JP2017073378A - Positive electrode active material having superior electrochemical performance, and lithium secondary battery including the same - Google Patents

Positive electrode active material having superior electrochemical performance, and lithium secondary battery including the same Download PDF

Info

Publication number
JP2017073378A
JP2017073378A JP2016112342A JP2016112342A JP2017073378A JP 2017073378 A JP2017073378 A JP 2017073378A JP 2016112342 A JP2016112342 A JP 2016112342A JP 2016112342 A JP2016112342 A JP 2016112342A JP 2017073378 A JP2017073378 A JP 2017073378A
Authority
JP
Japan
Prior art keywords
group
positive electrode
active material
electrode active
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016112342A
Other languages
Japanese (ja)
Other versions
JP6429172B2 (en
Inventor
ヨン チェ、クォン
Kwon Young Choi
ヨン チェ、クォン
ホ パン、ソン
Sung Ho Ban
ホ パン、ソン
ヒ チュ、ソ
Seo Hee Ju
ヒ チュ、ソ
ホ オム、チュン
Chun Ho Eom
ホ オム、チュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Energy Corp
Original Assignee
GS Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Energy Corp filed Critical GS Energy Corp
Publication of JP2017073378A publication Critical patent/JP2017073378A/en
Application granted granted Critical
Publication of JP6429172B2 publication Critical patent/JP6429172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To effectively suppress the decomposition reaction of an electrolytic solution by an organic phosphate coating layer formed on the surface, thereby significantly improving an electrochemical performance of an electrochemical device including it, especially that of a lithium secondary battery.SOLUTION: Provided are a positive electrode active material, a manufacturing method thereof, and a lithium secondary battery including the positive electrode active material. The positive electrode active material comprises: lithium transition metal oxide-based particles; and an organic phosphate coating layer partially or totally formed on the surface of each particle.SELECTED DRAWING: Figure 1

Description

本発明は、有機ホスフェートを正極材の表面にコーティング及び熱処理することで、正極材と電解液との分解反応の抑制及びリチウム二次電池の電気化学的性能を有意に改善させることができる、新規な正極活物質及びこの製造方法、前記正極活物質を備えた電気化学素子、更には、リチウム二次電池に関する。   In the present invention, by coating and heat-treating organic phosphate on the surface of the positive electrode material, the decomposition reaction between the positive electrode material and the electrolytic solution can be suppressed, and the electrochemical performance of the lithium secondary battery can be significantly improved. The present invention relates to a positive electrode active material, a manufacturing method thereof, an electrochemical device including the positive electrode active material, and further to a lithium secondary battery.

最近、電子機器の小型化に伴い、高容量の二次電池が求められており、特に、ニッケル・カドミウム電池、ニッケル・水素電池に比べてエネルギー密度の高いリチウム二次電池が注目されている。   Recently, with the downsizing of electronic equipment, high-capacity secondary batteries have been demanded. In particular, lithium secondary batteries having higher energy density than nickel / cadmium batteries and nickel / hydrogen batteries have attracted attention.

リチウム二次電池の正極活物質としては、リチウム含有コバルト酸化物(LiCoO)が主に使用されており、その他、層状結晶構造のLiMnO、スピネル結晶構造のLiMnなどのリチウム含有マンガン酸化物、及びリチウム含有ニッケル酸化物であるLiNiOの使用が検討されている。前述した正極活物質のうち、LiCoOは、優れた寿命特性及び充放電効率を有しているため、最も多く使用されているが、容量が少なく、原料として使用されるコバルト資源が希少で高価であるため、電気自動車などのような中・大型電池分野において動力源として大量使用するのにはコスト競争力に限界があるという短所がある。LiMnO、LiMnなどのリチウムマンガン酸化物は、原料として使用されるマンガン資源が豊富であるため、安価でかつ環境に優しく、優れた熱的安定性を有するという長所があるが、容量が少なく、高温特性及びサイクル特性に劣るという問題を持っている。 As a positive electrode active material of a lithium secondary battery, lithium-containing cobalt oxide (LiCoO 2 ) is mainly used. In addition, lithium-containing manganese such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure is used. oxide, and the use of LiNiO 2 is a lithium-containing nickel oxide has been studied. Among the positive electrode active materials described above, LiCoO 2 is most often used because it has excellent life characteristics and charge / discharge efficiency, but has a small capacity and a scarce and expensive cobalt resource used as a raw material. Therefore, there is a disadvantage that there is a limit to cost competitiveness for mass use as a power source in the field of medium and large batteries such as electric vehicles. Lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have the advantage that they are inexpensive, environmentally friendly and have excellent thermal stability because they are rich in manganese resources used as raw materials. There are few problems, and it is inferior to a high temperature characteristic and cycling characteristics.

このような短所を補うため、二次電池の正極活物質としてニッケルリッチなシステム(Ni rich system)の需要が増え始めているが、このニッケルリッチなシステム(Ni rich system)の活物質は、高容量化が可能であるなどの優れた長所を有するが、電解液との反応による電池性能の劣化現象が発生することがある。   In order to compensate for these disadvantages, the demand for a nickel-rich system as a positive electrode active material of a secondary battery has begun to increase. However, the active material of the nickel-rich system (Ni rich system) has a high capacity. However, the battery performance may deteriorate due to the reaction with the electrolytic solution.

上記のような正極活物質と電解液との反応を効果的に抑制するための技術の開発が行われているが、まだ満足すべき結果が得られていない。従って、リチウム二次電池の電気化学的性能と信頼性を長期的に向上させることができる、新規な構成を有する正極活物質の開発が切実に要望されている。   Development of a technique for effectively suppressing the reaction between the positive electrode active material and the electrolytic solution as described above has been performed, but satisfactory results have not yet been obtained. Accordingly, there is an urgent need for the development of a positive electrode active material having a novel configuration that can improve the electrochemical performance and reliability of a lithium secondary battery over the long term.

本発明は、上記のような従来技術の問題点を解決するために案出されたものであって、P元素を含む有機化合物、例えば、有機ホスフェート(organophosphate)を、正極活物質の表面にコーティング及び熱処理を行うと、電解液の正極表面における酸化分解反応を抑制し、リチウム二次電池の電気化学的性能が有意に向上することを見つけた。   The present invention has been devised to solve the problems of the prior art as described above, and is coated with an organic compound containing P element, for example, organic phosphate, on the surface of the positive electrode active material. In addition, it was found that when the heat treatment was performed, the oxidative decomposition reaction on the positive electrode surface of the electrolyte was suppressed, and the electrochemical performance of the lithium secondary battery was significantly improved.

従って、本発明の目的は、前記有機ホスフェートのコーティング層が形成された正極活物質及びこの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a positive electrode active material on which the organic phosphate coating layer is formed and a method for producing the same.

本発明の他の目的は、前述した正極活物質を備え、電気化学的性能及び信頼性の改善されたリチウム二次電池を提供することにある。   Another object of the present invention is to provide a lithium secondary battery including the above-described positive electrode active material and having improved electrochemical performance and reliability.

上記のような目的を達成するため、本発明は、リチウム遷移金属酸化物系粒子、及び前記粒子表面の一部又は全部に形成された有機ホスフェートコーティング層を含む正極活物質、好ましくは、リチウム二次電池用正極活物質を提供する。   In order to achieve the above-described object, the present invention provides a positive electrode active material comprising lithium transition metal oxide-based particles and an organic phosphate coating layer formed on part or all of the particle surface, preferably lithium A positive electrode active material for a secondary battery is provided.

本発明の好適な一例によれば、前記有機ホスフェートコーティング層は、下記一般式(1)で示される化合物であることができる。   According to a preferred example of the present invention, the organic phosphate coating layer may be a compound represented by the following general formula (1).

