JP2017072331A - Heat exchanger and its process of manufacture - Google Patents

Heat exchanger and its process of manufacture Download PDF

Info

Publication number
JP2017072331A
JP2017072331A JP2015200766A JP2015200766A JP2017072331A JP 2017072331 A JP2017072331 A JP 2017072331A JP 2015200766 A JP2015200766 A JP 2015200766A JP 2015200766 A JP2015200766 A JP 2015200766A JP 2017072331 A JP2017072331 A JP 2017072331A
Authority
JP
Japan
Prior art keywords
flow path
heat exchange
flow
tube member
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015200766A
Other languages
Japanese (ja)
Other versions
JP6531328B2 (en
Inventor
庸人 和氣
Tsunehito Wake
庸人 和氣
大西 人司
Hitoshi Onishi
人司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waki Seisakusho KK
Original Assignee
Waki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waki Seisakusho KK filed Critical Waki Seisakusho KK
Priority to JP2015200766A priority Critical patent/JP6531328B2/en
Publication of JP2017072331A publication Critical patent/JP2017072331A/en
Application granted granted Critical
Publication of JP6531328B2 publication Critical patent/JP6531328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a heat exchanging efficiency of a heat exchanger.SOLUTION: In the invention, heat exchanging tubes 30A, 30B are constituted in such a way that a tube member 40 is formed to have two flow-in or flow-out open holes 42a, 42b arranged at a central part in a longitudinal direction and in series manner in a short side direction and to have U-shaped mirror-symmetrical two communication flow passages 46, 47 communicating the two flow-in or flow-out open holes 42a, 42b. With this arrangement as above, when medium to be heat exchanged is supplied or discharged in a direction perpendicular to the longitudinal direction, both end parts of a rectangular heat exchanging tube in its longitudinal direction are formed with the two flow-in flow-out open holes, a flow passage width of the medium to be heat exchanged can be made wide only by a size of one flow-in or flow-out open hole as compared with that the communicating flow passages communicating two flow-in or flow-out open hole are formed, the flow passage width effective for the heat exchanging operation can be made wide, resulting in that a heat exchanging efficiency can be improved.SELECTED DRAWING: Figure 3

Description

本発明は、熱交換器に関し、詳しくは、扁平に形成された熱交換用チューブを複数積層することにより構成される熱交換器およびその製造方法に関する。   The present invention relates to a heat exchanger, and more particularly, to a heat exchanger configured by stacking a plurality of flat heat exchange tubes and a method for manufacturing the same.

従来、この種の熱交換器としては、ステンレスやアルミニウムの薄板に折り曲げ加工や孔開け加工などを施して形成したチューブ部材を向かい合うように配置してロウ付けにより接合することにより構成される熱交換用チューブを複数積層したものが提案されている(例えば、特許文献1参照)。この熱交換器の熱交換用チューブは、外形が扁平な長方形状で、その長手方向の両端部に熱交換媒体の流出入口としての2つの貫通孔が形成されている。そして、複数の熱交換用チューブを積層して構成された熱交換器に対して熱交換用チューブの2つの流出入口の一方から熱交換媒体を供給し、他方から熱交換媒体を排出している。この熱交換器では、空気を熱交換用チューブの長手方向とは垂直となる方向に供給し、供給された空気が隣接する熱交換用チューブの間の隙間を通る際に熱交換媒体と熱交換されて加温または冷却される。   Conventionally, this type of heat exchanger is a heat exchanger constructed by placing tube members that are formed by bending or punching a thin plate of stainless steel or aluminum so that they face each other and are joined by brazing A multi-layered tube has been proposed (see, for example, Patent Document 1). The heat exchange tube of this heat exchanger has a rectangular shape with a flat outer shape, and two through holes are formed at both ends in the longitudinal direction as outflow inlets of the heat exchange medium. A heat exchange medium is supplied from one of the two outlets of the heat exchange tube to a heat exchanger configured by laminating a plurality of heat exchange tubes, and the heat exchange medium is discharged from the other. . In this heat exchanger, air is supplied in a direction perpendicular to the longitudinal direction of the heat exchange tube, and heat exchange with the heat exchange medium is performed when the supplied air passes through a gap between adjacent heat exchange tubes. And heated or cooled.

特開2014−020672号公報JP, 2014-020672, A

こうした扁平なチューブ部材を積層してなる熱交換器では、熱交換効率を向上させるために、種々の手法が考えられている。例えば熱交換用チューブの表面にV字やW字状に形成された波の凹凸を形成したり、薄板を用いて形成されたチューブ部材の熱交換媒体の流路に流通する熱交換媒体に高圧を作用させたりしている。このように、扁平なチューブ部材を積層してなる熱交換器では、熱交換効率の更なる向上が重要な課題となっている。   In the heat exchanger formed by laminating such flat tube members, various methods are considered in order to improve the heat exchange efficiency. For example, wave irregularities formed in a V-shape or W-shape are formed on the surface of the heat exchange tube, or a high pressure is applied to the heat exchange medium flowing in the heat exchange medium flow path of the tube member formed using a thin plate. Or act. Thus, in the heat exchanger formed by laminating flat tube members, further improvement in heat exchange efficiency is an important issue.

本発明の熱交換器では、熱交換効率を向上させることを主目的とする。また、本発明の熱交換器の製造方法では、熱交換効率の高い熱交換器をより簡易に製造することを主目的とする。   The main purpose of the heat exchanger of the present invention is to improve the heat exchange efficiency. Moreover, in the manufacturing method of the heat exchanger of this invention, it aims at manufacturing a heat exchanger with high heat exchange efficiency more simply.

本発明の熱交換器およびその製造方法は、上述の主目的を達成するために以下の手段を採った。   The heat exchanger of the present invention and the manufacturing method thereof employ the following means in order to achieve the above-mentioned main object.

本発明の熱交換器は、
金属材料を用いて向かい合わせに接合することにより熱交換媒体の2つの流出入口と該2つの流出入口を連通する連通流路とを有する扁平な熱交換用チューブを構成するよう形成されたチューブ部材を隣接する熱交換用チューブの前記2つの流出入口が整合するように複数積層して構成され、前記熱交換用チューブ内に流れる前記熱交換媒体と隣接する熱交換用チューブの間に流れる被熱交換媒体とで熱交換する熱交換器であって、
前記チューブ部材は、前記2つの流出入口が前記被熱交換媒体の流れの方向に直列に並ぶように形成されており、且つ、前記連通流路が前記2つの流出入口の一方から他方にU字形状で鏡像対称な2つの流路として形成されている、
ことを特徴とする。
The heat exchanger of the present invention is
A tube member formed so as to constitute a flat heat exchange tube having two outflow inlets of a heat exchange medium and a communication channel communicating the two outflow inlets by joining metal materials face to face A plurality of the two inlets and outlets of the adjacent heat exchange tubes are stacked so that the heat exchange medium flows between the adjacent heat exchange tubes and the heat exchange medium flowing into the heat exchange tubes. A heat exchanger for exchanging heat with an exchange medium,
The tube member is formed so that the two outflow inlets are arranged in series in the flow direction of the heat exchange medium, and the communication channel is U-shaped from one of the two outflow inlets to the other. It is formed as two flow paths that are mirror-symmetric in shape,
It is characterized by that.

