JP2017083145A - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JP2017083145A
JP2017083145A JP2015215194A JP2015215194A JP2017083145A JP 2017083145 A JP2017083145 A JP 2017083145A JP 2015215194 A JP2015215194 A JP 2015215194A JP 2015215194 A JP2015215194 A JP 2015215194A JP 2017083145 A JP2017083145 A JP 2017083145A
Authority
JP
Japan
Prior art keywords
control
condition
frequency
air conditioner
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015215194A
Other languages
English (en)
Other versions
JP6350485B2 (ja
Inventor
貴裕 仲田
Takahiro Nakata
貴裕 仲田
伊藤 裕
Yutaka Ito
裕 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2015215194A priority Critical patent/JP6350485B2/ja
Publication of JP2017083145A publication Critical patent/JP2017083145A/ja
Application granted granted Critical
Publication of JP6350485B2 publication Critical patent/JP6350485B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】冷媒圧力の過度の上昇を抑制する空気調和機を提供する。
【解決手段】空気調和機100は、圧縮機204と、室内熱交換器301と、室外熱交換器207と、室内制御部311と、室外制御部211とを備える。圧縮機204は、周波数を変更可能である。室内熱交換器301は、圧縮機204により循環させられる冷媒と室内空気とを熱交換して調和空気を生成する。室外熱交換器207は、冷媒と室外空気とを熱交換する。室内制御部311は、運転モードを設定する。室外制御部211は、圧縮機204の周波数制御を行う。室外制御部211は、運転モードが通常暖房モードよりも高温の調和空気が生成される高温風モードに設定された場合に、冷媒圧力の抑制レベルが第1抑制レベルに設定された第1条件下で周波数制御を行う。その後に、抑制レベルが第1抑制レベルよりも低い第2抑制レベルに設定された第2条件下で周波数制御を行う。
【選択図】図5

Description

本発明は、空気調和機に関する。
暖房運転の開始時に熱交換器温度に対してファンの上限風量を高く設定し、安定時にファンの上限風量を低く設定する空気調和機が知られている(特許文献1(特開平5−87391号公報)参照)。
この種の空気調和機は、一般的な暖房モードよりも高温風を吹出す高温風モードを暖房機能として備える場合がある。運転モードが高温風モードに設定された場合には、空気調和機は、室内ファンの回転数を低下させ、かつ、圧縮機の周波数を増加させることにより、凝縮器の温度を上昇させる。このとき、凝縮器の温度が上昇し過ぎると、すなわち、冷媒圧力が上昇し過ぎると、圧縮機が停止してしまう。
本発明の課題は、冷媒圧力の過度の上昇を抑制する空気調和機を提供することである。
本発明の第1観点に係る空気調和機は、圧縮機と、室内熱交換器と、室外熱交換器と、設定部と、制御部とを備える。圧縮機は、周波数を変更可能である。室内熱交換器は、圧縮機により循環させられる冷媒と室内空気とを熱交換して調和空気を生成する。室外熱交換器は、冷媒と室外空気とを熱交換する。設定部は、運転モードを設定する。制御部は、圧縮機の周波数制御を行う。制御部は、運転モードが第1暖房モードよりも高温の調和空気が生成される第2暖房モードに設定された場合に、冷媒圧力の抑制レベルが第1抑制レベルに設定された第1条件下で周波数制御を行う。その後に、抑制レベルが第1抑制レベルよりも低い第2抑制レベルに設定された第2条件下で周波数制御を行う。
本発明の第1観点に係る空気調和機では、制御部は、運転モードが第2暖房モードに設定された場合に、直ちに第2条件下で周波数制御を行うのではなく、第2条件下での周波数制御に先立って、第1条件下で周波数制御を行う。第2条件下での周波数制御に先立って、冷媒圧力の抑制レベルがより高い第1抑制レベルに設定された第1条件下で周波数制御を行うことにより、冷媒圧力の過度の上昇を抑制することができる。
本発明の第2観点に係る空気調和機においては、冷媒圧力が予め設定されている範囲内に維持されている時間が、予め設定されている時間に達した場合に、制御部は、第1条件下での周波数制御から第2条件下での周波数制御に移行する。
本発明の第2観点に係る空気調和機では、冷媒圧力が予め設定されている範囲内に維持されている時間が、予め設定されている時間に達した場合、すなわち、冷媒圧力の安定性が確保されている場合に、制御部は、第1条件下での周波数制御から第2条件下での周波数制御に移行する。冷媒圧力の安定性が確保された後に第2条件下での周波数制御に移行するので、冷媒圧力の過度の上昇を抑制することができる。
本発明の第3観点に係る空気調和機においては、第1抑制レベルに設定された第1条件下は、垂下制御の開始閾値が第1閾値に設定された条件下である。第2抑制レベルに設定された第2条件下は、開始閾値が第2閾値に設定された条件下である。垂下制御は、周波数制御に含まれ、周波数を垂下する制御である。第2閾値は、第1閾値よりも大きい。
本発明の第3観点に係る空気調和機では、制御部は、垂下制御の開始閾値に応じて、周波数制御を行う。制御部は、開始閾値が第1閾値に設定された条件下では、開始閾値が第2閾値に設定された条件下よりも、早い段階で垂下制御を行う。したがって、冷媒圧力の過度の上昇を抑制することができる。
