JP6960760B2 - Additives for lithium secondary batteries, electrolytes for lithium secondary batteries using them, methods for manufacturing lithium secondary batteries and additives for lithium secondary batteries using them. - Google Patents

Additives for lithium secondary batteries, electrolytes for lithium secondary batteries using them, methods for manufacturing lithium secondary batteries and additives for lithium secondary batteries using them. Download PDF

Info

Publication number
JP6960760B2
JP6960760B2 JP2017085786A JP2017085786A JP6960760B2 JP 6960760 B2 JP6960760 B2 JP 6960760B2 JP 2017085786 A JP2017085786 A JP 2017085786A JP 2017085786 A JP2017085786 A JP 2017085786A JP 6960760 B2 JP6960760 B2 JP 6960760B2
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
electrolytic solution
additive
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017085786A
Other languages
Japanese (ja)
Other versions
JP2018185914A (en
Inventor
翔平 水野
博史 春名
尚平 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Vehicle Energy Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vehicle Energy Japan Inc filed Critical Vehicle Energy Japan Inc
Priority to JP2017085786A priority Critical patent/JP6960760B2/en
Publication of JP2018185914A publication Critical patent/JP2018185914A/en
Application granted granted Critical
Publication of JP6960760B2 publication Critical patent/JP6960760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池用添加剤、それを用いたリチウム二次電池及びリチウム二次電池用添加剤の製造方法に関する The present invention relates to an additive for a lithium secondary battery, and a method for producing an additive for a lithium secondary battery and a lithium secondary battery using the same.

近年の携帯電話や携帯用パソコン等の移動体通信用電源はますます小型化、高エネルギー密度化(高容量化)が要望されており、電気自動車や、電力を動力の一部に利用したハイブリッド車、ハイブリッド電車の実用化が進んでいる。さらに、環境保護の観点から、深夜電力の貯蔵のみならず、太陽電池や風力発電と組み合わせた電力貯蔵用電源の開発も進んでいる。このような状況下、リチウム二次電池が注目されている。その普及に向けて電池の低コスト化が課題となる。低コスト化を実現する方法として、低コストの材料選定とともに電池の長寿命化が挙げられる。電池が長寿命化すると、1回の充放電コストが低減されるためである。 In recent years, power supplies for mobile communications such as mobile phones and portable personal computers have been required to be smaller and have higher energy density (higher capacity), and electric vehicles and hybrids using electric power as a part of power. The practical application of cars and hybrid trains is progressing. Furthermore, from the viewpoint of environmental protection, not only late-night power storage but also power storage power sources combined with solar cells and wind power generation are being developed. Under such circumstances, lithium secondary batteries are attracting attention. Reducing the cost of batteries will be an issue for its widespread use. As a method for achieving cost reduction, selection of low-cost materials and extension of battery life can be mentioned. This is because when the battery life is extended, the one-time charge / discharge cost is reduced.

リチウム二次電池の長寿命化に関して、特許文献1に記載されているような添加剤を電解液に添加する技術が知られている。特許文献1には、容量の経時劣化が小さく、寿命特性にも優れた、リチウム二次電池に用いる電解液を提供することが記載されている。具体的には、(RO)(BO)[ここで、Rは、それぞれ独立して、炭素数が1〜6の有機基である]で表されるボロキシン化合物及びLiPFを含有することによって生成する、3価及びそれより高い価数のホウ素を有する化合物と、非水溶媒とを含むリチウム二次電池用電解液が記載されている。 Regarding the extension of the life of a lithium secondary battery, a technique of adding an additive as described in Patent Document 1 to an electrolytic solution is known. Patent Document 1 describes that an electrolytic solution used for a lithium secondary battery, which has a small capacity deterioration with time and is excellent in life characteristics, is provided. Specifically, it contains a boroxine compound represented by (RO) 3 (BO) 3 [where R is an organic group having 1 to 6 carbon atoms independently] and LiPF 6. Described is an electrolytic solution for a lithium secondary battery containing a compound having boron having a trivalent value or a higher valence and a non-aqueous solvent produced by the above.

特願2013−172364Japanese Patent Application No. 2013-172364

特許文献1に開示されたリチウム二次電池では、初期特性については考慮されていない。 In the lithium secondary battery disclosed in Patent Document 1, the initial characteristics are not taken into consideration.

そこで、本発明は初期特性に優れるとともにサイクル特性にも優れたリチウム二次電池を提供することである。 Therefore, the present invention provides a lithium secondary battery having excellent initial characteristics and also excellent cycle characteristics.

上記課題を解決するために、本発明に係るリチウム二次電池用展添加剤は、下記式(1)で表される化合物である〔ここでR〜Rはそれぞれ独立して水素又は有機基である。〕ことを特徴とする。 In order to solve the above problems, the spreading additive for a lithium secondary battery according to the present invention is a compound represented by the following formula (1) [where Ra to R d are independently hydrogen or organic, respectively. Is the basis. ].

Figure 0006960760
Figure 0006960760

本発明によれば、初期特性に優れるとともにサイクル特性にも優れたリチウム二次電池を提供することができる。 According to the present invention, it is possible to provide a lithium secondary battery having excellent initial characteristics and also excellent cycle characteristics.

本発明の一実施形態に係るリチウム二次電池の内部構造を模式的に表す図である。It is a figure which shows typically the internal structure of the lithium secondary battery which concerns on one Embodiment of this invention. 実施例1、2、比較例4、5の質量スペクトルである。It is a mass spectrum of Examples 1 and 2, and Comparative Examples 4 and 5. 実施例1、2、比較例4、5の質量スペクトルである。It is a mass spectrum of Examples 1 and 2, and Comparative Examples 4 and 5.

以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更及び修正が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these explanations. It can be changed and modified.

<添加剤>
本発明の一実施形態に係る添加剤は、下記式(1)で表されるホウ素含有化合物である。
<Additives>
The additive according to one embodiment of the present invention is a boron-containing compound represented by the following formula (1).

Figure 0006960760
Figure 0006960760

ここで、R〜Rは水素又は有機基である。R〜Rを構成する有機基としては、直鎖状又は分枝状のアルキル基、シクロアルキル基等を挙げることができる。また、有機基中には、場合によりハロゲン、窒素、硫黄等を含有していても良い。R〜Rを構成する有機基に含まれる炭素数の上限は特に制限されないが、構造安定性の観点からは炭素数3以上10以下であることが好ましい。 Here, Ra to R d are hydrogen or an organic group. Examples of the organic group constituting R a to R d include a linear or branched alkyl group and a cycloalkyl group. Further, the organic group may contain halogen, nitrogen, sulfur or the like as the case may be. The upper limit of the number of carbon atoms contained in the organic groups constituting R a to R d is not particularly limited, but from the viewpoint of structural stability, the number of carbon atoms is preferably 3 or more and 10 or less.

式(1)で表される化合物は、電解液に添加することで正極表面に保護膜を形成させ、正極の造安定化や正極表面における電解液の酸化分解抑制効果が発現し、サイクル特性が向上する。 When the compound represented by the formula (1) is added to the electrolytic solution, a protective film is formed on the surface of the positive electrode, and the effect of stabilizing the structure of the positive electrode and suppressing the oxidative decomposition of the electrolytic solution on the surface of the positive electrode is exhibited, and the cycle characteristics are improved. improves.

また、電解液中にR(BO)で表されるボロキシンを添加した場合、ボロキシン化合物が電解質塩として一般的に用いられるLiPFに作用して、フッ酸(HF)やPFが発生することがある。フッ酸は正極酸化物を酸化させ、初期特性を低下させる。また、フッ酸の生成にLiPFが使用されるため、電解液中のLiPFの濃度が低下し、初期特性が低下する。式(1)で表される化合物は、電解液中に含まれるLiPF等の電解質塩に作用してフッ酸を生成することがないため、フッ酸の生成による初期特性の低下を抑制することができる。 In addition, when boroxine represented by R 3 (BO) 3 is added to the electrolytic solution, the boroxine compound acts on LiPF 6 , which is generally used as an electrolyte salt, to generate hydrofluoric acid (HF) and PF 5. I have something to do. Hydrofluoric acid oxidizes the positive electrode oxide and reduces the initial properties. Further, since LiPF 6 is used for the production of hydrofluoric acid, the concentration of LiPF 6 in the electrolytic solution is lowered, and the initial characteristics are lowered. Since the compound represented by the formula (1) does not act on an electrolyte salt such as LiPF 6 contained in the electrolytic solution to generate hydrofluoric acid, it suppresses the deterioration of the initial characteristics due to the formation of hydrofluoric acid. Can be done.

また、式(1)で表される化合物は、POF基を有するリン化合物であり、燃焼による酸化によって断熱層を形成するため、難燃剤としての機能を有する。 The compound represented by formula (1) is a phosphorus compound having a PO 2 F group, to form a heat insulating layer by oxidation by combustion, functions as a flame retardant.