この本発明の熱交換器では、複数積層された熱交換用チューブ内に流れる熱交換媒体と隣接する熱交換用チューブの間に流れる被熱交換媒体とで熱交換する。熱交換用チューブを構成するチューブ部材には、熱交換媒体の2つの流出入口と、この2つの流出入口を連通する連通流路とが形成されており、特に、2つの流出入口は被熱交換媒体の流れの方向に直列に並ぶように形成されている。このように2つの流出入口を形成することにより、2つの流出入口を被熱交換媒体の流れの方向に対して垂直な方向に直列に並ぶように形成するものに比して、流出入口の1つ分だけ被熱交換媒体の流路幅を広くすることができ、熱交換に有効な流路幅を広くすることができる。この結果、熱交換効率を向上させることができる。また、2つの流出入口は被熱交換媒体の流れの方向に直列に並ぶように形成されているから、2つの流出入口のうち被熱交換媒体の流れの下流側の一方に熱交換媒体を供給し、被熱交換媒体の流れの上流側の他方から熱交換媒体を排出するようにすれば、熱交換媒体の全体としての流れと被熱交換媒体の流れとを対向流とすることができ、熱交換効率を更に向上させることができる。さらに、2つの流出入口を連通する連通流路を、2つの流出入口の一方から他方にU字形状で鏡像対称な2つの流路として形成することにより、2つの流路に略均等に熱交換媒体を供給することができ、2つの流路で略均等に熱交換を行うことができる。これらの結果、熱交換効率を向上させることができる。   In the heat exchanger according to the present invention, heat is exchanged between a heat exchange medium that flows in a plurality of stacked heat exchange tubes and a heat exchange medium that flows between adjacent heat exchange tubes. The tube member constituting the heat exchanging tube is formed with two outflow inlets of the heat exchange medium and a communication channel that communicates the two outflow inlets. In particular, the two outflow inlets are subjected to heat exchange. It is formed to line up in series in the direction of the medium flow. By forming the two outflow inlets in this way, the two outflow inlets can be compared with those in which the two outflow inlets are arranged in series in a direction perpendicular to the flow direction of the heat exchange medium. Accordingly, the flow path width of the heat exchange medium can be widened, and the flow path width effective for heat exchange can be widened. As a result, the heat exchange efficiency can be improved. In addition, since the two outflow inlets are formed in series in the direction of the flow of the heat exchange medium, the heat exchange medium is supplied to one of the two outflow inlets on the downstream side of the flow of the heat exchange medium. Then, if the heat exchange medium is discharged from the other upstream side of the flow of the heat exchange medium, the flow of the heat exchange medium as a whole and the flow of the heat exchange medium can be counterflowed, The heat exchange efficiency can be further improved. Furthermore, by forming a communication channel that connects the two outflow inlets as two U-shaped mirror-symmetrical channels from one of the two outflow inlets to the other, heat exchange is approximately evenly performed between the two flow channels. A medium can be supplied, and heat exchange can be performed approximately evenly between the two flow paths. As a result, the heat exchange efficiency can be improved.

こうした本発明の熱交換器において、前記チューブ部材は外形が矩形形状に形成されており、前記2つの流出入口は前記チューブ部材の長手方向の中央に短手方向に直列に並ぶように形成されており、前記連通流路は、前記2つの流出入口の一方から前記チューブ部材の長手方向の端部に至る第1流路部と前記端部から前記2つの流出入口の他方に至る第2流路部と前記端部で前記第1流路部と前記第2流路部とを接続するように折り返す折り返し流路部とからなる2つの流路として形成されているものとすることもできる。こうすれば、チューブ部材を長手方向の中央で鏡像対称なものとすることができる。したがって、チューブ部材として、熱交換用チューブの一方側のチューブ部材と他方側のチューブ部材とを形成する必要がなく、単一形状のチューブ部材を形成すればよいことになる。これにより、部品点数を少なくすることができ、組み付け性を向上させることができる。   In such a heat exchanger of the present invention, the tube member is formed in a rectangular shape, and the two outflow inlets are formed so as to be arranged in series in the short direction at the center in the longitudinal direction of the tube member. And the communication flow path includes a first flow path portion extending from one of the two outflow inlets to an end portion in the longitudinal direction of the tube member, and a second flow path extending from the end portion to the other of the two outflow inlets. It is also possible to form two flow paths including a folded flow path section that is folded back so as to connect the first flow path section and the second flow path section at a portion and the end section. If it carries out like this, a tube member can be made into a mirror-image symmetry in the center of a longitudinal direction. Therefore, it is not necessary to form the tube member on one side and the tube member on the other side of the tube for heat exchange as the tube member, and a single-shaped tube member may be formed. Thereby, the number of parts can be reduced and assemblability can be improved.

この場合、前記第1流路部は前記チューブ部材の縁に沿って形成されており、前記第2流路部は前記チューブ部材の中央に沿って形成されており、前記第1流路部と前記第2流路部との間は、前記第2流路部の幅より広くなるように形成されており、前記第2流路部と前記チューブ部材の縁までの間は前記第1流路部の幅より広くなるように形成されているものとすることもできる。即ち、チューブ部材の長手方向に沿った中央ラインを考えると、第1流路部は中央ラインで2つに区分けされるチューブ部材の一方側で中央ラインから第2流路部の幅より離れてチューブ部材の縁の近くに形成され、第2流路部は中央ラインで2つに区分けされるチューブ部材の他方側でチューブ部材の縁から第1流路部の幅より離れて中央ラインの近くに形成されることになる。更にこの場合、チューブ部材を、隣接する熱交換用チューブの一方の第2流路部が他方の第1流路部と第2流路部との間の部位と向き合うように複数積層して熱交換器を構成するものとすることができる。即ち、熱交換用チューブの向きを積層する毎に熱交換用チューブの扁平面に垂直な軸を回転軸として180度回転させるようにするのである。こうすれば、第2流路部は隣接する熱交換用チューブの第1流路部と第2流路部との間の流路が形成されていない部位と向き合い、第1流路部は隣接する熱交換用チューブの第2流路部より縁側の流路が形成されていない部位と向き合うことになるから、隣接する熱交換用チューブの間の隙間を略一定に確保することができる。しかも、隣接する熱交換用チューブの間の隙間が被熱交換媒体の流れ方向に蛇行するから、被熱交換媒体の流れに若干の乱れを生じさせ、熱交換効率を向上させることができる。   In this case, the first flow path portion is formed along an edge of the tube member, the second flow path portion is formed along the center of the tube member, and the first flow path portion and The space between the second flow path portion is formed wider than the width of the second flow path portion, and the space between the second flow path portion and the tube member is the first flow path. It can also be formed so as to be wider than the width of the portion. That is, considering the central line along the longitudinal direction of the tube member, the first flow path portion is separated from the width of the second flow path portion from the central line on one side of the tube member divided into two by the central line. It is formed near the edge of the tube member, and the second flow path portion is divided into two at the center line. On the other side of the tube member, it is separated from the edge of the tube member by the width of the first flow path portion and near the center line. Will be formed. Furthermore, in this case, a plurality of tube members are laminated so that one second flow path portion of the adjacent heat exchange tube faces a portion between the other first flow path portion and the second flow path portion. An exchanger can be constructed. That is, every time the direction of the heat exchange tube is stacked, the rotation is made 180 degrees with the axis perpendicular to the flat surface of the heat exchange tube as the rotation axis. In this way, the second flow path portion faces the portion where the flow path between the first flow path portion and the second flow path portion of the adjacent heat exchange tube is not formed, and the first flow path portion is adjacent. Since it faces a portion where the flow path on the edge side of the second flow path portion of the heat exchange tube is not formed, the gap between the adjacent heat exchange tubes can be secured substantially constant. In addition, since the gap between the adjacent heat exchange tubes meanders in the flow direction of the heat exchange medium, the flow of the heat exchange medium is slightly disturbed, and the heat exchange efficiency can be improved.

本発明の熱交換器の製造方法は、
熱交換器の製造方法であって、
第1金属による中心材に前記第1金属より融点の低い第2金属が両面に接合され厚みが0.3mm以下としたクラッド板材を用いて、外形が矩形形状で、長手方向の中央で短手方向に直列に並ぶように熱交換媒体の2つの流出入口を有し、前記2つの流出入口の一方から長手方向の端部に至る第1流路部と前記端部から前記2つの流出入口の他方に至る第2流路部と前記端部で前記第1流路部と前記第2流路部とを接続するように折り返す折り返し流路部とからなる鏡像対称のU字形状の2つの連通流路を有するチューブ部材を形成するチューブ部材形成工程と、
前記2つの連通流路および前記2つの流出入口が整合するように2つのチューブ部材を向かい合わせて構成される扁平な熱交換用チューブが複数積層された状態となるように前記チューブ部材を複数積層して積層体を組み付ける組み付け工程と、
前記第1金属の融点より低く前記第2金属の融点より高い温度に調整された炉を用いて前記積層体をロウ付けするロウ付け工程と、
を有することを要旨とする。
The manufacturing method of the heat exchanger of the present invention is as follows:
A method of manufacturing a heat exchanger,
Using a clad plate material in which a second metal having a melting point lower than that of the first metal is bonded to both surfaces to a center material made of the first metal and has a thickness of 0.3 mm or less, the outer shape is rectangular and short at the center in the longitudinal direction. Two inflow inlets of the heat exchange medium so as to be arranged in series in a direction, a first flow path portion extending from one of the two outflow inlets to an end in the longitudinal direction, and the two outflow inlets from the end Two mirror-symmetrical U-shaped communication comprising a second flow channel portion that reaches the other end and a folded flow channel portion that is folded back so as to connect the first flow channel portion and the second flow channel portion at the end. A tube member forming step of forming a tube member having a flow path;
A plurality of the tube members are stacked so that a plurality of flat heat exchange tubes configured to face each other so that the two communication channels and the two outflow inlets are aligned with each other are aligned. And an assembly process for assembling the laminate,
A brazing step of brazing the laminate using a furnace adjusted to a temperature lower than the melting point of the first metal and higher than the melting point of the second metal;
It is summarized as having.

