JP2017077132A - ノイズフィルタ装置及び電源ラインフィルタ装置 - Google Patents

ノイズフィルタ装置及び電源ラインフィルタ装置 Download PDF

Info

Publication number
JP2017077132A
JP2017077132A JP2015204625A JP2015204625A JP2017077132A JP 2017077132 A JP2017077132 A JP 2017077132A JP 2015204625 A JP2015204625 A JP 2015204625A JP 2015204625 A JP2015204625 A JP 2015204625A JP 2017077132 A JP2017077132 A JP 2017077132A
Authority
JP
Japan
Prior art keywords
noise filter
filter device
ground
capacitor
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015204625A
Other languages
English (en)
Other versions
JP6251221B2 (ja
Inventor
彰 高見沢
Akira Takamizawa
彰 高見沢
良昭 公文
Yoshiaki Kumon
良昭 公文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inductec Co Ltd
Soshin Electric Co Ltd
Original Assignee
Inductec Co Ltd
Soshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inductec Co Ltd, Soshin Electric Co Ltd filed Critical Inductec Co Ltd
Priority to JP2015204625A priority Critical patent/JP6251221B2/ja
Publication of JP2017077132A publication Critical patent/JP2017077132A/ja
Application granted granted Critical
Publication of JP6251221B2 publication Critical patent/JP6251221B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filters And Equalizers (AREA)
  • Power Conversion In General (AREA)

Abstract

【課題】電源の1つの相が接地される場合において、接地コンデンサによるノイズの減衰効果を損なわずに、商用周波数漏洩電流を低減することができ、サイズの小型化及びコストの低減化を図ることができるノイズフィルタ装置及び電源ラインフィルタ装置を提供する。
【解決手段】1つの相が接地相とされた交流電源12と電力変換装置14との間に接続されたノイズフィルタ16を有する第1ノイズフィルタ装置10Aであって、交流電源12と電力変換装置14間の電源ライン18a〜18cに接続されたコモンモードコイル20a〜20cと、電源ライン18a〜18cにスター結線された線間コンデンサ22a〜22cと、電源ライン18a〜18cとアースGND間に接続された少なくとも1つの接地コンデンサ24と、交流電源12による商用周波数成分の漏洩電流を低減する第1補償回路28Aとを有する。
【選択図】図1