本発明の第4観点に係る空気調和機においては、周波数制御は、アップ制御および無変化制御の少なくとも一方を含む。アップ制御は、周波数を上昇させる制御である。無変化制御は、周波数を維持する制御である。第1条件下でのアップ制御と第2条件下でのアップ制御、および第1条件下での無変化制御と第2条件下での無変化制御の少なくとも一方においては、制御部は、互いに異なる開始閾値を設定する。
本発明の第4観点に係る空気調和機では、第1条件および第2条件に応じて、アップ制御の開始閾値および無変化制御の開始閾値を適宜設定することができる。
本発明の第5観点に係る空気調和機においては、第1条件下でのアップ制御の開始閾値は、第2条件下でのアップ制御の開始閾値と同一である。
本発明の第5観点に係る空気調和機では、アップ制御の開始閾値は、第1条件下および第2条件下で共通であるので、制御部は、第1条件下から第2条件下に移行するに当たって、アップ制御を維持し易くなる。
本発明の第6観点に係る空気調和機は、凝縮器と、温度センサとをさらに備える。温度センサは、凝縮器の温度を検出する。制御部は、温度センサの出力値に基づいて、周波数制御を行う。
本発明の第6観点に係る空気調和機では、制御部は、温度センサの出力値に基づいて、周波数制御を行うので、空気調和機が圧力センサを備えなくてもよい。
本発明の第7観点に係る空気調和機は、圧縮機の吐出側での冷媒圧力を検出する圧力センサをさらに備える。制御部は、圧力センサの出力値に基づいて、周波数制御を行う。
本発明の第7観点に係る空気調和機では、制御部は、圧力センサの出力値に基づいて、周波数制御を行う。これにより、周波数制御をより高精度で行うことができる。
本発明の第8観点に係る空気調和機においては、運転モードが第1暖房モードに設定された場合に、制御部は、第1条件下で周波数制御を行う。
本発明の第8観点に係る空気調和機では、運転モードが第1暖房モードに設定された場合には、制御部は、第1条件下で周波数制御を行う。したがって、運転モードが第1暖房モードから第2暖房モードに切り換えられた場合には、制御部は、第1条件下で周波数制御を継続し、その後、第2条件下で周波数制御を行う。すなわち、運転モードが第1暖房モードに設定された場合と、運転モードが第2暖房モードに設定された場合とで一部の条件が共通するので、プログラムを簡略化することができる。
本発明の第9観点に係る空気調和機においては、運転モードが第2暖房モードから第1暖房モードに切り換えられた場合に、制御部は、第1条件下で周波数制御を行う。
本発明の第9観点に係る空気調和機では、運転モードが第1暖房モードに切り換えられた場合には、制御部は、第2条件下で周波数制御を行うことなく、第1条件下で周波数制御を行う。すなわち、第2条件下での周波数制御から第1条件下での周波数制御へ段階的に切り換えるのではなく、直ちに第1条件下での周波数制御へ切り換える。これにより、周波数制御が段階的に切り換わる場合に比べて、圧縮機の周波数をより下げることができる。
本発明の第1観点に係る空気調和機では、制御部は、第2条件下での周波数制御に先立って、冷媒圧力の抑制レベルがより高い第1抑制レベルに設定された第1条件下で周波数制御を行う。これにより、冷媒圧力の過度の上昇を抑制することができる。
本発明の第2観点に係る空気調和機では、冷媒圧力の安定性が確保された後に第2条件下での周波数制御に移行するので、冷媒圧力の過度の上昇を抑制することができる。
本発明の第3観点に係る空気調和機では、制御部は、開始閾値が第1閾値に設定された条件下では、開始閾値が第2閾値に設定された条件下よりも、早い段階で垂下制御を行う。したがって、冷媒圧力の過度の上昇を抑制することができる。
本発明の第4観点に係る空気調和機では、第1条件および第2条件に応じて、アップ制御の開始閾値および無変化制御の開始閾値を適宜設定することができる。
本発明の第5観点に係る空気調和機では、アップ制御の開始閾値は、第1条件下および第2条件下で共通であるので、制御部は、第1条件下から第2条件下に移行するに当たって、アップ制御を維持し易くなる。
本発明の第6観点に係る空気調和機では、制御部は、温度センサの出力値に基づいて、周波数制御を行うので、空気調和機が圧力センサを備えなくてもよい。
本発明の第7観点に係る空気調和機では、制御部は、圧力センサの出力値に基づいて、周波数制御を行う。これにより、周波数制御をより高精度で行うことができる。
本発明の第8観点に係る空気調和機では、運転モードが第1暖房モードに設定された場合と、運転モードが第2暖房モードに設定された場合とで一部の条件が共通するので、プログラムを簡略化することができる。
本発明の第9観点に係る空気調和機では、第2条件下での周波数制御から第1条件下での周波数制御へ段階的に切り換えるのではなく、直ちに第1条件下での周波数制御へ切り換える。これにより、周波数制御が段階的に切り換わる場合に比べて、圧縮機の周波数をより下げることができる。
空気調和機の構成の一例を説明する図である。 空気調和機の機能ブロックの一例を説明する図である。 ピークカット制御ゾーンの一例を説明する図である。 ピークカット制御ゾーンの設定処理のフローチャートの一例を示す図である。 安定処理のフローチャートの一例を示す図である。
本発明の実施形態を以下に示す。なお、以下の実施形態は、具体例に過ぎず、特許請求の範囲に係る発明を限定するものではない。
<第1実施形態>
(1)空気調和機の概略構成
図1は、空気調和機100の構成の一例を説明する図である。空気調和機100は、熱源側ユニットとしての空調室外機200と、利用側ユニットとしての空調室内機300とを含む。空調室外機200と空調室内機300は、液冷媒の冷媒連絡配管101およびガス冷媒の冷媒連絡配管102を介して、互いに接続されている。
空気調和機100の冷媒回路は、空調室外機200、空調室内機300、冷媒連絡配管101、および冷媒連絡配管102によって、構成されている。より詳細には、冷媒回路は、膨張弁203、圧縮機204、四路切換弁205、アキュムレータ206、室外熱交換器207、および室内熱交換器301を含む。
(2)空気調和機の詳細構成
(2−1)空調室内機
空調室内機300は、室内熱交換器301と、室内ファン302とを有する。室内熱交換器301は、例えば、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィンアンドチューブ型熱交換器である。室内熱交換器301は、冷房運転時に冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時に冷媒の凝縮器として機能して室内空気を加熱する。すなわち、冷媒と室内空気とを熱交換して調和空気を生成する。生成された調和空気は、空調室内機300の吹出口(図示せず)から吹き出される。室内ファン302は、空気を室内熱交換器301に供給する。