Figure 2017073378
(一般式(1)中、R〜Rは、互いに同一又は異なり、それぞれ独立に、C〜C40のアルキル基、C〜C40のアルケニル基、C〜C40のアルキニル基、C〜C40のアリール基、核原子数5〜40のヘテロアリール基、C〜C40のアリールオキシ基、C〜C40のアルキルオキシ基、C〜C40のアリールアミン基、C〜C40のシクロアルキル基、核原子数3〜40のヘテロシクロアルキル基、C〜C40のアルキルシリル基、C〜C40のアルキルボロン基、及びC〜C40のアリールボロン基、及びC〜C40のアリールシリル基からなる群から選択され、これらはそれぞれ、ハロゲン、シアノ基及びC〜C20のアルキル基からなる群から選択される1つ以上の置換基で置換されることができる)
Figure 2017073378
(In General Formula (1), R 1 to R 3 are the same or different from each other, and each independently represents a C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, or a C 2 to C 40 alkynyl group. C 6 -C 40 aryl group, C 5 -C 40 heteroaryl group, C 6 -C 40 aryloxy group, C 1 -C 40 alkyloxy group, C 6 -C 40 arylamine group C 3 -C 40 cycloalkyl group, C 3 -C 40 heterocycloalkyl group, C 1 -C 40 alkylsilyl group, C 1 -C 40 alkyl boron group, and C 6 -C 40 arylboronic group, and is selected from the group consisting of aryl silyl group of C 6 -C 40, each of which is halogen, one or more selected from the group consisting of alkyl groups of cyano and C 1 -C 20 Can be substituted with a substituent)

なお、前記有機ホスフェートは、熱処理を通じて正極表面のリチウム化合物中の一部と反応して有機リチウムホスフェートに転換されることが好ましい。   In addition, it is preferable that the said organic phosphate reacts with a part in lithium compound on the surface of a positive electrode through heat processing, and is converted into an organic lithium phosphate.

また、本発明は、前述した正極活物質を含む正極及びこれを備えた電気化学素子、好ましくは、リチウム二次電池を提供する。   The present invention also provides a positive electrode including the positive electrode active material described above and an electrochemical device including the positive electrode, preferably a lithium secondary battery.

さらに、本発明は、(i)リチウム遷移金属酸化物系粒子の表面に有機ホスフェートをコーティングするステップ;及び(ii)前記コーティングされたリチウム金属複合酸化物系粒子を熱処理するステップを含む正極活物質の製造方法を提供する。   The present invention further includes (i) coating the surface of the lithium transition metal oxide-based particles with an organic phosphate; and (ii) heat treating the coated lithium metal composite oxide-based particles. A manufacturing method is provided.

本発明によれば、リン(P)を含む有機化合物を、正極活物質の表面にコーティング及び熱処理することで、従来の正極活物質に比べて、電解液との酸化分解反応を抑制することができ、これにより、リチウム二次電池の電気化学的性能及び長期信頼性を有意に向上させることができる。   According to the present invention, an organic compound containing phosphorus (P) is coated and heat-treated on the surface of the positive electrode active material, so that the oxidative decomposition reaction with the electrolytic solution can be suppressed as compared with the conventional positive electrode active material. Thus, the electrochemical performance and long-term reliability of the lithium secondary battery can be significantly improved.

従って、既存の正極活物質だけでなく、電解液との反応による電池性能劣化現象のおそれがあるニッケルリッチなシステム(Ni rich system)における活物質に適用することによって、長期信頼性と高容量とを同時に確保することが可能である。   Therefore, not only the existing positive electrode active material but also the active material in the nickel rich system (Ni rich system) where there is a risk of battery performance degradation due to reaction with the electrolyte, long-term reliability and high capacity Can be secured at the same time.

実施例1〜2及び比較例1〜2のリチウム二次電池を用いて行った100サイクルにおける容量維持率の変化を示すグラフである。It is a graph which shows the change of the capacity | capacitance maintenance factor in 100 cycles performed using the lithium secondary battery of Examples 1-2 and Comparative Examples 1-2.

以下、本発明の詳細を説明する。   Details of the present invention will be described below.

本発明は、正極活物質と電解液との酸化分解反応を抑制すると共に、リチウム二次電池の電気化学的性能及び長期信頼性を有意に向上させるため、リチウム遷移金属酸化物の表面上に有機ホスフェートコーティング層を設けることを特徴とする。   The present invention suppresses the oxidative decomposition reaction between the positive electrode active material and the electrolytic solution and significantly improves the electrochemical performance and long-term reliability of the lithium secondary battery. It is characterized by providing a phosphate coating layer.

従来、有機ホスフェートは、電池の過充電時における安全性を向上させ、また、高温貯蔵特性、寿命特性などを高めるため、主にリチウム二次電池の電解液添加剤成分として使用されている。このような有機ホスフェートは、電池の作動範囲内で高い安定性を有するため、他の物質との化学反応を生じることなく電解液中で添加剤としての役割を果たすものとして存在しているため、正極活物質と電解液との副反応を抑制する効果を示すことは困難であった。   Conventionally, organic phosphates are mainly used as an electrolyte additive component in lithium secondary batteries in order to improve safety during battery overcharge and to enhance high-temperature storage characteristics, life characteristics, and the like. Since such organic phosphate has high stability within the operating range of the battery, it exists as a role as an additive in the electrolyte without causing a chemical reaction with other substances. It was difficult to show the effect of suppressing the side reaction between the positive electrode active material and the electrolytic solution.

なお、従来は、正極活物質の表面上に無機ホスフェート(例えば、リン酸など)コーティング層を形成することが行われているが、このような無機ホスフェートは、主に固状であるため、コーティング工程自体が容易でなく、たとえコーティング層が形成されても、正極活物質粒子表面への均一なコーティングが得られないという問題がある。例えば、リン酸の場合、コーティング工程において正極表面層にコーティングされる前、リン酸の酸(acid)成分と正極表面の塩基(base)成分とが相互反応して正極粒子同士のかたまりが発生し、コーティングの均一性が低下するという問題が生じている。それで、正極活物質と電解液との酸化分解反応を抑制して電池性能及び安全性を向上させるという効果が十分に得られていない。   Conventionally, an inorganic phosphate (for example, phosphoric acid) coating layer is formed on the surface of the positive electrode active material. However, since such inorganic phosphate is mainly solid, coating is performed. The process itself is not easy, and even if a coating layer is formed, there is a problem that a uniform coating on the surface of the positive electrode active material particles cannot be obtained. For example, in the case of phosphoric acid, before being coated on the positive electrode surface layer in the coating process, the acid component of phosphoric acid and the base component on the positive electrode surface interact with each other to cause a cluster of positive electrode particles. The problem is that the uniformity of the coating is reduced. Therefore, the effect of suppressing the oxidative decomposition reaction between the positive electrode active material and the electrolytic solution and improving the battery performance and safety is not sufficiently obtained.

これに対し、本発明では、有機物である有機ホスフェートを採択して正極活物質粒子の表面上に均一かつ薄いコーティング層を形成することにより、リチウムイオンの移動を妨げることなく、正極活物質と電解液との酸化分解反応を効果的に抑制することができ、よって、リチウム二次電池の電気化学的な性能及び長期信頼性を有意に向上させることができる。特に、本発明において採択した有機ホスフェートでは、正極表面との酸−塩基反応が発生しないため、正極粒子同士のかたまりが生じることなく、均一なコーティング層を形成することが可能であると共に、コーティング層の形成後、電解液との正極との間で副反応が起こるのを抑制し、持続的に正極活物質を保護する役割を果たす。   On the other hand, in the present invention, by adopting organic phosphate, which is an organic substance, and forming a uniform and thin coating layer on the surface of the positive electrode active material particles, the positive electrode active material and the electrolysis can be electrolyzed without hindering the movement of lithium ions. The oxidative decomposition reaction with the liquid can be effectively suppressed, and thus the electrochemical performance and long-term reliability of the lithium secondary battery can be significantly improved. In particular, in the organic phosphate adopted in the present invention, an acid-base reaction with the surface of the positive electrode does not occur. Therefore, it is possible to form a uniform coating layer without causing a cluster of positive electrode particles, and a coating layer. After the formation, the side reaction between the electrolyte and the positive electrode is suppressed, and the positive electrode active material is continuously protected.

また、前記有機ホスフェートは、取り扱いが容易であるため、コーティング工程と製造工程において単純性及び経済性を高めることができる。   In addition, since the organic phosphate is easy to handle, it can improve simplicity and economy in the coating process and the manufacturing process.

<正極活物質>
本発明に係る正極活物質は、リチウムを吸蔵及び放出可能な正極活物質の粒子及び前記粒子の表面に形成された有機ホスフェートコーティング層を含む。
<Positive electrode active material>
The positive electrode active material according to the present invention includes particles of a positive electrode active material capable of occluding and releasing lithium and an organic phosphate coating layer formed on the surface of the particles.

より詳しくは、前記正極活物質は、(a)リチウム遷移金属酸化物系粒子;及び(b)前記粒子表面の一部及び全部に形成された有機ホスフェートコーティング層を含む。   More specifically, the positive electrode active material includes (a) lithium transition metal oxide-based particles; and (b) an organic phosphate coating layer formed on part and all of the particle surfaces.