Description

本発明は、例えば高電力電気装置あるいはインバータ等の電力変換装置等に使用されるノイズフィルタ装置及び電源ラインフィルタ装置に関する。
電源ラインのコモンモードノイズ対策として、コモンモードコイル、あるいは接地コンデンサ、あるいはその両方を具備した回路を使用している(特許文献1参照)。この回路を、一般に、ノイズフィルタと呼ぶ。
また、特許文献2のノイズフィルタは、3相の電源ラインにそれぞれ接続されたコモンモードリアクトルと、各電源ラインと接地間にそれぞれ接続された3つの直列回路とを具備する。各直列回路は、それぞれ線間コンデンサとリアクトルが直列に接続されて構成されている。
この特許文献2の図4には、3相電圧を供給する電源供給線に直列接続された3つのコイルを有するコモンモードリアクトルと、電源供給線にスター結線された3つの線間コンデンサとを有するノイズフィルタが記載されている。このノイズフィルタは、さらに、3つの線間コンデンサの中性点と接地間に接続された直列回路と接地コンデンサとが並列接続された回路を有する。直列回路は、コンデンサとリアクトルとが直列接続されて構成されている。
この特許文献2の図4に記載された回路では、直列回路の共振周波数がコモンモードリアクトルの自己共振周波数以上になるように、直列回路のコンデンサの容量とリアクトルのインダクタンスを設定している。また、直列回路に並列接続されたコンデンサは、高周波帯域においても容量成分を持つように周波数特性を設定することで、高周波帯域においてもノイズフィルタの減衰効果を維持するようにしている。
特開2012−065515号公報 特開2008−245037号公報
ところで、電源には、接地コンデンサもしくは接地コンデンサを有するノイズフィルタが接続されるが、この電源の1つの相が接地される場合、電源の周波数と電源電圧により、商用周波数成分の漏洩電流(以下、商用周波数漏洩電流と記す)が発生する場合がある。この漏洩電流値は、安全上の規格があり、目安としては3mA以下に抑えるのが一般的である。上述の形式の電源では、接地コンデンサの静電容量値は、一相当たり10,000pF以下に制限される。装置によっては、漏洩電流値は1mA以下、接地コンデンサの静電容量値は、一相当たり3300pF以下に制限される場合もある。
このため、特許文献2記載の回路においても、接地コンデンサの静電容量値が制限されると、ノイズの減衰効果が低減するという問題が生じる。
そこで、接地コンデンサの静電容量値が制限されても、ノイズをより減衰させるために、大きなコアや特殊なコアを使用して、コモンモードコイルのインダクタンス値を大きくすることが考えられる。
しかしながら、大きなコアや特殊なコアを使用した場合、ノイズフィルタ自体のサイズが大型化すると共に、製造コストもかかるという問題がある。
本発明はこのような課題を考慮してなされたものであり、電源の1つの相が接地される場合において、接地コンデンサによるノイズの減衰効果を損なわずに、商用周波数漏洩電流を低減することができ、サイズの小型化及びコストの低減化を図ることができるノイズフィルタ装置及び電源ラインフィルタ装置を提供することを目的とする。
[1] 第1の本発明に係るノイズフィルタ装置は、1つの相が接地相とされた電源と電力変換装置との間に接続されたノイズフィルタを有するノイズフィルタ装置であって、前記電源と前記電力変換装置間の複数の電源ラインに接続されたコモンモードコイルと、前記複数の電源ラインにスター結線された複数の線間コンデンサと、前記電源ラインとアース間に接続された少なくとも1つの接地コンデンサと、前記電源による商用周波数成分の漏洩電流を低減する補償回路とを有することを特徴とする。
[2] 第1の本発明において、前記補償回路は、前記接地コンデンサの静電容量に比例して発生する前記電源ラインから前記アースに流れる前記漏洩電流に対し、前記電源の周波数で前記接地コンデンサと共に並列共振するコイルを有してもよい。
[3] この場合、前記接地コンデンサは、前記複数の線間コンデンサの中性点と前記アース間に接続され、前記補償回路を構成する前記コイルは、前記接地コンデンサに並列接続されていてもよい。
[4] また、前記複数の電源ラインの本数と同じ個数の前記接地コンデンサと前記コイルとを有し、各前記電源ラインと前記アース間にそれぞれ前記接地コンデンサが接続され、各前記接地コンデンサにそれぞれ前記補償回路を構成する前記コイルが接続されていてもよい。
[5] 第1の本発明において、前記電源は、電源周波数が第1周波数である第1電源又は電源周波数が第2周波数である第2電源であって、前記電源ラインとアース間に第1接地コンデンサと第2接地コンデンサが直列に接続され、前記補償回路は、前記第1接地コンデンサの静電容量に比例して発生する前記電源ラインから前記アースに流れる前記漏洩電流に対し、前記第1周波数で前記第1接地コンデンサと共に並列共振する第1コイルと、前記第2接地コンデンサの静電容量に比例して発生する前記電源ラインから前記アースに流れる前記漏洩電流に対し、前記第2周波数で前記第2接地コンデンサと共に並列共振する第2コイルとを有してもよい。この場合、第1周波数として例えば50Hzが挙げられ、第2周波数として例えば60Hzが挙げられる。
[6] 第1の本発明において、前記電源ラインとアース間に第1接地コンデンサと第2接地コンデンサが直列に接続され、前記補償回路は、前記第1接地コンデンサの静電容量に比例して発生する前記電源ラインから前記アースに流れる前記漏洩電流に対し、前記電源の周波数で前記第1接地コンデンサと共に並列共振する第1コイルと、前記第2接地コンデンサの静電容量に比例して発生する前記電源ラインから前記アースに流れる前記漏洩電流に対し、前記電源の周波数の歪み成分で前記第2接地コンデンサと共に並列共振する第2コイルとを有してもよい。
[7] 第1の本発明において、前記電源に1以上の前記ノイズフィルタが接続され、少なくとも1つの前記ノイズフィルタは、前記電源による商用周波数成分の漏洩電流を低減する補償回路を有してもよい。
[8] この場合、前記補償回路は、1つの前記ノイズフィルタの前記接地コンデンサの静電容量に比例し、且つ、前記電源に接続された前記ノイズフィルタの個数に比例して発生する前記電源ラインから前記アースに流れる前記漏洩電流に対し、前記電源の周波数で前記接地コンデンサと共に並列共振するコイルを有してもよい。
[9] さらに、前記コイルは、複数のタップを有し、前記補償回路は、前記電源に接続された前記ノイズフィルタの個数に応じて前記タップを切り換えることで、前記コイルのインダクタンス値を可変する切換え手段を有してもよい。
[10] 第2の本発明に係る電源ラインフィルタ装置は、電源からシールドルーム内あるいは電波暗室内に配線される電源ラインに接続された電源ラインフィルタ装置であって、前記電源の商用周波数成分の漏洩電流を低減する補償回路を内蔵した金属製の筐体を有し、前記補償回路は、前記電源ラインとアース間に接続された少なくとも1つの接地コンデンサと、前記電源の周波数で前記接地コンデンサと共に並列共振するコイルとを有することを特徴とする。
以上説明したように、本発明に係るノイズフィルタ装置及び電源ラインフィルタ装置によれば、電源の1つの相が接地される場合において、接地コンデンサによるノイズの減衰効果を損なわずに、商用周波数漏洩電流を低減することができ、サイズの小型化及びコストの低減化を図ることができる。