上記式(1)で表される化合物の製造方法は任意である。例えば、R(BO)で表されるボロキシン化合物と、ヘキサフルオロリン酸塩と、を有機溶媒中で混合した後、真空乾燥することにより得られる。ここで、R(BO)で表されるボロキシン化合物としては、トリイソプロポキシボロキシン((O−CH(CH(BO))、トリメチルボロキシン((CH(BO))、トリメトキシボロキシン((O−CH(BO))、トリエトキシボロキシン(O−CHCH(BO))、トリシクロヘキソキシボロキシン(O−C11(BO)等が挙げられる。ヘキサフルオロリン酸塩としては、LiPF、KPF、NaPF、NHPF、ヘキサフルオロリン酸テトラブチルアンモニウム等が挙げられる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等を用いることができる。 The method for producing the compound represented by the above formula (1) is arbitrary. For example, it is obtained by mixing a booxine compound represented by R 3 (BO) 3 and hexafluorophosphate in an organic solvent and then vacuum drying. Here, examples of the boroxine compound represented by R 3 (BO) 3 include triisopropoxyboroxine ((O-CH (CH 3 ) 2 ) 3 (BO) 3 ) and trimethylboroxine ((CH 3 ) 3 ). (BO) 3 ), trimethoxyboroxine ((O-CH 3 ) 3 (BO) 3 ), triethoxyboroxine (O-CH 2 CH 3 ) 3 (BO) 3 ), tricyclohexoxyboroxine (O) -C 6 H 11 ) 3 (BO) 3 and the like can be mentioned. Examples of the hexafluorophosphate include LiPF 6 , KPF 6 , NaPF 6 , NH 4 PF 6 , tetrabutylammonium hexafluorophosphate and the like. As the organic solvent, ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like can be used.

上記方法により式(1)で表される化合物を合成するためには、ヘキサフルオロリン酸塩に対するボロキシン化合物のモル比が過剰となるように、ヘキサフルオロリン酸塩と美ボロキシン化合物とを混合する必要がある。ヘキサフルオロ酸塩に対するボロキシン化合物のモル比が過剰でない場合は、式(1)で表される化合物が生成しないためである。具体的には、ヘキサフルオロリン酸塩とボロキシン化合物のモル比が1:2〜1:5であることが好ましく、1:3〜1:4であることがさらに好ましい。 In order to synthesize the compound represented by the formula (1) by the above method, the hexafluorophosphate and the beautiful boroxine compound are mixed so that the molar ratio of the boroxine compound to the hexafluorophosphate becomes excessive. There is a need. This is because the compound represented by the formula (1) is not produced when the molar ratio of the boronoxine compound to the hexafluorophosphate is not excessive. Specifically, the molar ratio of hexafluorophosphate to the booxine compound is preferably 1: 2 to 1: 5, and even more preferably 1: 3 to 1: 4.

<電解液>
本発明の一実施形態に係る電解液は、電解質、非水溶媒、式(1)で表される化合物を含む。また、式(1)で表される化合物以外の他の添加剤を含んでいても良い。
<Electrolytic solution>
The electrolytic solution according to one embodiment of the present invention contains an electrolyte, a non-aqueous solvent, and a compound represented by the formula (1). Further, it may contain additives other than the compound represented by the formula (1).

電解質としては、リチウム塩を用いることができる。リチウム塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiCFSO、Li(CFSON、Li(CSO)Nが挙げられる。これらの成分は電解質中30重量%未満とすることが望ましい。 As the electrolyte, a lithium salt can be used. Examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 2 , Li (CF 3 SO 2 ) 2 N, and Li (C 2 F 5 SO 2 ) N. It is desirable that these components be less than 30% by weight in the electrolyte.

電解質濃度としては、電池の内部抵抗の観点から、非水溶媒に対して0.6mol/l〜1.5mol/lとすることが望ましいがこれに限定されるものではない。 The electrolyte concentration is preferably, but is not limited to, 0.6 mol / l to 1.5 mol / l with respect to a non-aqueous solvent from the viewpoint of the internal resistance of the battery.

非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等が挙げられる。また、これら非水溶媒については、フッ素置換体等のハロゲン化物や硫黄元素で置換したものを用いても良い。さらにこれらの非水溶媒は、単独で用いても2種類以上を混合して用いても良い。なお、2種類以上の非水溶媒を用いる場合は、環状カーボネートや環状ラクトンのような粘度の大きい溶媒と、鎖状カーボネートや鎖状エステルのような粘度の小さい溶媒との混合溶媒系を用いるのが望ましい。 Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like. Further, as these non-aqueous solvents, those substituted with a halide such as a fluorine substituent or a sulfur element may be used. Further, these non-aqueous solvents may be used alone or in combination of two or more. When two or more kinds of non-aqueous solvents are used, a mixed solvent system of a solvent having a high viscosity such as a cyclic carbonate or a cyclic lactone and a solvent having a low viscosity such as a chain carbonate or a chain ester is used. Is desirable.

式(1)で表される添加剤の添加量は、非水溶媒及びリチウム塩の合計重量に対して0.1重量%以上5.0重量%以下とすることが好ましく、0.1重量%超2.0重量%未満とすることがさらに好ましい。 The amount of the additive represented by the formula (1) is preferably 0.1% by weight or more and 5.0% by weight or less, preferably 0.1% by weight, based on the total weight of the non-aqueous solvent and the lithium salt. It is more preferably less than ultra 2.0% by weight.

式(1)で表される添加剤以外の他の添加剤としては、ビニレンカーボネート(VC)、カルボン酸無水物基を有する化合物、プロパンサルトン等硫黄元素を有する化合物、ホウ素を有する化合物等の正極及び/又は負極活物質表面に被膜を形成し電極表面の還元分解を抑制するための添加物、ビフェニル、シクロヘキシルベンゼン等の過充電抑制のための添加剤、リン酸系及び/又はハロゲンへの置換により電解液に難燃・不燃性を付与させる添加剤、正極活物質からのMnの溶出を抑制する添加剤、電解液のイオン導電性を向上するための添加剤、自己消化性添加剤、電極・セパレータ濡れ性改善添加剤等がある。添加剤は、それぞれの目的に応じて電解液に添加することができる。また、2種以上の添加剤を混合させることも可能である。これら添加剤の濃度は、合計して電解液中10重量%未満とすることが望ましい。 Examples of the additive other than the additive represented by the formula (1) include vinylene carbonate (VC), a compound having a carboxylic acid anhydride group, a compound having a sulfur element such as propanesarton, and a compound having boron. Additives for suppressing reductive decomposition of the electrode surface by forming a film on the surface of the positive electrode and / or negative electrode active material, additives for suppressing overcharging such as biphenyl and cyclohexylbenzene, phosphoric acid-based and / or halogens Additives that impart flame retardancy and nonflammability to the electrolytic solution by replacement, additives that suppress the elution of Mn from the positive electrode active material, additives for improving the ionic conductivity of the electrolytic solution, self-extinguishing additives, There are additives for improving the wettability of electrodes and separators. Additives can be added to the electrolytic solution according to their respective purposes. It is also possible to mix two or more types of additives. The total concentration of these additives is preferably less than 10% by weight in the electrolytic solution.

これらの添加剤の中でもビニレンカーボネートが添加することが好ましい。負極活物質表面には、C=O、C−H及びCOO等の表面官能基が存在し、これらの表面官能基は電池反応で電解液と不可逆な反応をすることで、SEI被膜といわれる表面被膜を形成する。SEI被膜の形成は、その生成により電荷を消費するため、電池の容量低下の一因になるが、ビニレンカーボネートを反応に関与させることでこの容量低下を抑制し、またSEI被膜により、電極界面での電解液との経時的な反応を抑制して、寿命の向上したリチウム二次電池を提供することができる。電解液中のビニレンカーボネートの濃度は、2重量%以下とすることが望ましい。 Among these additives, vinylene carbonate is preferably added. Surface functional groups such as C = O, CH and COO are present on the surface of the negative electrode active material, and these surface functional groups react irreversibly with the electrolytic solution in the battery reaction, so that the surface is called an SEI film. Form a film. The formation of the SEI film consumes electric charge due to its formation, which contributes to the decrease in battery capacity. However, by involving vinylene carbonate in the reaction, this decrease in capacity is suppressed, and the SEI film causes the electrode interface to decrease. It is possible to provide a lithium secondary battery having an improved life by suppressing the reaction with the electrolytic solution over time. The concentration of vinylene carbonate in the electrolytic solution is preferably 2% by weight or less.