なお、前記有機ホスフェートコーティング層は、当業界で周知の有機ホスフェート化合物を制限無く使用して形成することができ、好ましくは、下記一般式(1)で示される化合物をコーティング及び熱処理して形成されるものであることができる。   The organic phosphate coating layer can be formed using any organic phosphate compound known in the art without limitation, and is preferably formed by coating and heat-treating a compound represented by the following general formula (1). Can be.

Figure 2017073378
(一般式(1)中、R〜Rは、互いに同一又は異なり、それぞれ独立に、C〜C40のアルキル基、C〜C40のアルケニル基、C〜C40のアルキニル基、C〜C40のアリール基、核原子数5〜40のヘテロアリール基、C〜C40のアリールオキシ基、C〜C40のアルキルオキシ基、C〜C40のアリールアミン基、C〜C40のシクロアルキル基、核原子数3〜40のヘテロシクロアルキル基、C〜C40のアルキルシリル基、C〜C40のアルキルボロン基、及びC〜C40のアリールボロン基、及びC〜C40のアリールシリル基からなる群から選択され、これらはそれぞれ、ハロゲン、シアノ基及びC〜C20のアルキル基からなる群から選択される1つ以上の置換基で置換されることができる)
Figure 2017073378
(In General Formula (1), R 1 to R 3 are the same or different from each other, and each independently represents a C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, or a C 2 to C 40 alkynyl group. C 6 -C 40 aryl group, C 5 -C 40 heteroaryl group, C 6 -C 40 aryloxy group, C 1 -C 40 alkyloxy group, C 6 -C 40 arylamine group C 3 -C 40 cycloalkyl group, C 3 -C 40 heterocycloalkyl group, C 1 -C 40 alkylsilyl group, C 1 -C 40 alkyl boron group, and C 6 -C 40 arylboronic group, and is selected from the group consisting of aryl silyl group of C 6 -C 40, each of which is halogen, one or more selected from the group consisting of alkyl groups of cyano and C 1 -C 20 Can be substituted with a substituent)

本発明において、前記R〜Rは、互いに同一又は異なり、それぞれ独立に、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、及び炭素数6〜20のアリール基からなる群から選択されるものであることが好ましい。このとき、R〜Rは、それぞれ、ハロゲン、シアノ基及びC〜C20のアルキル基からなる群から選択される1つ以上の置換基で置換されることができる。 In the present invention, R 1 to R 3 are the same as or different from each other, and each independently represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, and carbon. It is preferably selected from the group consisting of several 6 to 20 aryl groups. At this time, each of R 1 to R 3 can be substituted with one or more substituents selected from the group consisting of a halogen, a cyano group, and a C 1 to C 20 alkyl group.

使用可能な有機ホスフェートとしては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリブチルホスフェート、トリイソブチルホスフェート、トリペンチルホスフェート、トリフェニルホスフェート又はこれらの混合物などが挙げられるが、これらに制限されない。   Examples of the organic phosphate that can be used include, but are not limited to, trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, triisobutyl phosphate, tripentyl phosphate, triphenyl phosphate, and mixtures thereof.

前記有機ホスフェートは、リチウム遷移金属酸化物の粒子上にコーティングされた後、熱処理工程を経るようになるが、この熱処理によって、上記の一般式(1)で示される有機ホスフェート中のR、R、Rの一部が、正極表面のリチウム化合物と反応することで、有機リチウムホスフェート(有機リチウム化合物)に転換される。 The organic phosphate is coated on the lithium transition metal oxide particles and then undergoes a heat treatment step. By this heat treatment, R 1 , R in the organic phosphate represented by the above general formula (1) 2 , a part of R 3 reacts with the lithium compound on the surface of the positive electrode to be converted into organic lithium phosphate (organic lithium compound).

従来は、リン酸の場合、熱処理の後にリチウムホスフェートコーティング層が形成されているが、本発明では、熱処理の後、有機官能基(functional group)の一部が正極表面のリチウム源と反応することでリチウムを含有する有機ホスフェートコーティング層が形成されるようになる。このような有機ホスフェートコーティング層は、電池の充放電時において、リチウムイオンの移動を妨げることなく、正極活物質と電解液との副反応を抑制させ、正極活物質の劣化を防止し、持続的に正極活物質を保護することができる。   Conventionally, in the case of phosphoric acid, a lithium phosphate coating layer is formed after the heat treatment, but in the present invention, after the heat treatment, a part of the organic functional group (functional group) reacts with the lithium source on the positive electrode surface. As a result, an organic phosphate coating layer containing lithium is formed. Such an organic phosphate coating layer suppresses the side reaction between the positive electrode active material and the electrolytic solution and prevents the deterioration of the positive electrode active material without disturbing the movement of lithium ions at the time of charge / discharge of the battery. The positive electrode active material can be protected.

このとき、前記有機リチウムホスフェート結合を形成するリチウム源は、リチウム遷移金属酸化物中のリチウムイオンであるか、又は、前記酸化物の表面上に存在する残留リチウム化合物であることができる。即ち、リチウム遷移金属酸化物系正極活物質の表面には、遷移金属と酸化物を形成し残った残留リチウム化合物、例えば、酸化リチウム(LiO)、水酸化リチウム(LiOH)、炭酸リチウム(LiCO)、リチウムカーバイド(LiC)などが存在し得る。このような残留リチウム化合物は、二次電池内で電解質中の特定の物質と反応し、その反応物が正極活物質の表面上に蓄積され、リチウムイオンの移動を妨げることがあり得る。例えば、残留リチウム化合物は、電解質中のHFなどと反応してLiFを生成し、電池性能の低下を招来することがあり得る。本発明では、正極活物質上にコーティングされた有機ホスフェートコーティング層が、正極中のリチウム源と反応して有機リチウムホスフェートに転換されることで、表面上に残留して電池性能の低下を招来するおそれのあるリチウム化合物の量を減少させると共に、電解質との反応による表面劣化を抑制させる効果を発揮することもできる。 At this time, the lithium source for forming the organolithium phosphate bond may be a lithium ion in a lithium transition metal oxide or a residual lithium compound present on the surface of the oxide. That is, on the surface of the lithium transition metal oxide-based positive electrode active material, residual lithium compounds remaining after forming an oxide with the transition metal, such as lithium oxide (Li 2 O), lithium hydroxide (LiOH), lithium carbonate ( Li 2 CO 3 ), lithium carbide (Li 2 C), and the like may be present. Such a residual lithium compound may react with a specific substance in the electrolyte in the secondary battery, and the reaction product may accumulate on the surface of the positive electrode active material, thereby preventing the movement of lithium ions. For example, the residual lithium compound may react with HF or the like in the electrolyte to produce LiF, leading to a decrease in battery performance. In the present invention, the organic phosphate coating layer coated on the positive electrode active material reacts with the lithium source in the positive electrode and is converted to organic lithium phosphate, thereby remaining on the surface and causing a decrease in battery performance. In addition to reducing the amount of the lithium compound that may be feared, it is also possible to exert an effect of suppressing surface deterioration due to reaction with the electrolyte.

前記正極活物質は、リチウム遷移金属酸化物表面の一部に有機ホスフェートコーティング層が形成されるような構造を有することができ、又は、リチウム遷移金属酸化物を含むコア部、及び前記コア部の表面に有機ホスフェートをコーティングして形成されたシェル部を含むコア−シェル(core−shell)構造を有することができる。   The positive electrode active material may have a structure in which an organic phosphate coating layer is formed on a part of a lithium transition metal oxide surface, or a core part including a lithium transition metal oxide, and the core part It may have a core-shell structure including a shell part formed by coating an organic phosphate on the surface.

本発明において、前記有機ホスフェートコーティング層の厚さは、当業界で周知の通常の範囲内で調節することができる。例えば、10〜500nmの範囲であることができ、好ましくは、200〜300nmの範囲である。   In the present invention, the thickness of the organic phosphate coating layer can be adjusted within a normal range well known in the art. For example, it can be in the range of 10 to 500 nm, and preferably in the range of 200 to 300 nm.

また、前記有機ホスフェートコーティング層の含量は、正極活物質の全重量を基準にして、1〜20重量部の範囲であることができ、好ましくは、3〜15重量部の範囲である。   Further, the content of the organic phosphate coating layer may be in the range of 1 to 20 parts by weight, preferably in the range of 3 to 15 parts by weight, based on the total weight of the positive electrode active material.

本発明において、有機ホスフェートコーティング層が形成される対象物は、リチウム二次電池用正極活物質である。   In the present invention, the object on which the organic phosphate coating layer is formed is a positive electrode active material for a lithium secondary battery.