第1の実施の形態に係るノイズフィルタ装置(第1ノイズフィルタ装置)の構成を示す回路図である。 第1実験例の結果、すなわち、実施例1、参考例1A及び1Bについて、ノイズフィルタの出力端子とアース間の周波数に対するインピーダンスの変化を示すグラフである。 第2実験例の結果、すなわち、実施例2及び参考例2についての減衰特性を示すグラフである。 参考例3に係るノイズフィルタ装置の構成を示す回路図である。 第3実験例の結果、すなわち、実施例3及び参考例3についての減衰特性を示すグラフである。 図6A〜図6Cは、第4実験例の結果、すなわち、実施例4、参考例4A及び4Bについて、高調波漏洩電流と商用周波数漏洩電流の変化を示すグラフである。 図7A及び図7Bは、第5実験例の結果、すなわち、実施例5及び参考例5について、高調波漏洩電流によるコモンモードコイルの磁性体のB−H特性を示すグラフである。 第2の実施の形態に係るノイズフィルタ装置(第2ノイズフィルタ装置)の構成を示す回路図である。 第3の実施の形態に係るノイズフィルタ装置(第3ノイズフィルタ装置)の構成を示す回路図である。 第6実験例の結果、すなわち、実施例6、参考例1A及び1Bについて、ノイズフィルタの出力端子とアース間の周波数に対するインピーダンスの変化を示すグラフである。 第4の実施の形態に係るノイズフィルタ装置(第4ノイズフィルタ装置)の構成を示す回路図である。 第7実験例の結果、すなわち、実施例7、参考例1A及び1Bについて、ノイズフィルタの出力端子とアース間の周波数に対するインピーダンスの変化を示すグラフである。 第5の実施の形態に係るノイズフィルタ装置(第5ノイズフィルタ装置)の構成であって、特に、1つのノイズフィルタを接続した例を示す回路図である。 第5ノイズフィルタ装置の構成であって、特に、2つのノイズフィルタを接続した例を示す回路図である。 第5ノイズフィルタ装置の構成であって、特に、3つのノイズフィルタを接続した例を示す回路図である。 本実施の形態に係る電源ラインフィルタ装置の構成を示す回路図である。
以下、本発明に係るノイズフィルタ装置及び電源ラインフィルタ装置の実施の形態例を図1〜図16を参照しながら説明する。
先ず、第1の実施の形態に係るノイズフィルタ装置(以下、第1ノイズフィルタ装置10Aと記す)は、図1に示すように、交流電源12と電力変換装置14との間に接続されたノイズフィルタ16を有する。交流電源12は、例えば三相三線方式の電源を用いることができる。この場合、1つの相、例えばS相が接地相とされている。
ノイズフィルタ16は、交流電源12と電力変換装置14間の3本の電源ライン18a〜18cに接続されたコモンモードコイル20a〜20cと、3本の電源ライン18a〜18cにスター結線された3つの線間コンデンサ22a〜22cと、3本の電源ライン18a〜18cとアースGND間に接続された1つの接地コンデンサ24とを有する。
コモンモードコイル20a〜20cは、磁性体26に3本の電源ライン18a〜18cがそれぞれ1ターン以上巻回されて構成されている。線間コンデンサ22a〜22cは、スター結線ではなく、デルタ結線で構成してもよい。また、磁性体26は、例えばフェライトにて構成された円形のトロイダルコアにて構成することができる。
そして、この第1ノイズフィルタ装置10Aは、交流電源12による商用周波数成分の漏洩電流(以下、商用周波数漏洩電流iaと記す)を低減する第1補償回路28Aを有する。
第1補償回路28Aは、接地コンデンサ24の静電容量に比例して発生する電源ライン18a〜18cからアースGNDに流れる商用周波数漏洩電流iaに対し、交流電源12の周波数で接地コンデンサ24と共に並列共振するコイル30を有する。
具体的には、接地コンデンサ24は、複数の線間コンデンサ22a〜22cの中性点32とアースGND間に接続されている。第1補償回路28Aを構成するコイル30は、接地コンデンサ24に並列接続されている。
ここで、第1ノイズフィルタ装置10Aの作用について図1を参照しながら説明する。
先ず、主にコモンモードノイズを減衰させるノイズフィルタ16の接地コンデンサ24に流れる電流は、接地コンデンサ24の静電容量値、電源周波数及び電源電圧により決定される商用周波数漏洩電流iaと、ノイズフィルタ16に接続されるノイズ源である電力変換装置14の入力ラインへ流出するコモンモードノイズから発生する高調波成分の漏洩電流(以下、高調波漏洩電流ibと記す)に別れる。
商用周波数漏洩電流iaは、接地コンデンサ24の静電容量と、電源電圧・周波数の掛け算によりその値が決まる。また、商用周波数漏洩電流iaは交流電源12の接地相のラインを介して流れる。
コモンモードノイズから発生する高調波漏洩電流ibは、その周波数成分と電圧と接地コンデンサ24の静電容量により、接地コンデンサ24を通じ、ノイズ発生源である電力変換装置14へと戻されるが、周波数成分と接地コンデンサ24の静電容量により、一部の高調波漏洩電流ibが接地相のラインを介して、発生源の電力変換装置14へ戻ることになる。この場合、高調波漏洩電流ibとして電源系統へ影響を及ぼす。
接地コンデンサ24以外にもコモンモードノイズに対しては、コモンモードコイル20a〜20cがコモンモードノイズに対してインピーダンスとして働き、電源系統への流出を抑制する。つまり、コモンモードノイズの抑制は、接地コンデンサ24とコモンモードコイル20a〜20cとの相乗効果による。
そのため、接地コンデンサ24の容量値とコモンモードコイル20a〜20cインダクタンス値の両方を大きい値にすることで、コモンモードノイズの抑制効果が上がるが、接地コンデンサ24の容量値を大きくすると、商用周波数漏洩電流iaが大きくなり、好ましくない。一方、コモンモードコイルを大きくすると、ノイズフィルタの形状が大きくなり、また、特殊コアの使用等でコストが高価格化するという問題が生じる。
つまり、高調波漏洩電流ibは、ノイズフィルタ16を構成するコモンモードコイル20a〜20cで使用される磁性体26(通常閉回路)の中に磁束を発生させ、その磁束が磁性体26(通常閉回路)の飽和磁束密度に達すると、コモンモードコイル20a〜20cのインダクタンス値を低下させ、ノイズ減衰効果を減少させる。
そのため、上述したように、ノイズフィルタ16の接地コンデンサ24の静電容量値を大きくして、高調波漏洩電流ibを発生元の電力変換装置14へ戻すことによって、コモンモードコイル20a〜20cを構成する磁性体26の中に発生する磁束を下げ、飽和磁束密度以下にする対策をとることが考えられる。
しかし、接地コンデンサ24の静電容量を増加させると、商用周波数漏洩電流iaが大きくなり、安全規格で定められる漏洩電流規格値をオーバーすることになる。そのため、単純に接地コンデンサ24の静電容量値を大きくすることはできない。
これに対して、第1ノイズフィルタ装置10Aは、上述したように、交流電源12による商用周波数漏洩電流iaを低減する第1補償回路28Aを有する。第1補償回路28Aは、接地コンデンサ24の静電容量に比例して発生する電源ライン18a〜18cからアースGNDに流れる漏洩電流に対し、交流電源12の周波数で接地コンデンサ24と共に並列共振するコイル30を有する。すなわち、第1ノイズフィルタ装置10Aは、接地コンデンサ24の静電容量値に対し、電源周波数と共振するインダクタンス値を有するコイル30を並列に接続したので、コモンモードノイズの減衰効果を損なわずに商用周波数漏洩電流iaを小さくすることができる。
また、接地コンデンサ24の静電容量を大きくすることができることから、コモンモードコイル20a〜20cのインダクタンス値を低くすることが可能となり、コモンモードコイル20a〜20c及び磁性体26の占める体積を小さくすることができる。その結果、安価で、且つ、小型のノイズフィルタ装置を得ることができる。
ここで、5つの実験例について図2〜図7Bも参照しながら説明する。
[第1実験例]
第1実験例は、実施例1、参考例1A及び1Bについて、周波数に対するインピーダンスの変化を確認した。
実施例1は、上述した第1ノイズフィルタ装置10Aにおいて、各コモンモードコイル20a〜20cのインダクタンス値をそれぞれ500μHとし、接地コンデンサ24の容量値を0.3μFとした。また、コイル30と接地コンデンサ24とが周波数50Hzにて並列共振するようにコイル30のインダクタンス値を調整した。
参考例1Aは、上述した実施例1において、コイル30を取り外した構成とした。参考例1Bは、上述した実施例1において、コイル30を取り外し、さらに、接地コンデンサ24の容量値を0.03μFとした。
結果を図2に示す。図2において、実施例1の特性を実線L1で示し、参考例1Aの特性を破線S1Aで示し、参考例1Bの特性を一点鎖線S1Bで示す。すなわち、図2は、ノイズフィルタ16の出力端子とアースGND間のインピーダンスの変化を示すグラフである。そして、破線S1A(参考例1A)は、線間コンデンサ22a〜22cと接地コンデンサ24(0.3μF)との組み合わせのインピーダンス特性を示し、一点鎖線S1B(参考例1B)は、線間コンデンサ22a〜22cと接地コンデンサ24(0.03μF)との組み合わせのインピーダンス特性を示す。また、実線L1(実施例1)は、線間コンデンサ22a〜22cと接地コンデンサ24(0.3μF)と第1補償回路28Aの組み合わせのインピーダンス特性を示す。
