JP2017073687A - 撮像装置及び撮像方法 - Google Patents

撮像装置及び撮像方法 Download PDF

Info

Publication number
JP2017073687A
JP2017073687A JP2015200082A JP2015200082A JP2017073687A JP 2017073687 A JP2017073687 A JP 2017073687A JP 2015200082 A JP2015200082 A JP 2015200082A JP 2015200082 A JP2015200082 A JP 2015200082A JP 2017073687 A JP2017073687 A JP 2017073687A
Authority
JP
Japan
Prior art keywords
signal
photoelectric conversion
conversion unit
unit
output data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015200082A
Other languages
English (en)
Inventor
峰雄 内田
Mineo Uchida
峰雄 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015200082A priority Critical patent/JP2017073687A/ja
Publication of JP2017073687A publication Critical patent/JP2017073687A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

【課題】データ量の増加を抑制し得る撮像装置及び撮像方法を提供する。
【解決手段】第1の光電変換部と第2の光電変換部とをそれぞれ含む複数の単位画素を含む画素アレイと、前記第1の光電変換部からの信号に基づいて第1のビット数の第1の信号を生成し、前記第1の光電変換部と前記第2光電変換部とからの信号に基づいて前記第1のビット数とは異なる第2のビット数の第2の信号を生成する信号生成手段とを有することを特徴とする撮像装置。
【選択図】図5