(2−2)空調室外機
空調室外機200は、ガス冷媒配管201と、液冷媒配管202と、膨張弁203と、圧縮機204と、四路切換弁205と、アキュムレータ206と、室外熱交換器207と、室外ファン208とを有する。ガス冷媒配管201の一端は、室外熱交換器207のガス側端部に接続され、ガス冷媒配管201の他端は、四路切換弁205に接続されている。液冷媒配管202の一端は、室外熱交換器207の液側端部に接続され、液冷媒配管202の他端は、膨張弁203に接続されている。
膨張弁203は、冷媒を減圧する機構である。膨張弁203は、室外熱交換器207と冷媒連絡配管101の間に設けられている。圧縮機204は、圧縮機用モータによって駆動される密閉式圧縮機である。圧縮機用モータは、インバータにより運転周波数を制御する。これにより、圧縮機204の容量を制御する。
四路切換弁205は、冷媒が流れる方向を切り換える機構である。冷房運転時には、図1の四路切換弁205の実線に示されるように、四路切換弁205は、圧縮機204の吐出側の冷媒配管とガス冷媒配管201を接続すると共に、アキュムレータ206を介して、圧縮機204の吸入側の冷媒配管と冷媒連絡配管102を接続する。一方、暖房運転時には、図1の四路切換弁205の破線に示されるように、四路切換弁205は、圧縮機204の吐出側の冷媒配管と冷媒連絡配管102を接続すると共に、アキュムレータ206を介して、圧縮機204の吸入側の冷媒配管とガス冷媒配管201を接続する。
アキュムレータ206は、冷媒を気相と液相に分ける。アキュムレータ206は、圧縮機204と四路切換弁205の間に設けられている。
室外熱交換器207は、冷房運転時に冷媒の凝縮器として機能し、暖房運転時に冷媒の蒸発器として機能する。室外ファン208は、空気を室外熱交換器207に供給する。
(3)空気調和機の空調動作
(3−1)冷房運転
膨張弁203の開度は、室内熱交換器301の出口(すなわち、室内熱交換器301のガス側)における冷媒の過熱度が一定になるように、調整されている。冷房運転時の四路切換弁205の接続状態は、既に説明した通りである。
以上のような状態の冷媒回路において、圧縮機204から吐出された冷媒は、四路切換弁205を通って室外熱交換器207へ流入し、室外空気へ放熱して凝縮する。室外熱交換器207から流出された冷媒は、膨張弁203を通過するときに膨張する。その後、室内熱交換器301へ流入し、室内空気から吸熱して蒸発する。
(3−2)暖房運転
膨張弁203の開度は、室内熱交換器301の出口における冷媒の過冷却度が過冷却度目標値で一定になるように、調節されている。暖房運転時の四路切換弁205の接続状態は、既に説明した通りである。
以上のような状態の冷媒回路において、圧縮機204から吐出された冷媒は、四路切換弁205を通って室内熱交換器301へ流入し、室内空気へ放熱して凝縮する。室内熱交換器301から流出した冷媒は、膨張弁203を通過するときに膨張する。その後、室外熱交換器207へ流入し、室外空気から吸熱して蒸発する。室外熱交換器207から流出した冷媒は、四路切換弁205を通過後に再び圧縮機204へ吸入されて圧縮される。
(4)空気調和機の機能ブロック
図2は、空気調和機100の機能ブロックの一例を説明する図である。空調室外機200は、既に説明した圧縮機204に加えて、室外制御部211を含む。空調室内機300は、既に説明した室内ファン302に加えて、室内制御部311と、温度センサ312と、リモートコントローラ313とを含む。
温度センサ312は、室内熱交換器温度を検出する。室内熱交換器温度は、室内熱交換器301の2相域での温度である。温度センサ312は、室内制御部311に電気的に接続されている。温度センサ312は、検出した室内熱交換器温度を室内制御部311に送信する。
リモートコントローラ313は、ユーザ操作に基づいて、赤外線により、室内制御部311にコマンド信号を送信する。コマンド信号は、運転モードの設定に関するコマンド信号を含む。ユーザは、リモートコントローラ313を操作することによって、空調室内機300の運転モードを設定することができる。
室内制御部311は、MPU、ROMおよびRAM等から構成されたコンピュータである。ROMには、後述の各種の開始閾値等が予め記憶されている。室内制御部311は、室内ファン302に電気的に接続されている。
室内制御部311は、リモートコントローラ313から送信されるコマンド信号に基づいて、運転モードを設定する設定部としての役割を担う。運転モードは、第1暖房モードの一例としての通常暖房モード、および第2暖房モードの一例としての高温風モードを含む。すなわち、空気調和機100は、通常暖房モードおよび高温風モードを暖房機能として備える。高温風モードの吹出し温度は、通常暖房モードの吹出し温度よりも高い。すなわち、高温風モードでは、通常暖房モードよりも高温の調和空気が生成される。
運転モードが高温風モードに設定された場合には、室内制御部311が室内ファン302の回転数を低下させると共に、室外制御部211が圧縮機204の運転周波数を増加させることにより、室内熱交換器温度を上昇させる。ここで、室外制御部211は、室内の目標温度と室内の実温度との温度差Δdに応じて、圧縮機204の運転周波数を決定する。室外制御部211は、室内の目標温度として、設定し得る最大値を設定する。これにより、温度差Δdが増加するので、運転周波数を増加させることができる。
運転モードが通常暖房モードに設定されている場合に、ユーザから高温風モードの機能オンの要求があれば、室内制御部311は、通常暖房モードから高温風モードに切り換える。一方、運転モードが高温風モードに設定されている場合に、ユーザから高温風モードの機能オフの要求があれば、室内制御部311は、高温風モードから通常暖房モードに切り換える。また、運転モードが高温風モードに設定されてから、予め設定されている時間が経過した場合にも、室内制御部311は、高温風モードから通常暖房モードに切り換える。
室内制御部311は、高温風モードの設定に関する制御信号を室外制御部211に送信する。高温風モードの設定に関する制御信号は、高温風モードが設定された旨を示す高温風通知、または高温風モードが解除された旨を示す高温風解除通知を示す制御信号である。運転モードが高温風モードに設定された場合に、室内制御部311は、高温風通知を室外制御部211に送信する。また、室内制御部311は、室内熱交換器温度、各種の開始閾値を室外制御部211に送信する。