先ず、参考例1Aと参考例1Bとを比較すると、接地コンデンサ24の容量値が大きい参考例1Aのインピーダンスは、参考例1Bよりも全体的に低下している。そのため、接地コンデンサ24の容量値を大きくすることによって、ノイズの減衰効果が大きくなることがわかる。しかしながら、参考例1Aは、商用周波数(ここでは50Hz)においても、インピーダンスが低下することから、商用周波数漏洩電流iaが参考例1Bに比して増加することとなる。
一方、実施例1は、コイル30を接地コンデンサ24に並列接続した構成としたので、ノイズ帯域周波数のインピーダンスが参考例1Aと同様に低下し、しかも、商用周波数のインピーダンスが参考例1Bよりも高くなっている。そのため、実施例1は、ノイズの減衰効果が大きく、且つ、商用周波数漏洩電流iaが参考例1Bの場合よりも低減することとなる。
このように、実施例1に係るノイズフィルタ装置は、接地コンデンサ24によるノイズの減衰効果を損なわずに、商用周波数漏洩電流iaを低減することができることがわかる。
[第2実験例]
第2実験例は、実施例2及び参考例2について、減衰特性を確認した。
実施例2は、上述した第1ノイズフィルタ装置10Aにおいて、各コモンモードコイル20a〜20cのインダクタンス値をそれぞれ50μHとし、接地コンデンサ24の容量値を0.3μFとした。また、コイル30と接地コンデンサ24とが周波数50Hzにて並列共振するようにコイル30のインダクタンス値を調整した。
参考例2は、上述した実施例2において、コイル30を取り外した構成とし、さらに、各コモンモードコイル20a〜20cのインダクタンス値をそれぞれ500μHとした。また、接地コンデンサ24の容量値を0.03μFとした。
すなわち、実施例2の各コモンモードコイル20a〜20cのインダクタンス値は、参考例2と比して、1/10となっている。
実施例2及び参考例2の減衰特性を図3に示す。図3において、実施例2の特性を実線L2で示し、参考例2の特性を破線S2で示す。
実施例2及び参考例2の結果から、両者の減衰特性はほとんど同じ特性を有することがわかる。つまり、実施例2は、コイル30を接地コンデンサ24に並列に接続することにより、コモンモードノイズの減衰効果を損なわずに商用周波数漏洩電流を小さくすることができることから、接地コンデンサ24の静電容量を大きくすることができる。その結果、コモンモードコイル20a〜20cのインダクタンス値を低くすることが可能となり、コモンモードコイル20a〜20c及び磁性体26の占める体積を小さくすることができ、安価で、且つ、小型のノイズフィルタ装置を得ることができる。
[第3実験例]
第3実験例は、実施例3及び参考例3について、減衰特性を確認した。
実施例3は、上述した第1ノイズフィルタ装置10Aにおいて、各コモンモードコイル20a〜20cのインダクタンス値をそれぞれ500μHとし、接地コンデンサ24の容量値を0.3μFとした。また、コイル30と接地コンデンサ24とが周波数50Hzにて並列共振するようにコイル30のインダクタンス値を調整した。
参考例3は、図4に示すように、各電源ライン18a〜18cに第1コモンモードコイル20a1〜20c1を接続し、さらに、第2コモンモードコイル20a2〜20c2を接続した構成とした。第1コモンモードコイル20a1〜20c1は、上述したように、フェライトにて構成された円形の第1トロイダルコア26Aに3本の電源ライン18a〜18cがそれぞれ2ターン以上巻回されて構成されている。第2コモンモードコイル20a2〜20c2は、同じくフェライトにて構成された円形の第2トロイダルコア26Bに3本の電源ライン18a〜18cがそれぞれ2ターン以上巻回されて構成されている。第1コモンモードコイル20a1〜20c1並びに第2コモンモードコイル20a2〜20c2のインダクタンス値はそれぞれ500μHである。接地コンデンサ24の容量値は0.03μFである。
すなわち、参考例3は、2種類のコモンモードコイル(第1コモンモードコイル20a1〜20c1及び第2コモンモードコイル20a2〜20c2)を接続した高減衰型のノイズフィルタの構成を有する。
実施例3及び参考例3の減衰特性を図5に示す。図5において、実施例3の特性を実線L3で示し、参考例3の特性を破線S3で示す。
実施例3及び参考例3の結果から、両者の減衰特性はほとんど同じ特性を有することがわかる。つまり、実施例3は、1種類のコモンモードコイル20a〜20cだけを使用しているにも拘わらず、2種類のコモンモードコイルを使用した高減衰型のノイズフィルタと同等の減衰特性を有していることがわかる。
このように、上述した実施例2と同様に、コイル30を接地コンデンサ24に並列に接続することにより、コモンモードノイズの減衰効果を損なわずに商用周波数漏洩電流を小さくすることができることから、接地コンデンサ24の静電容量を大きくすることができる。その結果、コモンモードコイル20a〜20cのインダクタンス値を低くしても、参考例3に示す高減衰型のノイズフィルタと同様の減衰特性を得ることが可能となり、コモンモードコイル20a〜20c及び磁性体26の占める体積を小さくすることができ、安価で、且つ、小型のノイズフィルタ装置を得ることができる。
[第4実験例]
第4実験例は、実施例4、参考例4A及び4Bについて、高調波漏洩電流と商用周波数漏洩電流の変化を確認した。
実施例4は、上述した第1ノイズフィルタ装置10Aにおいて、各コモンモードコイル20a〜20cのインダクタンス値をそれぞれ500μHとし、接地コンデンサ24の容量値を0.3μFとした。また、コイル30と接地コンデンサ24とが周波数50Hzにて並列共振するようにコイル30のインダクタンス値を調整した。
参考例4Aは、上述した実施例4において、コイル30を取り外し、さらに、接地コンデンサ24の容量値を0.03μFとした。参考例4Bは、上述した実施例4において、コイル30を取り外し、さらに、接地コンデンサ24の容量値を0.3μFとした。
結果を図6A〜図6Cに示す。図6Aは参考例4Aの結果を示し、図6Bは参考例4Bの結果を示し、図6Cは実施例4の結果を示す。
先ず、参考例4Aは接地コンデンサ24の容量値が0.03μFと低い。そのため、図6Aに示すように、商用周波数漏洩電流は小さいが、高調波漏洩電流が大きい。参考例4Bは接地コンデンサ24の容量値が0.3μFと高い。そのため、図6Bに示すように、高調波漏洩電流は小さいが、商用周波数漏洩電流が大きい。
一方、実施例4は、図6Cに示すように、商用周波数漏洩電流及び高調波漏洩電流が共に小さいことがわかる。すなわち、実施例4は、コイル30を接地コンデンサ24に並列接続した構成としたので、接地コンデンサ24の容量値を0.3μFと高くしても、商用周波数漏洩電流を低減することができ、接地コンデンサ24によるノイズの減衰効果を損なわずに、商用周波数漏洩電流を低減することができることがわかる。
[第5実験例]
第5実験例は、実施例5及び参考例5について、高調波漏洩電流によるコモンモードコイル20a〜20cの磁性体26の磁気飽和について確認した。
実施例5は、上述した第1ノイズフィルタ装置10Aにおいて、各コモンモードコイル20a〜20cのインダクタンス値をそれぞれ500μHとし、接地コンデンサ24の容量値を0.3μFとした。また、コイル30と接地コンデンサ24とが周波数50Hzにて並列共振するようにコイル30のインダクタンス値を調整した。
参考例5は、上述した実施例5において、コイル30を取り外し、さらに、接地コンデンサ24の容量値を0.03μFとした。
結果を図7A及び図7Bに示す。図7Aは参考例5の結果(B−H特性)を示し、図7Bは実施例5の結果(B−H特性)を示す。図7A及び図7Bにおいて、Za及びZbで示す領域は、電源投入時のB−H特性を示す。
参考例5は、図7Aに示すように、飽和磁束密度における磁界の強さがHa(A/m)であり、また、接地コンデンサ24の容量値が0.03μFと小さいことから、接地コンデンサ24を通じて流れる高周波漏洩電流は小さく、電源系統へ漏洩する高調波電流(コモンモード成分の電流)の振幅が大きくなり、コモンモードコイル20a〜20cの磁性体26が磁気飽和し易いという問題がある。