本発明の熱交換器の製造方法では、向かい合わせることにより扁平な熱交換用チューブを構成するチューブ部材を、第1金属による中心材に前記第1金属より融点の低い第2金属が両面に接合され厚みが0.3mm以下としたクラッド板材を用いて形成する。そして、熱交換用チューブが複数積層された状態となるようにチューブ部材を複数積層して積層体を組み付け、これを第1金属の融点より低く前記第2金属の融点より高い温度に調整された炉を用いて前記積層体をロウ付けする。即ち、クラッド板材に対してプレス加工などを施して複数のチューブ部材を形成し、形成した複数のチューブ部材を熱交換用チューブが複数積層された状態となるように複数積層し、この積層体を炉に入れることにより、熱交換器を完成する。完成した熱交換器は、外形が矩形形状で、長手方向の中央で短手方向に直列に並ぶように熱交換媒体の2つの流出入口を有し、2つの流出入口の一方から長手方向の端部に至る第1流路部とこの端部から2つの流出入口の他方に至る第2流路部と端部で第1流路部と第2流路部とを接続するように折り返す折り返し流路部とからなる鏡像対称のU字形状の2つの連通流路を有するチューブ部材を積層して構成されるから、上述の本発明の熱交換器となる。この結果、熱交換効率の高い熱交換器をより簡易に製造することができる。   In the method for manufacturing a heat exchanger according to the present invention, a tube member constituting a flat heat exchange tube by facing each other is joined to a center material made of a first metal and a second metal having a melting point lower than that of the first metal is bonded to both surfaces. And a clad plate material having a thickness of 0.3 mm or less. Then, a plurality of tube members were laminated so as to be in a state where a plurality of heat exchange tubes were laminated, and the laminated body was assembled, and this was adjusted to a temperature lower than the melting point of the first metal and higher than the melting point of the second metal. The laminate is brazed using a furnace. That is, a plurality of tube members are formed by subjecting the clad plate material to press processing or the like, and a plurality of the formed tube members are stacked so that a plurality of heat exchange tubes are stacked. The heat exchanger is completed by putting it in the furnace. The completed heat exchanger has a rectangular shape and has two outflow inlets for the heat exchange medium so as to be arranged in series in the short direction at the center in the longitudinal direction, and has a longitudinal end from one of the two outflow inlets. The first flow path portion that reaches the section, the second flow path section that extends from the end section to the other of the two outflow inlets, and the folded flow that folds back so as to connect the first flow path section and the second flow path section at the end section. Since the tube member having two mirror-symmetric U-shaped communication flow paths composed of the passage portions is laminated, the heat exchanger of the present invention described above is obtained. As a result, a heat exchanger with high heat exchange efficiency can be manufactured more easily.

こうした本発明の熱交換器の製造方法において、前記チューブ部材形成工程は、前記第1流路部が前記チューブ部材の縁に沿うように、前記第2流路部が前記チューブ部材の中央に沿うように、前記第1流路部と前記第2流路部との間が前記第2流路部の幅より広くなるように、前記第2流路部と前記チューブ部材の縁までの間が前記第1流路部の幅より広くなるように前記チューブ部材を形成する工程であり、前記組み付け工程は、隣接する熱交換用チューブの一方の前記第2流路部が他方の前記第1流路部と前記第2流路部との間の部位と向き合うように前記チューブ部材を複数積層する工程であるものとすることもできる。この場合、チューブ部材の長手方向に沿った中央ラインを考えると、第1流路部は中央ラインで2つに区分けされるチューブ部材の一方側で中央ラインから第2流路部の幅より離れてチューブ部材の縁の近くに形成され、第2流路部は中央ラインで2つに区分けされるチューブ部材の他方側でチューブ部材の縁から第1流路部の幅より離れて中央ラインの近くに形成されることになる。したがって、第2流路部は隣接する熱交換用チューブの第1流路部と第2流路部との間の流路が形成されていない部位と向き合い、第1流路部は隣接する熱交換用チューブの第2流路部より縁側の流路が形成されていない部位と向き合うことになるから、隣接する熱交換用チューブの間の隙間を略一定に確保することができる。しかも、隣接する熱交換用チューブの間の隙間が被熱交換媒体の流れ方向に蛇行するから、被熱交換媒体の流れに若干の乱れを生じさせ、熱交換効率を向上させることができる。   In such a heat exchanger manufacturing method of the present invention, in the tube member forming step, the second flow path portion is along the center of the tube member so that the first flow path portion is along the edge of the tube member. Thus, the space between the second flow path portion and the edge of the tube member is such that the space between the first flow path portion and the second flow path portion is wider than the width of the second flow path portion. Forming the tube member so as to be wider than the width of the first flow path portion, and the assembling step is configured such that one of the second flow path portions of the adjacent heat exchange tubes is the other of the first flow paths. It may be a step of laminating a plurality of the tube members so as to face a portion between the path portion and the second flow path portion. In this case, considering the central line along the longitudinal direction of the tube member, the first flow path portion is separated from the width of the second flow path portion from the central line on one side of the tube member divided into two by the central line. The second flow path portion is formed in the vicinity of the edge of the tube member, and the second flow path portion is divided into two at the central line, and is separated from the edge of the tube member by the width of the first flow path portion on the other side of the tube member. It will be formed nearby. Therefore, the second flow path portion faces the portion where the flow path between the first flow path portion and the second flow path portion of the adjacent heat exchange tube is not formed, and the first flow path portion is adjacent to the adjacent heat exchange tube. Since it faces a portion where the flow path on the edge side of the second flow path portion of the replacement tube is not formed, the gap between the adjacent heat exchange tubes can be secured substantially constant. In addition, since the gap between the adjacent heat exchange tubes meanders in the flow direction of the heat exchange medium, the flow of the heat exchange medium is slightly disturbed, and the heat exchange efficiency can be improved.

実施例の熱交換器20の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the heat exchanger 20 of an Example. 図1におけるA−A断面を模式的に示す断面図である。It is sectional drawing which shows the AA cross section in FIG. 1 typically. 熱交換用チューブ30Aの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of tube 30A for heat exchange. 熱交換用チューブ30Bの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the tube 30B for heat exchange. 図1におけるB−B面の断面図である。It is sectional drawing of the BB surface in FIG. 図1におけるC−C面の断面図である。It is sectional drawing of the CC plane in FIG.

次に、本発明を実施するための形態を実施例を用いて説明する。   Next, the form for implementing this invention is demonstrated using an Example.