Description

本発明は、撮像装置及び撮像方法に関する。
近年、CMOSセンサ等の撮像素子によって得られた信号を用いて焦点検出等を行う撮像装置が提案されている。
特許文献1では、撮像素子から得られた信号を用いて瞳分割方式の焦点検出を行う技術が提案されている。特許文献1では、撮像素子の画素毎に1つのマイクロレンズと2つのフォトダイオードとが設けられており、それぞれのフォトダイオードは、撮影レンズの互いに異なる瞳領域を通過した光を受光する。引用文献1では、2つのフォトダイオードからの出力信号を比較することによって焦点検出が行われ、2つのフォトダイオードからの出力信号を加算することによって撮像画像の生成が行われる。
特開2001−124984号公報
しかしながら、特許文献1に記載された技術では、2つのフォトダイオードからの信号を読み出すことになるため、データ量が増加し、データの読み出し時間が長くなり、ひいてはフレームレートの低下を招く。フレームレートを高く維持するためには、データ伝送レート等を向上させる必要があり、回路規模や消費電力の増大等を招くこととなる。
本発明の目的は、データ量の増加を抑制し得る撮像装置及び撮像方法を提供することにある。
本発明の一態様によれば、第1の光電変換部と第2の光電変換部とをそれぞれ含む複数の単位画素を含む画素アレイと、前記第1の光電変換部からの信号に基づいて第1のビット数の第1の信号を生成し、前記第1の光電変換部と前記第2光電変換部とからの信号に基づいて前記第1のビット数とは異なる第2のビット数の第2の信号を生成する信号生成手段とを有することを特徴とする撮像装置が提供される。
本発明によれば、データ量の増加を抑制し得る撮像装置及び撮像方法を提供することができる。
本発明の第1実施形態による撮像装置を示すブロック図である。 撮像素子の画素配置を示す平面図である。 撮影光学系の射出瞳を通過する光束と単位画素との関係を示す模式図である。 副画素a,bから得られる像信号の波形を示す模式図である。 撮像素子の全体的な構成を示すブロック図である。 撮像素子の単位画素を示す回路図である。 本発明の第1実施形態による撮像装置の動作を示すタイミングチャートである。 本発明の第1実施形態による撮像装置において行われるビット数削減処理を示す模式図である。 パラレル/シリアル変換のフォーマットを示す模式図である。 本発明の第1実施形態による撮像装置における撮像素子のコード付加部から出力される1ライン分のデータを示す模式図である。 本発明の第2実施形態による撮像装置における撮像素子のコード付加部から出力される1ライン分のデータを示す模式図である。 本発明の第3実施形態による撮像装置の動作を示すタイミングチャートである。
以下、本発明の実施形態について、図面を参照しながら詳細に説明する。各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。
[第1実施形態]
第1実施形態による撮像装置及び撮像方法について図1乃至図10を用いて説明する。図1は、本実施形態による撮像装置100を示すブロック図である。
図1に示すように、撮像光学系107の先端部には、第1のレンズ群101が配され、第1のレンズ群101は光軸方向に進退可能に保持される。絞り102は、その開口径を調節することによって撮影時の光量調節を行う。第2のレンズ群103は、第1のレンズ群101の進退動作と連動することによって、変倍動作、即ち、ズーム動作を行う。第3のレンズ群104は、光軸方向の進退によって焦点調節を行う。光学的ローパスフィルタ105は、撮影画像の偽色やモアレを軽減するための光学素子である。これらのレンズ群101,103,104と絞り102とマイクロレンズ202(図3参照)とによって撮像光学系107が構成されている。本実施形態では、撮像光学系107の一部を含むレンズ装置120と撮像装置100の本体とが一体的に構成されている場合を例に説明するが、これに限定されるものではない。撮像光学系107の一部を含むレンズ装置120は、撮像装置100本体から着脱可能であってもよい。
撮像素子106は、撮像光学系107によって撮像素子106の撮像面に結像された被写体像(光学像)を光電変換する。撮像素子106としては、例えば、ベイヤー配列のCMOSイメージセンサが用いられる。撮像素子106からは、デジタル値の画像信号がデジタルフロントエンド108(DFE:Digital Front End)に出力される。デジタルフロントエンド108は、撮像素子106からの画像信号に対して、所定の演算処理を行う。
デジタルシグナルプロセッサ(DSP:Digital Signal Processer)109は、デジタルフロントエンド108から出力されるデジタル値の画像信号に対して、補正処理や現像処理等を行う。また、DSP109は、デジタル値の画像信号に基づいて、焦点ずれ量を算出するとともに、AF(オートフォーカス)演算を行う。
記録媒体110は、画像データを記録するものであり、DSP109に接続されている。表示部111は、撮影画像や各種のメニュー画面等を表示するためのものであり、液晶ディスプレイ(LCD)等が用いられており、DSP109に接続されている。RAM112は、画像データ等を一時的に記憶するものであり、DSP109に接続されている。タイミングジェネレータ(TG)113は、撮像素子106に駆動信号を供給する。
CPU114は、デジタルフロントエンド108、DSP109、タイミングジェネレータ113、及び、絞り駆動部(絞り駆動回路)115の制御を行う。また、CPU114は、DSP109のAF演算結果に基づいて、フォーカス駆動部(フォーカス駆動回路)116を制御する。絞り駆動部115は、絞りアクチュエータ117を制御することによって、絞り102を調整する。フォーカス駆動部116は、フォーカスアクチュエータ118を制御することによって、第3のレンズ群104を光軸方向に進退させ、即ち、第3のレンズ群104を駆動させ、これにより焦点調節を行う。ROM119は、各種の補正データ等を記憶するものであり、DSP109に接続されている。
次に、本実施形態における撮像素子106の画素配置について図2を用いて説明する。図2は、撮像素子106の画素配置を示す平面図である。
図2に示すように、撮像素子106には、複数の単位画素300が2次元状(行列状)に配列されており、各々の単位画素300上には、R(Red)、G(Green)、B(Blue)のカラーフィルタがベイヤー配列で配置されている。単位画素300は、1つの画素を構成している。また、各々の単位画素300内には、副画素aと、副画素bとがそれぞれ配置されている。副画素a、bには、フォトダイオード(光電変換部)401a,401bがそれぞれ設けられている。副画素a、bの各々の出力信号は、焦点検出に用いられる。また、副画素a、bの出力信号を加算することにより得られる信号は、撮像画像の生成に用いられる。なお、副画素bの出力信号の値は、例えば、副画素a,bの出力信号の加算値から副画素aの出力信号の値を減算することによって算出される。
次に、撮像光学系107と単位画素300との関係について図3を用いて説明する。図3は、撮像光学系107の射出瞳203を通過する光束と単位画素300との関係を示す模式図である。
図3に示すように、カラーフィルタ201及びマイクロレンズ202が、単位画素300上、即ち、フォトダイオード401a、401b上にそれぞれ形成されている。撮像光学系107の射出瞳203を通過する光束の中心と光軸204とが一致している。射出瞳203を通過した光束は、光軸204を中心として単位画素300に入射する。