一方、実施例5は、飽和磁束密度における磁界の強さが、参考例5の約1/2であるHb(A/m)と低く、また、接地コンデンサ24の容量値が0.3μFと大きいことから、接地コンデンサ24を通じて流れる高調波漏洩電流が大きくなり、その結果、電源系統へ漏洩する高調波電流(コモンモード成分の電流)の振幅は小さくなり、コモンモードコイル20a〜20cの磁性体26の磁気飽和という問題は生じない。すなわち、実施例5は、コモンモードコイル20a〜20cの磁性体26の磁気飽和を防ぐことができるという効果ももたらす。
次に、第2の実施の形態に係るノイズフィルタ装置(以下、第2ノイズフィルタ装置10Bと記す)は、図8に示すように、上述した第1ノイズフィルタ装置10Aとほぼ同様の構成を有するが、以下の点で異なる。
すなわち、第2ノイズフィルタ装置10Bは、電源ライン18a〜18cの本数と同じ個数の接地コンデンサ(第1接地コンデンサ24a〜第3接地コンデンサ24c)とコイル(第1コイル30a〜第3コイル30c)とを有する。具体的には、第1電源ライン18aとアースGND間に第1接地コンデンサ24aが接続され、第2電源ライン18bとアースGND間に第2接地コンデンサ24bが接続され、第3電源ライン18cとアースGND間に第3接地コンデンサ24cが接続されている。さらに、第1接地コンデンサ24aに第1コイル30aが並列接続され、第2接地コンデンサ24bに第2コイル30bが並列接続され、第3接地コンデンサ24cに第3コイル30cが並列接続されている。これら、第1コイル30a〜第3コイル30cは、商用周波数成分の漏洩電流を低減する第2補償回路28Bを構成する。
この第2ノイズフィルタ装置10Bは、上述した第1ノイズフィルタ装置10Aと比して、部品点数が多くなるが、第1ノイズフィルタ装置10Aと同様に、交流電源12による商用周波数成分の漏洩電流を低減する第2補償回路28Bを有することから、コモンモードノイズの減衰効果を損なわずに商用周波数漏洩電流を小さくすることができる。
また、第1接地コンデンサ24a〜第3接地コンデンサ24cの静電容量を大きくすることができることから、コモンモードコイル20a〜20cのインダクタンスを低くすることが可能となり、コモンモードコイル20a〜20c及び磁性体26の占める体積を小さくすることができる。その結果、安価で、且つ、小型のノイズフィルタ装置を得ることができる。
次に、第3の実施の形態に係るノイズフィルタ装置(以下、第3ノイズフィルタ装置10Cと記す)は、図9に示すように、上述した第1ノイズフィルタ装置10Aとほぼ同様の構成を有するが、以下の点で異なる。
すなわち、第3ノイズフィルタ装置10Cで使用される交流電源12は、電源周波数が第1商用周波数(例えば50Hz)である第1交流電源12A又は電源周波数が第2商用周波数(例えば60Hz)である第2交流電源12Bである。また、第3ノイズフィルタ装置10Cは、複数の線間コンデンサ22a〜22cの中性点32とアースGND間に第4接地コンデンサ24dと第5接地コンデンサ24eが直列に接続されている。
さらに、第3ノイズフィルタ装置10Cは、第4接地コンデンサ24dの静電容量に比例して発生する電源ライン18a〜18cからアースGNDに流れる漏洩電流と、第5接地コンデンサ24eの静電容量に比例して発生する電源ライン18a〜18cからアースGNDに流れる漏洩電流とを低減する第3補償回路28Cを有する。
第3補償回路28Cは、第1商用周波数(例えば50Hz)で第4接地コンデンサ24dと共に並列共振する第4コイル30dと、第2商用周波数(例えば60Hz)で第5接地コンデンサ24eと共に並列共振する第5コイル30eを有する。具体的には、第4コイル30dは、第4接地コンデンサ24dに並列接続され、第5コイル30eは、第5接地コンデンサ24eに並列接続されている。
この第3ノイズフィルタ装置10Cにおいては、交流電源12として第1交流電源12Aを使用した場合に、第3補償回路28Cを通じて、第1交流電源12Aによる第1商用周波数成分の漏洩電流を低減することができる。同様に、交流電源12として第2交流電源12Bを使用した場合に、第3補償回路28Cを通じて、第2交流電源12Bによる第2商用周波数成分の漏洩電流を低減することができる。これは、交流電源12の商用周波数として、第1商用周波数と第2商用周波数とを共用させたい場合に好適である。
[第6実験例]
ここで、第6実験例について図10も参照しながら説明する。第6実験例は、実施例6について、周波数に対するインピーダンスの変化を確認した。
実施例6は、上述した第3ノイズフィルタ装置10Cにおいて、各コモンモードコイル20a〜20cのインダクタンス値をそれぞれ500μHとし、第4接地コンデンサ24d及び第5接地コンデンサ24eの容量値を共に0.3μFとした。また、第4コイル30dと第4接地コンデンサ24dとが第1商用周波数50Hzにて並列共振するように第4コイル30dのインダクタンス値を調整した。同様に、第5コイル30eと第5接地コンデンサ24eとが第2商用周波数60Hzにて並列共振するように第5コイル30eのインダクタンス値を調整した。
結果を図10に示す。図10において、実施例6の特性を実線L6で示す。なお、破線S1A及び一点鎖線S1Bは、参考として上述した第1実験例で用いた参考例1A及び参考例1Bの特性を示す。
実施例6は、第4コイル30dを第4接地コンデンサ24dに並列接続し、さらに、第5コイル30eを第5接地コンデンサ24eに並列接続した構成としたので、ノイズ帯域周波数のインピーダンスが参考例1A及び1Bと同様に低下している。一方、第1商用周波数及び第2商用周波数の各インピーダンスは、参考例1B(一点鎖線S1B参照)よりも高くなっている。そのため、実施例6は、ノイズの減衰効果が大きく、且つ、第1商用周波数及び第2商用周波数の漏洩電流が参考例1Bの場合よりも低減することとなる。
このように、実施例6に係るノイズフィルタ装置は、第4接地コンデンサ24d及び第5接地コンデンサ24eによるノイズの減衰効果を損なわずに、第1商用周波数及び第2商用周波数の漏洩電流を低減することができることがわかる。
次に、第4の実施の形態に係るノイズフィルタ装置(以下、第4ノイズフィルタ装置10Dと記す)は、図11に示すように、上述した第3ノイズフィルタ装置10Cとほぼ同様の構成を有するが、以下の点で異なる。
すなわち、第4ノイズフィルタ装置10Dは、交流電源12の周波数(電源周波数)に歪み成分がある場合に適用した装置である。
そして、この第4ノイズフィルタ装置10Dは、複数の線間コンデンサ22a〜22cの中性点32とアースGND間に第6接地コンデンサ24fと第7接地コンデンサ24gが直列に接続されている。
また、第4ノイズフィルタ装置10Dは、第6接地コンデンサ24fの静電容量に比例して発生する電源ライン18a〜18cからアースGNDに流れる漏洩電流と、第7接地コンデンサ24gの静電容量に比例して発生する電源ライン18a〜18cからアースGNDに流れる漏洩電流とを低減する第4補償回路28Dを有する。
第4補償回路28Dは、交流電源12の商用周波数(例えば50Hz)で第6接地コンデンサ24fと共に並列共振する第6コイル30fと、商用周波数の歪み成分で第7接地コンデンサ24gと共に並列共振する第7コイル30gとを有する。具体的には、第6コイル30fは、第6接地コンデンサ24fに並列接続され、第7コイル30gは、第7接地コンデンサ24gに並列接続されている。この場合、予め、電源周波数の歪み成分を計測しておき、第7コイル30gと第7接地コンデンサ24gとが歪み成分にて並列共振するように第7コイル30gのインダクタンス値を調整することが好ましい。
この第4ノイズフィルタ装置10Dにおいては、第4補償回路28Dの第6接地コンデンサ24f及び第6コイル30fを通じて、交流電源12による商用周波数成分の漏洩電流を低減することができる。同様に、第4補償回路28Dの第7接地コンデンサ24g及び第7コイル30gを通じて、交流電源12による歪み成分の漏洩電流を低減することができる。これは、交流電源12の電源周波数として、商用周波数に歪み成分がある場合に好適である。
[第7実験例]
ここで、第7実験例について図12も参照しながら説明する。第7実験例は、実施例7について、周波数に対するインピーダンスの変化を確認した。