室外制御部211は、MPU、ROMおよびRAM等から構成されたコンピュータである。室外制御部211は、圧縮機204に電気的に接続されている。暖房運転時には、室外制御部211は、室内制御部311から送信される室内熱交換器温度に応じて、圧縮機204の周波数制御を行う。より詳細には、室内熱交換器温度に応じて、後述のピークカット制御ゾーンを設定し、圧縮機204の運転周波数の制限値を適宜設定する。さらに、設定した制限値内で圧縮機204の運転周波数を制御する。
また、詳しくは後述するが、室外制御部211は、高温風通知を受信した場合に、第1抑制レベルに設定された第1条件下で周波数制御した後に、第2抑制レベルに設定された第2条件下で周波数制御を行う。第1抑制レベルおよび第2抑制レベルは、冷媒圧力の抑制レベルである。第1抑制レベルは、第2抑制レベルよりも高い。本実施形態においては、抑制レベルは、主に、後述の垂下制御の開始閾値によって決定される。
室外制御部211は、室内熱交換器温度が予め設定されている温度以上に上昇すると、圧縮機204の運転周波数を決定するに当たって、圧縮機204の運転周波数の制限値を設定するピークカット制御を実行する。詳しくは後述するが、本実施形態においては、ピークカット制御に関するゾーンとして、2種類のピークカット制御ゾーンが設定されている。
(5)ピークカット制御ゾーン
図3は、ピークカット制御ゾーンの一例を説明する図である。既に説明したように、本実施形態においては、2種類のピークカット制御ゾーンが設定されている。図3の左側のピークカット制御ゾーンは、通常のピークカット制御ゾーンを示し、図3の右側のピークカット制御ゾーンは、高温風モード用のピークカット制御ゾーンを示す。通常のピークカット制御ゾーンは、例えば、運転モードが通常暖房モードに設定された場合に、利用される。
2種類のピークカット制御ゾーンのそれぞれは、5つのゾーンを有する。5つのゾーンは、停止ゾーン、垂下ゾーン、無変化ゾーン、アップゾーン、および復帰ゾーンを含む。5つのゾーンは、室内熱交換器温度に応じて区分けされている。停止ゾーン、垂下ゾーン、無変化ゾーン、アップゾーン、復帰ゾーンの順に、室内熱交換器温度は低くなる。
本実施形態においては、矢印A1および矢印A2に示されるように、室内熱交換器温度の上昇時の各ゾーンの開始閾値は、室内熱交換器温度の下降時の各ゾーンの開始閾値とは異なる。ここでは、主に、室内熱交換器温度の上昇時の各ゾーンの開始閾値を説明する。
停止ゾーンは、圧縮機204を停止させるゾーンである。開始閾値STは、停止制御の開始閾値である。開始閾値STは、通常のピークカット制御ゾーンと高温風モード用のピークカット制御ゾーンとで共通である。開始閾値STは、許容される冷媒圧力に応じて予め設定されている。
室外制御部211は、室内熱交換器温度が開始閾値STに達した場合に、停止制御を実行する。すなわち、圧縮機204を停止させる。
垂下ゾーンは、圧縮機204の運転周波数の制限値を一定時間毎に垂下させるゾーンである。第1閾値としての開始閾値Dfは、通常のピークカット制御ゾーンでの垂下制御の開始閾値である。第2閾値としての開始閾値Dsは、高温風モード用のピークカット制御ゾーンでの垂下制御の開始閾値である。開始閾値Dsは、開始閾値Dfよりも大きい。このため、高温風モード用の垂下ゾーンの幅は、通常の垂下ゾーンの幅よりも狭い。換言すると、開始閾値STと開始閾値Dsの差は、開始閾値STと開始閾値Dfの差よりも小さい。例えば、垂下制御の開始閾値Dsを58℃程度に設定すれば、吐出ガスを利用することにより、高温風モードの吹出し温度として60℃を実現することができる。
本実施形態においては、上述の第1抑制レベルに設定された第1条件下とは、垂下制御の開始閾値が開始閾値Dfに設定された条件下である。第2抑制レベルに設定された第2条件下は、垂下制御の開始閾値が開始閾値Dsに設定された条件下である。
室外制御部211は、通常のピークカット制御ゾーンにおいては、室内熱交換器温度が開始閾値Dfに達した場合に、垂下制御を実行する。すなわち、圧縮機204の運転周波数の制限値を一定時間毎に垂下させる。同様に、高温風モード用のピークカット制御ゾーンにおいては、室内熱交換器温度が開始閾値Dsに達した場合に、垂下制御を実行する。室外制御部211は、通常のピークカット制御ゾーンと高温風モード用のピークカット制御ゾーンとで、制限値の垂下速度を共通にしてもよいし、異ならせてもよい。圧縮機204の運転周波数の制限値が垂下するので、制限値の垂下に伴い、圧縮機204の運転周波数も低下する。
無変化ゾーンは、圧縮機204の運転周波数の制限値を変化させないゾーンである。開始閾値Mfは、通常のピークカット制御ゾーンでの無変化制御の開始閾値である。開始閾値Msは、高温風モード用のピークカット制御ゾーンでの無変化制御の開始閾値である。開始閾値Msは、開始閾値Mfよりも大きい。
室外制御部211は、通常のピークカット制御ゾーンにおいては、室内熱交換器温度が開始閾値Mfに達した場合に、無変化制御を実行する。すなわち、圧縮機204の運転周波数の制限値を維持する。同様に、高温風モード用のピークカット制御ゾーンにおいては、室内熱交換器温度が開始閾値Msに達した場合に、無変化制御を実行する。
アップゾーンは、圧縮機204の運転周波数の制限値を一定時間毎に上昇させるゾーンである。開始閾値UPは、アップ制御の開始閾値である。本実施形態においては、開始閾値UPは、通常のピークカット制御ゾーンと高温風モード用のピークカット制御ゾーンとで共通である。
室外制御部211は、室内熱交換器温度が開始閾値UPに達した場合に、アップ制御を実行する。すなわち、圧縮機204の運転周波数の制限値を一定時間毎に上昇させる。室外制御部211は、通常のピークカット制御ゾーンと高温風モード用のピークカット制御ゾーンとで、制限値の上昇速度を共通にしてもよいし、異ならせてもよい。圧縮機204の運転周波数の制限値が上昇するので、制限値の上昇に伴い、圧縮機204の運転周波数も上昇する。
復帰ゾーンは、圧縮機204の運転周波数の制限値を解除するゾーンである。開始閾値REは、室内熱交換器温度の下降時における、復帰制御の開始閾値である。本実施形態においては、開始閾値REは、通常のピークカット制御ゾーンと高温風モード用のピークカット制御ゾーンとで共通である。