図1は、本発明の実施例の熱交換器20の構成の概略を示す構成図である。図2は、図1におけるA−A断面を模式的に示す断面図である。実施例の熱交換器20は、空調装置や冷凍装置などの冷凍サイクルや発熱を伴って作動する機器の冷却装置などに用いられ、図1に示すように、2つのチューブ部材40により構成される熱交換用チューブ30A,30Bを交互に複数積層して構成される積層体22と、積層体22の配列方向(図中上下方向)の両側に配置されるプレート23と、各熱交換用チューブ30A,30Bの長手方向(図中左右方向)の両側に配置されるプレート24と、積層体22およびプレート23に形成される熱交換媒体の流入用流路25および流出用流路26に取り付けられる供給管27および排出管28と、を備える。この熱交換器20は、流入用流路25から各熱交換用チューブ30A,30Bに形成された後述する連通流路46,47に供給されるハイドロフルオロカーボンや水などの熱交換媒体と隣接する熱交換用チューブ30A,30Bの間の隙間に流れる空気などの被熱交換媒体との熱交換により、熱交換媒体を加熱または冷却する又は被熱交換媒体を冷却または加熱する。図2中、供給管27および排出管28の上に記載された白抜き矢印は、熱交換媒体の供給や排出の方向を示しており、熱交換器20の左右に記載された白抜き矢印は、被熱交換媒体の流れる方向を示している。   FIG. 1 is a configuration diagram showing an outline of a configuration of a heat exchanger 20 according to an embodiment of the present invention. 2 is a cross-sectional view schematically showing an AA cross section in FIG. The heat exchanger 20 according to the embodiment is used for a refrigeration cycle such as an air conditioner or a refrigeration apparatus, a cooling device for an apparatus that operates with heat generation, and the like, and includes two tube members 40 as shown in FIG. A laminated body 22 constituted by alternately laminating a plurality of heat exchange tubes 30A, 30B, plates 23 arranged on both sides in the arrangement direction (vertical direction in the figure) of the laminated bodies 22, and each heat exchange tube 30A. , 30B, plates 24 arranged on both sides in the longitudinal direction (left and right direction in the figure), and the supply attached to the inflow passage 25 and the outflow passage 26 of the heat exchange medium formed in the laminate 22 and the plate 23 A tube 27 and a discharge tube 28. The heat exchanger 20 has heat adjacent to a heat exchange medium such as hydrofluorocarbon and water supplied from the inflow passage 25 to the communication passages 46 and 47 (described later) formed in the heat exchange tubes 30A and 30B. The heat exchange medium is heated or cooled or the heat exchange medium is cooled or heated by heat exchange with the heat exchange medium such as air flowing in the gap between the exchange tubes 30A and 30B. In FIG. 2, white arrows written on the supply pipe 27 and the discharge pipe 28 indicate the directions of supply and discharge of the heat exchange medium, and the white arrows written on the left and right of the heat exchanger 20 are The flow direction of the heat exchange medium is shown.

図3は、熱交換用チューブ30Aの構成の概略を示す構成図である。図4は、熱交換用チューブ30Bの構成の概略を示す構成図である。図5は、図1におけるB−B面の断面図であり、図6は、図1におけるC−C面の断面図である。   FIG. 3 is a configuration diagram showing an outline of the configuration of the heat exchange tube 30A. FIG. 4 is a configuration diagram showing an outline of the configuration of the heat exchange tube 30B. 5 is a cross-sectional view taken along the line BB in FIG. 1, and FIG. 6 is a cross-sectional view taken along the line CC in FIG.

熱交換用チューブ30Bは、図3および図4に示すように、熱交換用チューブ30Aの扁平面を水平にしたときに熱交換用チューブ30Aを鉛直軸回りに180度回転させたものと同一である。即ち、熱交換用チューブ30Bは、熱交換用チューブ30Aを180度回転させただけで、熱交換用チューブ30Aと同一となる。   As shown in FIGS. 3 and 4, the heat exchange tube 30B is the same as the heat exchange tube 30A rotated by 180 degrees around the vertical axis when the flat surface of the heat exchange tube 30A is leveled. is there. That is, the heat exchange tube 30B is the same as the heat exchange tube 30A only by rotating the heat exchange tube 30A by 180 degrees.

熱交換用チューブ30A,30Bは、アルミニウムの板材の両面にアルミシリコン合金などのロウ材を配置して一体に圧延することによって板材とロウ材とを接合した厚さが0.2mmのいわゆるクラッド板材に対して、プレス加工や穴開け加工などを施したチューブ部材40を向かい合わせに接合することによって構成されている。チューブ部材40には、図3および図4に示すように、長手方向(図中左右方向)の中央に短手方向に直列に並ぶように2つの流出入口用貫通孔42a,42bが形成されており、この2つの流出入口用貫通孔42a,42bを連通するようにU字形状の2つの連通流路46,47が形成されている。また、2つの流出入口用貫通孔42a,42bの周囲のフランジ部44a,44bが形成されており、2つの流出入口用貫通孔42a,42bの間にはスリット49が形成されている。スリット49は、2つの流出入口用貫通孔42a,42bにおける熱交換媒体の伝熱を抑制するために設けられている。   The heat exchange tubes 30A and 30B are so-called clad plate materials having a thickness of 0.2 mm in which a brazing material such as an aluminum silicon alloy is disposed on both sides of an aluminum plate material and integrally rolled to join the brazing material. On the other hand, the tube member 40 subjected to press working or drilling is joined face to face. As shown in FIGS. 3 and 4, the tube member 40 is formed with two outflow inlet through holes 42a and 42b arranged in series in the short direction at the center in the longitudinal direction (left and right direction in the figure). In addition, two U-shaped communication channels 46 and 47 are formed so as to communicate the two outflow inlet through holes 42a and 42b. Further, flange portions 44a and 44b around the two outflow inlet through holes 42a and 42b are formed, and a slit 49 is formed between the two outflow inlet through holes 42a and 42b. The slit 49 is provided to suppress heat transfer of the heat exchange medium in the two outflow / inlet through holes 42a and 42b.

フランジ部44a,44bは、熱交換用チューブ30A,30Bを積層したときに隣接するフランジ部44a,44bと接合するように形成されている。これにより、図6に示すように、隣接する熱交換用チューブ30A,30Bの間隔を所定間隔に保持すると共に、熱交換用チューブ30A,30Bの両端部近傍の流出入口用貫通孔42a,42bが積層方向に接続されて熱交換媒体の流入用流路25および流出用流路26を形成する。   The flange portions 44a and 44b are formed so as to be joined to the adjacent flange portions 44a and 44b when the heat exchange tubes 30A and 30B are stacked. As a result, as shown in FIG. 6, the interval between the adjacent heat exchange tubes 30A and 30B is kept at a predetermined interval, and the outflow inlet through holes 42a and 42b in the vicinity of both ends of the heat exchange tubes 30A and 30B are provided. The heat exchange medium inflow channel 25 and the outflow channel 26 are formed by being connected in the stacking direction.

連通流路46,47は、2つの流出入口用貫通孔42a,42bの中央を通る直線(図3,図4における上下方向の線)で鏡像対称となる一定幅の流路として形成されており、チューブ部材40の長手方向に沿った中央ラインを考えたときに、中央ラインで2つに区分けされるチューブ部材の図3における上側(図4における下側)で中央ラインから離れてチューブ部材40の縁近傍に縁に沿って流出入口用貫通孔42aからチューブ部材40の端部に至るように形成された第1流路部46a,47aと、中央ラインで2つに区分けされるチューブ部材の図3における下側(図4における上側)でチューブ部材の縁から離れて中央ライン近傍に中央ラインに沿って端部から流出入口用貫通孔42bに至るように形成された第2流路部46b,47bと、端部で第1流路部46a,47aと第2流路部46b,47bとを接続するように折り返す折り返し流路部46c,47cとにより構成されている。そして、第2流路46b,47bとチューブ部材40の縁(図3における下端、図4における上端)との間の流路が形成されていない端部ヒレ部48aの幅は、第1流路部46a,47aの幅(実施例では単に流路の幅)より広くなるように形成されており、第1流路部46a,47aと第2流路部46b,47bの間の流路が形成されていない中央ヒレ部48bの幅は、第2流路部46b,47bの幅(実施例では単に流路の幅)より広くなるように形成されている。このように連通流路46,47を形成することにより、熱交換用チューブ30A,30Bを交互に積層したときに、図5に示すように、熱交換用チューブ30A,30Bの間の隙間を、幅が略一定となるように且つ蛇行するように形成することができる。   The communication channels 46 and 47 are formed as channels having a constant width that are mirror-symmetrical with straight lines (vertical lines in FIGS. 3 and 4) passing through the centers of the two outflow inlet through holes 42a and 42b. When the central line along the longitudinal direction of the tube member 40 is considered, the tube member 40 is separated from the central line on the upper side in FIG. 3 (lower side in FIG. 4) of the tube member divided into two by the central line. The first flow path portions 46a and 47a formed so as to reach the end of the tube member 40 from the outflow inlet through hole 42a along the edge, and the tube member divided into two at the center line The second flow path portion 46b formed on the lower side in FIG. 3 (upper side in FIG. 4), away from the edge of the tube member and in the vicinity of the central line, extending from the end portion to the outflow inlet through hole 42b along the central line. , 7b and, the first channel part 46a at the ends, 47a and the second flow path portion 46b, folded back so as to connect the 47b turned-back channel portion 46c, it is constituted by the 47c. And the width | variety of the edge part fin part 48a in which the flow path between the 2nd flow paths 46b and 47b and the edge (the lower end in FIG. 3, the upper end in FIG. 4) of the tube member 40 is not formed is 1st flow path. It is formed to be wider than the widths of the portions 46a and 47a (in the embodiment, simply the width of the flow path), and a flow path is formed between the first flow path portions 46a and 47a and the second flow path portions 46b and 47b. The width of the center fin portion 48b that is not formed is formed to be wider than the width of the second flow path portions 46b and 47b (in the embodiment, simply the width of the flow path). By forming the communication channels 46 and 47 in this way, when the heat exchange tubes 30A and 30B are alternately stacked, as shown in FIG. 5, the gap between the heat exchange tubes 30A and 30B The width can be formed to be substantially constant and meandering.