実施例7は、上述した第4ノイズフィルタ装置10Dにおいて、各コモンモードコイル20a〜20cのインダクタンス値をそれぞれ500μHとし、第6接地コンデンサ24f及び第7接地コンデンサ24gの容量値を共に0.3μFとした。また、第6コイル30fと第6接地コンデンサ24fとが商用周波数50Hzにて並列共振するように第6コイル30fのインダクタンス値を調整した。同様に、第7コイル30gと第7接地コンデンサ24gとが歪み成分250Hzにて並列共振するように第7コイル30gのインダクタンス値を調整した。
結果を図12に示す。図12において、実施例7の特性を実線L7で示す。なお、破線S1A及び一点鎖線S1Bは、参考として上述した第1実験例で用いた参考例1A及び参考例1Bの特性を示す。
実施例7は、第6コイル30fを第6接地コンデンサ24fに並列接続し、さらに、第7コイル30gを第7接地コンデンサ24gに並列接続した構成としたので、ノイズ帯域周波数のインピーダンスが参考例1A及び1Bと同様に低下している。一方、商用周波数及びその歪み成分の各インピーダンスは、参考例1B(一点鎖線S1B参照)よりも高くなっている。そのため、実施例7は、ノイズの減衰効果が大きく、且つ、商用周波数及びその歪み成分の漏洩電流が参考例1Bの場合よりも低減することとなる。
このように、実施例7に係るノイズフィルタ装置は、第6接地コンデンサ24f及び第7接地コンデンサ24gによるノイズの減衰効果を損なわずに、商用周波数及びその歪み成分の漏洩電流を低減することができることがわかる。
次に、第5の実施の形態に係るノイズフィルタ装置(以下、第5ノイズフィルタ装置10Eと記す)について図13を参照しながら説明する。
この第5ノイズフィルタ装置10Eは、図13に示すように、上述した第1ノイズフィルタ装置10Aとほぼ同様の構成を有するが、1以上のノイズフィルタ16が接続されることを想定して構成されている。
すなわち、1つの特定のノイズフィルタ16は、第5補償回路28Eを有する。この第5補償回路28Eは、ノイズフィルタ16の第8接地コンデンサ24hの静電容量に比例し、且つ、交流電源12に接続されたノイズフィルタ16の個数に比例して発生する電源ライン18a〜18cからアースGNDに流れる漏洩電流(交流電源12による商用周波数漏洩電流)を低減する。具体的には、電源ライン18a〜18cからアースGNDに流れる漏洩電流に対し、交流電源12の周波数で第8接地コンデンサ24hと共に並列共振する第8コイル30hを有する。
さらに、第8コイル30hは巻線途中に例えば3つのタップ(第1タップ34a〜第3タップ34c)を有する。また、第5補償回路28Eは、交流電源12に接続されたノイズフィルタの個数に応じてタップを切り換えることで、第8コイル30hのインダクタンス値を可変する切換え手段36を有する。切換え手段36としては、電気的に動作するスイッチや、手動で動作するスイッチ等が挙げられる。切換え手段36は、例えば線間コンデンサ22a〜22cの中性点32と第8接地コンデンサ24hとの間に接続された可動接点38と、第8コイル30hに巻線途中に接続された固定接点(第1タップ34a〜第3タップ34c)にて構成することができる。
第8コイル30hへの第1タップ34a〜第3タップ34cの接続は、例えば以下のように行ってもよい。例えば切換え手段36にて、可動接点38を第1タップ34aに接続した場合に、第8コイル30hのインダクタンス値が最大値となり、可動接点38を第3タップ34cに接続した場合に、第8コイル30hのインダクタンス値が最小値となる。可動接点38を第2タップ34bに接続した場合に、第8コイル30hのインダクタンス値が最大値と最小値との中間値となる。もちろん、別の規則に従ってタップを接続してもよい。
そして、図13に示すように、ノイズフィルタ16を1つだけ、すなわち、特定のノイズフィルタ16だけを接続する場合は、切換え手段36の可動接点38を第3タップ34cに接続する。また、図14に示すように、ノイズフィルタ16を2つだけ接続する場合は、切換え手段36の可動接点38を第2タップ34bに接続する。同様に、図15に示すように、ノイズフィルタ16を3つ接続する場合は、切換え手段36の可動接点38を第1タップ34aに接続する。
このように、第5ノイズフィルタ装置10Eにおいては、交流電源12に1つのノイズフィルタ16を接続する場合のほか、複数のノイズフィルタ16を接続する場合においても、コモンモードノイズの減衰効果を損なわずに商用周波数漏洩電流を小さくすることができる。
また、第8接地コンデンサ24hの静電容量を大きくすることができることから、コモンモードコイル20a〜20cのインダクタンスを低くすることが可能となり、コモンモードコイル20a〜20c及び磁性体26の占める体積を小さくすることができる。その結果、安価で、且つ、小型のノイズフィルタ装置を得ることができる。
上述の例では、第5補償回路28Eを第1補償回路28Aに準じた構成にしたが、その他、第2補償回路28B〜第4補償回路28Dのうち、いずれかの補償回路に準じた構成にしてもよい。いずれの構成においても、複数のタップを設ける点、交流電源12に接続するノイズフィルタ16の個数に応じてタップを切り換える点で変わりはない。
次に、本実施の形態に係る電源ラインフィルタ装置100について、図16を参照しながら説明する。
電源ラインフィルタ装置100は、図16に示すように、交流電源12から特定の部屋102(シールドルームあるいは電波暗室)内に配線される電源ライン18a〜18cに接続される。
この電源ラインフィルタ装置100は、ノイズフィルタ16と補償回路28を内蔵した金属製の筐体104を有する。
ノイズフィルタ16は、上述した例えば第1ノイズフィルタ装置10Aと同様に、交流電源12の3本の電源ライン18a〜18cに接続されたコモンモードコイル20a〜20cと、3本の電源ライン18a〜18cにスター結線された3つの線間コンデンサ22a〜22cと、3本の電源ライン18a〜18cとアースGND間に接続された1つの接地コンデンサ24とを有する。
補償回路28は、上述した例えば第1補償回路28Aと同様に、接地コンデンサ24の静電容量に比例して発生する電源ライン18a〜18cからアースGNDに流れる漏洩電流に対し、交流電源12の周波数で接地コンデンサ24と共に並列共振するコイル30を有する。
この電源ラインフィルタ装置100においては、接地コンデンサ24の静電容量値に対し、電源周波数と共振するインダクタンス値を有するコイル30を並列に接続することにより、コモンモードノイズの減衰効果を損なわずに商用周波数漏洩電流を小さくすることができる。
また、接地コンデンサ24の静電容量を大きくすることができることから、コモンモードコイル20a〜20cのインダクタンス値を低くすることが可能となり、コモンモードコイル20a〜20c及び磁性体26の占める体積を小さくすることができる。その結果、安価で、且つ、小型の電源ラインフィルタ装置を得ることができる。
上述の例では、ノイズフィルタ16として、第1ノイズフィルタ装置10Aのノイズフィルタ16と同様の構成を有するノイズフィルタを用いたが、その他、第2ノイズフィルタ装置10B〜第5ノイズフィルタ装置10Eのいずれかのノイズフィルタ16と同様の構成を有するノイズフィルタを採用してもよい。
補償回路28についても、上述の例では、第1補償回路28Aと同様の構成を有する補償回路を用いたが、その他、第2補償回路28B〜第5補償回路28Eのいずれかを採用してもよい。
なお、本発明に係るノイズフィルタ装置及び電源ラインフィルタ装置は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
10A〜10E…第1ノイズフィルタ装置〜第5ノイズフィルタ装置
12…交流電源 14…電力変換装置
16…ノイズフィルタ 18a〜18c…電源ライン
20a〜20c…コモンモードコイル 22a〜22c…線間コンデンサ
24…接地コンデンサ 26…磁性体
28…補償回路
28A〜28E…第1補償回路〜第5補償回路
30…コイル 32…中性点
34a〜34c…第1タップ〜第3タップ 36…切換え手段
38…可動接点 100…電源ラインフィルタ装置
102…部屋 104…筐体
GND…アース(接地) ia…商用周波数漏洩電流
ib…高調波漏洩電流