室外制御部211は、室内熱交換器温度が開始閾値REに達した場合に、復帰制御を実行する。すなわち、圧縮機204の運転周波数の制限値を解除する。
(6)フローチャート
図4は、ピークカット制御ゾーンの設定処理のフローチャートの一例を示す図である。本フローチャートは、空気調和機100の電源がオンされ、かつ、運転モードが通常暖房モードに設定された場合に開始される。
室外制御部211は、運転モードが高温風モードに設定されたかを判定する(ステップS101)。室外制御部211は、高温風通知を受信したかを判定することにより、運転モードが高温風モードに設定されたかを判定することができる。
室外制御部211は、運転モードが高温風モードに設定されたと判定した場合には(ステップS101でYES)、後述の安定処理を実行する(ステップS102)。その後、室内熱交換器温度を上昇させるべく、高温風モード用のピークカット制御ゾーンを設定する。このとき、室外制御部211は、室内熱交換器温度を上昇させるべく、圧縮機204の周波数を上昇させる。なお、室外制御部211が、直ちに高温風モード用のピークカット制御ゾーンを設定するのではなく、その設定に先立って、後述の安定処理を実行するのは、暖房運転の開始時のように、冷媒圧力が上昇中の状況においては、室内熱交換器温度が停止制御の開始閾値を超えてしまう恐れがあるためである。
室外制御部211は、安定処理の終了後に、高温風モード用のピークカット制御ゾーンを設定する(ステップS103)。より詳細には、図3の高温風モード用のピークカット制御ゾーンを例に挙げると、垂下制御の開始閾値として開始閾値Dsを設定する。同様に、無変化制御の開始閾値として開始閾値Msを設定し、アップ制御の開始閾値として開始閾値UPを設定する。
室外制御部211は、高温風モードが終了したかを判定する(ステップS104)。室外制御部211は、高温風解除通知を受信したかを判定することにより、高温風モードが終了したかを判定することができる。室外制御部211は、高温風モードが終了していないと判定した場合には(ステップS104でNO)、高温風モード用のピークカット制御ゾーンの各種の開始閾値を維持する。
室外制御部211は、高温風モードが終了したと判定した場合(ステップS104でYES)、すなわち、運転モードが通常暖房モードに復帰したと判定した場合には、通常のピークカット制御ゾーンを設定する(ステップS105)。より詳細には、図3の通常のピークカット制御ゾーンを例に挙げると、垂下制御の開始閾値として開始閾値Dfを設定する。同様に、無変化制御の開始閾値として開始閾値Mfを設定し、アップ制御の開始閾値として開始閾値UPを設定する。このとき、室外制御部211は、室内熱交換器温度を低下させるべく、圧縮機204の周波数を低下させる。ステップS101において、運転モードが高温風モードでないと判定した場合(ステップS101でNO)、すなわち、運転モードが通常暖房モードであると判定した場合にも、室外制御部211は、通常のピークカット制御ゾーンを設定する(ステップS105)。
室外制御部211は、空気調和機100の電源がオフされたか、または運転モードが他のモードに切り換えられたかを判定する(ステップS106)。室外制御部211は、空気調和機100の電源がオフされておらず、かつ、運転モードが他のモードに切り換えられていないと判定した場合には(ステップS106でNO)、ステップS101に戻る。室外制御部211は、空気調和機100の電源がオフされたか、または、運転モードが他のモードに切り換えられたと判定した場合には(ステップS106でYES)、一連の処理を終了する。
図5は、安定処理のフローチャートの一例を示す図である。室外制御部211は、高温風モード用のピークカット制御ゾーンの設定に先立って、通常のピークカット制御ゾーンを設定する(ステップS201)。
室外制御部211は、室内熱交換器温度がアップ制御の開始閾値以上であるかを判定する(ステップS202)。図3を例に挙げると、室外制御部211は、室内熱交換器温度が開始閾値UP以上であるかを判定する。
室外制御部211は、室内熱交換器温度がアップ制御の開始閾値未満であると判定した場合には(ステップS202でNO)、そのまま待機する。すなわち、室内熱交換器温度の上昇を待つ。室外制御部211は、室内熱交換器温度がアップ制御の開始閾値以上であると判定した場合には(ステップS202でYES)、冷媒圧力が安定しているかを判定する。本実施形態においては、冷媒圧力に相関する室内熱交換器温度が安定しているかを判定することにより、冷媒圧力の安定を判定する。具体的には、下記の通りである。
室外制御部211は、まずは、タイマを開始する(ステップS203)。次に、室外制御部211は、室内熱交換器温度が垂下ゾーン、無変化ゾーン、またはアップゾーン内に収まっているかを判定する(ステップS204)。
室外制御部211が、室内熱交換器温度が垂下ゾーン、無変化ゾーン、またはアップゾーン内に収まっていないと判定した場合には(ステップS204でNO)、室内熱交換器温度が安定していないと判定する。この場合には、室内熱交換器温度が復帰ゾーン内であるか判定する(ステップS205)。より詳細には、室内熱交換器温度がアップ制御の開始閾値未満であるかを判定する。
室外制御部211は、室内熱交換器温度が復帰ゾーン内であると判定した場合には(ステップS205でYES)、ステップS202に戻る。一方、室内熱交換器温度が復帰ゾーン内でないと判定した場合には(ステップS205でNO)、室内熱交換器温度は、停止ゾーン内である。すなわち、停止閾値を超えている。この場合には、室外制御部211は、圧縮機204を停止させるので、ピークカット制御ゾーンの設定処理を終了する。
ステップS204において、室内熱交換器温度が垂下ゾーン、無変化ゾーン、またはアップゾーン内に収まっていると判定した場合には(ステップS204でYES)、室外制御部211は、予め設定されている時間が経過したかを判定する(ステップS207)。室外制御部211は、予め設定されている時間が経過していないと判定した場合には(ステップS207でNO)ステップS204に戻る。室外制御部211は、予め設定されている時間が経過したと判定した場合には(ステップS207でYES)、室内熱交換器温度が安定していると判定して、一連の処理を終了する。
(7)空気調和機の特徴
本実施形態の空気調和機100は、運転モードが高温風モードに設定された場合に、室内ファン302の回転数を低下させ、かつ、圧縮機204の運転周波数を増加させることにより、室内熱交換器温度を上昇させる。このとき、室内熱交換器温度が上昇し過ぎると、すなわち、冷媒圧力が上昇し過ぎると、圧縮機204が停止してしまう。