実施例では、チューブ部材40を図3の熱交換用チューブ30Aと図4の熱交換用チューブ30Bとが交互に積層されるように積層配置して積層体22とし、これにプレート23,24および供給管27,排出管28を組み付け、これをロウ材の融点より高く板材の融点より低い温度(例えば610℃や620℃など)で加熱することによって当接部を接合(ロウ付け)して熱交換器20を完成する。即ち、熱交換用チューブ30A、30Bを構成するチューブ部材40の向かい合わせの接触部を接合すると共に隣接する熱交換用チューブ30A,30Bのフランジ部44a,44bの接触部を接合し、同時にプレート23,24や供給管27,排出管28を接合するのである。   In the embodiment, the tube member 40 is laminated and arranged so that the heat exchange tubes 30A of FIG. 3 and the heat exchange tubes 30B of FIG. 4 are alternately laminated to form a laminate 22, and the plates 23, 24 and The supply pipe 27 and the discharge pipe 28 are assembled and heated at a temperature higher than the melting point of the brazing material and lower than the melting point of the plate material (for example, 610 ° C., 620 ° C., etc.) to join (braze) the contact portion and heat The exchanger 20 is completed. That is, the opposing contact portions of the tube members 40 constituting the heat exchange tubes 30A and 30B are joined, and the contact portions of the flange portions 44a and 44b of the adjacent heat exchange tubes 30A and 30B are joined. 24, the supply pipe 27, and the discharge pipe 28 are joined together.

こうして構成された熱交換器20では、ハイドロフルオロカーボンや水などの熱交換媒体は、供給管27から2つの流出入口用貫通孔42a,42bにより形成される流入用流路25に供給され、各熱交換用チューブ30A,30Bの連通流路46,47を流れて2つの流出入口用貫通孔42a,42bにより形成される流出用流路26に流出し、排出管28から排出される。一方、空気などの被熱交換媒体は、流出用流路26側から各熱交換用チューブ30A,30Bに供給され、各熱交換用チューブ30A,30Bの間の隙間を蛇行して流れて熱交換媒体と熱交換を行ない、流入用流路25側から排出される。このように、熱交換媒体と被熱交換媒体とを給排することにより、熱交換媒体の全体としての流れと被熱交換媒体の流れとを対向流とすることができる。   In the heat exchanger 20 configured in this manner, a heat exchange medium such as hydrofluorocarbon or water is supplied from the supply pipe 27 to the inflow passage 25 formed by the two outflow inlet through holes 42a and 42b. It flows through the communication channels 46 and 47 of the replacement tubes 30A and 30B, flows into the outflow channel 26 formed by the two outflow inlet through holes 42a and 42b, and is discharged from the discharge pipe 28. On the other hand, the heat exchange medium such as air is supplied to the heat exchange tubes 30A and 30B from the outflow channel 26 side, and flows through the gaps between the heat exchange tubes 30A and 30B to exchange heat. Heat exchange with the medium is performed, and the medium is discharged from the inflow channel 25 side. In this way, by supplying and discharging the heat exchange medium and the heat exchange medium, the flow of the heat exchange medium as a whole and the flow of the heat exchange medium can be made to be opposite flows.

以上説明した実施例の熱交換器20では、チューブ部材40を、長手方向の中央に短手方向に直列に並ぶように2つの流出入口用貫通孔42a,42bを有するように、且つ、この2つの流出入口用貫通孔42a,42bを連通するU字形状の2つの連通流路46,47を有するように形成して熱交換用チューブ30A,30Bを構成する。これにより、長手方向に対して垂直方向に被熱交換媒体を給排したときに、矩形の熱交換用チューブの長手方向の両端部に2つの流出入口用貫通孔が形成されていると共にこの2つの流出入口用貫通孔を連通する連通流路が形成されているものに比して、流出入口用貫通孔の1つ分だけ被熱交換媒体の流路幅を広くすることができ、熱交換に有効な流路幅を広くすることができる。この結果、熱交換効率を向上させることができる。また、2つの流出入口用貫通孔42a,42bは、被熱交換媒体の流れの方向に直列に並ぶように形成されているから、2つの流出入口用貫通孔42a,42bにより形成される2つの流路22,24のうち被熱交換媒体の流れの下流側を流入用流路25として熱交換媒体を供給し、被熱交換媒体の流れの上流側を流出用流路26として熱交換媒体を排出するようにすれば、熱交換媒体の全体としての流れと被熱交換媒体の流れとを対向流とすることができ、熱交換効率を更に向上させることができる。さらに、連通流路46,47を、2つの流出入口用貫通孔42a,42bの一方から他方にU字形状で鏡像対称な2つの流路として形成することにより、2つの流路46,47に略均等に熱交換媒体を供給することができ、2つの流路46,47で略均等に熱交換を行うことができる。これらの結果、熱交換効率を向上させることができる。このように鏡像対称としてチューブ部材40を形成するから、熱交換用チューブ30A,30Bの一方側のチューブ部材と他方側のチューブ部材とを形成する必要がなく、単一形状のチューブ部材40を形成すればよいことになる。これにより、部品点数を少なくすることができ、組み付け性を向上させることができる。   In the heat exchanger 20 of the embodiment described above, the tube member 40 has two outflow inlet through-holes 42a and 42b so as to be arranged in series in the short direction at the center in the longitudinal direction. The heat exchange tubes 30A and 30B are configured to have two U-shaped communication channels 46 and 47 communicating with the two outflow inlet through holes 42a and 42b. Thus, when the heat exchange medium is supplied and discharged in a direction perpendicular to the longitudinal direction, two outflow inlet through holes are formed at both ends in the longitudinal direction of the rectangular heat exchange tube. Compared to the one in which the communication flow path that connects the two inlet / outlet through holes is formed, the flow width of the heat exchange medium can be widened by one of the outlet / inlet through holes, and the heat exchange The effective channel width can be increased. As a result, the heat exchange efficiency can be improved. Further, since the two outflow inlet through holes 42a and 42b are formed so as to be arranged in series in the flow direction of the heat exchange medium, the two outflow inlet through holes 42a and 42b are formed. The heat exchange medium is supplied using the downstream side of the flow of the heat exchange medium among the flow paths 22 and 24 as the inflow flow path 25, and the heat exchange medium as the outflow flow path 26 as the upstream side of the flow of the heat exchange medium. If discharged, the flow of the heat exchange medium as a whole and the flow of the heat exchange medium can be counterflowed, and the heat exchange efficiency can be further improved. Further, the communication channels 46 and 47 are formed as two U-shaped and mirror-symmetrical channels from one of the two outflow inlet through holes 42a and 42b to the other. The heat exchange medium can be supplied substantially evenly, and the two flow paths 46 and 47 can exchange heat substantially evenly. As a result, the heat exchange efficiency can be improved. Since the tube member 40 is formed as a mirror image in this way, it is not necessary to form the tube member on one side and the tube member on the other side of the tubes 30A and 30B for heat exchange, and the tube member 40 having a single shape is formed. You can do it. Thereby, the number of parts can be reduced and assemblability can be improved.