<電池構造>
図1は、本発明の一実施形態に係るリチウム二次電池の内部構造を模式的に表す図である。図1に示す本発明の一実施形態に係るリチウム二次電池1は、正極10、セパレータ11、負極12、電池容器13、正極集電タブ14、負極集電タブ15、内蓋16、内圧開放弁17、ガスケット18、正温度係数(Positive Temperature Coefficient;PTC)抵抗素子19、電池蓋20及び軸心21から概略構成される。電池蓋20は、内蓋16、内圧開放弁17、ガスケット18及び正温度係数抵抗素子19からなる一体化部品である。また、軸心21には、正極10、セパレータ11及び負極12が捲回されている。
<Battery structure>
FIG. 1 is a diagram schematically showing an internal structure of a lithium secondary battery according to an embodiment of the present invention. The lithium secondary battery 1 according to the embodiment of the present invention shown in FIG. 1 has a positive electrode 10, a separator 11, a negative electrode 12, a battery container 13, a positive electrode current collecting tab 14, a negative electrode current collecting tab 15, an inner lid 16, and an internal pressure release. It is roughly composed of a valve 17, a gasket 18, a positive temperature coefficient (PTC) resistance element 19, a battery lid 20, and a shaft center 21. The battery lid 20 is an integrated component including an inner lid 16, an internal pressure release valve 17, a gasket 18, and a positive temperature coefficient resistance element 19. Further, a positive electrode 10, a separator 11 and a negative electrode 12 are wound around the axis 21.

セパレータ11を正極10及び負極12の間に挿入し、軸心21に捲回した電極群において、軸心21は、正極10、セパレータ11及び負極12を担持できるものであれば公知の任意の軸心を用いることができる。この実施の形態では、電極群は、円筒形状に形成されている。電池容器13の形状は、電極群の形状に合わせて円筒形に形成されている。 In the electrode group in which the separator 11 is inserted between the positive electrode 10 and the negative electrode 12 and wound around the axial center 21, the axial center 21 is any known shaft as long as it can support the positive electrode 10, the separator 11 and the negative electrode 12. You can use your mind. In this embodiment, the electrode group is formed in a cylindrical shape. The shape of the battery container 13 is formed in a cylindrical shape according to the shape of the electrode group.

電池容器13の材質は、電解液に対し耐食性のある材料、例えば、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等から選択される。電池容器13を正極10又は負極12に電気的に接続する場合に、電解液と接触している部分において、電池容器13の腐食やリチウムイオンとの合金化による材料の変質が起こらないように、電池容器13の材料の選定を行う。 The material of the battery container 13 is selected from materials having corrosion resistance to the electrolytic solution, for example, aluminum, stainless steel, nickel-plated steel and the like. When the battery container 13 is electrically connected to the positive electrode 10 or the negative electrode 12, the material is not deteriorated due to corrosion of the battery container 13 or alloying with lithium ions at the portion in contact with the electrolytic solution. The material of the battery container 13 is selected.

電池容器13に電極群を収納し、電池容器13の内壁に負極集電タブ15を接続し、電池蓋20の底面に正極集電タブ14を接続する。電解液は、電池を密閉する前に電池容器13の内部に注入する。電解液の注入方法は、電池蓋20を開放した状態にて電極群に直接添加する方法、又は電池蓋20に設置した注入口から添加する方法がある。その後、電池蓋20を電池容器13に密着させ、電池全体を密閉する。電解液の注入口がある場合は、それも密封する。電池密閉は、溶接、かしめ等公知の技術を用いて行うことができる。 The electrode group is housed in the battery container 13, the negative electrode current collecting tab 15 is connected to the inner wall of the battery container 13, and the positive electrode current collecting tab 14 is connected to the bottom surface of the battery lid 20. The electrolytic solution is injected into the battery container 13 before sealing the battery. As a method of injecting the electrolytic solution, there are a method of adding the electrolytic solution directly to the electrode group with the battery cover 20 open, or a method of adding the electrolytic solution from the injection port installed in the battery cover 20. After that, the battery lid 20 is brought into close contact with the battery container 13 to seal the entire battery. If there is an electrolyte inlet, seal it as well. The battery can be sealed by using a known technique such as welding or caulking.

<負極>
負極12は、負極活物質、バインダ及び集電体から概略構成され、負極活物質を、スチレンブタジエン共重合体等のバインダ及び必要に応じてカルボキシメチルセルロース等と混合して負極合剤スラリーを調製し、これを、例えば、ドクターブレード法、ディッピング法、スプレー法等によって集電体に塗布、プレスすることにより作製することができる。また、負極合剤スラリーの塗布及び乾燥を複数回行うことにより、複数の合剤層を集電体に積層化させることも可能である。
<Negative electrode>
The negative electrode 12 is roughly composed of a negative electrode active material, a binder and a current collector, and the negative electrode active material is mixed with a binder such as a styrene-butadiene copolymer and, if necessary, carboxymethyl cellulose or the like to prepare a negative electrode mixture slurry. , This can be produced by applying and pressing the current collector by, for example, a doctor blade method, a dipping method, a spray method or the like. It is also possible to stack a plurality of mixture layers on the current collector by applying and drying the negative electrode mixture slurry a plurality of times.

負極活物質としては、例えば、天然黒鉛、石油コークス又は石炭ピッチコークス等から得られる易黒鉛化材料を2500℃以上の高温で処理したもの、メソフェーズカーボン、非晶質炭素、黒鉛の表面に非晶質炭素を被覆したもの、天然又は人造黒鉛の表面を機械的処理することにより表面の結晶性を低下させた炭素材、高分子等の有機物を炭素表面に被覆・吸着させた材料、炭素繊維、リチウム金属、リチウムと合金化する金属、シリコン又は炭素粒子表面に金属を担持した材料等が用いられる。担持させる金属としては、例えば、リチウム、アルミニウム、スズ、ケイ素、インジウム、ガリウム及びマグネシウムより選択される金属、あるいはそれらの合金が挙げられる。また、スズ、ケイ素、鉄、チタン等の金属の酸化物を負極活物質として用いても良い。これら負極活物質は、いずれか1種を単独で又は2種以上を混合させて用いることができる。 Examples of the negative electrode active material include an easily graphitized material obtained from natural graphite, petroleum coke, coal pitch coke, etc. treated at a high temperature of 2500 ° C. or higher, mesophase carbon, amorphous carbon, and non-crystallized on the surface of graphite. Materials coated with quality carbon, carbon materials whose surface crystallism has been reduced by mechanically treating the surface of natural or artificial graphite, materials in which organic substances such as polymers are coated and adsorbed on the carbon surface, carbon fibers, A lithium metal, a metal that alloys with graphite, silicon, or a material in which a metal is supported on the surface of carbon particles is used. Examples of the metal to be supported include metals selected from lithium, aluminum, tin, silicon, indium, gallium and magnesium, or alloys thereof. Further, an oxide of a metal such as tin, silicon, iron or titanium may be used as the negative electrode active material. Any one of these negative electrode active materials can be used alone or in combination of two or more.

負極活物質の粒径は、負極活物質及びバインダから形成される合剤層の厚さ以下になるように通常は規定される。負極活物質の粉末中に合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、合剤層厚さ以下の粒子を作製することが望ましい。 The particle size of the negative electrode active material is usually defined to be less than or equal to the thickness of the mixture layer formed from the negative electrode active material and the binder. If the powder of the negative electrode active material contains coarse particles having a size equal to or larger than the thickness of the mixture layer, the coarse particles may be removed in advance by sieving or air flow classification to prepare particles having a size equal to or less than the thickness of the mixture layer. desirable.

負極12の集電体には、銅箔等を用いることができる。例えば、厚さ7μm〜25μm程度の銅箔等を用いることが望ましい。 A copper foil or the like can be used for the current collector of the negative electrode 12. For example, it is desirable to use a copper foil or the like having a thickness of about 7 μm to 25 μm.

負極合剤層の厚さは、集電体の両面に塗布した場合で、それぞれ50μm〜200μm程度とすることが望ましいが、これに限定されるものではない。 The thickness of the negative electrode mixture layer is preferably about 50 μm to 200 μm when applied to both sides of the current collector, but is not limited to this.

バインダとしては、水に溶解、膨潤又は分散するポリマーを用いることができ、例えば、スチレンブタジエン共重合体、アクリル基を有するポリマー、シアノ基を有するポリマー等が適用可能である。負極合剤層におけるバインダの量は、負極活物質、増粘効果を向上させる目的で用いるカルボキシメチルセルロース等及びバインダの合計量に対して、例えば0.8重量%〜1.5重量%程度とすることが望ましい。バインダ成分が多くなると、内部抵抗値の増加や電池容量の低下につながる。一方で、バインダ成分が少な過ぎると、電極の密着強度が低下し、電極作製が困難になったり、電池の保存特性、サイクル特性の低下を招いたりする恐れがある。カルボキシメチルセルロース等の、合剤スラリーの増粘効果の向上を目的として加える有機物自体が、結着力向上効果を発現する場合もあり、さらに、用いる活物質により、その最適値も大きく変わり得るので、電池の初期特性や保存特性、サイクル特性等の電池試験結果を基に配合比率を決定することが望ましい。 As the binder, a polymer that dissolves, swells, or disperses in water can be used, and for example, a styrene-butadiene copolymer, a polymer having an acrylic group, a polymer having a cyano group, and the like can be applied. The amount of the binder in the negative electrode mixture layer is, for example, about 0.8% by weight to 1.5% by weight with respect to the total amount of the negative electrode active material, carboxymethyl cellulose and the like used for the purpose of improving the thickening effect, and the binder. Is desirable. When the binder component increases, the internal resistance value increases and the battery capacity decreases. On the other hand, if the binder component is too small, the adhesion strength of the electrode is lowered, which may make it difficult to manufacture the electrode, or may lead to deterioration of the storage characteristics and cycle characteristics of the battery. The organic substance itself, such as carboxymethyl cellulose, which is added for the purpose of improving the thickening effect of the mixture slurry, may exhibit the effect of improving the binding force, and the optimum value may vary greatly depending on the active material used. It is desirable to determine the compounding ratio based on the battery test results such as the initial characteristics, storage characteristics, and cycle characteristics of.