本実施形態の空気調和機100においては、室外制御部211は、運転モードが高温風モードに設定された場合に、第1条件下で周波数制御した後に第2条件下で周波数制御を行う。すなわち、室外制御部211は、運転モードが高温風モードに設定された場合に、直ちに第2条件下で周波数制御を行うのではなく、第2条件下での周波数制御に先立って、第1条件下で周波数制御を行う。第2条件下での周波数制御に先立って、冷媒圧力の抑制レベルがより高い第1抑制レベルに設定された第1条件下で周波数制御を行うことにより、冷媒圧力の過度の上昇を抑制することができる。
本実施形態の空気調和機100においては、室内熱交換器温度が通常のピークカット制御ゾーンにおける、垂下ゾーン、無変化ゾーン、またはアップゾーン内に維持されている時間が、予め設定されている時間に達した場合に、室外制御部211は、第1条件下での周波数制御から第2条件下での周波数制御に移行する。室内熱交換器温度の安定性、すなわち、冷媒圧力の安定性が確保された後に第2条件下での周波数制御に移行するので、冷媒圧力の過度の上昇を抑制することができる。
本実施形態の空気調和機100においては、第1抑制レベルに設定された第1条件下とは、垂下制御の開始閾値が開始閾値Dfに設定された条件下である。第2抑制レベルに設定された第2条件下は、垂下制御の開始閾値が開始閾値Dsに設定された条件下である。室外制御部211は、第1条件下では、第2条件下よりも、早い段階で垂下制御を行う。したがって、冷媒圧力の過度の上昇を抑制することができる。
ここで、仮に、第2条件下でのアップ制御の開始閾値が、第1条件下でのアップ制御の開始閾値よりも大きければ、高温風モード用のピークカット制御ゾーンに移行した途端に、室内熱交換温度が復帰ゾーンに含まれる場合があり得る。
本実施形態の空気調和機100においては、第1条件下でのアップ制御の開始閾値は、第2条件下でのアップ制御の開始閾値と同一である。したがって、室外制御部211は、第1条件下から第2条件下に移行するに当たって、復帰ゾーンに移行することなく、アップ制御を維持し易くなる。
本実施形態の空気調和機100においては、第1条件下での無変化制御の開始閾値は、第2条件下での無変化制御の開始閾値とは異なる。したがって、第1条件および第2条件に応じて、無変化制御の開始閾値を適宜設定することができる。
本実施形態の空気調和機100においては、室外制御部211は、温度センサ312の出力値に基づいて、周波数制御を行う。したがって、空気調和機100が圧力センサを備えなくてもよい。
本実施形態の空気調和機100においては、運転モードが通常暖房モードに設定された場合には、室外制御部211は、第1条件下で周波数制御を行う。したがって、運転モードが通常暖房モードから高温風モードに切り換えられた場合には、室外制御部211は、第1条件下で周波数制御を継続し、その後、第2条件下で周波数制御を行う。すなわち、運転モードが通常暖房モードに設定された場合と、運転モードが高温風モードに設定された場合とで一部の条件が共通するので、プログラムを簡略化することができる。
本実施形態の空気調和機100においては、運転モードが高温風モードから通常暖房モードに切り換えられた場合に、室外制御部211は、第2条件下で周波数制御を行うことなく、第1条件下で周波数制御を行う。すなわち、第2条件下での周波数制御から第1条件下での周波数制御へ段階的に切り換えるのではなく、直ちに第1条件下での周波数制御へ切り換える。これにより、周波数制御が段階的に切り換わる場合に比べて、圧縮機の周波数をより下げることができる。
<変形例>
本発明の実施形態に適用可能な変形例を説明する。
(1)変形例A
以上の説明では、空気調和機100は、温度センサ312を備えたが、温度センサ312の代わりに、または温度センサ312に加えて、圧力センサを備えてもよい。圧力センサは、圧縮機204の吐出側での冷媒圧力を検出する。室外制御部211は、圧力センサの出力値に応じて、圧縮機204の周波数制御を行う。これにより、より高精度で周波数制御を行うことができる。また、室外制御部211は、圧力センサの出力値を室内熱交換器温度に換算して周波数制御に用いてもよいし、温度センサ312の出力値を冷媒圧力に換算して周波数制御に用いてもよい。冷媒圧力に相関する、他のセンサの出力値を冷媒圧力または室内熱交換器温度に換算して、周波数制御に用いてもよい。
(2)変形例B
以上の説明では、室外制御部211は、第1抑制レベルに設定された条件下で周波数制御した後に、第2抑制レベルに設定された条件下で周波数制御した。すなわち、周波数制御は、2段階に切り換えられた。しかしながら、周波数制御は、3段階以上に切り換えられてもよい。例えば、第1抑制レベルと第2抑制レベルの間に、第3抑制レベルが設定されていてもよい。この場合に、室外制御部211は、第1抑制レベルに設定された条件下および第3抑制レベルに設定された条件下で周波数制御した後に、第2抑制レベルに設定された条件下で周波数制御を行う。
(3)変形例C
以上の説明では、通常暖房モードとは異なる暖房機能として高温風モードを例に挙げたが、通常暖房モードよりも室内熱交換器301の温度が上昇するモードであれば、高温風モードに限られない。
(4)変形例D
以上の説明では、ピークカット制御ゾーンは、無変化ゾーンを含んだが、無変化ゾーンを含まなくてもよい。以上の説明では、アップ制御の開始閾値は、通常のピークカット制御ゾーンと高温風モード用のピークカット制御ゾーンとで共通であったが、異ならせてもよい。例えば、高温風モード用のピークカット制御ゾーンのアップ制御の開始閾値は、通常のピークカット制御ゾーンのアップ制御の開始閾値よりも大きくてもよい。
(5)変形例E
以上の説明では、第1条件および第2条件は、垂下制御の開始閾値を異ならせることにより設定されたが、垂下制御の垂下速度を異ならせることにより設定されてもよい。この場合には、垂下制御の開始閾値は、第1条件および第2条件で共通であってもよい。例えば、第1条件は、垂下速度が第1速度に設定された条件であり、第2条件は、垂下速度が第2速度に設定された条件下である。第1速度は、第2速度よりも速い。以上のように、第1速度が第2速度よりも速ければ、第2条件下での周波数制御に先立って、第1条件下で周波数制御を行うことにより、冷媒圧力の過度の上昇を抑制することができる。
(6)変形例F
