JP2017058550A - Polycrystalline ceramics light conversion member, manufacturing method therefor, and light-emitting device - Google Patents

Polycrystalline ceramics light conversion member, manufacturing method therefor, and light-emitting device Download PDF

Info

Publication number
JP2017058550A
JP2017058550A JP2015184114A JP2015184114A JP2017058550A JP 2017058550 A JP2017058550 A JP 2017058550A JP 2015184114 A JP2015184114 A JP 2015184114A JP 2015184114 A JP2015184114 A JP 2015184114A JP 2017058550 A JP2017058550 A JP 2017058550A
Authority
JP
Japan
Prior art keywords
conversion member
light conversion
polycrystalline ceramic
powder
quantum efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015184114A
Other languages
Japanese (ja)
Inventor
昇平 朝位
Shohei Tomoi
昇平 朝位
和記 鍬原
Kazunori Kuwahara
和記 鍬原
正孝 山永
Masataka Yamanaga
正孝 山永
岩下 和樹
Kazuki Iwashita
和樹 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2015184114A priority Critical patent/JP2017058550A/en
Publication of JP2017058550A publication Critical patent/JP2017058550A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polycrystalline ceramic light conversion member which, when used for an optical device such as a white light-emitting diode, offers superior heat resistance, durability, and the like, reduces color irregularity and variation of emitted light, and exhibits high internal quantum efficiency, external quantum efficiency and fluorescence intensity, and to provide a manufacturing method for the same.SOLUTION: A polycrystalline ceramic light conversion member is substantially made of (LnLaCe)MO, where Ln represents at least one element selected from a group of Y, Gd, Tb, and Lu; M represents at least one element selected from a group of Al and Ga; Ce represents an activator element; and x and y satisfy 0<x≤0.13 and 0<y<0.04.SELECTED DRAWING: None

Description

本発明は、ディスプレイ、照明、およびバックライト光源等に利用できる発光ダイオード等の発光装置に用いられる多結晶セラミックス光変換部材、その製造方法、および発光装置に関する。   The present invention relates to a polycrystalline ceramic light conversion member used in a light emitting device such as a light emitting diode that can be used for a display, illumination, a backlight light source, and the like, a manufacturing method thereof, and a light emitting device.

近年、青色発光素子を発光源とする白色発光装置の開発研究が盛んに行われている。特に青色発光ダイオード素子を用いた白色発光ダイオードは、軽量で、水銀を使用せず、長寿命であることから、今後、需要が急速に拡大することが予測されている。なお、発光素子として発光ダイオード素子を用いた発光装置を発光ダイオードという。青色発光ダイオード素子の青色光を白色光に変換する方法として最も一般的に行われている方法は、青色と補色関係にある黄色を混色することにより擬似的に白色を得るものである。例えば特許文献1に記載されているように、青色を発光するダイオード素子の全面に、青色光の一部を吸収して黄色光を発する蛍光体を含有するコーティング層を設け、その先に光源の青色光と蛍光体からの黄色光を混色するモールド層等を設けることで、白色発光ダイオードを構成することができる。蛍光体としてはセリウムで賦活されたYAG(YAl12)(以下、YAG:Ceと記す。)粉末等が用いられる。 In recent years, research and development of white light emitting devices using a blue light emitting element as a light source have been actively conducted. In particular, white light-emitting diodes using blue light-emitting diode elements are light in weight, do not use mercury, and have a long lifetime, so that demand is expected to increase rapidly in the future. Note that a light-emitting device using a light-emitting diode element as a light-emitting element is referred to as a light-emitting diode. The most commonly used method for converting blue light of a blue light emitting diode element into white light is to obtain a pseudo white color by mixing yellow having a complementary color relationship with blue. For example, as described in Patent Document 1, a coating layer containing a phosphor that absorbs a part of blue light and emits yellow light is provided on the entire surface of a diode element that emits blue light. A white light emitting diode can be formed by providing a mold layer or the like that mixes blue light and yellow light from the phosphor. As the phosphor, YAG (Y 3 Al 5 O 12 ) (hereinafter referred to as YAG: Ce) powder activated with cerium is used.