また、水には溶解、膨潤又は分散しない有機系のバインダを用いることも可能である。有機系バインダを用いる場合は、負極活物質、カルボキシメチルセルロース等及びバインダの合計量に対して、例えば3重量%〜6重量%程度とすることができる。最適な配合比率は、水系バインダの場合と同様に、電池の保存特性、サイクル特性等の試験結果を基に、決定することが望ましい。 It is also possible to use an organic binder that does not dissolve, swell or disperse in water. When an organic binder is used, it can be, for example, about 3% by weight to 6% by weight with respect to the total amount of the negative electrode active material, carboxymethyl cellulose and the like and the binder. It is desirable to determine the optimum blending ratio based on the test results such as the storage characteristics and cycle characteristics of the battery, as in the case of the water-based binder.

<セパレータ>
正極10及び負極12の直接接触による短絡防止を目的としてセパレータ11を用いる。このセパレータ11には、ポリエチレン、ポリプロピレン、アラミド樹脂等の微多孔質の高分子フィルムや、高分子フィルムの表面上にアルミナ粒子等の耐熱性物質を被覆した膜等が使用可能である。
<Separator>
The separator 11 is used for the purpose of preventing a short circuit due to direct contact between the positive electrode 10 and the negative electrode 12. As the separator 11, a microporous polymer film such as polyethylene, polypropylene, or aramid resin, a film in which a heat-resistant substance such as alumina particles is coated on the surface of the polymer film, or the like can be used.

<正極>
正極10は、正極活物質、導電剤、バインダ及び集電体から概略構成される。具体的には、正極活物質を、バインダ、導電剤、及び必要に応じてカルボキシメチルセルロース等と混合して正極合剤を調製し、これを、例えば、ドクターブレード法、ディッピング法、スプレー法等によって集電体に塗布した後、有機溶媒を乾燥させ、ロールプレスによって加圧成形することにより、作製することができる。また、塗布から乾燥までを複数回行うことにより、複数の合剤層を集電体に積層化させることも可能である。
<Positive electrode>
The positive electrode 10 is roughly composed of a positive electrode active material, a conductive agent, a binder and a current collector. Specifically, the positive electrode active material is mixed with a binder, a conductive agent, and if necessary, carboxymethyl cellulose or the like to prepare a positive electrode mixture, which is prepared by, for example, a doctor blade method, a dipping method, a spray method, or the like. It can be produced by applying it to a current collector, drying the organic solvent, and press-molding it with a roll press. It is also possible to stack a plurality of mixture layers on the current collector by performing the process from application to drying a plurality of times.

正極活物質としては、LiCoO、LiNiO、LiMn、LiNi0.33Mn0.33Co0.33等が例示される。その他に、LiMnO、LiMn、LiMnO、LiMn12、LiMn2−x(ただし、MはCo、Ni、Fe、Cr、Zn及びTiからなる群から選択される少なくとも1種であり、xは0.01〜0.2である)、LiMnMO(ただし、MはFe、Co、Ni、Cu及びZnからなる群から選択される少なくとも1種である)、Li1−xMn(ただし、AはMg、B、Al、Fe、Co、Ni、Cr、Zn及びCaからなる群から選択される少なくとも1種であり、xは0.01〜0.1である)、LiNi1−x(ただし、MはCo、Fe及びGaからなる群から選択される少なくとも1種であり、xは0.01〜0.2である)、LiFeO、Fe(SO、LiCo1−x(ただし、MはNi、Fe及びMnからなる群から選択される少なくとも1種であり、xは0.01〜0.2である)、LiNi1−x(ただし、MはMn、Fe、Co、Al、Ga、Ca及びMgからなる群から選択される少なくとも1種であり、xは0.01〜0.2である)、Fe(MoO、FeF、LiFePO、LiMnPO等を用いることができる。 Examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.33 Mn 0.33 Co 0.33 O 2 and the like. In addition, LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , LiMn 2-x M x O 2 (where M is selected from the group consisting of Co, Ni, Fe, Cr, Zn and Ti). At least one selected from the group consisting of Li 2 Mn 3 MO 8 (where M is Fe, Co, Ni, Cu and Zn), x is 0.01 to 0.2). Species), Li 1-x A x Mn 2 O 4 (where A is at least one selected from the group consisting of Mg, B, Al, Fe, Co, Ni, Cr, Zn and Ca. x is 0.01 to 0.1), LiNi 1-x M x O 2 (where M is at least one selected from the group consisting of Co, Fe and Ga, and x is 0.01 to 0.01. 0.2), LiFeO 2 , Fe 2 (SO 4 ) 3 , LiCo 1-x M x O 2 (where M is at least one selected from the group consisting of Ni, Fe and Mn, x Is 0.01 to 0.2), LiNi 1-x M x O 2 (where M is at least one selected from the group consisting of Mn, Fe, Co, Al, Ga, Ca and Mg. , X is 0.01 to 0.2), Fe (MoO 4 ) 3 , FeF 3 , LiFePO 4 , LiMnPO 4, and the like can be used.

正極活物質の粒径は、正極活物質、導電剤及びバインダから形成される合剤層の厚さ以下になるように通常は規定される。正極活物質の粉末中に合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、合剤層厚さ以下の粒子を作製することが望ましい。 The particle size of the positive electrode active material is usually defined to be less than or equal to the thickness of the mixture layer formed from the positive electrode active material, the conductive agent and the binder. If the powder of the positive electrode active material contains coarse particles having a size equal to or larger than the thickness of the mixture layer, the coarse particles may be removed in advance by sieving or air flow classification to prepare particles having a thickness equal to or less than the thickness of the mixture layer. desirable.

また、正極活物質は、酸化物系であるために一般に電気抵抗が高いので、電気伝導性を補うための炭素粉末等からなる導電剤を利用する。正極活物質及び導電剤はともに通常は粉末であるので、粉末にバインダを混合して、粉末同士を結合させると同時に集電体へ接着させることができる。 Further, since the positive electrode active material is an oxide type and therefore has generally high electric resistance, a conductive agent made of carbon powder or the like for supplementing the electric conductivity is used. Since both the positive electrode active material and the conductive agent are usually powders, a binder can be mixed with the powders to bond the powders to each other and at the same time to bond them to the current collector.

正極10の集電体としては、例えば、厚さが10μm〜100μmのアルミニウム箔、厚さが10μm〜100μmで孔径が0.1mm〜10mmのアルミニウム製穿孔箔、エキスパンドメタル又は発泡金属板等が用いられる。アルミニウムの他に、ステンレスやチタン等の材質も適用可能であり、材質、形状、製造方法等に制限されることなく、任意の集電体を使用することができる。 As the current collector of the positive electrode 10, for example, an aluminum foil having a thickness of 10 μm to 100 μm, an aluminum perforated foil having a thickness of 10 μm to 100 μm and a pore diameter of 0.1 mm to 10 mm, an expanded metal, a foamed metal plate, or the like is used. Be done. In addition to aluminum, materials such as stainless steel and titanium can also be applied, and any current collector can be used without being limited by the material, shape, manufacturing method, and the like.

正極合剤層の厚さは、集電体の両面に塗布した場合で、それぞれ50μm〜200μm程度とすることが望ましいが、これに限定されるものではない。 The thickness of the positive electrode mixture layer is preferably about 50 μm to 200 μm when applied to both sides of the current collector, but is not limited to this.