実施例の熱交換器20では、連通流路46,47の第1流路部46a,47aを、チューブ部材40の長手方向に沿った中央ラインを考えたときに、中央ラインで2つに区分けされるチューブ部材40の一方側で中央ラインから離れてチューブ部材40の縁近傍に縁に沿って流出入口用貫通孔42aからチューブ部材40の端部に至るように形成し、第2流路部46b,47bを中央ラインで2つに区分けされるチューブ部材40の他方側でチューブ部材40の縁から離れて中央ライン近傍に中央ラインに沿って端部から流出入口用貫通孔42bに至るように形成し、折り返し流路部46c,47cを第1流路部46a,47aと第2流路部46b,47bとを接続するように形成する。また、チューブ部材40の端部ヒレ部48aの幅を第1流路部46a,47aの幅より広くなるように形成すると共に中央ヒレ部48bの幅を第2流路部46b,47bの幅より広くなるように形成する。そして、熱交換用チューブ30A,30Bを交互に積層して熱交換器20を構成する。このため、熱交換用チューブ30A,30Bの間の隙間を、幅が略一定となるように且つ蛇行するように形成することができる。この結果、被熱交換媒体の圧損を抑制すると共に被熱交換媒体の流れに若干の乱れを生じさせ、熱交換効率を向上させることができる。   In the heat exchanger 20 of the embodiment, the first flow path portions 46a and 47a of the communication flow paths 46 and 47 are divided into two at the central line when the central line along the longitudinal direction of the tube member 40 is considered. Formed on one side of the tube member 40 away from the central line and in the vicinity of the edge of the tube member 40 along the edge from the outflow inlet through hole 42a to the end of the tube member 40. 46b, 47b is separated from the tube member 40 on the other side of the tube member 40 which is divided into two at the central line so that it is separated from the edge of the tube member 40 and close to the central line along the central line from the end to the outflow inlet through hole 42b. The folded flow path portions 46c and 47c are formed so as to connect the first flow path portions 46a and 47a and the second flow path portions 46b and 47b. Further, the width of the end fin portion 48a of the tube member 40 is formed so as to be wider than the width of the first flow passage portions 46a and 47a, and the width of the central fin portion 48b is made larger than the width of the second flow passage portions 46b and 47b. Form to widen. Then, the heat exchanger 20 is configured by alternately stacking the heat exchange tubes 30A and 30B. For this reason, the clearance gap between the heat exchange tubes 30A and 30B can be formed so that the width may be substantially constant and meander. As a result, the pressure loss of the heat exchange medium can be suppressed and the flow of the heat exchange medium can be slightly disturbed to improve the heat exchange efficiency.

実施例の熱交換器20では、2つの流出入口用貫通孔42a,42bの間にスリット49を形成することにより、2つの流出入口用貫通孔42a,42bにおける熱交換媒体の伝熱を抑制することができる。この結果、熱交換効率を向上させることができる。   In the heat exchanger 20 of the embodiment, the heat transfer of the heat exchange medium in the two outflow inlet through holes 42a and 42b is suppressed by forming a slit 49 between the two outflow inlet through holes 42a and 42b. be able to. As a result, the heat exchange efficiency can be improved.

実施例の熱交換器20の製造方法では、向かい合わせることにより扁平な熱交換用チューブ30A,30Bを構成するチューブ部材40をクラッド板材を用いて形成し、熱交換用チューブ30A,30Bを交互に複数積層した状態となるようにチューブ部材40を複数積層して積層体22を組み付け、これをロウ材の融点より高く板材の融点より低い温度の炉に入れて当接部を接合(ロウ付け)して実施例の熱交換器20を完成する。このため、熱交換効率の高い実施例の熱交換器20をより簡易に製造することができる。   In the manufacturing method of the heat exchanger 20 of the embodiment, the tube members 40 constituting the flat heat exchange tubes 30A and 30B are formed by using the clad plate material by facing each other, and the heat exchange tubes 30A and 30B are alternately formed. A plurality of tube members 40 are laminated so that a plurality of the laminated members are laminated, and the laminated body 22 is assembled, and this is put into a furnace having a temperature higher than the melting point of the brazing material and lower than the melting point of the plate material, and the contact portion is joined (brazing). Thus, the heat exchanger 20 of the embodiment is completed. For this reason, the heat exchanger 20 of an Example with high heat exchange efficiency can be manufactured more simply.

実施例の熱交換器20では、連通流路46,47の第1流路部46a,47aをチューブ部材40の長手方向の縁近傍に縁に沿って流出入口用貫通孔42aからチューブ部材40の端部に至るように形成し、第2流路部46b,47bをチューブ部材40の長手方向の中央ライン近傍に中央ラインに沿って端部から流出入口用貫通孔42bに至るように形成し、折り返し流路部46c,47cを第1流路部46a,47aと第2流路部46b,47bとを接続するように形成したが、第1流路部および第2流路部をチューブ部材の縁と中央ラインとの中央に形成するものとしても構わない。この場合、チューブ部材を向かい合わせた熱交換用チューブは、長手方向の中央ラインで鏡像対称となるから、実施例の熱交換器20の熱交換用チューブ30A,30Bに相当するものは同一形状となる。   In the heat exchanger 20 of the embodiment, the first flow path portions 46a and 47a of the communication flow paths 46 and 47 are disposed near the longitudinal edge of the tube member 40 from the outflow inlet through hole 42a along the edge. The second flow path portions 46b and 47b are formed in the vicinity of the central line in the longitudinal direction of the tube member 40 so as to extend from the end portion to the outflow inlet through hole 42b. The folded flow path portions 46c and 47c are formed so as to connect the first flow path portions 46a and 47a and the second flow path portions 46b and 47b, but the first flow path portion and the second flow path portion are made of tube members. It may be formed at the center between the edge and the center line. In this case, since the heat exchange tubes with the tube members facing each other are mirror-image-symmetric at the center line in the longitudinal direction, those corresponding to the heat exchange tubes 30A and 30B of the heat exchanger 20 of the embodiment have the same shape. Become.

実施例の熱交換器20では、2つの流出入口用貫通孔42a,42bの間にスリット49を形成したが、こうしたスリット49を形成しないものとしてもよい。   In the heat exchanger 20 of the embodiment, the slit 49 is formed between the two outflow inlet through holes 42a and 42b, but the slit 49 may not be formed.

実施例の熱交換器20では、流出入口用貫通孔42a,42bの周囲にフランジ部44a,44bを形成するものとしたが、フランジ部44a,44bに代えてバーリング加工によりバーリング加工部を形成するものとしてもよい。この場合、チューブ部材の2つのバーリング加工部のうちの一方のバーリング加工部が他方のバーリング加工部に嵌合するよう一方のバーリング加工部の径を他方のバーリング加工部の径より若干小さく或いは若干大きく形成するのが好ましい。こうしたバーリング加工部を有するチューブ部材を、実施例の熱交換用チューブ30Aと熱交換用チューブ30Bとが交互に重なるように積層すれば、向かい合うチューブ部材のバーリング加工部が嵌まり合うようにすることができる。   In the heat exchanger 20 of the embodiment, the flange portions 44a and 44b are formed around the outflow inlet through holes 42a and 42b. However, instead of the flange portions 44a and 44b, a burring portion is formed by burring. It may be a thing. In this case, the diameter of one burring part is slightly smaller or slightly smaller than the diameter of the other burring part so that one of the two burring parts of the tube member fits into the other burring part. It is preferable to form large. If the tube member having such a burring portion is laminated so that the heat exchange tubes 30A and the heat exchange tubes 30B of the embodiment are alternately stacked, the burring portions of the facing tube members are fitted together. Can do.