前記正極活物質としては、従来、リチウム二次電池の正極に使用されている通常の正極活物質、例えば、アルカリ金属、アルカリ土類金属、13族元素、14族元素、15族元素、遷移金属、希土類元素又はこれら元素の組み合わせを含むリチウム含有金属酸化物を使用することができる。また、カルコゲン化物(chalcogenide)系化合物を適用することもできる。例えば、LiM(M=Co、Ni、Mn、CoNiMn)のようなリチウム遷移金属酸化物(例えば、LiMnなどのリチウムマンガン複合酸化物、LiNiOなどのリチウムニッケル酸化物、LiCoOなどのリチウムコバルト酸化物、及びこれらの酸化物においてマンガン、ニッケル、コバルトの一部を他の通常の遷移金属などに置換したもの、又はリチウムを含有した酸化バナジウムなど)又はカルコゲン化物(例えば、二酸化マンガン、二硫化チタン、二硫化モリブデンなど)などが挙げられるが、これらに制限されない。 Examples of the positive electrode active material include conventional positive electrode active materials conventionally used for positive electrodes of lithium secondary batteries, such as alkali metals, alkaline earth metals, group 13 elements, group 14 elements, group 15 elements, and transition metals. Lithium-containing metal oxides containing rare earth elements or combinations of these elements can be used. Further, chalcogenide compounds can also be applied. For example, lithium transition metal oxide such as LiM x O y (M = Co, Ni, Mn, Co a Ni b Mn c ) (for example, lithium manganese composite oxide such as LiMn 2 O 4 , lithium such as LiNiO 2) Nickel oxide, lithium cobalt oxide such as LiCoO 2 , and those oxides in which a part of manganese, nickel, cobalt is replaced with other ordinary transition metals, or lithium-containing vanadium oxide)) or Examples of the chalcogenide include, but are not limited to, manganese dioxide, titanium disulfide, molybdenum disulfide, and the like.

より具体的には、前記リチウム遷移金属酸化物系としては、LiCoO、LiNiO、LiMn、LiMn12、LiNi1/3Mn1/3Co1/3、LiFePO、Li(CoNi1−x)O(0.5≦x<1)、及びLi1+xMn2−y−z−wAlCoMg(0.03<x<0.25、0.01<y<0.2、0.01<z<0.2、0≦w<0.1、x+y+z+w<0.4)からなる群から選択され、好ましくは、ニッケルリッチなシステム(Ni rich system)の活物質が挙げられる。 More specifically, the lithium transition metal oxide system includes LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 4 Mn 5 O 12 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiFePO 4. 4, Li (Co x Ni 1 -x) O 2 (0.5 ≦ x <1), and Li 1 + x Mn 2-y -z-w Al y Co z Mg w O 4 (0.03 <x <0 .25, 0.01 <y <0.2, 0.01 <z <0.2, 0 ≦ w <0.1, x + y + z + w <0.4), preferably nickel-rich An active material of the system (Ni rich system) can be mentioned.

本発明の好適な一例によれば、前記リチウム遷移金属酸化物は、下記一般式(2)で示されるものであることができる。   According to a preferred example of the present invention, the lithium transition metal oxide may be represented by the following general formula (2).

Figure 2017073378
(一般式(2)中、Xは、Mn及びAlからなる群から選択される1種以上であり、0.9≦a≦1.10、0.6≦b≦1.0、0.0≦c≦0.2、0.0≦d0.2である)
Figure 2017073378
(In General Formula (2), X is at least one selected from the group consisting of Mn and Al, and 0.9 ≦ a ≦ 1.10, 0.6 ≦ b ≦ 1.0, 0.0 ≦ c ≦ 0.2, 0.0 ≦ d0.2)

前記正極活物質の平均粒径は、活物質として使用可能な通常の範囲であれば、特に制限されない。例えば、5〜30μmの範囲であることができ、好ましくは、5〜20μmの範囲である。   The average particle diameter of the positive electrode active material is not particularly limited as long as it is in a normal range that can be used as an active material. For example, it can be in the range of 5 to 30 μm, and preferably in the range of 5 to 20 μm.

<正極活物質の製造方法>
以下、本発明に係る正極活物質の製造方法について説明する。なお、後述の製造方法に限定されず、必要に応じて各工程のステップを変更、又は選択的に混用して行うことができる。
<Method for producing positive electrode active material>
Hereinafter, the manufacturing method of the positive electrode active material which concerns on this invention is demonstrated. In addition, it is not limited to the manufacturing method mentioned later, The step of each process can be changed or selectively mixed as needed.

本発明に係る製造方法の好適な実施例は、(i)リチウム遷移金属酸化物系粒子の表面に有機ホスフェートのコーティングを施すステップ(ステップS10)、及び(ii)前記コーティングが施されたリチウム金属複合酸化物系粒子の熱処理を行うステップ(ステップS20)を含んでなる。   A preferred embodiment of the production method according to the present invention includes (i) a step of applying an organic phosphate coating on the surface of the lithium transition metal oxide-based particles (step S10), and (ii) a lithium metal having the coating applied thereto. A step (step S20) of performing heat treatment of the composite oxide-based particles.

以下、上記の製造方法について各工程別に説明する。   Hereinafter, the above manufacturing method will be described for each process.

(1)有機ホスフェートコーティングステップ(以下、「ステップS10」と称する。)
ステップS10においては、リチウム遷移金属酸化物粒子の表面に有機ホスフェートの被覆を行う。
(1) Organic phosphate coating step (hereinafter referred to as “Step S10”)
In step S10, the surface of the lithium transition metal oxide particles is coated with an organic phosphate.

この好適な一例としては、有機ホスフェートと溶媒とを混合及び分散させてコーティング液を製造した後、ここに、リチウム遷移金属酸化物を投入して均一に攪拌することで、コーティング工程が行われる。   As a preferred example, a coating solution is prepared by mixing and dispersing an organic phosphate and a solvent to prepare a coating solution, and then adding a lithium transition metal oxide thereto and stirring uniformly.

前記溶媒としては、当業界で周知の通常の溶媒を使用することができ、揮発性溶媒が好ましく使用される。例えば、水、又は炭素数1〜6のアルコール、アセトンなどの有機溶媒などを挙げられるが、これらに制限されない。   As the solvent, a common solvent known in the art can be used, and a volatile solvent is preferably used. For example, water, an organic solvent such as alcohol having 1 to 6 carbon atoms, acetone, or the like can be given, but it is not limited thereto.

なお、リチウム遷移金属酸化物と有機ホスフェートとの使用比率としては、特に限定されず、例えば、リチウム金属複合酸化物系粒子100重量部に対して、1〜20重量部の範囲であることができ、好ましくは、3〜15重量部の範囲である。   In addition, it does not specifically limit as a usage-ratio of a lithium transition metal oxide and an organic phosphate, For example, it can be the range of 1-20 weight part with respect to 100 weight part of lithium metal complex oxide type | system | group particles. The range is preferably 3 to 15 parts by weight.

ステップS10において、コーティング方法としては、当業界で公知の常法を制限無く用いることができ、均一な混合を行うため、通常のミキシング(mixing)、乾式又は湿式の機械的ミーリング(milling)方法などを採用することができる。例えば、溶媒蒸発法(solvent evaporation)、共沈法、沈殿法、ゾル−ゲル法、吸着後濾過法、スパッタ(sputter)、CVD(chemical vapor deposition)、対流式コート法(convective)、回転式コート法(tumbler)などが挙げられるが、これらに制限されない。   In step S10, a conventional method known in the art can be used as a coating method without limitation, and in order to perform uniform mixing, an ordinary mixing method, a dry or wet mechanical milling method, or the like is used. Can be adopted. For example, solvent evaporation method, coprecipitation method, precipitation method, sol-gel method, post-adsorption filtration method, sputter, CVD (chemical vapor deposition), convective coating method (convective), rotary coating method Examples include, but are not limited to, a tumbler.

(2)熱処理ステップ(以下、「ステップS20」と称する)
ステップS20においては、有機ホスフェートコーティング層が形成されたリチウム遷移金属酸化物の粒子上に熱処理を施すことで、コーティング層中の溶媒を蒸発させながら有機ホスフェート中の有機官能基の一部が正極のリチウム化合物と反応して有機リチウムホスフェート結合を形成させる。
(2) Heat treatment step (hereinafter referred to as “step S20”)
In step S20, a heat treatment is performed on the lithium transition metal oxide particles on which the organic phosphate coating layer is formed, so that a part of the organic functional groups in the organic phosphate is the positive electrode while the solvent in the coating layer is evaporated. Reacts with lithium compounds to form organolithium phosphate bonds.