正極に用いるバインダとしては、ポリフッ化ビニリデン(PVDF)、アクリル系のポ
リマー、イミド基やアミド基を有するポリマー等を用いることができる。また、正極合剤層におけるバインダの量は、多過ぎると内部抵抗値の増加や電池容量の低下につながる。一方で、バインダ成分が少な過ぎると、電極の密着強度が低下し、電極作製が困難になったり、電池の保存特性、サイクル特性の低下を招いたりする恐れがあるので、これらのバランスを考慮して適宜設定される。具体的には、正極活物質、導電剤及びバインダの合計量に対して、バインダの量を1重量%〜7重量%とすることが好ましい。最適な配合比率は、電池の保存特性、サイクル特性等の試験結果を基に決定することが望ましい。
As the binder used for the positive electrode, polyvinylidene fluoride (PVDF), an acrylic polymer, a polymer having an imide group or an amide group, or the like can be used. Further, if the amount of the binder in the positive electrode mixture layer is too large, the internal resistance value increases and the battery capacity decreases. On the other hand, if the amount of the binder component is too small, the adhesion strength of the electrode is lowered, which may make it difficult to manufacture the electrode and may lead to deterioration of the storage characteristics and cycle characteristics of the battery. Is set as appropriate. Specifically, the amount of the binder is preferably 1% by weight to 7% by weight with respect to the total amount of the positive electrode active material, the conductive agent and the binder. It is desirable to determine the optimum blending ratio based on the test results such as battery storage characteristics and cycle characteristics.

以上の実施形態では、電極群は円筒形状に形成されていたが、例えば短冊状電極を積層したもの、又は正極10と負極12を扁平状等の任意の形状に捲回したもの等、種々の形状でも良い。電池容器13の形状は、上記のような円筒形状の他、例えば扁平長円形状、扁平楕円形状、角形等の形状でも良い。さらに軸心21は、電池形状によって、あるいは電池内部における電極の体積占有率を向上させる目的で、省略することも可能である。 In the above embodiments, the electrode group is formed in a cylindrical shape, but there are various types such as one in which strip-shaped electrodes are laminated, or one in which the positive electrode 10 and the negative electrode 12 are wound into an arbitrary shape such as a flat shape. It may be in shape. The shape of the battery container 13 may be, for example, a flat oval shape, a flat elliptical shape, a square shape, or the like, in addition to the cylindrical shape as described above. Further, the axis 21 may be omitted depending on the shape of the battery or for the purpose of improving the volume occupancy of the electrodes inside the battery.

以下に示す方法により、図3に示すリチウム二次電池を作製した。 The lithium secondary battery shown in FIG. 3 was produced by the method shown below.

下記式(2)で表されるホウ素含有化合物Aを作製し、それを添加した電解液を有するリチウム二次電池を作製し、電池の初期特性及びサイクル特性を評価した。 A boron-containing compound A represented by the following formula (2) was prepared, a lithium secondary battery having an electrolytic solution to which the boron-containing compound A was added was prepared, and the initial characteristics and cycle characteristics of the battery were evaluated.

Figure 0006960760
Figure 0006960760

<ホウ素含有化合物Aの調製>
トリイソプロポキシボロキシン(O−CH(CH(BO)(0.6g)とLiPF(0.09g)を4:1のモル比で、メチルカーボネート(10g)中において室温で24時間混合した。その後、60℃、0.1Torrで真空乾燥し、気体及び液体成分を除去し、ホウ素含有化合物Aを得た。
<Preparation of Boron-Containing Compound A>
Triisopropoxyboroxin (O-CH (CH 3 ) 2 ) 3 (BO) 3 (0.6 g) and LiPF 6 (0.09 g) in a molar ratio of 4: 1 in methyl carbonate (10 g) at room temperature. Was mixed for 24 hours. Then, it was vacuum dried at 60 ° C. and 0.1 Torr to remove gas and liquid components to obtain boron-containing compound A.

<電解液の調整>
電解質としてLiPFを1mol/lの濃度で、非水溶媒であるエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の混合溶液(EC:EMC=1:2(容積比))に溶解し、さらにビニレンカーボネートを全体の1.0重量%の濃度で混合し、LiPF及び非水溶媒の合計量に対して0.5重量%の濃度でホウ素含有化合物Aを添加した。
<Adjustment of electrolyte>
LiPF 6 as an electrolyte was dissolved in a mixed solution (EC: EMC = 1: 2 (volume ratio)) of ethylene carbonate (EC) and ethyl methyl carbonate (EMC), which are non-aqueous solvents, at a concentration of 1 mol / l, and further. The vinylene carbonate was mixed at a concentration of 1.0% by weight of the whole, and the boron-containing compound A was added at a concentration of 0.5% by weight based on the total amount of LiPF 6 and the non-aqueous solvent.

<負極の作製>
負極活物質にはX線回折測定で得られた面間隔が0.368nm、平均粒径が20μm、比表面積が5m/gの天然黒鉛を用いた。天然黒鉛、カルボキシメチルセルロースの水膨潤体及びスチレンブタジエン共重合体を含む水分散液を回転翼のような攪拌手段を備えた混合機を用いて充分に混錬し、負極合剤スラリーを調製した。負極活物質、カルボキシメチルセルロース及びスチレンブタジエン共重合体の混合比は、重量比で97:1.5:1.5になるようにした。
<Manufacturing of negative electrode>
As the negative electrode active material, natural graphite having a surface spacing of 0.368 nm, an average particle size of 20 μm, and a specific surface area of 5 m 2 / g obtained by X-ray diffraction measurement was used. An aqueous dispersion containing a water-swelled product of natural graphite and carboxymethyl cellulose and a styrene-butadiene copolymer was sufficiently kneaded using a mixer equipped with a stirring means such as a rotary blade to prepare a negative electrode mixture slurry. The mixing ratio of the negative electrode active material, carboxymethyl cellulose and styrene-butadiene copolymer was adjusted to 97: 1.5: 1.5 by weight.

この負極合剤スラリーを、厚さ10μmの圧延銅箔(集電体)の両面に実質的に均一に塗布した。乾燥後に、ロールプレス機により、負極の活物質密度が約1.5g/cmになるように圧縮成形し負極を作製した。密度調整のためのプレス後に、負極を合剤層の塗布長さ55cmと未塗布部5cmの合計60cm、塗布幅5.6cmになるように切断した。その後、未塗布部にNi製のリード片を溶接し、電流取出し部を具備した負極を作製した。 This negative electrode mixture slurry was applied substantially uniformly on both surfaces of a rolled copper foil (current collector) having a thickness of 10 μm. After drying, a negative electrode was produced by compression molding with a roll press machine so that the active material density of the negative electrode was about 1.5 g / cm 3. After pressing for density adjustment, the negative electrode was cut so that the coating length of the mixture layer was 55 cm and the uncoated portion was 5 cm, totaling 60 cm, and the coating width was 5.6 cm. Then, a lead piece made of Ni was welded to the uncoated portion to prepare a negative electrode provided with a current extraction portion.

<正極の作製>
正極活物質には、平均粒径10μm、比表面積1.5m/gのLiNi0.33Mn0.33Co0.33を用いた。正極活物質と、塊状黒鉛及びアセチレンブラックを9:2に混合した導電剤とを、バインダとして予め5重量%PVDFに調整されたNMP溶液に分散させて正極合剤スラリーを調製した。スラリーの作製は、負極の場合と同様に、回転翼のような撹拌手段を備えた混合機を用いて充分に混練した。正極活物質、導電剤及びPVDFの混合比は、重量比で85:10:5になるようにした。
<Preparation of positive electrode>
As the positive electrode active material, LiNi 0.33 Mn 0.33 Co 0.33 O 2 having an average particle size of 10 μm and a specific surface area of 1.5 m 2 / g was used. A positive electrode mixture slurry was prepared by dispersing the positive electrode active material and a conductive agent in which massive graphite and acetylene black were mixed at a ratio of 9: 2 in an NMP solution previously adjusted to 5% by weight PVDF as a binder. The slurry was sufficiently kneaded using a mixer equipped with a stirring means such as a rotary blade, as in the case of the negative electrode. The mixing ratio of the positive electrode active material, the conductive agent and PVDF was set to be 85:10: 5 by weight.

この正極合剤スラリーを厚さ20μmのアルミニウム箔(集電体)の両面にできるだけ均一かつ均等に、負極と同じ手順で塗布し乾燥した。その後、ロールプレス機により、正極の活物質密度が2.6g/cmになるよう圧縮成形し、正極を作製した。その後、正極を合剤層の塗布長さ50cmと未塗布部5cmの合計55cmとなるよう切断した。そして、電流を取り出すためのアルミニウム箔製のリード片を未塗布部に溶接し、電流取出し部を具備した正極を作製した。 This positive electrode mixture slurry was applied to both sides of a 20 μm-thick aluminum foil (current collector) as uniformly and evenly as possible, and dried in the same procedure as the negative electrode. Then, the positive electrode was compression-molded by a roll press so that the active material density of the positive electrode was 2.6 g / cm 3. Then, the positive electrode was cut so that the coating length of the mixture layer was 50 cm and the uncoated portion was 5 cm, for a total of 55 cm. Then, a lead piece made of aluminum foil for taking out the current was welded to the uncoated portion to produce a positive electrode provided with the current take-out portion.

