材が、連続強化繊維を一方向に配列させた一方向基材からなる、請求項1に記載の複合成形品の製造方法。   The method for producing a composite molded article according to claim 1, wherein the continuous reinforcing fiber base comprises a unidirectional base in which continuous reinforcing fibers are arranged in one direction. 前記一方向基材が、テープ状基材からなる、請求項2に記載の複合成形品の製造方法。   The method for producing a composite molded product according to claim 2, wherein the one-way substrate is a tape-shaped substrate. 前記熱可塑性樹脂組成物Bが、不連続強化繊維を含んでいる、請求項1〜3のいずれかに記載の複合成形品の製造方法。   The method for producing a composite molded product according to any one of claims 1 to 3, wherein the thermoplastic resin composition B contains discontinuous reinforcing fibers. 前記熱可塑性樹脂Aが、ポリアミド系樹脂、ポリアリーレンサルファイド系樹脂、ポリオレフィン系樹脂から選ばれる少なくとも1種の樹脂からなる、請求項1〜4のいずれかに記載の複合成形品の製造方法。   The method for producing a composite molded product according to any one of claims 1 to 4, wherein the thermoplastic resin A comprises at least one resin selected from a polyamide resin, a polyarylene sulfide resin, and a polyolefin resin. 前記熱可塑性樹脂組成物Bに用いる熱可塑性樹脂が、ポリアミド系樹脂、ポリアリーレンサルファイド系樹脂、ポリオレフィン系樹脂から選ばれる少なくとも1種の樹脂からなる、請求項1〜5のいずれかに記載の複合成形品の製造方法。   The composite according to any one of claims 1 to 5, wherein the thermoplastic resin used for the thermoplastic resin composition B comprises at least one resin selected from a polyamide resin, a polyarylene sulfide resin, and a polyolefin resin. Manufacturing method of molded article. 前記熱可塑性樹脂組成物Cに用いる熱可塑性樹脂が、ポリアミド系樹脂、ポリアリーレンサルファイド系樹脂、ポリオレフィン系樹脂から選ばれる少なくとも1種の樹脂からなる、請求項1〜6のいずれかに記載の複合成形品の製造方法。   The composite according to any one of claims 1 to 6, wherein the thermoplastic resin used for the thermoplastic resin composition C comprises at least one resin selected from a polyamide resin, a polyarylene sulfide resin, and a polyolefin resin. Manufacturing method of molded article. 前記連続強化繊維が炭素繊維を含む、請求項1〜7のいずれかに記載の複合成形品の製造方法。   The method according to claim 1, wherein the continuous reinforcing fibers include carbon fibers. 前記1次成形工程において、前記第1のキャビティ内に挿入した連続強化繊維基材を該第1のキャビティ内でピンからなる固定具により固定する、請求項1〜8のいずれかに記載の複合成形品の製造方法。 In the primary molding step, is fixed by a fixture comprising a pin the first inserted continuous reinforcing fiber substrate in a cavity within the first cavity, the composite according to any one of claims 1 to 8 Manufacturing method of molded article.
JP2015256180A 2015-12-28 2015-12-28 Manufacturing method of composite molded products Active JP6666145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015256180A JP6666145B2 (en) 2015-12-28 2015-12-28 Manufacturing method of composite molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256180A JP6666145B2 (en) 2015-12-28 2015-12-28 Manufacturing method of composite molded products

Publications (2)

Publication Number Publication Date
JP2017119373A JP2017119373A (en) 2017-07-06
JP6666145B2 true JP6666145B2 (en) 2020-03-13

Family

ID=59271472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256180A Active JP6666145B2 (en) 2015-12-28 2015-12-28 Manufacturing method of composite molded products

Country Status (1)

Country Link
JP (1) JP6666145B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171739A (en) * 2018-03-29 2019-10-10 東レ株式会社 Manufacturing method of composite molded product

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134105A (en) * 1997-07-24 1999-02-09 Mitsubishi Rayon Co Ltd Fiber reinforced hollow molded article and manufacture thereof
JP2001293745A (en) * 2000-04-14 2001-10-23 Denso Corp Resin molded article
JP2011218757A (en) * 2010-04-14 2011-11-04 Cap Co Ltd Fiber reinforced resin structure member, and method for manufacturing the same
JP2014000885A (en) * 2012-06-19 2014-01-09 Toray Ind Inc Vehicle seat back frame
JP5873887B2 (en) * 2013-05-15 2016-03-01 東芝機械株式会社 Molded product manufacturing apparatus and molded product manufacturing method
WO2015046290A1 (en) * 2013-09-26 2015-04-02 東レ株式会社 Unidirectional fiber-reinforced tape and method for manufacturing same, molded article using same, and method for manufacturing molded article
JP2015093425A (en) * 2013-11-12 2015-05-18 日立化成株式会社 Method for manufacturing molded article

Also Published As

Publication number Publication date
JP2017119373A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP2020097245A (en) Method for producing material composite composed of metal and plastic for forming plastic-metal hybrid component parts
JP4079486B2 (en) Molded product manufacturing method and molded product manufactured by the same method
CA2844134C (en) Method for producing a three-dimensional object from compactable material and the object produced thereby
WO2015162585A2 (en) Molds and methods of making molds having conforming heating and cooling systems
CN108290328B (en) Method for producing composite molded body
KR20120111720A (en) Receptacle manufacturing
EP2598312B1 (en) Method for the riveted fastening of an accessory
US10293570B2 (en) Resin tube, and method of manufacture thereof
US20190283294A1 (en) Hollow profile composite technology
CN108527764A (en) Method for producing composite component
JP6666145B2 (en) Manufacturing method of composite molded products
JP2016083907A (en) Method for producing fiber-reinforced resin-molded member, and method for connecting the member
CN105008106A (en) Method for producing plastic molded part, and injection-molding machine
US11938659B2 (en) Insert to reduce weld line appearance defect in injection molding
US20200061887A1 (en) Hollow profile composite technology
CN101276920B (en) A manufacturing method of membrane electrode assembly, membrane electrode assembly and manufacturing device thereof
Hämäläinen Semi-crystalline polyolefins in fused deposition modeling
US20200086537A1 (en) Injection mold for producing injection-molded components, and method for producing injection-molded components
JP2018140528A (en) Method for manufacturing resin molding
JP2019171739A (en) Manufacturing method of composite molded product
JP5792098B2 (en) Blow molded product manufacturing apparatus and manufacturing method
JP2018192730A (en) Fiber reinforced resin member and method for manufacturing fiber reinforced resin member
US11401394B2 (en) Method for altering polymer properties for molding of parts
WO2019002913A1 (en) Method for producing improved mold inserts and molding method
JP7198454B2 (en) Method for producing molding of fiber-reinforced thermoplastic resin

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170223

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200220

R150 Certificate of patent or registration of utility model

Ref document number: 6666145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250