なお、熱処理の条件としては、当業界で周知の通常の範囲内で適切に調節することができ、例えば、200〜700℃の温度範囲で2〜10時間、熱処理を維持することができ、好ましくは、300〜600℃で2〜7時間の範囲である。   In addition, as conditions of heat processing, it can adjust suitably within the normal range known in this industry, for example, can maintain heat processing for 2 to 10 hours in the temperature range of 200-700 degreeC, Preferably Is in the range of 2-7 hours at 300-600 ° C.

本発明において製造された正極活物質は、主に、二次電池用正極材として使用され、その他、上記のような構成を適用可能な種々の分野で採用されることができる。   The positive electrode active material produced in the present invention is mainly used as a positive electrode material for a secondary battery, and can be employed in various fields to which the above configuration can be applied.

<正極>
本発明においては、前述した二次電池用正極材及びこれを含むリチウム二次電池を提供する。
<Positive electrode>
In this invention, the positive electrode material for secondary batteries mentioned above and a lithium secondary battery containing the same are provided.

なお、本発明の正極材は、少なくとも前述した有機ホスフェートコーティング層が形成された正極活物質を含むことを要件とする。例えば、前記正極活物質自体が正極活物質として使用され、又は、前記正極活物質と結合剤とを混合した正極合剤、さらに溶媒を添加して得られる正極合剤ペースト、さらにこれを集電体に塗布して形成される正極などが、本発明の正極材の範囲に相当する。   The positive electrode material of the present invention is required to contain at least a positive electrode active material on which the above-described organic phosphate coating layer is formed. For example, the positive electrode active material itself is used as a positive electrode active material, or a positive electrode mixture obtained by mixing the positive electrode active material and a binder, a positive electrode mixture paste obtained by adding a solvent, and a current collector. A positive electrode formed by applying to the body corresponds to the range of the positive electrode material of the present invention.

前記正極は、当業界で周知の常法によって製造することができ、例えば、電極活物質に、必要に応じて、バインダー、導電剤、分散剤を混合及び攪拌してスラリーを製造後、集電体に塗布(コーティング)し、圧縮した後、乾燥することで製造される。   The positive electrode can be manufactured by a conventional method well known in the art. For example, the electrode active material is mixed with a binder, a conductive agent, and a dispersing agent, if necessary, and stirred to produce a slurry. It is manufactured by applying (coating) to the body, compressing, and drying.

なお、分散媒、バインダー、導電剤、集電体などの電極材料は、当業界で周知のものを使用可能であり、電極活物質に対して、バインダーは1〜10重量比、導電剤は1〜30重量比の範囲で適切に使用することができる。   In addition, electrode materials, such as a dispersion medium, a binder, a conductive agent, and a current collector, can use materials well known in the art. The binder is 1 to 10 weight ratio with respect to the electrode active material, and the conductive agent is 1 It can be suitably used within a range of ˜30 weight ratio.

使用可能な導電剤としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラック系列又はガルフオイルカンパニー、ケッチェンブラック、バルカン(Vulcan)XC−72、スーパーP、コークス類、カーボンナノチューブ、グラフェン、又はこれらの1種以上の混合物などが挙げられる。   Usable conductive agents include, for example, natural graphite, artificial graphite, carbon black, acetylene black series or Gulf Oil Company, Ketjen Black, Vulcan XC-72, Super P, cokes, carbon nanotubes, graphene, Or the mixture of 1 or more types of these etc. is mentioned.

また、前記結合剤の代表例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)又はその共重合体、スチレンブタジエンゴム(SBR)、セルロースなどが挙げられ、また、分散剤の代表例としては、イソプロピルアルコール、N−メチルピロリドン(NMP)、アセトンなどが挙げられる。   Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF) or a copolymer thereof, styrene butadiene rubber (SBR), cellulose, and the like, and representatives of dispersants. Examples include isopropyl alcohol, N-methylpyrrolidone (NMP), acetone and the like.

前記集電体の材料は、導電性の高い金属であって、前記材料のペーストが容易に接着可能な金属で電池の電圧範囲内で反応性を有しないものであれば、いずれも使用可能である。例えば、アルミニウム、銅、又はステンレススチールなどのメッシュ(mesh)、フォイル(foil)などが挙げられる。   Any material can be used for the current collector as long as it is a highly conductive metal and the paste of the material can be easily bonded and has no reactivity within the voltage range of the battery. is there. For example, a mesh such as aluminum, copper, or stainless steel, a foil, and the like can be given.

<リチウム二次電池>
さらに、本発明は、前記正極を含む二次電池、好ましくは、リチウム二次電池を提供する。
<Lithium secondary battery>
Furthermore, the present invention provides a secondary battery including the positive electrode, preferably a lithium secondary battery.

本発明のリチウム二次電池は、前述した有機ホスフェートコーティング層が形成された正極活物質を用いる以外は、特に限定されず、当業界で周知の常法で製造することができる。例えば、正極と負極との間にセパレータを介装し、非水電解質を投入して製造することができる。   The lithium secondary battery of the present invention is not particularly limited except that the positive electrode active material having the organic phosphate coating layer described above is used, and can be manufactured by a conventional method well known in the art. For example, a separator can be interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte can be introduced for production.

なお、本発明のリチウム二次電池は、負極、正極、セパレータ、電解質を、電池の構成要素として含んでなるが、ここで、前記負極を除いた、正極、セパレータ、電解質、及び必要に応じて添加する他の添加剤の構成要素については、当業界で周知の通常のリチウム二次電池の構成要素に準ずる。   The lithium secondary battery of the present invention includes a negative electrode, a positive electrode, a separator, and an electrolyte as constituent elements of the battery. Here, the positive electrode, the separator, the electrolyte, and, if necessary, the negative electrode are excluded. The components of other additives to be added are in accordance with the components of a normal lithium secondary battery well known in the art.

例えば、前記負極としては、当業界で周知の通常のリチウム二次電池用負極活物質を使用することができ、例えば、リチウムをインターカレーション/デインターカレーション可能な材料が使用され、例えば、リチウム金属やリチウム合金、コークス、人造黒鉛、天然黒鉛、有機高分子化合物燃焼体、炭素繊維、シリコン系、スズ系などが挙げられるが、これらに制限されない。また、導電剤、結合剤及び溶媒としては、前述した正極において挙げたものを同様に使用する。   For example, as the negative electrode, a normal negative electrode active material for a lithium secondary battery known in the art can be used. For example, a material capable of intercalating / deintercalating lithium is used. Examples include, but are not limited to, lithium metal, lithium alloy, coke, artificial graphite, natural graphite, organic polymer compound combustor, carbon fiber, silicon-based, tin-based, and the like. In addition, as the conductive agent, the binder, and the solvent, those mentioned for the positive electrode described above are similarly used.

また、非水電解質は、当業界で周知の通常の電解質成分、例えば、電解質塩と電解液溶媒を含む。   The non-aqueous electrolyte contains a normal electrolyte component well known in the art, for example, an electrolyte salt and an electrolyte solvent.

前記電解質塩としては、(i)Li、Na、Kからなる群から選択されるカチオンと、(ii)PF 、BF 、Cl、Br、I、ClO 、AsF 、CHCO 、CFSO 、N(CFSO 、C(CFSO からなる群から選択されるアニオンとの組み合わせで構成されることができ、これらのうち、リチウム塩が好ましい。リチウム塩の具体例としては、LiClO、LiCFSO、LiPF、LiBF、LiAsF、及びLiN(CFSOなどが挙げられる。これらの電解質塩は、単独又は2種以上を混合して使用することができる。 Examples of the electrolyte salt include (i) a cation selected from the group consisting of Li + , Na + and K + , and (ii) PF 6 , BF 4 , Cl , Br , I and ClO 4 −. , AsF 6 , CH 3 CO 2 , CF 3 SO 3 , N (CF 3 SO 2 ) 2 , C (CF 2 SO 2 ) 3 −, and a combination with an anion selected from the group consisting of Of these, lithium salts are preferred. Specific examples of the lithium salt include LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 , and LiN (CF 3 SO 2 ) 2 . These electrolyte salts can be used alone or in admixture of two or more.

前記電解質溶媒としては、環状カーボネート、線状カーボネート、ラクトン、エーテル、エステル、アセトニトリル、ラクタム、ケトンなどを使用することができる。   As the electrolyte solvent, cyclic carbonate, linear carbonate, lactone, ether, ester, acetonitrile, lactam, ketone and the like can be used.