実施例の熱交換器20では、アルミニウムの板材の両面にアルミシリコン合金などのロウ材を接合した厚さが0.2mmのクラッド板材を用いてチューブ部材40を形成するものとしたが、0.2mmより薄いアルミニウムとアルミニウム合金によるクラッド板材や0.2mmより厚いアルミニウムとアルミニウム合金によるクラッド板材を用いてチューブ部材40を形成するものとしてもよい。また、ステンレスの板材の両面に銅やニッケルなどのロウ材を接合したクラッド板材やステンレスに板材の両面にメッキを施した板材を用いてチューブ部材を形成するものとしてもよい。さらに、銅の板材の両面にロウ材を接合したりメッキした板材を用いてチューブ部材を形成するものとしてもよい。   In the heat exchanger 20 of the embodiment, the tube member 40 is formed using a clad plate material having a thickness of 0.2 mm in which a brazing material such as an aluminum silicon alloy is bonded to both surfaces of an aluminum plate material. The tube member 40 may be formed using a clad plate material made of aluminum and aluminum alloy thinner than 2 mm, or a clad plate material made of aluminum and aluminum alloy thicker than 0.2 mm. Alternatively, the tube member may be formed using a clad plate material in which a brazing material such as copper or nickel is bonded to both surfaces of a stainless steel plate material, or a plate material in which stainless steel is plated on both surfaces of the plate material. Furthermore, it is good also as what forms a tube member using the board | plate material which joined the brazing material or plated on both surfaces of the copper board | plate material.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited at all to such an Example, In the range which does not deviate from the summary of this invention, it is with various forms. Of course, it can be implemented.

本発明は、熱交換器の製造産業などに利用可能である。   The present invention can be used in the heat exchanger manufacturing industry and the like.

20 熱交換器、22 積層体、23,24 プレート、25 流入用流路、26 流出用流路、27 供給管、28 排出管、30A,30B 熱交換用チューブ、40 チューブ部材、42a,42b 流出入口用貫通孔、44a,44b フランジ部、46,47 連通流路、46a,47a 第1流路部、46b,47b 第2流路部、46c,47c 折り返し流路部、48a 端部ヒレ部、48b 中央ヒレ部、49 スリット。   20 heat exchangers, 22 laminates, 23, 24 plates, 25 inflow channels, 26 outflow channels, 27 supply tubes, 28 discharge tubes, 30A, 30B heat exchange tubes, 40 tube members, 42a, 42b outflows Through-hole for inlet, 44a, 44b flange part, 46, 47 communication channel, 46a, 47a first channel part, 46b, 47b second channel part, 46c, 47c folded channel part, 48a end fin part, 48b Center fin, 49 slit.

Claims (6)

金属材料を用いて向かい合わせに接合することにより熱交換媒体の2つの流出入口と該2つの流出入口を連通する連通流路とを有する扁平な熱交換用チューブを構成するよう形成されたチューブ部材を隣接する熱交換用チューブの前記2つの流出入口が整合するように複数積層して構成され、前記熱交換用チューブ内に流れる前記熱交換媒体と隣接する熱交換用チューブの間に流れる被熱交換媒体とで熱交換する熱交換器であって、
前記チューブ部材は、前記2つの流出入口が前記被熱交換媒体の流れの方向に直列に並ぶように形成されており、且つ、前記連通流路が前記2つの流出入口の一方から他方にU字形状で鏡像対称な2つの流路として形成されている、
ことを特徴とする熱交換器。
A tube member formed so as to constitute a flat heat exchange tube having two outflow inlets of a heat exchange medium and a communication channel communicating the two outflow inlets by joining metal materials face to face A plurality of the two inlets and outlets of the adjacent heat exchange tubes are stacked so that the heat exchange medium flows between the adjacent heat exchange tubes and the heat exchange medium flowing into the heat exchange tubes. A heat exchanger for exchanging heat with an exchange medium,
The tube member is formed so that the two outflow inlets are arranged in series in the flow direction of the heat exchange medium, and the communication channel is U-shaped from one of the two outflow inlets to the other. It is formed as two flow paths that are mirror-symmetric in shape,
A heat exchanger characterized by that.
請求項1記載の熱交換器であって、
前記チューブ部材は、外形が矩形形状に形成されており、
前記2つの流出入口は、前記チューブ部材の長手方向の中央に短手方向に直列に並ぶように形成されており、
前記連通流路は、前記2つの流出入口の一方から前記チューブ部材の長手方向の端部に至る第1流路部と前記端部から前記2つの流出入口の他方に至る第2流路部と前記端部で前記第1流路部と前記第2流路部とを接続するように折り返す折り返し流路部とからなる2つの流路として形成されている、
熱交換器。
The heat exchanger according to claim 1,
The tube member has an outer shape formed in a rectangular shape,
The two outflow inlets are formed so as to be arranged in series in the short direction at the center in the longitudinal direction of the tube member,
The communication flow path includes a first flow path part extending from one of the two outflow inlets to an end part in the longitudinal direction of the tube member, and a second flow path part extending from the end part to the other of the two outflow inlets. It is formed as two flow paths consisting of a folded flow path section that is folded back so as to connect the first flow path section and the second flow path section at the end.
Heat exchanger.
請求項2記載の熱交換器であって、
前記第1流路部は、前記チューブ部材の縁に沿って形成されており、
前記第2流路部は、前記チューブ部材の中央に沿って形成されており、
前記第1流路部と前記第2流路部との間は、前記第2流路部の幅より広くなるように形成されており、
前記第2流路部と前記チューブ部材の縁までの間は、前記第1流路部の幅より広くなるように形成されている、
熱交換器。
The heat exchanger according to claim 2,
The first flow path portion is formed along an edge of the tube member,
The second flow path portion is formed along the center of the tube member,
Between the first flow path part and the second flow path part is formed to be wider than the width of the second flow path part,
Between the second flow path part and the edge of the tube member, it is formed to be wider than the width of the first flow path part.
Heat exchanger.
請求項3記載の熱交換器であって、
前記チューブ部材を、隣接する熱交換用チューブの一方の前記第2流路部が他方の前記第1流路部と前記第2流路部との間の部位と向き合うように複数積層してなる、
熱交換器。
The heat exchanger according to claim 3, wherein
A plurality of the tube members are laminated such that one of the second flow path portions of the adjacent heat exchange tubes faces a portion between the other first flow path portion and the second flow path portion. ,
Heat exchanger.
熱交換器の製造方法であって、
第1金属による中心材に前記第1金属より融点の低い第2金属が両面に接合され厚みが0.3mm以下としたクラッド板材を用いて、外形が矩形形状で、長手方向の中央で短手方向に直列に並ぶように熱交換媒体の2つの流出入口を有し、前記2つの流出入口の一方から長手方向の端部に至る第1流路部と前記端部から前記2つの流出入口の他方に至る第2流路部と前記端部で前記第1流路部と前記第2流路部とを接続するように折り返す折り返し流路部とからなる鏡像対称のU字形状の2つの連通流路を有するチューブ部材を形成するチューブ部材形成工程と、
前記2つの連通流路および前記2つの流出入口が整合するように2つのチューブ部材を向かい合わせて構成される扁平な熱交換用チューブが複数積層された状態となるように前記チューブ部材を複数積層して積層体を組み付ける組み付け工程と、
前記第1金属の融点より低く前記第2金属の融点より高い温度に調整された炉を用いて前記積層体をロウ付けするロウ付け工程と、
を有する熱交換器の製造方法。
A method of manufacturing a heat exchanger,
Using a clad plate material in which a second metal having a melting point lower than that of the first metal is bonded to both surfaces to a center material made of the first metal and has a thickness of 0.3 mm or less, the outer shape is rectangular and short at the center in the longitudinal direction. Two inflow inlets of the heat exchange medium so as to be arranged in series in a direction, a first flow path portion extending from one of the two outflow inlets to an end in the longitudinal direction, and the two outflow inlets from the end Two mirror-symmetrical U-shaped communication comprising a second flow channel portion that reaches the other end and a folded flow channel portion that is folded back so as to connect the first flow channel portion and the second flow channel portion at the end. A tube member forming step of forming a tube member having a flow path;
A plurality of the tube members are stacked so that a plurality of flat heat exchange tubes configured to face each other so that the two communication channels and the two outflow inlets are aligned with each other are aligned. And an assembly process for assembling the laminate,
A brazing step of brazing the laminate using a furnace adjusted to a temperature lower than the melting point of the first metal and higher than the melting point of the second metal;
The manufacturing method of the heat exchanger which has this.
請求項5記載の熱交換器の製造方法であって、
前記チューブ部材形成工程は、前記第1流路部が前記チューブ部材の縁に沿うように、前記第2流路部が前記チューブ部材の中央に沿うように、前記第1流路部と前記第2流路部との間が前記第2流路部の幅より広くなるように、前記第2流路部と前記チューブ部材の縁までの間が前記第1流路部の幅より広くなるように前記チューブ部材を形成する工程であり、
前記組み付け工程は、隣接する熱交換用チューブの一方の前記第2流路部が他方の前記第1流路部と前記第2流路部との間の部位と向き合うように前記チューブ部材を複数積層する工程である、
熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 5, Comprising:
In the tube member forming step, the first flow channel portion and the first flow channel portion are formed such that the first flow channel portion is along the edge of the tube member and the second flow channel portion is along the center of the tube member. The space between the second flow path portion and the edge of the tube member is wider than the width of the first flow path portion so that the space between the two flow path portions is wider than the width of the second flow path portion. And forming the tube member in
In the assembling step, the plurality of tube members are arranged such that one of the second flow path portions of the adjacent heat exchange tubes faces a portion between the other first flow path portion and the second flow path portion. Is a process of stacking,
Manufacturing method of heat exchanger.
JP2015200766A 2015-10-09 2015-10-09 Heat exchanger and method of manufacturing the same Active JP6531328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015200766A JP6531328B2 (en) 2015-10-09 2015-10-09 Heat exchanger and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015200766A JP6531328B2 (en) 2015-10-09 2015-10-09 Heat exchanger and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017072331A true JP2017072331A (en) 2017-04-13
JP6531328B2 JP6531328B2 (en) 2019-06-19