撮像光学系107の射出瞳203には、互いに異なる瞳領域205、206が位置している。図3に示すように、瞳領域205を通過する光束は、マイクロレンズ202を介して、副画素a、即ち、フォトダイオード401aによって受光される。一方、瞳領域206を通過する光束は、マイクロレンズ202を介して、副画素b、即ち、フォトダイオード401bによって受光される。このように、副画素a、bは、撮像光学系107の射出瞳203の別個の瞳領域205,206からの光をそれぞれ受光する。このため、副画素a、bの出力信号を比較することによって、位相差方式の焦点検出が可能となる。
次に、撮像素子106の副画素a、bから得られる像信号の波形について図4を用いて説明する。図4は、副画素a、bから得られる像信号の波形を示す模式図である。図4(a)は、合焦状態から外れている場合、即ち、非合焦状態を示している。図4(b)は、合焦状態、より具体的には、略合焦状態を示している。図4(a)及び図4(b)において、縦軸は信号の大きさを示しており、横軸は、単位画素300の位置、即ち、水平方向における単位画素300の位置を示している。
図4(a)に示すように、合焦状態から外れている場合、即ち、非合焦状態の場合には、副画素a、bからそれぞれ得られる像信号の波形(副画素a信号、副画素b信号)は互いに一致せず、互いに大きくずれた状態となる。非合焦状態から合焦状態に近づくと、図4(b)に示すように、副画素a、bからそれぞれ得られる像信号の波形のずれは小さくなる。そして、合焦状態においては、副画素aから得られる像信号の波形と、副画素bから得られる像信号の波形とが、互いに重なる。このように、副画素a、bからそれぞれ得られる像信号の波形のずれ量から焦点のずれ量、即ち、デフォーカス量を検出することによって、焦点調節を行うことが可能となる。
次に、撮像素子106の全体的な構成について図5を用いて説明する。図5は、撮像素子106の全体的な構成を示すブロック図である。
図5に示すように、撮像素子106の画素領域(画素アレイ)PAには、単位画素300が2次元状(行列状)に配置されている。図5においては、各々の単位画素300に符号p11,・・・,pknが付されている。kは当該単位画素300が何列目に位置しているかを示しており、nは当該単位画素300が何行目に位置しているかを示している。
ここで、1つの単位画素(画素)300の回路構成について図6を用いて説明する。図6は、撮像素子106の単位画素300を示す回路図である。
副画素a、bにそれぞれ設けられたフォトダイオード401a、401bは、入射される光(光学像)を光電変換し、露光量に応じた電荷を蓄積する。転送スイッチ402a、402bのゲートに印加される信号txa、txbをHighレベルに設定することにより、フォトダイオード401a、401bに蓄積されているそれぞれの電荷がフローティングディフュージョン部403に転送される。フローティングディフュージョン部403は、増幅トランジスタ404のゲートに接続されており、増幅トランジスタ404のゲートの電位は、フォトダイオード401a、401bから転送された電荷量に応じた電位となる。増幅トランジスタ404のドレインは、電源電位Vddに接続されている。増幅トランジスタ404の出力は、垂直出力線302(図5参照)を介して電流源304(図5参照)に接続されている。増幅トランジスタ404と電流源304とによって、ソースフォロワ回路が構成されている。
フローティングディフュージョン部403をリセットするためのリセットスイッチ(リセットトランジスタ)405のドレインは、電源電位Vddに接続されている。リセットスイッチ405のゲートに印加される信号resをHighレベルに設定することにより、フローティングディフュージョン部403がリセットされる。フォトダイオード401a、401bの電荷をリセットする場合には、信号resと信号txa、txbとを同時にHighレベルに設定することにより、転送スイッチ(転送ゲート)402a、402bとリセットスイッチ405の両方をオンにする。そして、フローティングディフュージョン部403を経由して、フォトダイオード401a、401bのリセットを行う。選択スイッチ(選択トランジスタ)406のゲートに印加される信号selをHighレベルに設定することにより、増幅トランジスタ404のゲートの電位に応じた画素信号が単位画素300の出力voutに出力される。
垂直走査回路301(図5参照)は、上述した信号res、txa、txb、sel、即ち、駆動信号を、単位画素300に供給する。これらの駆動信号は、画素アレイPAの行ごとに共通となっている。各単位画素300の出力voutは、垂直出力線302を介して列共通読み出し回路(CLM)303に接続される。垂直出力線302は、列ごとに共通となっている。列共通読み出し回路303内では、CDS(相関二重サンプリング)動作によるノイズ除去やカラムアンプによる信号増幅等が行われる。
列共通読み出し回路303の出力は、アナログ−デジタル変換器(ADC:Analog to digital converter)305に接続されている。アナログ−デジタル変換器(アナログデジタル変換部)305は、例えばランプ方式等のA/D変換方法によって、アナログ値の信号である画素信号やノイズ信号をデジタル値の信号に変換する。アナログ−デジタル変換器305によってアナログ−デジタル変換を行うことによって得られたデータ、即ち、変換結果は、ラインメモリ(MEM)306に格納される。アナログ−デジタル変換器305と後述するビット数調整部309とが相俟って、後述する12ビットの像信号Aと後述する16ビットの像信号ABとを生成する信号生成手段の一部として機能する。
水平出力回路307からの制御によって、ラインメモリ306に格納されたデータが出力される。この際、後述するノイズ信号Nと、画素信号Sa又は画素信号Sabとがラインメモリ306から同時に出力され、S−N処理部(S−N回路)308に入力される。S−N処理部308は、画素信号Sa又は画素信号Sabからノイズ信号Nを減算する回路である。S−N処理部308によって、画素信号Sa又は画素信号Sabからノイズ信号Nが減算され、これによって信号成分が得られる。
ビット数調整部(ビット数調整回路)309は、後述する像信号Aのビット数を調整する。第1のパラレル/シリアル変換部(第1のパラレル/シリアル変換回路)310Aは、ビット数調整部309でビット数が調整された像信号Aに対してパラレル/シリアル変換処理を行う。第2のパラレル/シリアル変換部(第2のパラレル/シリアル変換回路)310Bは、後述する像信号ABに対してパラレル/シリアル(P/S)変換処理を行う。セレクタ311は、第1のパラレル/シリアル変換部310Aの出力と第2のパラレル/シリアル変換部310Bの出力とのうちいずれかを選択してコード(Code)付加部(コード付加回路)312に出力する。具体的には、セレクタ311は、像信号Aの出力期間においては、第1のパラレル/シリアル変換部310Aから出力されるデータを選択するように動作し、像信号ABの出力期間においては、パラレル/シリアル変換部310Bから出力されるデータを選択する。
コード付加部312は、各ラインの出力データの境界を示す同期コードと、後続のデータが像信号Aであるか像信号ABであるかを示す識別コードとを、像信号Aや像信号ABの出力データに適宜付加する。コード付加部312は、像信号Aの出力データと像信号ABの出力データとにそれぞれ識別コードを付加する識別コード付加手段として機能する。また、コード付加部312は、像信号Aの出力データと像信号ABの出力データとにそれぞれ同期コード付加する同期コード付加手段として機能する。コード付加部312によって同期コードと識別コードとが付加された信号は、LVDS出力部(LVDS出力回路)313に入力される。LVDS出力部313では、入力された信号を低電圧差動伝送(LVDS:Low Voltage Difference signal)の伝送形態に沿って、撮像素子106の外部に出力する(OUT)。このように、LDVS313は、像信号Aを含む出力データと像信号ABを含む出力データとを時分割で共通の信号線に出力する出力手段として機能する。