前記環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、フルオロエチレンカーボネート(FEC)などが挙げられ、前記線状カーボネートとしては、例えば、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)、エチルメチルカーボネート(EMC)、及びメチルプロピルカーボネート(MPC)などが挙げられる。前記ラクトンとしては、例えば、ガンマブチロラクトン(GBL)が挙げられ、前記エーテルとしては、例えば、ジブチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどが挙げられる。前記エステルとしては、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、メチルアセテート、エチルアセテート、プロピルアセテート、メチルプロピオネート、エチルプロピオネート、ブチルプロピオネート、メチルピバレートなどが挙げられる。また、前記ラクタムとしては、N−メチル−ピロリドン(NMP)などが挙げられ、前記ケトンとしては、ポリメチルビニルケトンが挙げられる。また、前記有機溶媒のハロゲン誘導体を使用することも可能であるが、これに限定されない。さらに、前記有機溶媒は、グリム(glyme)、ジグリム、トリグリム、テトラグリムを使用することも可能である。これらの有機溶媒は、単独又は2種以上を混合して使用することができる。   Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and fluoroethylene carbonate (FEC). Examples of the linear carbonate include diethyl carbonate (DEC). ), Dimethyl carbonate (DMC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), and methyl propyl carbonate (MPC). Examples of the lactone include gamma butyrolactone (GBL). Examples of the ether include dibutyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2- Examples include diethoxyethane. Examples of the ester include methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, butyl propionate, and methyl pivalate. . Examples of the lactam include N-methyl-pyrrolidone (NMP), and examples of the ketone include polymethyl vinyl ketone. Moreover, although it is possible to use the halogen derivative of the said organic solvent, it is not limited to this. Further, the organic solvent may be glyme, diglyme, triglyme or tetraglyme. These organic solvents can be used individually or in mixture of 2 or more types.

前記セパレータとしては、両電極の内部短絡を防ぎ、かつ電解液を含浸する役割を果たす多孔性物質を制限無く使用可能である。例えば、ポリプロピレン系、ポリエチレン系、ポリオレフィン系多孔性セパレータ、又は前記多孔性セパレータに無機物材料が添加された複合多孔性セパレータなどが挙げられるが、これらに制限されない。   As the separator, a porous material that prevents internal short circuit between both electrodes and impregnates the electrolyte can be used without limitation. Examples thereof include, but are not limited to, a polypropylene-based, polyethylene-based, polyolefin-based porous separator, or a composite porous separator in which an inorganic material is added to the porous separator.

以下、本発明の実施例を挙げて詳述するが、後述の実施例及び実験例は、本発明の例示に過ぎず、本発明の範囲は、これらの例によって制限されるものではない。   Examples of the present invention will be described in detail below. However, the examples and experimental examples described later are merely examples of the present invention, and the scope of the present invention is not limited by these examples.

〔実施例1〕
[1−1.正極活物質の製造]
NCM系列の正極活物質を製造するため、先ず、共沈反応によってNi0.8Co0.1Mn0.1(OH)前駆体を製造した後、リチウム化合物としてLiOHを添加し、780℃で12時間熱処理を行い、Li1.01Ni0.8Co0.1Mn0.1で示される正極活物質を製造した。
[Example 1]
[1-1. Production of positive electrode active material]
In order to produce an NCM series positive electrode active material, first, Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 precursor was produced by coprecipitation reaction, and then LiOH was added as a lithium compound, and 780 ° C. Then, a positive electrode active material represented by Li 1.01 Ni 0.8 Co 0.1 Mn 0.1 O 2 was produced.

製造された正極活物質100重量部に、トリブチルホスフェート(Tributyl phosphate)10重量部をコーティングした後、300℃で3時間熱処理を行い、実施例1の正極活物質を製造した。   After coating 10 parts by weight of tributyl phosphate on 100 parts by weight of the produced positive electrode active material, heat treatment was performed at 300 ° C. for 3 hours to produce the positive electrode active material of Example 1.

[1−2.正極の製造]
実施例1−1で製造された正極活物質95重量部、及びPVdFバインダー2.5重量部、導電材としてカーボンブラック2.5重量部を、NMP溶液に分散させてスラリーを製造した後、これをAl集電体に塗布した。次いで、ロールプレスで圧延を行い、正極を製造した。
[1-2. Production of positive electrode]
A slurry was prepared by dispersing 95 parts by weight of the positive electrode active material produced in Example 1-1, 2.5 parts by weight of a PVdF binder, and 2.5 parts by weight of carbon black as a conductive material in an NMP solution. Was applied to an Al current collector. Subsequently, it rolled with the roll press and the positive electrode was manufactured.

[1−3.リチウム二次電池の製造]
実施例1−2で製造された正極とリチウム金属とを対極として、EC/EMC/DEC(40/30/30、体積比)及び1MのLiPFで構成された電解液を使用してコイン型電池(coin cell)を製造した。
[1-3. Production of lithium secondary battery]
Using a positive electrode and a lithium metal produced in Example 1-2 as counter electrodes, a coin type using an electrolyte composed of EC / EMC / DEC (40/30/30, volume ratio) and 1M LiPF 4 A battery (coin cell) was manufactured.

〔実施例2〕
トリブチルホスフェートの代わりに、トリフェニルホスフェート(Triphenyl phosphate)を使用する以外は、実施例1と同様にして実施例2の正極活物質を製造した。
[Example 2]
A positive electrode active material of Example 2 was produced in the same manner as in Example 1 except that triphenyl phosphate was used instead of tributyl phosphate.

前記正極活物質を用いて、実施例1と同様にして正極及びリチウム二次電池をそれぞれ製造した。   Using the positive electrode active material, a positive electrode and a lithium secondary battery were produced in the same manner as in Example 1.

〔比較例1〕
NCM系列の正極活物質を製造するため、先ず、共沈反応によってNi0.8Co0.1Mn0.1(OH)前駆体を製造した後、リチウム化合物としてLiOHを添加し、780℃で12時間熱処理を行い、Li1.01Ni0.8Co0.1Mn0.1で示される正極活物質を製造した。
[Comparative Example 1]
In order to produce an NCM series positive electrode active material, first, Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 precursor was produced by coprecipitation reaction, and then LiOH was added as a lithium compound, and 780 ° C. Then, a positive electrode active material represented by Li 1.01 Ni 0.8 Co 0.1 Mn 0.1 O 2 was produced.

前記正極活物質のコーティング処理を行うことなくそのまま使用し、実施例1と同様にして比較例1の正極及びリチウム二次電池をそれぞれ製造した。   The positive electrode active material was used as it was without coating, and the positive electrode and lithium secondary battery of Comparative Example 1 were produced in the same manner as in Example 1.

〔比較例2〕
比較例1と同様にして製造されたLi1.01Ni0.8Co0.1Mn0.1で示される正極活物質100重量部にリン酸(Phosphoric Acid)10重量部をコーティングした後、300℃で3時間熱処理を行い、比較例2の正極活物質を製造した。
[Comparative Example 2]
100 parts by weight of a positive electrode active material represented by Li 1.01 Ni 0.8 Co 0.1 Mn 0.1 O 2 produced in the same manner as in Comparative Example 1 was coated with 10 parts by weight of phosphoric acid (Phosphoric Acid). Thereafter, heat treatment was performed at 300 ° C. for 3 hours to produce a positive electrode active material of Comparative Example 2.

前記正極活物質を実施例1と同様にして比較例2の正極及びリチウム二次電池をそれぞれ製造した。   A positive electrode and a lithium secondary battery of Comparative Example 2 were produced in the same manner as in Example 1 using the positive electrode active material.

〔実験例1〕
[電気化学的性能評価]
実施例1〜2及び比較例1〜2でそれぞれ製造されたリチウム二次電池を用いて電気化学的性能の評価を行った。
[Experimental Example 1]
[Electrochemical performance evaluation]
The electrochemical performance was evaluated using the lithium secondary batteries produced in Examples 1 and 2 and Comparative Examples 1 and 2, respectively.

なお、電気化学的性能評価は、1Cを基準に4.4V〜3.0Vの電圧領域において1Cを基準に充放電テストを100回行い、初期容量に対する容量維持率を測定した。   In addition, electrochemical performance evaluation performed the charge / discharge test 100 times on the basis of 1C in the voltage range of 4.4V-3.0V on the basis of 1C, and measured the capacity | capacitance maintenance factor with respect to initial capacity.