Claims (10)

  1. 1つの相が接地相とされた電源と電力変換装置との間に接続されたノイズフィルタを有するノイズフィルタ装置であって、
    前記電源と前記電力変換装置間の複数の電源ラインに接続されたコモンモードコイルと、
    前記複数の電源ラインにスター結線された複数の線間コンデンサと、
    前記電源ラインとアース間に接続された少なくとも1つの接地コンデンサと、
    前記電源による商用周波数成分の漏洩電流を低減する補償回路とを有することを特徴とするノイズフィルタ装置。
  2. 請求項1記載のノイズフィルタ装置において、
    前記補償回路は、
    前記接地コンデンサの静電容量に比例して発生する前記電源ラインから前記アースに流れる前記漏洩電流に対し、前記電源の周波数で前記接地コンデンサと共に並列共振するコイルを有することを特徴とするノイズフィルタ装置。
  3. 請求項2記載のノイズフィルタ装置において、
    前記接地コンデンサは、前記複数の線間コンデンサの中性点と前記アース間に接続され、
    前記補償回路を構成する前記コイルは、前記接地コンデンサに並列接続されていることを特徴とするノイズフィルタ装置。
  4. 請求項2記載のノイズフィルタ装置において、
    前記複数の電源ラインの本数と同じ個数の前記接地コンデンサと前記コイルとを有し、
    各前記電源ラインと前記アース間にそれぞれ前記接地コンデンサが接続され、
    各前記接地コンデンサにそれぞれ前記補償回路を構成する前記コイルが接続されていることを特徴とするノイズフィルタ装置。
  5. 請求項1記載のノイズフィルタ装置において、
    前記電源は、電源周波数が第1周波数である第1電源又は電源周波数が第2周波数である第2電源であって、
    前記電源ラインとアース間に第1接地コンデンサと第2接地コンデンサが直列に接続され、
    前記補償回路は、
    前記第1接地コンデンサの静電容量に比例して発生する前記電源ラインから前記アースに流れる前記漏洩電流に対し、前記第1周波数で前記第1接地コンデンサと共に並列共振する第1コイルと、
    前記第2接地コンデンサの静電容量に比例して発生する前記電源ラインから前記アースに流れる前記漏洩電流に対し、前記第2周波数で前記第2接地コンデンサと共に並列共振する第2コイルとを有することを特徴とするノイズフィルタ装置。
  6. 請求項1記載のノイズフィルタ装置において、
    前記電源ラインとアース間に第1接地コンデンサと第2接地コンデンサが直列に接続され、
    前記補償回路は、
    前記第1接地コンデンサの静電容量に比例して発生する前記電源ラインから前記アースに流れる前記漏洩電流に対し、前記電源の周波数で前記第1接地コンデンサと共に並列共振する第1コイルと、
    前記第2接地コンデンサの静電容量に比例して発生する前記電源ラインから前記アースに流れる前記漏洩電流に対し、前記電源の周波数の歪み成分で前記第2接地コンデンサと共に並列共振する第2コイルとを有することを特徴とするノイズフィルタ装置。
  7. 請求項1記載のノイズフィルタ装置において、
    前記電源に1以上の前記ノイズフィルタが接続され、
    少なくとも1つの前記ノイズフィルタは、
    前記電源による商用周波数成分の漏洩電流を低減する補償回路を有することを特徴とするノイズフィルタ装置。
  8. 請求項7記載のノイズフィルタ装置において、
    前記補償回路は、
    1つの前記ノイズフィルタの前記接地コンデンサの静電容量に比例し、且つ、前記電源に接続された前記ノイズフィルタの個数に比例して発生する前記電源ラインから前記アースに流れる前記漏洩電流に対し、前記電源の周波数で前記接地コンデンサと共に並列共振するコイルを有することを特徴とするノイズフィルタ装置。
  9. 請求項8記載のノイズフィルタ装置において、
    前記コイルは、複数のタップを有し、
    前記補償回路は、前記電源に接続された前記ノイズフィルタの個数に応じて前記タップを切り換えることで、前記コイルのインダクタンス値を可変する切換え手段を有することを特徴とするノイズフィルタ装置。
  10. 電源からシールドルーム内あるいは電波暗室内に配線される電源ラインに接続された電源ラインフィルタ装置であって、
    前記電源の商用周波数成分の漏洩電流を低減する補償回路を内蔵した金属製の筐体を有し、
    前記補償回路は、前記電源ラインとアース間に接続された少なくとも1つの接地コンデンサと、前記電源の周波数で前記接地コンデンサと共に並列共振するコイルとを有することを特徴とする電源ラインフィルタ装置。
JP2015204625A 2015-10-16 2015-10-16 ノイズフィルタ装置 Active JP6251221B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015204625A JP6251221B2 (ja) 2015-10-16 2015-10-16 ノイズフィルタ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015204625A JP6251221B2 (ja) 2015-10-16 2015-10-16 ノイズフィルタ装置