<リチウム二次電池の作製>
作製した正極と負極を用いて図3に示すような円筒型のリチウム二次電池1を作製した。具体的には正極と負極には、それぞれ電流引き出し用の正極集電タブ、負極集電タブを超音波溶接した。正極集電タブ、負極集電タブは、長方形の集電体とそれぞれ同じ材質の金属箔から構成され、また、正極及び負極の間にポリエチレンの単層膜であるセパレータを挟んで重ね、これを、図3に示すように、円筒状(螺旋状)に捲いて電極群とし、円筒状の電池容器に収納した。電極群を電池容器に収納した後、電池容器内に電解液を注入し、正極集電タブが取り付けられた密閉用の電池蓋、ガスケットを介して電池容器に密着させ、かしめにより密閉して、径18mm、長さ650mmの円筒型のリチウム二次電池を作製した。
<Manufacturing of lithium secondary battery>
A cylindrical lithium secondary battery 1 as shown in FIG. 3 was produced using the produced positive electrode and negative electrode. Specifically, a positive electrode current collecting tab and a negative electrode current collecting tab for current extraction were ultrasonically welded to the positive electrode and the negative electrode, respectively. The positive electrode current collecting tab and the negative electrode current collecting tab are each made of a metal foil made of the same material as the rectangular current collector, and a separator which is a single-layer film of polyethylene is sandwiched between the positive electrode and the negative electrode, and these are stacked. , As shown in FIG. 3, the electrodes were wound into a cylindrical shape (spiral shape) and stored in a cylindrical battery container. After storing the electrode group in the battery container, the electrolytic solution is injected into the battery container, and the electrode group is brought into close contact with the battery container via the sealing battery lid and gasket to which the positive electrode current collecting tab is attached, and sealed by caulking. A cylindrical lithium secondary battery having a diameter of 18 mm and a length of 650 mm was produced.

トリイソプロポキシボロキシンとLiPFを3:1のモル比で混合してホウ素含有化合物A´を作製したこと以外実施例1と同様にしてリチウム二次電池を作製した。 A lithium secondary battery was prepared in the same manner as in Example 1 except that triisopropoxyboroxin and LiPF 6 were mixed at a molar ratio of 3: 1 to prepare a boron-containing compound A'.

ビニレンカーボネートを添加しなかったこと以外は実施例1と同様にしてリチウム二次電池を作製した。 A lithium secondary battery was produced in the same manner as in Example 1 except that vinylene carbonate was not added.

ビニレンカーボネートを添加しなかったこと以外は実施例2と同様にしてリチウム二次電池を作製した。 A lithium secondary battery was produced in the same manner as in Example 2 except that vinylene carbonate was not added.

ホウ素含有化合物Aの添加濃度を0.1重量%としたこと以外は実施例1と同様にしてリチウムイオン二次電池1を作製した。 A lithium ion secondary battery 1 was produced in the same manner as in Example 1 except that the concentration of the boron-containing compound A added was 0.1% by weight.

ホウ素含有化合物Aの添加濃度を2.0重量%としたこと以外は実施例1と同様にしてリチウムイオン二次電池1を作製した。 A lithium ion secondary battery 1 was produced in the same manner as in Example 1 except that the concentration of the boron-containing compound A added was 2.0% by weight.

ホウ素含有化合物Aの調整の際に、トリイソプロポキシボロキシンに代えてトリメチルボロキシン(CH(BO)を用いて下記式(3)で表されるホウ素含有化合物Bを作製したこと以外は実施例1と同様にしてリチウムイオン二次電池1を作製した。 When preparing the boron-containing compound A, trimethylboroxin (CH 3 ) 3 (BO) 3 was used instead of triisopropoxyboroxin to prepare a boron-containing compound B represented by the following formula (3). A lithium ion secondary battery 1 was produced in the same manner as in Example 1 except for the above.

Figure 0006960760
Figure 0006960760

〔比較例1〕
ホウ素含有系化合物Aを添加しなかったこと以外は実施例1と同様にしてリチウム二次電池1を作製した。
[Comparative Example 1]
A lithium secondary battery 1 was produced in the same manner as in Example 1 except that the boron-containing compound A was not added.

〔比較例2〕
ホウ素含有化合物Aに代えてトリイソプロポキシボロキシン(O−CH(CH(BO)(以下、TiPBxと表記する)を用いたこと以外は実施例1と同様にしてリチウム二次電池1を作製した。
[Comparative Example 2]
Lithium ion in the same manner as in Example 1 except that triisopropoxyboroxin (O-CH (CH 3 ) 2 ) 3 (BO) 3 (hereinafter referred to as TiPBx) was used instead of the boron-containing compound A. The next battery 1 was manufactured.

〔比較例3〕
ビニレンカーボネートを添加しなかったこと以外は比較例2と同様にしてリチウム二次電池1を作製した。
[Comparative Example 3]
A lithium secondary battery 1 was produced in the same manner as in Comparative Example 2 except that vinylene carbonate was not added.

〔比較例4〕
トリイソプロポキシボロキシンとLiPFを2:1のモル比で混合してホウ素含有化合物Cを作製したこと以外実施例1と同様にしてリチウム二次電池を作製した。
[Comparative Example 4]
A lithium secondary battery was prepared in the same manner as in Example 1 except that triisopropoxyboroxin and LiPF 6 were mixed at a molar ratio of 2: 1 to prepare a boron-containing compound C.

〔比較例5〕
トリイソプロポキシボロキシンとLiPFを1:1のモル比で混合してホウ素含有化合物Dを作製したこと以外実施例1と同様にしてリチウム二次電池を作製した。
[Comparative Example 5]
A lithium secondary battery was prepared in the same manner as in Example 1 except that triisopropoxyboroxin and LiPF 6 were mixed at a molar ratio of 1: 1 to prepare a boron-containing compound D.

〔ホウ素含有化合物の質量分析〕
実施例1、2、比較例4、5で作製したホウ素含有化合物A、A´、B、Cについて直接イオン化法により質量分析を行った。質量分析には、大気圧イオン化飛行時間質量分析計(日本電子株式会社製JMS−T100LP AccuTOF LC)を用いた。イオン源はDART(Direct Analysis in Real Time)とし、DART用ガスにはヘリウムを使用し、ヘリウム加熱温度は350℃、オリフィス1の電圧は30V、オリフィス1温度は80℃とした。ホウ素含有化合物の質量スペクトルを図2、図3に示す。
[Mass spectrometry of boron-containing compounds]
The boron-containing compounds A, A', B, and C prepared in Examples 1 and 2 and Comparative Examples 4 and 5 were subjected to mass spectrometry by the direct ionization method. An atmospheric pressure ionization time-of-flight mass spectrometer (JMS-T100LP AccuTOF LC manufactured by JEOL Ltd.) was used for mass spectrometry. The ion source was DART (Direct Analysis in Real Time), helium was used as the gas for DART, the helium heating temperature was 350 ° C., the voltage of the orifice 1 was 30 V, and the temperature of the orifice 1 was 80 ° C. The mass spectra of the boron-containing compound are shown in FIGS. 2 and 3.

質量分析では、測定サンプルをイオン化する際に、母体となる構造が解離し、それらの解離片から構造特定をすることが可能である。また、元素によって同位体存在比が異なるため、化合物に含有する元素の種類や数によってスペクトル形状が変化する。したがって、スペクトルの形状から特定元素の含有数を推定することができる。 In mass spectrometry, when the measurement sample is ionized, the underlying structure is dissociated, and it is possible to identify the structure from those dissociated pieces. In addition, since the isotope abundance ratio differs depending on the element, the spectral shape changes depending on the type and number of elements contained in the compound. Therefore, the content of a specific element can be estimated from the shape of the spectrum.

構造を特定する際にホウ素を含有するピークを抽出した。図2の質量スペクトル中に、ホウ素を含有するピークには、質量数を記載した。その他のピークは、ホウ素含有化合物を作製する際のLiPF6等の原料やジメチルカーボネート等の溶媒の分解物が結合したものであり、ホウ素を含んでいない化合物に帰属されるピークである。 Boron-containing peaks were extracted when identifying the structure. In the mass spectrum of FIG. 2, the mass number is described for the peak containing boron. The other peaks are those in which a raw material such as LiPF6 and a decomposition product of a solvent such as dimethyl carbonate are bonded when producing a boron-containing compound, and are peaks attributed to a compound containing no boron.

ホウ素化合物Aの質量スペクトル中には、ホウ素を3個含むピークが質量数485.279m/z、443.232m/z、383.175m/zに観測された。また、ホウ素を2個含むピークが質量数399.226m/zに観測された。これらのピークのうち、質量数485.276m/zに観測されたピークが母体であり、他のピークは解離片であると考えられる。解析の結果、ホウ素含有化合物Aの構造式は、式(2)で表されることが分かった。 In the mass spectrum of boron compound A, peaks containing three borons were observed at mass numbers of 485.279 m / z, 443.232 m / z, and 383.175 m / z. In addition, a peak containing two borons was observed at a mass number of 399.226 m / z. Of these peaks, the peak observed at a mass number of 485.276 m / z is considered to be the parent, and the other peaks are considered to be dissociated pieces. As a result of the analysis, it was found that the structural formula of the boron-containing compound A is represented by the formula (2).