実験の結果、表面処理が行われていない比較例1および無機ホスフェートで表面が改質された比較例2の電池では、それぞれ63%以下の低い容量維持率を示した。なお、無機ホスフェートとしてリン酸のコーティングが行われた比較例2では、コーティング層の構成成分の差異、リン酸と正極表面との酸−塩基反応による正極粒子同士のかたまり現象、及びこれによるコーティングの不均一性によって電池性能向上効果が低いものと判断される。   As a result of the experiment, the batteries of Comparative Example 1 in which the surface treatment was not performed and Comparative Example 2 in which the surface was modified with inorganic phosphate exhibited a low capacity retention rate of 63% or less. In Comparative Example 2 in which phosphoric acid coating was performed as an inorganic phosphate, the difference in the components of the coating layer, the phenomenon of clumping of the positive electrode particles due to the acid-base reaction between phosphoric acid and the positive electrode surface, and the resulting coating It is judged that the battery performance improvement effect is low due to the non-uniformity.

これに対し、有機ホスフェートでコーティングされた正極活物質を備えた実施例1及び2の電池では、長期信頼性が顕著に向上することがわかる(表1及び図1参照)。特に、実施例1〜2の電池は、表面処理が行われていない比較例1の電池に比べて、約15〜20%以上容量維持率が向上し、無機ホスフェートでコーティングされた比較例2の電池に比べて、13から16%程度上昇効果が得られることが確認された。   On the other hand, it can be seen that the long-term reliability is remarkably improved in the batteries of Examples 1 and 2 including the positive electrode active material coated with organic phosphate (see Table 1 and FIG. 1). In particular, the batteries of Examples 1 and 2 had a capacity retention rate of about 15 to 20% or more improved compared to the battery of Comparative Example 1 in which the surface treatment was not performed, and the batteries of Comparative Example 2 coated with inorganic phosphate. It was confirmed that an increase effect of about 13 to 16% was obtained compared to the battery.

Figure 2017073378
Figure 2017073378

Claims (15)

リチウム遷移金属酸化物系粒子;及び
前記粒子表面の一部又は全部に形成された有機ホスフェートコーティング層;
を含む正極活物質。
Lithium transition metal oxide-based particles; and an organic phosphate coating layer formed on part or all of the particle surface;
A positive electrode active material comprising:
前記有機ホスフェートコーティング層は、下記一般式(1)で示される化合物であることを特徴とする請求項1に記載の正極活物質:
Figure 2017073378
(一般式(1)中、R〜Rは、互いに同一又は異なり、それぞれ独立に、C〜C40のアルキル基、C〜C40のアルケニル基、C〜C40のアルキニル基、C〜C40のアリール基、核原子数5〜40のヘテロアリール基、C〜C40のアリールオキシ基、C〜C40のアルキルオキシ基、C〜C40のアリールアミン基、C〜C40のシクロアルキル基、核原子数3〜40のヘテロシクロアルキル基、C〜C40のアルキルシリル基、C〜C40のアルキルボロン基、及びC〜C40のアリールボロン基、及びC〜C40のアリールシリル基からなる群から選択され、これらはそれぞれ、ハロゲン、シアノ基及びC〜C20のアルキル基からなる群から選択される1つ以上の置換基で置換されることができる)
The positive electrode active material according to claim 1, wherein the organic phosphate coating layer is a compound represented by the following general formula (1):
Figure 2017073378
(In General Formula (1), R 1 to R 3 are the same or different from each other, and each independently represents a C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, or a C 2 to C 40 alkynyl group. C 6 -C 40 aryl group, C 5 -C 40 heteroaryl group, C 6 -C 40 aryloxy group, C 1 -C 40 alkyloxy group, C 6 -C 40 arylamine group C 3 -C 40 cycloalkyl group, C 3 -C 40 heterocycloalkyl group, C 1 -C 40 alkylsilyl group, C 1 -C 40 alkyl boron group, and C 6 -C 40 arylboronic group, and is selected from the group consisting of aryl silyl group of C 6 -C 40, each of which is halogen, one or more selected from the group consisting of alkyl groups of cyano and C 1 -C 20 Can be substituted with a substituent)
前記有機ホスフェートコーティング層は、熱処理を通じて正極表面のリチウム化合物中の一部と反応して有機リチウムホスフェートに転換されることを特徴とする請求項2に記載の正極活物質。   The cathode active material according to claim 2, wherein the organic phosphate coating layer reacts with a part of the lithium compound on the surface of the cathode through heat treatment to be converted into an organic lithium phosphate. 前記正極活物質は、リチウム遷移金属酸化物を含むコア部、及び前記コア部の表面に有機ホスフェートをコーティングして形成されたシェル部を含むコア−シェル(core−shell)構造であることを特徴とする請求項1に記載の正極活物質。   The positive active material has a core-shell structure including a core part including a lithium transition metal oxide and a shell part formed by coating an organic phosphate on the surface of the core part. The positive electrode active material according to claim 1. 前記有機ホスフェートコーティング層の厚さは、10〜500nmの範囲であることを特徴とする請求項1に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the organic phosphate coating layer has a thickness in a range of 10 to 500 nm. 前記有機ホスフェートコーティング層の含量は、正極活物質の全重量を基準にして、1〜20重量部の範囲であることを特徴とする請求項1に記載の正極活物質。   The cathode active material according to claim 1, wherein the content of the organic phosphate coating layer is in the range of 1 to 20 parts by weight based on the total weight of the cathode active material. 前記リチウム遷移金属酸化物系粒子は、LiCoO、LiNiO、LiMn、LiMn12、LiNi1/3Mn1/3Co1/3、LiFePO、Li(CoNi1−x)O(0.5≦x<1)、及びLi1+xMn2−y−z−wAlCoMg(0.03<x<0.25、0.01<y<0.2、0.01<z<0.2、0≦w<0.1、x+y+z+w<0.4)からなる群から選択されるものであることを特徴とする請求項1に記載の正極活物質。 The lithium transition metal oxide particles are LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 4 Mn 5 O 12 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiFePO 4 , Li (Cox ). Ni 1-x) O 2 ( 0.5 ≦ x <1), and Li 1 + x Mn 2-y -z-w Al y Co z Mg w O 4 (0.03 <x <0.25,0.01 <Y <0.2, 0.01 <z <0.2, 0 ≦ w <0.1, x + y + z + w <0.4) The positive electrode active material as described. 前記リチウム遷移金属酸化物は、下記一般式(2)で示されるものであることを特徴とする請求項1に記載の正極活物質。
Figure 2017073378
(一般式(2)中、Xは、Mn及びAlからなる群から選択される1種以上であり、0.9≦a≦1.10、0.6≦b≦1.0、0.0≦c≦0.2、0.0≦d0.2である)
The positive electrode active material according to claim 1, wherein the lithium transition metal oxide is represented by the following general formula (2).
Figure 2017073378
(In General Formula (2), X is at least one selected from the group consisting of Mn and Al, and 0.9 ≦ a ≦ 1.10, 0.6 ≦ b ≦ 1.0, 0.0 ≦ c ≦ 0.2, 0.0 ≦ d0.2)
平均粒径が1〜30μmの範囲内であることを特徴とする請求項1に記載の正極活物質。   2. The positive electrode active material according to claim 1, wherein an average particle diameter is in a range of 1 to 30 μm. 請求項1乃至9中のいずれか1項に記載の正極活物質を含む正極。   The positive electrode containing the positive electrode active material of any one of Claims 1 thru | or 9. 請求項10に記載の正極、負極、これらの間に介在するセパレータ及び電解質を含むリチウム二次電池。   The lithium secondary battery containing the positive electrode of Claim 10, a negative electrode, the separator interposed between these, and electrolyte. (i)リチウム遷移金属酸化物系粒子の表面に有機ホスフェートをコーティングするステップ;及び
(ii)前記コーティングされたリチウム金属複合酸化物系粒子を熱処理するステップ;
を含む正極活物質の製造方法。
(I) coating the surface of the lithium transition metal oxide-based particles with an organic phosphate; and (ii) heat treating the coated lithium metal composite oxide-based particles;
The manufacturing method of the positive electrode active material containing this.
前記ステップ(i)における有機ホスフェートは、下記一般式(1)で示される化合物であることを特徴とする請求項12に記載の正極活物質の製造方法:
Figure 2017073378
(一般式(1)中、R〜Rは、互いに同一又は異なり、それぞれ独立に、C〜C40のアルキル基、C〜C40のアルケニル基、C〜C40のアルキニル基、C〜C40のアリール基、核原子数5〜40のヘテロアリール基、C〜C40のアリールオキシ基、C〜C40のアルキルオキシ基、C〜C40のアリールアミン基、C〜C40のシクロアルキル基、核原子数3〜40のヘテロシクロアルキル基、C〜C40のアルキルシリル基、C〜C40のアルキルボロン基、及びC〜C40のアリールボロン基、及びC〜C40のアリールシリル基からなる群から選択され、これらはそれぞれ、ハロゲン又はシアノ基からなる群から選択される1つ以上の置換基で置換されることができる)
The method for producing a positive electrode active material according to claim 12, wherein the organic phosphate in the step (i) is a compound represented by the following general formula (1):
Figure 2017073378
(In General Formula (1), R 1 to R 3 are the same or different from each other, and each independently represents a C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, or a C 2 to C 40 alkynyl group. C 6 -C 40 aryl group, C 5 -C 40 heteroaryl group, C 6 -C 40 aryloxy group, C 1 -C 40 alkyloxy group, C 6 -C 40 arylamine group C 3 -C 40 cycloalkyl group, C 3 -C 40 heterocycloalkyl group, C 1 -C 40 alkylsilyl group, C 1 -C 40 alkyl boron group, and C 6 -C 40 selected arylboronic group, and from the group consisting of aryl silyl group of C 6 -C 40, each of which, to be substituted with one or more substituents selected from the group consisting of halogen or cyano group That)
前記ステップ(i)において、有機ホスフェートの含量は、リチウム金属複合酸化物系粒子100重量部に対して、1〜20重量部の範囲であることを特徴とする請求項12に記載の正極活物質の製造方法。   The positive electrode active material according to claim 12, wherein the organic phosphate content in the step (i) is in the range of 1 to 20 parts by weight with respect to 100 parts by weight of the lithium metal composite oxide particles. Manufacturing method. 前記ステップ(ii)は、200〜700℃の範囲で2〜10時間の間維持することを特徴とする請求項12に記載の正極活物質の製造方法。
The method for producing a positive electrode active material according to claim 12, wherein the step (ii) is maintained in a range of 200 to 700 ° C for 2 to 10 hours.
JP2016112342A 2015-10-07 2016-06-06 Positive electrode active material having excellent electrochemical performance and lithium secondary battery including the same Active JP6429172B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0141054 2015-10-07
KR1020150141054A KR101748037B1 (en) 2015-10-07 2015-10-07 Cathode active material having high electrochemical properties and lithium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
JP2017073378A true JP2017073378A (en) 2017-04-13
JP6429172B2 JP6429172B2 (en) 2018-11-28