なお、セレクタ311及びコード付加部312は、像信号Aと像信号ABとのうちのいずれを出力するかを、水平出力回路307からの情報に基づいて識別して動作する。
次に、本実施形態による撮像装置100における読出し動作について図7を用いて説明する。図7は、本実施形態による撮像装置100の動作を示すタイミングチャートである。具体的には、図7は、撮像素子106の読み出し動作を示している。ここでは、i行目の読み出しを例として説明する。
まず、信号selをHighレベルに設定することにより、単位画素300の選択スイッチ406をオン状態にする。この後、信号resをLowレベルに設定することにより、リセットスイッチ405をオフ状態に設定し、フローティングディフュージョン部403のリセットを解除する。アナログ−デジタル変換器305は、この際にアナログ−デジタル変換器305に入力された信号、即ち、フローティングディフュージョン部403のリセットが解除された直後の信号を、ノイズ信号NとしてA/D変換する(N変換)。
次に、信号txaをHighレベルに設定することにより、転送スイッチ(転送トランジスタ)402aをオン状態にする。これにより、副画素aのフォトダイオード401aに蓄積されていた電荷がフローティングディフュージョン部403に転送される。フォトダイオード401aに蓄積されていた電荷に応じた信号が、選択スイッチ406を介して、垂直出力線302へ出力される。アナログ−デジタル変換器305は、この際にアナログ−デジタル変換器305に入力された信号を画素信号SaとしてA/D変換する(Sa変換)。
Sa変換が終了すると、ラインメモリ306に格納されている画素信号Saとノイズ信号Nとが、水平出力回路307からの制御によって、ラインメモリ306からS−N処理部308に出力される。S−N処理部308は、Sa信号からN信号を減算する処理を行うことにより、像信号Aを生成する。像信号Aが出力されている期間においては、第1のパラレル/シリアル変換部310Aの出力がセレクタ311によって選択される。このため、像信号Aは、ビット数調整部309、第1のパラレル/シリアル変換部310A、セレクタ311、コード付加部312及びLVDS出力部313を経由して撮像素子106の外部に出力される。像信号Aの先頭には、同期コード及び識別コードが、コード付加部312によって付加される。なお、ビット数調整部309とコード付加部312の動作については、後述することとする。
像信号Aの出力と並行して、信号txa、txbをHighレベルに設定することにより、転送スイッチ402a、402bをオン状態にする。これにより、副画素bのフォトダイオード401bに蓄積されていた電荷がフローティングディフュージョン部403に転送される。そして、副画素aのフォトダイオード401aに蓄積されていた電荷と副画素bのフォトダイオード401bに蓄積されていた電荷の総和に応じた信号、即ち、加算信号が、選択スイッチ406を介して、垂直出力線302へ出力される。アナログ−デジタル変換器305は、この際の信号を画素信号SabとしてA/D変換する(Sab変換)。
Sab変換が終了した後、像信号Aの出力が完了するまで待つ。Sab変換が終了した後、像信号Aの出力が完了するまでの間に、信号resをHighレベルに設定することによりリセットスイッチ405をオン状態にし、フローティングディフュージョン部403をリセットしてもよい。
像信号Aの出力が完了すると、ラインメモリ306に格納されている画素信号Sabとノイズ信号Nとが、水平出力回路307からの制御によって、水平出力回路307からS−N処理部308に出力される。S−N処理部308は、Sab信号からN信号を減算する処理を行うことにより、像信号ABを生成する。像信号ABが出力されている期間においては、第2のパラレル/シリアル変換部310Bの出力がセレクタ311によって選択される。このため、像信号ABは、第2のパラレル/シリアル変換部310B、セレクタ311、コード付加部312及びLVDS出力部313を介して撮像素子106の外部に出力される。LVDS出力部313から出力される像信号のデータは、画素アレイPAの1ラインに対する読み出し期間内において、像信号Aのデータから像信号ABのデータに切り替わる。像信号ABの先頭には、同期コード及び識別コードが、コード付加部312によって付加される。像信号ABの識別コードは、上述した像信号Aの識別コードとは異なっている。このため、撮像素子106から出力される信号を受信するデジタルフロントエンド(受信部)108は、受信した信号が像信号Aであるのか像信号ABであるのかを判別することができる。また、デジタルフロントエンド108から出力される信号を受信するDSP(受信部)109は、受信した信号が像信号Aであるのか像信号ABであるのかを判別することができる。
像信号ABが出力されている期間中に、垂直走査回路301は、次の行(i+1行目)についての信号sel及び信号resを制御し、i+1行目の信号の読み出し動作を開始する。
こうして、撮像素子106の各行について読み出しが順次行われる。
次に、本実施形態による撮像装置において行われるビット数削減処理について図8を用いて説明する。図8は、本実施形態による撮像装置において行われるビット数削減処理を示す模式図である。ビット数削減処理は、入力されるデータに対してビット(bit)数を削減する処理を行うビット数調整部309によって行われる。ここでは、S−N処理部308から出力されるデータが1画素あたり16ビットのパラレルデータであり、ビット数調整部309から出力されるデータが1画素あたり12ビットのパラレルデータである場合を例に説明する。
図8(a)は、常に、16ビットの入力データのうちの例えば下位4ビットを削って12bitにして出力する例を示している。AF演算用のデータは、分解能が比較的低い場合であっても、十分な焦点調節精度を得られることが多い。これは、AF演算においては、補間処理等が行われるためである。このため、図8(a)では、AF演算にしか使用されない像信号である像信号Aを、画像データにも使用される像信号である像信号ABに比べて分解能を落として出力する。
図8(b)は、被写体の輝度に応じた態様で像信号Aのビット数の削減処理を行う例を示している。図8(b)のうちの左側の図は、被写体が高輝度である場合を示している。被写体が高輝度である場合には、下位ビット側の分解能は不要であるため、図8(a)と同様に、例えば下位4ビットを削る。図8(b)のうちの中央の図は、被写体が低輝度である場合を示している。被写体が低輝度である場合には、下位ビット側の分解能が重要である。一方、被写体が低輝度である場合には、上位ビットには有効な情報が存在しない。このため、被写体が低輝度である場合には、例えば上位4ビットを削る。図8(b)のうちの右側の図は、被写体が中間輝度である場合を示している。被写体が中間輝度である場合においては、例えば、上位2ビットと下位2ビットとを削るようにする。被写体の輝度は、例えば、直前のフレームにおける被写体の輝度に基づいて設定することができる。また、撮像素子106とは別個のセンサを用いて被写体の輝度を検出し、検出された被写体の輝度についての情報を、CPU114が撮像素子106に送信するようにしてもよい。なお、上位ビットを削る場合には、クリップ機能、即ち、上位ビットの一部に有効な情報が存在している場合には、当該有効な情報が存在しているビットについては削除しないような機能を設けることが好ましい。