Family

ID=58537294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015200766A Active JP6531328B2 (en) 2015-10-09 2015-10-09 Heat exchanger and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6531328B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045045A (en) * 2017-08-31 2019-03-22 有限会社和氣製作所 Heat exchanger and manufacturing method for the same
JP2020101330A (en) * 2018-12-21 2020-07-02 有限会社和氣製作所 Heat exchanger and manufacturing method thereof
JP2020101329A (en) * 2018-12-21 2020-07-02 有限会社和氣製作所 Heat exchanger and manufacturing method thereof
JP2020190370A (en) * 2019-05-22 2020-11-26 有限会社和氣製作所 Micro heat exchanger and method of manufacturing the same
JP7459402B1 (en) 2023-04-26 2024-04-01 三菱電機株式会社 Heat exchangers and air conditioners

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221481U (en) * 1988-07-29 1990-02-13
JPH02259391A (en) * 1989-03-31 1990-10-22 Diesel Kiki Co Ltd Laminating evaporator
JPH1114278A (en) * 1997-06-26 1999-01-22 Noritz Corp Heat exchanger
US20040003916A1 (en) * 2002-07-03 2004-01-08 Ingersoll-Rand Energy Systems, Inc. Unit cell U-plate-fin crossflow heat exchanger
JP2014020672A (en) * 2012-07-18 2014-02-03 Waki Seisakusho:Kk Heat exchanger
US20140230797A1 (en) * 2013-02-18 2014-08-21 Modine Manufacturing Company Charge air cooler, and intake manifold including the same
JP3192719U (en) * 2014-06-18 2014-08-28 有限会社和氣製作所 Plate member and heat exchanger
JP2014521913A (en) * 2011-07-25 2014-08-28 ヴァレオ システム テルミク Heat exchanger plate
JP3199792U (en) * 2015-06-29 2015-09-10 有限会社和氣製作所 Heat exchanger and manifold member used therefor
US20160091253A1 (en) * 2014-09-30 2016-03-31 Valeo Climate Control Corp. Heater core
JP2016205755A (en) * 2015-04-27 2016-12-08 有限会社和氣製作所 Heat exchanger

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221481U (en) * 1988-07-29 1990-02-13
JPH02259391A (en) * 1989-03-31 1990-10-22 Diesel Kiki Co Ltd Laminating evaporator
JPH1114278A (en) * 1997-06-26 1999-01-22 Noritz Corp Heat exchanger
US20040003916A1 (en) * 2002-07-03 2004-01-08 Ingersoll-Rand Energy Systems, Inc. Unit cell U-plate-fin crossflow heat exchanger
JP2014521913A (en) * 2011-07-25 2014-08-28 ヴァレオ システム テルミク Heat exchanger plate
JP2014020672A (en) * 2012-07-18 2014-02-03 Waki Seisakusho:Kk Heat exchanger
US20140230797A1 (en) * 2013-02-18 2014-08-21 Modine Manufacturing Company Charge air cooler, and intake manifold including the same
JP3192719U (en) * 2014-06-18 2014-08-28 有限会社和氣製作所 Plate member and heat exchanger
US20160091253A1 (en) * 2014-09-30 2016-03-31 Valeo Climate Control Corp. Heater core
JP2016205755A (en) * 2015-04-27 2016-12-08 有限会社和氣製作所 Heat exchanger
JP3199792U (en) * 2015-06-29 2015-09-10 有限会社和氣製作所 Heat exchanger and manifold member used therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045045A (en) * 2017-08-31 2019-03-22 有限会社和氣製作所 Heat exchanger and manufacturing method for the same
JP2020101330A (en) * 2018-12-21 2020-07-02 有限会社和氣製作所 Heat exchanger and manufacturing method thereof
JP2020101329A (en) * 2018-12-21 2020-07-02 有限会社和氣製作所 Heat exchanger and manufacturing method thereof
JP7197900B2 (en) 2018-12-21 2022-12-28 有限会社和氣製作所 Heat exchanger and manufacturing method thereof
JP2020190370A (en) * 2019-05-22 2020-11-26 有限会社和氣製作所 Micro heat exchanger and method of manufacturing the same
JP7483288B2 (en) 2019-05-22 2024-05-15 有限会社和氣製作所 Micro heat exchanger and its manufacturing method
JP7459402B1 (en) 2023-04-26 2024-04-01 三菱電機株式会社 Heat exchangers and air conditioners

Also Published As

Publication number Publication date
JP6531328B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6531328B2 (en) Heat exchanger and method of manufacturing the same
US20190017748A1 (en) Plate heat exchanger and heat pump heating and hot water supply system including the plate heat exchanger
JP5206830B2 (en) Heat exchanger
WO2010150878A1 (en) Heat exchanger
JP6265614B2 (en) Plate type heat exchanger
JP2015049037A (en) Plate-type heat exchanger having heat exchanger block coupled by foam metal
JP6658710B2 (en) Stacked heat exchanger
CN103363824A (en) Plate heat exchanger with several modules connected by sheet-metal strips
JP2016151392A (en) Heat exchanger
JP3199792U (en) Heat exchanger and manifold member used therefor
CN113424009A (en) Heat exchanger
JP3192720U (en) Plate member and heat exchanger
JP6560313B2 (en) Heat exchanger and manufacturing method thereof
JP3222286U (en) Heat exchanger
JP2018017424A (en) Manufacturing method of heat exchanger
JP2009264727A (en) Heat exchanger unit and heat exchanger using the same
SE1250120A1 (en) Flat heat exchanger with improved strength in the door area
JP7197899B2 (en) Heat exchanger and manufacturing method thereof
JP2012021668A (en) Heat exchanger
JP6623339B2 (en) Heat exchanger
JP7197900B2 (en) Heat exchanger and manufacturing method thereof
JPWO2015128900A1 (en) Heat transfer device
JP6096642B2 (en) Fin for heat exchanger, heat sink using the same, and method for manufacturing fin for heat exchanger
JP7173929B2 (en) Method for manufacturing heat exchange part of plate-fin heat exchanger and heat exchange system
JP2022161351A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190426

R150 Certificate of patent or registration of utility model

Ref document number: 6531328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250