Family

ID=58531840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016112342A Active JP6429172B2 (en) 2015-10-07 2016-06-06 Positive electrode active material having excellent electrochemical performance and lithium secondary battery including the same

Country Status (3)

Country Link
JP (1) JP6429172B2 (en)
KR (1) KR101748037B1 (en)
CN (1) CN106571446B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013541A1 (en) * 2021-08-03 2023-02-09 株式会社スーパーナノデザイン Positive electrode active material microparticle, positive electrode, secondary battery, and production method for positive electrode active material microparticle
CN116741953A (en) * 2022-03-10 2023-09-12 宁德时代新能源科技股份有限公司 Positive electrode active material, secondary battery, and electricity device
WO2023195298A1 (en) * 2022-04-08 2023-10-12 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102165119B1 (en) 2017-10-20 2020-10-14 주식회사 엘지화학 Methode for preparing positive electrode active material and secondary battery using the same
KR20200061889A (en) 2018-11-26 2020-06-03 에스케이이노베이션 주식회사 Cathode active material for lithium secondary battery and methode of manufacturing the same
CN112086638B (en) * 2019-06-12 2021-12-21 中国科学院化学研究所 Method for reducing alkalinity of positive electrode material by using phosphorus-containing organic matter
CN112310395B (en) * 2019-07-31 2023-03-10 深圳新宙邦科技股份有限公司 Lithium ion battery electrode and lithium ion battery comprising same
CN111509209B (en) * 2020-04-26 2021-12-14 厦门韫茂科技有限公司 Positive electrode material coated with phosphorus-containing compound and preparation method thereof
US20230420749A1 (en) 2020-11-18 2023-12-28 Nissan Chemical Corporation Secondary battery electrode additive
CN114023965B (en) * 2021-10-28 2023-01-17 深圳新宙邦科技股份有限公司 Solid lithium battery
CN114975873B (en) * 2022-06-02 2024-02-09 深圳新宙邦科技股份有限公司 Positive plate and lithium ion battery
WO2024011602A1 (en) * 2022-07-15 2024-01-18 宁德时代新能源科技股份有限公司 Lithium manganate composite material and preparation method therefor, secondary battery and electric device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288716A (en) * 1998-03-31 1999-10-19 Hitachi Maxell Ltd Lithium ion secondary battery
JPH11307081A (en) * 1998-04-17 1999-11-05 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery and its manufacture
JP2002270184A (en) * 2001-03-14 2002-09-20 Hitachi Maxell Ltd Non-aqueous secondary battery
KR20120061374A (en) * 2010-12-03 2012-06-13 삼성에스디아이 주식회사 Positive active material, manufacturing method thereof, and electrode and lithium battery containing the material
JP2015162356A (en) * 2014-02-27 2015-09-07 トヨタ自動車株式会社 Coated positive electrode active material, method for producing coated positive electrode active material, and lithium battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288716A (en) * 1998-03-31 1999-10-19 Hitachi Maxell Ltd Lithium ion secondary battery
JPH11307081A (en) * 1998-04-17 1999-11-05 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery and its manufacture
JP2002270184A (en) * 2001-03-14 2002-09-20 Hitachi Maxell Ltd Non-aqueous secondary battery
KR20120061374A (en) * 2010-12-03 2012-06-13 삼성에스디아이 주식회사 Positive active material, manufacturing method thereof, and electrode and lithium battery containing the material
JP2015162356A (en) * 2014-02-27 2015-09-07 トヨタ自動車株式会社 Coated positive electrode active material, method for producing coated positive electrode active material, and lithium battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EUN-HO LEE ET AL.: "Direct ultraviolet-assisted conformal coating of nanometer-thick poly(tris(2-(acryloyloxy)ethyl)phos", JOURNAL OF POWER SOURCES, vol. 244, JPN6018014157, 2013, pages 389 - 394, ISSN: 0003781354 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013541A1 (en) * 2021-08-03 2023-02-09 株式会社スーパーナノデザイン Positive electrode active material microparticle, positive electrode, secondary battery, and production method for positive electrode active material microparticle
CN116741953A (en) * 2022-03-10 2023-09-12 宁德时代新能源科技股份有限公司 Positive electrode active material, secondary battery, and electricity device
WO2023195298A1 (en) * 2022-04-08 2023-10-12 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
KR101748037B1 (en) 2017-06-15
JP6429172B2 (en) 2018-11-28
CN106571446A (en) 2017-04-19
CN106571446B (en) 2019-10-18
KR20170041520A (en) 2017-04-17

Similar Documents

Publication Publication Date Title
JP6429172B2 (en) Positive electrode active material having excellent electrochemical performance and lithium secondary battery including the same
JP7116314B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
CN107017385B (en) Positive electrode active material, method for producing same, and lithium secondary battery
KR101601917B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
WO2009110490A1 (en) Non-aqueous electrolyte battery
JP6728134B2 (en) Non-aqueous electrolyte secondary battery
KR20150045337A (en) Positive electrode active material, preparing method thereof, and lithium battery employing positive electrode including the same
KR20190092283A (en) Lithium secondary battery with improved high temperature storage property
KR101683211B1 (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
WO2015030190A1 (en) Nonaqueous electrolyte solution for electricity storage devices
JPWO2016136226A1 (en) Method for producing non-aqueous electrolyte secondary battery
KR20130029330A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US20130177815A1 (en) Negative active material, lithium secondary battery comprising the negative active material and manufacturing method thereof
JP2020123460A (en) Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide
JP2016004708A (en) Cathode active material for lithium ion secondary battery and manufacturing method for the same, and lithium ion secondary battery using the same
KR101833614B1 (en) Composite transition metal oxide precursor having high structural stability and preparing method thereof, and cathode active material using the same
KR100873578B1 (en) Anode active material for secondary battery with high capacity
CN111602275B (en) Nonaqueous electrolyte secondary battery
Lin et al. Optimal concentration of electrolyte additive for cyclic stability improvement of high-voltage cathode of lithium-ion battery
KR20160015779A (en) Cathode active material for lithium secondary battery and method of making the same
KR101576274B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
KR101895902B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP6960760B2 (en) Additives for lithium secondary batteries, electrolytes for lithium secondary batteries using them, methods for manufacturing lithium secondary batteries and additives for lithium secondary batteries using them.
US10217990B2 (en) Silicon material and negative electrode of secondary battery
KR101557486B1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170302

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R150 Certificate of patent or registration of utility model

Ref document number: 6429172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250