また、ホウ素含有化合物A´についてもホウ素化合物Aと同様のピークが観測されたことから、ホウ素含有化合物A´の構造式も式(2)で表されることが分かった。 Further, since the same peak as that of the boron compound A was observed for the boron-containing compound A', it was found that the structural formula of the boron-containing compound A'is also represented by the formula (2).

一方、ホウ素含有化合物B、Cについては、質量数485m/z付近にピークが観測されなかった。また、解離片に相当するピークも観測されなかった。 On the other hand, for the boron-containing compounds B and C, no peak was observed near the mass number of 485 m / z. In addition, no peak corresponding to the dissociated piece was observed.

ホウ素含有化合物A、A´B、Cは調整時のLiPFに対するTiPBxのモル比異なる。質量分析の結果より、LiPFに対するTiPBxのモル比が1:1、1:2の場合は、式(2)で表される化合物が生成しないことが確認できた。 The boron-containing compounds A, A'B, and C have different molar ratios of TiPBx to LiPF 6 at the time of preparation. From the result of mass spectrometry, it was confirmed that when the molar ratio of TiPBx to LiPF 6 was 1: 1 and 1: 2, the compound represented by the formula (2) was not produced.

図2は、ホウ素会含有化合物A、A´、B、CのTiPBxの質量数付近の質量スペクトルである。質量数276m/z付近に観測されているピークはTiPBxに帰属されるピークである。ホウ素含有化合物B、Cについては、TiPBxに帰属されるピークが顕著に観測された。一方、ホウ素含有化合物A、A´については、TiPBxを過剰に添加したにも関わらず、TiPBxに帰属されるピークが小さく、TiPBxの量が少ないことが分かった。これは、TiPBxとLiPFとが反応したためと推察される。 FIG. 2 is a mass spectrum of the boron association-containing compounds A, A', B, and C near the mass number of TiPBx. The peak observed near the mass number of 276 m / z is the peak attributed to TiPBx. For the boron-containing compounds B and C, the peaks attributed to TiPBx were remarkably observed. On the other hand, regarding the boron-containing compounds A and A', it was found that the peak attributed to TiPBx was small and the amount of TiPBx was small, despite the excessive addition of TiPBx. It is presumed that this is because TiPBx and LiPF 6 reacted.

以上の結果から、式(1)で表される化合物を作製するためには、LiPF6に対してR(BO)で表されるボロキシン化合物を過剰に混合する必要があることが分かった。
LiPFがボロキシン化合物に対して過剰であると、ボロキシン化合物中のすべてのホウ素にLiPFが配位し、ボロキシン環状構造が崩壊せずに維持される。一方で、ボロキシン化合物がLiPFに対して過剰であると、LiPFと配位していないホウ素が存在し、そのホウ素―酸素結合が切断され、切断部にPOFが結合すると考えられる。
From the above results, it was found that in order to prepare the compound represented by the formula (1), it is necessary to excessively mix the boroxine compound represented by R 3 (BO) 3 with LiPF 6.
When LiPF 6 is excessive with respect to the boroxine compound, LiPF 6 is coordinated to all boron in the boroxine compound, and the boroxine cyclic structure is maintained without being disrupted. On the other hand, when the boroxine compound is excessive with respect to LiPF 6 , it is considered that boron not coordinated with LiPF 6 is present, the boron-oxygen bond is cleaved, and PO 2 F is bound to the cleaved portion.

比較例2のように電解液に1mol/lLiPFが含まれるリチウム二次電池にTiPBxを0.5質量%程度添加した場合は、LiPF6に対するTiPBxのモル比が21:1となり、LiPF過剰となる。そのため、比較例2のように電解液中にTiPBxを添加した場合は、式(1)で表される化合物は電解液中で生成しない。 When about 0.5% by mass of TiPBx is added to a lithium secondary battery containing 1 mol / l LiPF 6 in the electrolytic solution as in Comparative Example 2, the molar ratio of TiPBx to LiPF 6 becomes 21: 1, resulting in an excess of LiPF 6. Become. Therefore, when TiPBx is added to the electrolytic solution as in Comparative Example 2, the compound represented by the formula (1) is not produced in the electrolytic solution.

〔初期特性およびサイクル特性の評価〕
以上のようにして作製した実施例1〜7及び比較例1〜3のリチウム二次電池について、初期特性およびサイクル特性を評価した。
[Evaluation of initial characteristics and cycle characteristics]
The initial characteristics and cycle characteristics of the lithium secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3 produced as described above were evaluated.

初期特性は以下のように測定した。それぞれのリチウム二次電池について、25℃の高温槽内で、充電電流1400mAで電池電圧が4.2Vの定電流定電圧充電をし、15分間の休止後、放電電流700mAで電池電圧が3.0Vになるまで定電流放電した。その後、同様に充電し、放電電流3000mAで電池電圧が3.0Vになるまで定電流放電した。放電電流3000mAと700mAの放電容量の比を求めた。この放電電流3000mAと700mAの放電容量の比を初期特性比とした。初期特性比が大きい程、電流に対する特性が良く、電池の内部抵抗が小さいことを示すため、初期特性が優れていることを示す。 The initial characteristics were measured as follows. Each lithium secondary battery is charged with a constant current constant voltage of 4.2 V with a charging current of 1400 mA in a high temperature bath at 25 ° C., and after a 15-minute pause, the battery voltage is 3. with a discharge current of 700 mA. The constant current was discharged until it became 0V. After that, the battery was charged in the same manner, and was discharged at a constant current with a discharge current of 3000 mA until the battery voltage reached 3.0 V. The ratio of the discharge capacities of the discharge currents of 3000 mA and 700 mA was determined. The ratio of the discharge capacities of the discharge currents of 3000 mA and 700 mA was used as the initial characteristic ratio. The larger the initial characteristic ratio, the better the characteristics with respect to the current, and the smaller the internal resistance of the battery, indicating that the initial characteristics are excellent.

サイクル特性は以下ように測定した。充電電流1400mAで電池電圧が4.2Vの定電流定電圧充電をし、15分間の休止後、放電電流1400mAで電池電圧が3.0Vになるまで定電流放電することを1サイクルとして、200サイクルの負荷特性試験を行った。200サイクル目の放電容量に対する1サイクル目の放電容量の比を求め、これを容量維持率とした。容量維持率が大きい程、サイクル特性が優れていることを意味する。 The cycle characteristics were measured as follows. 200 cycles, with one cycle being a constant current constant voltage charge with a battery voltage of 4.2 V at a charging current of 1400 mA, and then a constant current discharge at a discharge current of 1400 mA until the battery voltage reaches 3.0 V after a 15-minute pause. Load characteristics test was performed. The ratio of the discharge capacity of the first cycle to the discharge capacity of the 200th cycle was obtained, and this was used as the capacity retention rate. The larger the capacity retention rate, the better the cycle characteristics.

表1に実施例1〜7及び比較例1〜3の初期特性比と容量維持率を示す。 Table 1 shows the initial characteristic ratios and capacity retention rates of Examples 1 to 7 and Comparative Examples 1 to 3.

Figure 0006960760
Figure 0006960760

表1より、ホウ素含有化合物A、A´、Bのいずれかを添加した実施例1〜7では容量維持率が86.0%超となり、添加剤を添加していない比較例1と比べて容量維持率が向上した。また、実施例1〜7はTiPBxを添加した比較例2、3よりも初期特性比の低下を抑制できた。以上の結果より、式(1)で表される化合物を電解液中に添加することにより、初期特性に優れるとともにサイクル特性にも優れたリチウム二次電池を提供することできることが分かった。 From Table 1, in Examples 1 to 7 to which any of the boron-containing compounds A, A', and B was added, the volume retention rate was more than 86.0%, which was higher than that in Comparative Example 1 in which no additive was added. The maintenance rate has improved. In addition, Examples 1 to 7 were able to suppress a decrease in the initial characteristic ratio as compared with Comparative Examples 2 and 3 to which TiPBx was added. From the above results, it was found that by adding the compound represented by the formula (1) to the electrolytic solution, it is possible to provide a lithium secondary battery having excellent initial characteristics and also excellent cycle characteristics.

また、実施例1〜4より、式(1)で表されるホウ素含有化合物の他に、ビニレンカーボネートを電解液に添加することにより、容量維持率がさらに向上することが分かった。 Further, from Examples 1 to 4, it was found that the capacity retention rate was further improved by adding vinylene carbonate to the electrolytic solution in addition to the boron-containing compound represented by the formula (1).