以上の説明では、運転モードが高温風モードから通常暖房モードに切り換えられた場合に、室外制御部211は、第2条件下で周波数制御を行うことなく、第1条件下で周波数制御を行ったが、第1条件下での周波数制御に先立って、第2条件下で周波数制御を行ってもよい。すなわち、第2条件下での周波数制御から第1条件下での周波数制御へ段階的に切り換えてもよい。
(7)変形例G
以上の説明では、運転モードが高温風モードに設定された場合には、室外制御部211は、運転周波数を増加させるべく、室内の目標温度として、設定し得る最大値を設定したが、温度差Δdそのものを設定し得る最大値に設定してもよい。目標温度の最大値と実温度との差が小さくなるほど、運転周波数の増加が困難になるので、特に、実温度が比較的高い場合に有効である。
以上のように、本発明は実施形態を用いて説明されたが、本発明の技術的範囲は上述の実施形態に記載の範囲に限定されない。多様な変更または改良を上述の実施形態に加えることが可能であることは、当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることは、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中に示した装置、プログラム、および方法における動作、手順、ステップ、段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いる場合でない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
100 空気調和機
204 圧縮機
207 室外熱交換器
211 室外制御部
301 室内熱交換器
311 室内制御部
312 温度センサ
特開平5−87391号公報

Claims (9)

  1. 周波数を変更可能な圧縮機(204)と、
    前記圧縮機により循環させられる冷媒と室内空気とを熱交換して調和空気を生成する室内熱交換器(301)と、
    前記冷媒と室外空気とを熱交換する室外熱交換器(207)と、
    運転モードを設定する設定部(311)と、
    前記圧縮機の周波数制御を行う制御部(211)と、
    を備え、
    前記制御部は、前記運転モードが第1暖房モードよりも高温の前記調和空気が生成される第2暖房モードに設定された場合に、冷媒圧力の抑制レベルが第1抑制レベルに設定された第1条件下で前記周波数制御した後に、前記抑制レベルが前記第1抑制レベルよりも低い第2抑制レベルに設定された第2条件下で前記周波数制御を行う、
    空気調和機(100)。
  2. 前記冷媒圧力が予め設定されている範囲内に維持されている時間が、予め設定されている時間に達した場合に、前記制御部は、前記第1条件下での前記周波数制御から前記第2条件下での前記周波数制御に移行する、
    請求項1に記載の空気調和機。
  3. 前記第1抑制レベルに設定された第1条件下は、垂下制御の開始閾値が第1閾値に設定された条件下であり、
    前記第2抑制レベルに設定された第2条件下は、前記開始閾値が第2閾値に設定された条件下であり、
    前記垂下制御は、前記周波数制御に含まれ、前記周波数を垂下する制御であり、
    前記第2閾値は、前記第1閾値よりも大きい、
    請求項1または請求項2に記載の空気調和機。
  4. 前記周波数制御は、アップ制御および無変化制御の少なくとも一方を含み、
    前記アップ制御は、前記周波数を上昇させる制御であり、
    前記無変化制御は、前記周波数を維持する制御であり、
    前記第1条件下での前記アップ制御と前記第2条件下での前記アップ制御、および前記第1条件下での前記無変化制御と前記第2条件下での前記無変化制御の少なくとも一方においては、前記制御部は、互いに異なる開始閾値を設定する、
    請求項3に記載の空気調和機。
  5. 前記第1条件下での前記アップ制御の前記開始閾値は、前記第2条件下での前記アップ制御の前記開始閾値と同一である、
    請求項4に記載の空気調和機。
  6. 凝縮器(301)と、
    前記凝縮器の温度を検出する温度センサ(312)と、
    をさらに備え、
    前記制御部は、前記温度センサの出力値に基づいて、前記周波数制御を行う、
    請求項1から請求項5のいずれか1項に記載の空気調和機。
  7. 前記圧縮機の吐出側での前記冷媒圧力を検出する圧力センサをさらに備え、
    前記制御部は、前記圧力センサの出力値に基づいて、前記周波数制御を行う、
    請求項1から請求項5のいずれか1項に記載の空気調和機。
  8. 前記運転モードが前記第1暖房モードに設定された場合に、前記制御部は、前記第1条件下で前記周波数制御を行う、
    請求項1から請求項7のいずれか1項に記載の空気調和機。
  9. 前記運転モードが前記第2暖房モードから前記第1暖房モードに切り換えられた場合に、前記制御部は、前記第1条件下で前記周波数制御を行う、
    請求項1から請求項8に記載の空気調和機。
JP2015215194A 2015-10-30 2015-10-30 空気調和機 Active JP6350485B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015215194A JP6350485B2 (ja) 2015-10-30 2015-10-30 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015215194A JP6350485B2 (ja) 2015-10-30 2015-10-30 空気調和機

Publications (2)

Publication Number Publication Date
JP2017083145A true JP2017083145A (ja) 2017-05-18
JP6350485B2 JP6350485B2 (ja) 2018-07-04

Family

ID=58710619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015215194A Active JP6350485B2 (ja) 2015-10-30 2015-10-30 空気調和機

Country Status (1)

Country Link
JP (1) JP6350485B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107218665A (zh) * 2017-07-17 2017-09-29 西安建筑科技大学 一种变频户式新风净化全空调***