Publications (2)

Publication Number Publication Date
JP2017077132A true JP2017077132A (ja) 2017-04-20
JP6251221B2 JP6251221B2 (ja) 2017-12-20

Family

ID=58551622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015204625A Active JP6251221B2 (ja) 2015-10-16 2015-10-16 ノイズフィルタ装置

Country Status (1)

Country Link
JP (1) JP6251221B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681989A (zh) * 2017-10-20 2018-02-09 江苏瑞牧电子科技有限公司 穿芯电容式电源滤波器及屏蔽室
US20210250011A1 (en) * 2020-02-11 2021-08-12 Mte Corporation Integrated inverter output passive filters for eliminating both common mode and differential mode harmonics in pulse-width modulation motor drives and methods of manufacture and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3527081B8 (de) * 2018-02-15 2023-05-03 Albert Handtmann Maschinenfabrik GmbH & Co. KG Vorrichtung und verfahren zur produktion von nahrungsmitteln

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108696U (ja) * 1986-12-27 1988-07-13
JPH09140123A (ja) * 1995-11-10 1997-05-27 Fujitsu Ltd 電源装置および電子機器
JP2003143753A (ja) * 2001-10-30 2003-05-16 Sanyo Electric Co Ltd 圧縮機の制御装置
JP2008245037A (ja) * 2007-03-28 2008-10-09 Fuji Electric Holdings Co Ltd ノイズフィルタ
JP2012044812A (ja) * 2010-08-20 2012-03-01 Fuji Electric Co Ltd ノイズフィルタ及びこれを使用したemcフィルタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108696U (ja) * 1986-12-27 1988-07-13
JPH09140123A (ja) * 1995-11-10 1997-05-27 Fujitsu Ltd 電源装置および電子機器
JP2003143753A (ja) * 2001-10-30 2003-05-16 Sanyo Electric Co Ltd 圧縮機の制御装置
JP2008245037A (ja) * 2007-03-28 2008-10-09 Fuji Electric Holdings Co Ltd ノイズフィルタ
JP2012044812A (ja) * 2010-08-20 2012-03-01 Fuji Electric Co Ltd ノイズフィルタ及びこれを使用したemcフィルタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681989A (zh) * 2017-10-20 2018-02-09 江苏瑞牧电子科技有限公司 穿芯电容式电源滤波器及屏蔽室
US20210250011A1 (en) * 2020-02-11 2021-08-12 Mte Corporation Integrated inverter output passive filters for eliminating both common mode and differential mode harmonics in pulse-width modulation motor drives and methods of manufacture and use thereof
US11569792B2 (en) * 2020-02-11 2023-01-31 Mte Corporation Integrated inverter output passive filters for eliminating both common mode and differential mode harmonics in pulse-width modulation motor drives and methods of manufacture and use thereof

Also Published As

Publication number Publication date
JP6251221B2 (ja) 2017-12-20

Similar Documents

Publication Publication Date Title
JP5383662B2 (ja) 3相電源系統にコンバータを接続するためのコンバータ用ラインフィルタ
US7199692B2 (en) Noise suppressor
JP6680534B2 (ja) 電磁干渉をフィルタリングするためのデバイス及び方法
US9887641B2 (en) Power converter
US9479105B2 (en) Input EMI filter for motor drive including an active rectifier
JP4351916B2 (ja) ノイズフィルタ
JP2009148162A (ja) ノイズフィルタ
JP6251221B2 (ja) ノイズフィルタ装置
JP2012044812A (ja) ノイズフィルタ及びこれを使用したemcフィルタ
WO2016027374A1 (ja) 電力変換装置
US20170163126A1 (en) Interference suppression filter for a dc motor and dc motor having said filter
CN203554278U (zh) 一种家用电器及其emi滤波电路
JP6656299B2 (ja) ノイズフィルタ
JP4290669B2 (ja) ノイズ抑制回路
Vedde et al. An optimized high-frequency EMI filter design for an automotive DC/DC-converter
JP4424476B2 (ja) ノイズ抑制回路
JP6239468B2 (ja) 医療装置
CN204334316U (zh) 降低开关电路电磁噪声的装置
JP6210464B2 (ja) 電気回路
JP2012019504A (ja) ノイズフィルタ
JP3539405B2 (ja) 搬送波フィルタ
JP4729455B2 (ja) フィルタ回路
JP2012034149A (ja) 電源ラインフィルタ
JP2006186620A (ja) ラインフィルタ
JP2005117218A (ja) ノイズ抑制回路

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171124

R150 Certificate of patent or registration of utility model

Ref document number: 6251221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250