次に、パラレル/シリアル変換のフォーマットについて図9を用いて説明する。図9は、パラレル/シリアル変換のフォーマットを示す図である。
図9(a)は、第1のパラレル/シリアル変換部310Aにおける像信号Aのシリアル/パラレル変換を示している。上述したように、ビット数調整部309から出力されるデータは、1画素あたり12ビットのパラレルデータである。このため、第1のパラレル/シリアル変換部301Aには、12ビットのパラレルデータが入力される。図9(a)においては、12ビットのパラレルデータが、b0〜b11で示されている。第1のパラレル/シリアル変換部301Aは、12ビットのパラレルデータを、6ビットずつのシリアルデータにする。そして、第1のパラレル/シリアル変換部301Aは、b0〜b5の6ビットのシリアルデータを、第1のレーンLane1を用いて出力し、b6〜b11の6ビットのシリアルデータを第2のレーンLane2を用いて出力する。
図9(b)は、第2のパラレル/シリアル変換部310Bにおける像信号ABのパラレル/シリアル変換を示している。上述したように、S−N処理部308から出力されるデータは、1画素あたり16ビットのパラレルデータである。このため、第2のパラレル/シリアル変換部310Bには、16ビットのパラレルデータが入力される。図9(b)においては、16ビットのパラレルデータが、b0〜b15を用いて示されている。第2のパラレル/シリアル変換部301Bは、16ビットのパラレルデータを、8ビットずつのシリアルデータにする。そして、第2のパラレル/シリアル変換部301Bは、b0〜b7の8ビットのシリアルデータを、第1のレーンLane1を用いて出力し、b9〜b15の8ビットのシリアルデータを、第2のレーンLane2を用いて出力する。
このように、像信号ABは16ビットであるのに対し、像信号Aは12ビットとなる。即ち、像信号Aのデータ量は、像信号ABの3/4倍となる。像信号Aと像信号ABを合わせたデータの総量は、像信号Aのビット数の調整を行わなかった場合と比較して、7/8倍となる。このように、本実施形態によれば、16ビットの像信号Aと16ビットの像信号Aとを単に読み出す場合と比較して、読み出されるデータ量を削減することができる。データ量を削減することができるため、本実施形態によれば、データの読み出し時間を短縮することができ、ひいてはフレームレートを向上させることができる。また、フレームレートを高く維持するために、データ伝送レートを向上させることを要せず、回路規模や消費電力の増大等を防止することができる。
図10は、コード付加部312から出力される1ライン分のデータ、即ち、出力データを示す模式図である。図10における「12b」は、1画素分のデータが12ビットであることを示している。また、図10における「16b」は、1画素分のデータが16ビットであることを示している。
コード付加部312は、データの先頭部分に同期コードを付加する。同期コードとしては、例えば所定の値が用いられ、同期コードのビット数は適宜設定することができる。デジタルフロントエンド108やDSP109は、同期コードに基づいて一連のデータの先頭を認識し、同期コードに続くデータのデコードを行う。像信号Aの先頭に付加される同期コードと、像信号ABの先頭に付加される同期コードとは、同一の値であってもよいし、異なった値であってよい。但し、像信号Aの先頭に付加される同期コードのビット数と、像信号ABの先頭に付加される同期コードのビット数とは、同一とすることが好ましい。
コード付加部312は、同期コードの後に識別コードを付加する。識別コードは、当該データが、像信号Aについてのデータであるのか、像信号ABについてのデータであるのかを、デジタルフロントエンド108やDSP109が識別することを可能とするためのものである。上述したように、像信号Aの1画素あたりのビット数は12ビットであり、像信号ABの1画素あたりのビット数は16ビットである。即ち、像信号Aのフォーマットと像信号ABのフォーマットとは互いに異なっている。このため、デジタルフロントエンド108やDSP109は、当該像信号が像信号Aと像信号ABのいずれであるのかを識別コードに基づいて適宜認識し、デコードフォーマットを適宜切り替え、デコードを行う。このため、像信号Aの識別コードと像信号ABの識別コードとには、それぞれ異なった値が用いられている。また、像信号Aの識別コードのビット数と像信号ABのビット数とは、例えば等しく設定されている。ここでは、像信号Aの識別コードのビット数と像信号ABのビット数とをいずれも16ビットに設定している。また、識別コードは、同期コードと隣接していることが好ましい。このように、コード付加部312は、第1のパラレル/シリアル変換部310Aや第2のパラレル/シリアル変換部310Bと相俟って、出力データ生成手段として機能する。
このように、本実施形態によれば、16ビットの像信号Aと16ビットの像信号Aとを単に読み出す場合と比較して、データ量を削減することができる。データ量を削減することができるため、本実施形態によれば、データの読み出し時間を短縮することができ、ひいてはフレームレートを向上させることができる。また、フレームレートを高く維持するために、データ伝送レートを向上させることを要せず、回路規模や消費電力の増大等を防止することができる。
なお、本実施形態では、像信号Aのビット数を12ビットとし、像信号ABのビット数を16ビットとする場合を例に説明したが、像信号Aと像信号ABの各々のビット数は、これに限定されるものではない。
また、本実施形態では、像信号Aのビット数の調整を撮像素子106内で行う場合を例に説明したが、これに限定されるものではない。例えば、撮像素子106とDSP109との中間に位置するデバイス(中継デバイス)、即ち、本実施形態の場合には、デジタルフロントエンド108において、像信号Aのビット数の調整を行うようにしてもよい。但し、この場合には、撮像素子106においては、読み出し時間の短縮等の効果は得られず、DFE(中継デバイス)108とDSP109との間におけるデータ量の増加が抑制されるに留まる。
[第2実施形態]
第2実施形態による撮像装置及び撮像方法について図11を用いて説明する。図1乃至図10に示す第1実施形態による撮像装置及び撮像方法と同一の構成要素には、同一の符号を付して説明を省略または簡潔にする。
第1実施形態においては、像信号Aを焦点検出処理にのみ用いる場合を例に説明した。しかしながら、撮影モードによっては、像信号Aを焦点検出処理以外の用途で用いる場合、例えば、像信号Aを画像に用いる場合も考えられる。
例えば、像信号Aと像信号ABとを取得しておき、後から焦点位置を調整することによって、所望の焦点位置の画像を生成する処理、即ち、リフォーカスと称される処理を行う場合が、これに該当する。例えば、像信号ABから像信号Aを減算することによって、副画素bの信号に相当する像信号Bが生成される。そして、像信号Aと像信号Bとを空間的な位置をシフトしつつ加算することによって、所望の位置で合焦した画像を生成することができる。
本実施形態による撮像装置は、このようなモードでの撮影も可能である。即ち、本実施形態による撮像装置では、像信号Aを画像に用いないモードである第1の撮影モードと、像信号Aを画像に用いるモードである第2の撮影モードとのうちのいずれかを選択し得る。いずれの撮影モードで撮影を行うかは、不図示の操作部材等をユーザが操作することによって設定される。CPU114は、ユーザによって行われる設定に基づいて、タイミングジェネレータ113を介して撮像素子106を駆動する。第1の撮影モードにおける動作は、第1実施形態において説明した通りであるため、ここでは説明を省略する。