CN112944509A (zh) * 2019-11-26 2021-06-11 青岛海尔空调电子有限公司 空调的启动频率的确定方法及***
CN114459098A (zh) * 2022-03-31 2022-05-10 美的集团武汉暖通设备有限公司 空调器的控制方法、空调器以及计算机可读存储介质
CN116007144A (zh) * 2022-12-16 2023-04-25 珠海格力电器股份有限公司 一种空调的控制方法、装置、空调和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387554A (ja) * 1989-08-31 1991-04-12 Mitsubishi Heavy Ind Ltd 空気調和機の高温風吹出制御方法
JPH04158171A (ja) * 1990-10-23 1992-06-01 Fujitsu General Ltd 空気調和機
JPH06159823A (ja) * 1992-11-25 1994-06-07 Toshiba Corp 空気調和機
JPH0771803A (ja) * 1993-09-01 1995-03-17 Daikin Ind Ltd 空気調和装置の状態監視装置
JPH1089782A (ja) * 1996-09-19 1998-04-10 Daikin Ind Ltd 空気調和機
WO2010114815A2 (en) * 2009-04-03 2010-10-07 Carrier Corporation Systems and methods involving heating and cooling system control
JP6079852B1 (ja) * 2015-10-30 2017-02-15 ダイキン工業株式会社 空気調和機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387554A (ja) * 1989-08-31 1991-04-12 Mitsubishi Heavy Ind Ltd 空気調和機の高温風吹出制御方法
JPH04158171A (ja) * 1990-10-23 1992-06-01 Fujitsu General Ltd 空気調和機
JPH06159823A (ja) * 1992-11-25 1994-06-07 Toshiba Corp 空気調和機
JPH0771803A (ja) * 1993-09-01 1995-03-17 Daikin Ind Ltd 空気調和装置の状態監視装置
JPH1089782A (ja) * 1996-09-19 1998-04-10 Daikin Ind Ltd 空気調和機
WO2010114815A2 (en) * 2009-04-03 2010-10-07 Carrier Corporation Systems and methods involving heating and cooling system control
JP6079852B1 (ja) * 2015-10-30 2017-02-15 ダイキン工業株式会社 空気調和機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107218665A (zh) * 2017-07-17 2017-09-29 西安建筑科技大学 一种变频户式新风净化全空调***
CN107218665B (zh) * 2017-07-17 2023-01-17 西安建筑科技大学 一种变频户式新风净化全空调***
CN112944509A (zh) * 2019-11-26 2021-06-11 青岛海尔空调电子有限公司 空调的启动频率的确定方法及***
CN114459098A (zh) * 2022-03-31 2022-05-10 美的集团武汉暖通设备有限公司 空调器的控制方法、空调器以及计算机可读存储介质
CN116007144A (zh) * 2022-12-16 2023-04-25 珠海格力电器股份有限公司 一种空调的控制方法、装置、空调和存储介质

Also Published As

Publication number Publication date
JP6350485B2 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6079852B1 (ja) 空気調和機
JP5182358B2 (ja) 冷凍装置
JP6350485B2 (ja) 空気調和機
JP6071648B2 (ja) 空気調和装置
JP5802339B2 (ja) 空気調和装置
JP5802340B2 (ja) 空気調和装置
JP6950191B2 (ja) 空気調和機
JP6045440B2 (ja) 空気調和機の制御装置
JPWO2016132466A1 (ja) 空気調和システム
JP2011144960A (ja) 空気調和機および空気調和機の除霜運転方法
JP5492625B2 (ja) 空気調和機
JP2015068610A (ja) 空気調和装置
JPWO2019003306A1 (ja) 空気調和装置
JP2014153028A (ja) 空気調和機
CN110741208A (zh) 空调装置
WO2014103620A1 (ja) 冷凍装置
WO2018164253A1 (ja) 空気調和装置
JP2008241065A (ja) 冷凍装置及び冷凍装置の油戻し方法
JPWO2016132473A1 (ja) 空気調和装置
WO2017138133A1 (ja) 温冷水空調システム
JP6403413B2 (ja) 空気調和機
JP6531794B2 (ja) 空気調和装置
JP2016109372A (ja) 空気調和機
JPWO2020003490A1 (ja) 空気調和装置
JP2018141600A (ja) 空気調和装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R151 Written notification of patent or utility model registration

Ref document number: 6350485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151