実施例1、5、6より、式(1)で表されるホウ素含有化合物の添加量は、0.1重量%超、2.0重量%未満が好ましいことが分かった。 From Examples 1, 5 and 6, it was found that the addition amount of the boron-containing compound represented by the formula (1) is preferably more than 0.1% by weight and less than 2.0% by weight.

1 リチウム二次電池
10 正極
11 セパレータ
12 負極
13 電池容器
14 正極集電タブ
15 負極集電タブ
16 内蓋
17 内圧開放弁
18 ガスケット
19 正温度係数抵抗素子
20 電池蓋
21 軸心
1 Lithium secondary battery 10 Positive electrode 11 Separator 12 Negative electrode 13 Battery container 14 Positive electrode current collection tab 15 Negative electrode current collection tab 16 Inner lid 17 Internal pressure release valve 18 Gasket 19 Positive temperature coefficient resistance element 20 Battery lid 21 Axis center

Claims (9)

下記式(1)で示される構造を有する、電解液に添加されて使用されるリチウム二次電池用添加剤〔ここでR〜Rはそれぞれ独立して水素又は有機基である。〕
Figure 0006960760
Additives for lithium secondary batteries used by being added to an electrolytic solution having a structure represented by the following formula (1) [where Ra to R d are independently hydrogen or organic groups, respectively. ]
Figure 0006960760
請求項1に記載のリチウム二次電池用添加剤であって、
前記式(1)におけるR〜Rは水素又は炭素数3〜10のアルキル基であることを特徴とするリチウム二次電池用添加剤。
The additive for a lithium secondary battery according to claim 1.
An additive for a lithium secondary battery, wherein Ra to R d in the formula (1) are hydrogen or an alkyl group having 3 to 10 carbon atoms.
請求項2に記載のリチウム二次電池用添加剤であって、
前記式(1)におけるRは水素、R及びRはそれぞれ独立してCであり、RはC19であることを特徴とするリチウム二次電池用添加剤。
The additive for a lithium secondary battery according to claim 2.
An additive for a lithium secondary battery, wherein R a in the formula (1) is hydrogen, R b and R c are independently C 3 H 7 , and R d is C 9 H 19.
請求項1乃至3のいずれか一項に記載のリチウム二次電池用添加剤と、リチウム塩と、非水溶媒と、を含むリチウム二次電池用電解液。 An electrolytic solution for a lithium secondary battery, which comprises the additive for a lithium secondary battery according to any one of claims 1 to 3, a lithium salt, and a non-aqueous solvent. 請求項4に記載のリチウム二次電池用電解液であって、
前記リチウム二次電池用添加剤を前記リチウム塩と前記非水溶媒の合計重量に対して0.1重量%超2.0重量%未満含むことを特徴とするリチウム二次電池用電解液。
The electrolytic solution for a lithium secondary battery according to claim 4.
An electrolytic solution for a lithium secondary battery, which comprises the additive for a lithium secondary battery in an amount of more than 0.1% by weight and less than 2.0% by weight based on the total weight of the lithium salt and the non-aqueous solvent.
請求項4又は5に記載のリチウム二次電池用電解液であって、
さらにビニレンカーボネートを含有していることを特徴とするリチウム二次電池用電解液。
The electrolytic solution for a lithium secondary battery according to claim 4 or 5.
An electrolytic solution for a lithium secondary battery, which further contains vinylene carbonate.
請求項6に記載のリチウム二次電池用電解液であって、
前記ビニレンカーボネートの含有量は、前記リチウム塩と前記非水溶媒の合計重量に対して2質量%以下であることを特徴とするリチウム二次電池用電解液。
The electrolytic solution for a lithium secondary battery according to claim 6.
An electrolytic solution for a lithium secondary battery, wherein the content of the vinylene carbonate is 2% by mass or less with respect to the total weight of the lithium salt and the non-aqueous solvent.
リチウムイオンを吸蔵・放出可能な正極及び負極と、
請求項4乃至7のいずれか一項に記載のリチウム二次電池用電解液と、を備えることを特徴とするリチウム二次電池。
Positive and negative electrodes that can occlude and release lithium ions,
A lithium secondary battery comprising the electrolytic solution for a lithium secondary battery according to any one of claims 4 to 7.
請求項1に記載のリチウム二次電池用添加剤の製造方法であって、
(BO)(Rはアルキル基)で表されるボロキシン化合物と、ヘキサフルオロリン酸塩と、を前記ヘキサフルオロリン酸塩に対する前記ボロキシン化合物のモル比が1:3乃至1:5となるように有機溶媒中で混合し、撹拌した後、真空乾燥することを特徴とするリチウム二次電池用添加剤の製造方法。
The method for producing an additive for a lithium secondary battery according to claim 1.
The boron compound represented by R 3 (BO) 3 (R is an alkyl group) and hexafluorophosphate have a molar ratio of the boroxine compound to the hexafluorophosphate of 1: 3 to 1: 5 . A method for producing an additive for a lithium secondary battery, which comprises mixing in an organic solvent, stirring the mixture, and then vacuum-drying.
JP2017085786A 2017-04-25 2017-04-25 Additives for lithium secondary batteries, electrolytes for lithium secondary batteries using them, methods for manufacturing lithium secondary batteries and additives for lithium secondary batteries using them. Active JP6960760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017085786A JP6960760B2 (en) 2017-04-25 2017-04-25 Additives for lithium secondary batteries, electrolytes for lithium secondary batteries using them, methods for manufacturing lithium secondary batteries and additives for lithium secondary batteries using them.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085786A JP6960760B2 (en) 2017-04-25 2017-04-25 Additives for lithium secondary batteries, electrolytes for lithium secondary batteries using them, methods for manufacturing lithium secondary batteries and additives for lithium secondary batteries using them.

Publications (2)

Publication Number Publication Date
JP2018185914A JP2018185914A (en) 2018-11-22
JP6960760B2 true JP6960760B2 (en) 2021-11-05

Family

ID=64356170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085786A Active JP6960760B2 (en) 2017-04-25 2017-04-25 Additives for lithium secondary batteries, electrolytes for lithium secondary batteries using them, methods for manufacturing lithium secondary batteries and additives for lithium secondary batteries using them.

Country Status (1)

Country Link
JP (1) JP6960760B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194771A (en) * 2019-05-24 2020-12-03 宇部興産株式会社 Non-aqueous electrolyte and storage device using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033839A (en) * 2015-08-04 2017-02-09 日立化成株式会社 Positive electrode for lithium secondary battery, lithium secondary battery, and method for manufacturing positive electrode for lithium ion secondary battery
JP6572048B2 (en) * 2015-08-04 2019-09-04 株式会社日立ハイテクノロジーズ Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same

Also Published As

Publication number Publication date
JP2018185914A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
EP2876723B1 (en) Lithium secondary battery
JP6231817B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery
WO2013187211A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery; method for producing negative electrode material for lithium ion secondary batteries, and method for producing negative electrode for lithium ion secondary batteries
JP6429172B2 (en) Positive electrode active material having excellent electrochemical performance and lithium secondary battery including the same
KR101607024B1 (en) Lithium secondary battery
WO2017183696A1 (en) Lithium secondary cell and method for manufacturing lithium secondary cell
JP4423277B2 (en) Lithium secondary battery
EP3059795B1 (en) Lithium secondary battery and electrolyte solution for lithium secondary battery
US9666897B2 (en) Electrolyte for lithium secondary batteries and lithium secondary battery including the same
JP2013110022A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
CN103931030A (en) Lithium ion secondary battery and method for manufacturing same
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
US20160056436A1 (en) Negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method for manufacturing said negative electrode and lithium-ion secondary battery
WO2018003448A1 (en) Positive electrode material for lithium secondary cell, and positive electrode for lithium secondary cell and lithium secondary cell in which said positive electrode material for lithium secondary cell is used
WO2018042925A1 (en) Additive for electrochemical elements, electrolyte solution for electrochemical elements, electrochemical element, electrolyte solution for lithium ion secondary batteries, lithium ion secondary battery and method for producing additive for electrochemical elements
JP6960760B2 (en) Additives for lithium secondary batteries, electrolytes for lithium secondary batteries using them, methods for manufacturing lithium secondary batteries and additives for lithium secondary batteries using them.
Lin et al. Optimal concentration of electrolyte additive for cyclic stability improvement of high-voltage cathode of lithium-ion battery
JP6258180B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY, ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY USING THE SAME, LITHIUM SECONDARY BATTERY
CN112018389A (en) Positive electrode active material and secondary battery using same
JP2018120761A (en) Additive agent for electrochemical device, method for manufacturing the same, and electrolyte solution for electrochemical device
JP2018133290A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2015041511A (en) Additive for electrolyte in lithium secondary battery
JP2021096912A (en) Power storage element, nonaqueous electrolytic solution for power storage element, compound and method for producing compound

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200622

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211012

R150 Certificate of patent or registration of utility model

Ref document number: 6960760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150