本実施形態では、第2の撮影モードにおいては、像信号Aと像信号ABのいずれについても、1画素あたりのビット数を16ビットとする。即ち、本実施形態では、第2の撮影モードにおいては、16ビットの像信号Aと16ビットの像信号ABとが撮像素子106から出力される。
図11は、コード付加部312から出力される1ライン分のデータ、即ち、1ライン分の出力データを示す模式図である。図11(a)は、第1の撮影モードの場合を示しており、図10を用いて上述した第1実施形態の場合と同様である。図11(b)は、第2の撮影モードの場合を示しており、像信号Aの1画素あたりのビット数も16ビットとなっている。このように、本実施形態では、第2の撮影モードで動作させる場合には、データ量を低減しない。
第2の撮影モードにおいては、デジタルフロントエンド108やDSP109は、像信号Aと像信号ABとでデコードフォーマットを切り替える必要はない。このため、デコードを行うという観点においては、像信号Aの識別コードと像信号ABの識別コードとを異ならせる必要はない。しかし、その他の画像処理等において識別コードは有用であるため、ここでは像信号Aの識別コードと像信号ABの識別コードとを異ならせている。
第2の撮影モードにおいては、16ビットの像信号Aを出力するため、セレクタ311は、像信号Aが出力される期間においても像信号ABが出力される期間においても、第2のパラレル/シリアル変換部310Bから出力されるデータを選択する。従って、第2の撮影モードにおいては、水平出力回路307はセレクタ311に対する制御信号を切替えない。
このように、本実施形態によれば、像信号Aのビット数を削減して出力する第1の撮影モードと、像信号Aのビット数を削減することなく出力する第2の撮影モードとを備えた撮像装置が提供される。
なお、本実施形態では、第2の撮影モードにおける像信号Aのビット数を、像信号ABのビット数と同一の16ビットとする場合を例に説明したが、これに限定されるものではない。加算信号である像信号ABの大きさに対して、像信号Aの大きさは小さいはずである。このため、例えば、像信号Aの上位1ビットを削って15ビットにするようにしてもよい。
[第3実施形態]
第3実施形態による撮像装置及び撮像方法を図12用いて説明する。図1乃至図11に示す第1又は第2実施形態による撮像装置及び撮像方法と同一の構成要素には、同一の符号を付して説明を省略または簡潔にする。
上記実施形態では、像信号Aのビット数の削減がビット数調整部309によって行われる場合を例に説明した。また、上記実施形態では、アナログ−デジタル変換器305が画素信号Saと画素信号Sabとを同一のビット数のデータにA/D変換していた。
これに対し、本実施形態による撮像装置は、画素信号Saをアナログ−デジタル変換器305によってA/D変換する段階で、像信号Aのビット数を像信号ABのビット数よりも小さく設定する。
図12は、本実施形態による撮像装置における読み出し動作を示すタイミングチャートである。
図12において“Ramp”は、ランプ方式のA/D変換を行うアナログ−デジタル変換器305におけるランプ信号を示している。ランプ信号は、アナログ−デジタル変換器305内で発生される。アナログ−デジタル変換器305内に配された各列のコンパレータが、各々の列の画素信号(又はノイズ信号)とランプ信号とを比較し、コンパレータの出力が反転するまでの時間がカウンタ(図示せず)によってカウントされる。カウンタによってカウントされた時間に対応するランプ信号の大きさ(電圧)が、画素信号(又はノイズ信号)の大きさである。従って、カウンタによってカウントされた時間に基づいて、画素信号の大きさを求めることができる。こうして、A/D変換が行われる。
画素信号SaをA/D変換する際、即ち、Sa変換の際においては、ランプ信号の傾き、即ち、単位時間あたりのランプ信号の電圧の変化量を大きくし、ランプ信号を急峻に変化させる。そうすると、A/D変換における実効的な分解能が低下する。本実施形態では、画素信号SaをA/D変換する際のランプ信号の傾きを、画素信号SabをA/D変換する際のランプ信号の傾きの例えば16倍とする。ランプ信号の傾きを16倍にした場合には、ランプ信号の傾きが通常通りである場合と比較して、コンパレータが反転するまでの時間が1/16となる。このため、ランプ信号の傾きを16倍にした場合における像信号Aの値は、ランプ信号の傾きを16倍にしなかった場合における像信号Aの値の1/16となる。像信号Aの値が1/16となるため、像信号Aのビット数を例えば4ビット削減することができる。
ノイズ信号Nの分解能は、画素信号Sabの分解能と同じに設定されている。このため、S−N処理部308が画素信号Saからノイズ信号Nを減算する際には、ノイズ信号Nを1/16倍し、1/16倍したノイズ信号Nを画素信号Saから減算する。
ビット数調整部309は、像信号Aに対してビットの削減を行うことなく、入力された像信号Aをそのまま出力すればよい。従って、本実施形態では、ビット数調整部309を省略することも可能である。
本実施形態では、画素信号SaをA/D変換する際の分解能を低下させるため、画素信号SaをA/D変換する際に要する時間をも短縮することができる。このため、本実施形態によれば、撮像素子106の読み出し時間を更に短縮することができる。
なお、像信号ABから像信号Aを減算することにより像信号Bを算出する際には、像信号ABを1/16倍し、1/16倍した像信号ABから像信号Aを減算することにより、像信号Bを得るようにしてもよい。また、像信号Aを16倍し、像信号ABから16倍した像信号Aを減算することにより、像信号Bを得るようにしてもよい。
上記の例においては、画素信号SaをA/D変換する際のランプ信号の傾きを、画素信号SabをA/D変換する際のランプ信号の傾きの16倍とし、カウント時間を、ランプ信号の傾きが通常通りである場合の1/16としている。画素信号SaをA/D変換する際のランプ信号の振幅は、画素信号SabをA/D変換する際の振幅と同じである。このため、こうして得られた像信号Aは、像信号ABに対し、下位4ビットが削減されたことと等価となる。しかし、上記のような例に限定されるものではない。例えば、上位ビット側と下位ビット側の両方が削減されたことと等価になるようにしてもよい。例えば、画素信号SaをA/D変換する際のランプ信号の傾きを、画素信号SabをA/D変換する際のランプ信号の傾きの8倍とする一方、カウント時間については、ランプ信号の傾きが通常通りである場合の1/16とするようにしてもよい。この場合には、像信号Aは、像信号ABに対し、上位1ビットが削減され、下位3ビットが削減されたことと等価となる。このようにした場合にも、像信号Aのデータ量を、像信号ABのデータ量よりも小さくすることができる。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
上記実施形態では、同じ画素数分の像信号Aと像信号ABとを取得する場合を例に説明したが、これに限定されるものではない。例えば、一部の領域についてのみ像信号Aを取得するようにしたり、加算平均合成した像信号Aを取得するようにしたりすることによって、像信号Aが出力される画素数を削減するようにしてもよい。これにより、データ量の増加を更に抑制することができる。
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
100…撮像装置
106…撮像素子
108…デジタルフロントエンド
109…デジタルシグナルプロセッサ
305…アナログ−デジタル変換器
306…ラインメモリ
307…水平走査回路
309…ビット数調整部
310A…パラレル/シリアル変換部
310B…パラレル/シリアル変換部
311…セレクタ
312…コード付加部

Claims (17)

  1. 第1の光電変換部と第2の光電変換部とをそれぞれ含む複数の単位画素を含む画素アレイと、
    前記第1の光電変換部からの信号に基づいて第1のビット数の第1の信号を生成し、前記第1の光電変換部と前記第2の光電変換部とからの信号に基づいて前記第1のビット数とは異なる第2のビット数の第2の信号を生成する信号生成手段と
    を有することを特徴とする撮像装置。
  2. 前記第1の信号のビット数は、前記第2の信号のビット数より小さい
    ことを特徴とする請求項1に記載の撮像装置。
  3. 前記信号生成手段は、前記第1の光電変換部からの信号に基づいて前記第2のビット数の前記第1の信号を生成し、前記第1の光電変換部と前記第2の光電変換部とからの信号とに基づいて前記第2のビット数の前記第2の信号を生成するアナログ−デジタル変換部と、前記アナログ−デジタル変換部により生成された前記第2のビット数の前記第1の信号に基づいて前記第1のビット数の前記第1の信号を生成するビット数調整部とを含む
    ことを特徴とする請求項1又は2に記載の撮像装置。
  4. 前記ビット数調整部は、第1の撮影モードにおいては、前記第1のビット数の前記第1の信号を出力し、前記第1の撮影モードと異なる第2の撮影モードにおいては、前記第2のビット数の前記第1の信号を出力する
    ことを特徴とする請求項3に記載の撮像装置。
  5. 前記信号生成手段は、前記第1の光電変換部からの信号に基づいて前記第1のビット数の前記第1の信号を生成し、前記第1の光電変換部と前記第2の光電変換部とからの信号とに基づいて前記第2のビット数の前記第2の信号を生成するアナログ−デジタル変換部を含む
    ことを特徴とする請求項1又は2に記載の撮像装置。
  6. 前記アナログ−デジタル変換部は、前記第1の光電変換部からの信号と、単位時間あたりの電圧の変化量が第1の変化量である第1のランプ信号とを、コンパレータにより比較し、前記コンパレータの出力が反転するまでの時間に基づいて前記第1の信号を生成し、前記第1の光電変換部と前記第2の光電変換部とからの信号と、単位時間あたりの電圧の変化量が前記第1の変化量よりも小さい第2の変化量である第2のランプ信号とを、前記コンパレータにより比較し、前記コンパレータの出力が反転するまでの時間に基づいて前記第2の信号を生成する
    ことを特徴とする請求項5に記載の撮像装置。
  7. 前記信号生成手段によって生成された前記第1の信号を第1のフォーマットで配列にすることにより第1の出力データを生成し、前記信号生成手段によって生成された前記第2の信号を第2のフォーマットで配列することにより第2の出力データを生成する出力データ生成手段と、前記第1の出力データと前記第2の出力データとを時分割で共通の信号線に出力する出力手段とを更に有する
    ことを特徴とする請求項1から6のいずれか1項に記載の撮像装置。
  8. 前記画素アレイの1ラインに対する読み出し期間内に、前記出力手段からの出力を、前記第1の出力データから前記第2の出力データに切り替える
    ことを特徴とする請求項7に記載の撮像装置。
  9. 前記第1の出力データに基づいて焦点検出を行う焦点検出手段を更に有する
    ことを特徴とする請求項7又は8に記載の撮像装置。
  10. 前記第1の出力データと前記第2の出力データとにそれぞれ異なる値の識別コードを付加する識別コード付加手段を更に有する
    ことを特徴とする請求項7から9のいずれか1項に記載の撮像装置。
  11. 前記第1の出力データに付加される前記識別コードのビット数と、前記第2の出力データに付加される前記識別コードのビット数とが、等しい
    ことを特徴とする請求項10に記載の撮像装置。
  12. 前記第1の出力データと前記第2の出力データとを受信する受信部であって、前記第1の出力データをデコードする際のフォーマットと、前記第2の出力データをデコードする際のフォーマットとを、前記識別コードに基づいて切り替える受信部を更に有する
    ことを特徴とする請求項10又は11に記載の撮像装置。
  13. 前記第1の出力データの先頭と前記第2の出力データの先頭とをそれぞれ示す同期コードを、前記第1の出力データと前記第2の出力データとにそれぞれ付加する同期コード付加手段を更に有する
    ことを特徴とする請求項7から12のいずれか1項に記載の撮像装置。
  14. 前記第1の出力データの前記同期コードの値と、前記第2の出力データの前記同期コードの値とが、等しい
    ことを特徴とする請求項13に記載の撮像装置。
  15. 前記信号生成手段は、被写体の輝度に応じた態様で前記第1の信号を生成する
    ことを特徴とする請求項1から14のいずれか1項に記載の撮像装置。
  16. 第1の光電変換部と第2の光電変換部とをそれぞれ含む複数の単位画素を含む画素アレイの前記第1の光電変換部からの信号に基づいて第1のビット数の第1の信号を生成するステップと、
    前記第1の光電変換部と前記第2の光電変換部とからの信号に基づいて前記第1のビット数とは異なる第2のビット数の第2の信号を生成するステップと
    を有することを特徴とする撮像方法。
  17. コンピュータに、
    第1の光電変換部と第2の光電変換部とをそれぞれ含む複数の単位画素を含む画素アレイの前記第1の光電変換部からの信号に基づいて第1のビット数の第1の信号を生成するステップと、
    前記第1の光電変換部と前記第2の光電変換部とからの信号に基づいて前記第1のビット数とは異なる第2のビット数の第2の信号を生成するステップと
    を実行させるためのプログラム。
JP2015200082A 2015-10-08 2015-10-08 撮像装置及び撮像方法 Pending JP2017073687A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015200082A JP2017073687A (ja) 2015-10-08 2015-10-08 撮像装置及び撮像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015200082A JP2017073687A (ja) 2015-10-08 2015-10-08 撮像装置及び撮像方法

Publications (1)

Publication Number Publication Date
JP2017073687A true JP2017073687A (ja) 2017-04-13

Family

ID=58537572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015200082A Pending JP2017073687A (ja) 2015-10-08 2015-10-08 撮像装置及び撮像方法

Country Status (1)

Country Link
JP (1) JP2017073687A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003510A1 (ja) * 2017-06-29 2019-01-03 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
US11700468B2 (en) 2020-12-04 2023-07-11 Canon Kabushiki Kaisha Image capturing apparatus, photoelectric conversion system, and moving body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003510A1 (ja) * 2017-06-29 2019-01-03 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
US11700468B2 (en) 2020-12-04 2023-07-11 Canon Kabushiki Kaisha Image capturing apparatus, photoelectric conversion system, and moving body

Similar Documents

Publication Publication Date Title
JP6253272B2 (ja) 撮像装置、撮像システム、信号処理方法、プログラム、および、記憶媒体
JP5946421B2 (ja) 撮像装置及びその制御方法
JP6748454B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP6598496B2 (ja) 撮像装置及び信号処理方法
JP5850680B2 (ja) 撮像装置及びその制御方法
JP2016082354A (ja) 撮像素子、撮像装置
JP6609113B2 (ja) 撮像装置及びその制御方法
JP6099904B2 (ja) 撮像装置
JP6678504B2 (ja) 撮像装置及びその制御方法、プログラム並びに記憶媒体
JP6351231B2 (ja) 撮像装置、撮像システム、撮像装置の制御方法、プログラム、および、記憶媒体
US20170019583A1 (en) Image sensor and driving method thereof, and image capturing apparatus
JP6442362B2 (ja) 撮像装置及び撮像素子の制御方法
JP6070301B2 (ja) 固体撮像素子及びこれを用いた撮像装置
JP6381274B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP2019106634A (ja) 撮像素子及び撮像装置
JP6815777B2 (ja) 撮像装置及び撮像装置の制御方法
US9635241B2 (en) Image capturing apparatus and method of controlling image capturing apparatus
JP2017073687A (ja) 撮像装置及び撮像方法
JP6559021B2 (ja) 撮像装置およびその制御プログラム
JP2017098790A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP6623730B2 (ja) 撮像素子、焦点検出装置および撮像装置
JP6393087B2 (ja) 撮像素子及び撮像装置
JP2014239316A (ja) 撮像装置およびその制御方法
JP6883082B2 (ja) 撮像装置及びその制御方法
JP2018191027A (ja) 撮像装置

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126