しかし、特許文献1に代表される、現在一般的に用いられている白色発光ダイオードの構造では、蛍光体粉末をエポキシ等の樹脂と混合し、塗布するため、蛍光体粉末と樹脂との混合状態の均一性の確保、および塗布膜の厚みの安定化等の制御が難しく、白色発光ダイオードの発光の色ムラ・バラツキが生じやすいことが指摘されている。また、蛍光体粉末を塗布するためにも、また光源の一部の青色光を光変換せずに塗布膜を透過させるためにも透光性がある樹脂が必要となるが、透光性がある樹脂は耐熱性に劣るため、発光素子からの熱による変性で透過率の低下を起こしやすい。そのため、現在求められている白色発光ダイオードの高出力化へのネックとなっている。   However, in the structure of white light-emitting diodes generally used at present, represented by Patent Document 1, the phosphor powder is mixed with a resin such as epoxy and applied, so that the mixed state of the phosphor powder and the resin is applied. It has been pointed out that it is difficult to control the uniformity of the coating and the stabilization of the thickness of the coating film, and the light emission of the white light emitting diode is likely to cause unevenness in color and variation. In addition, a translucent resin is required for applying the phosphor powder and for transmitting a part of the blue light of the light source through the coating film without converting the light. A certain resin is inferior in heat resistance, and is likely to cause a decrease in transmittance due to modification by heat from the light emitting element. Therefore, it is a bottleneck to increasing the output of white light emitting diodes that are currently required.

そこで、白色発光ダイオード等の光デバイスの光変換部材として、樹脂を使用せずに構成された、蛍光相を含む無機系の光変換材料の研究、またその材料を光変換部材として備える光デバイスの研究が行われている。   Therefore, as a light conversion member of an optical device such as a white light emitting diode, research on an inorganic light conversion material including a fluorescent phase, which is configured without using a resin, and an optical device including the material as a light conversion member. Research is underway.

例えば、特許文献2には、一般式M(Al1−vGa12:Ce(式中、Mは、Lu、Y、Gd、及びTbから選ばれる少なくとも1種であり、vは、0≦v≦0.8を満たす)で表わされる、セリウム(Ce)で付活されたアルミン酸塩蛍光体粉末をガラス材料と混合し、ガラス材料を溶融させることによって、ガラス材料中に蛍光体粉末を分散させて製造した波長変換部材が開示されている。 For example, in Patent Document 2, the general formula M 3 (Al 1-v Ga v ) 5 O 12 : Ce (wherein M is at least one selected from Lu, Y, Gd, and Tb, and v Is satisfied by satisfying 0 ≦ v ≦ 0.8), and the aluminate phosphor powder activated with cerium (Ce) is mixed with the glass material, and the glass material is melted to be contained in the glass material. A wavelength conversion member manufactured by dispersing phosphor powder is disclosed.

また、特許文献3には、焼結によって得られた、Ceを含有するYAGからなる蛍光体相と、Al等の透光性セラミックスからなるマトリックス相とを含むセラミックス複合体が開示されている。 Patent Document 3 discloses a ceramic composite including a phosphor phase made of YAG containing Ce and a matrix phase made of a translucent ceramic such as Al 2 O 3 obtained by sintering. ing.

さらに、特許文献4には、波長範囲440nm〜460nmの光を励起光として発光するYAG:Ce多結晶蛍光体セラミック板が、特許文献5には、紫外光から可視光までの波長領域のうちの所定の波長の光を発光する固体光源と、内部散乱係数が10/mm〜30/mmの範囲にあるLuAl12:Ce3+蛍光体セラミックスを用いることを特徴とする光源装置が開示されている。なお、非特許文献1及び非特許文献2には、蛍光波長をシフトさせる目的でYの一部をLaで置換させたYAG:Ceなどのガーネット相の蛍光体粉末が記載されている。 Furthermore, Patent Document 4 discloses a YAG: Ce polycrystalline phosphor ceramic plate that emits light having a wavelength range of 440 nm to 460 nm as excitation light, and Patent Document 5 includes a wavelength region from ultraviolet light to visible light. Disclosed is a light source device using a solid light source that emits light of a predetermined wavelength and a Lu 3 Al 5 O 12 : Ce 3+ phosphor ceramic having an internal scattering coefficient in a range of 10 / mm to 30 / mm. Has been. Non-Patent Document 1 and Non-Patent Document 2 describe garnet phase phosphor powders such as YAG: Ce in which a portion of Y is substituted with La for the purpose of shifting the fluorescence wavelength.

特開2000−208815号公報JP 2000-208815 A 特開2008−041796号公報JP 2008-041796 A 特開2012−062459号公報JP 2012-062459 A 特開2010−024278号公報JP 2010-024278 A 特開2012−064484号公報JP 2012-064484 A

Materials Research Bulletin 43 (2008) 1657-1663Materials Research Bulletin 43 (2008) 1657-1663 Journal of Alloys and Compounds 498 (2010) 199-202Journal of Alloys and Compounds 498 (2010) 199-202

しかしながら、特許文献2に記載された波長変換部材は、マトリックスがガラスであるため、耐熱性、耐久性は改善されるものの、マトリックスであるガラスに蛍光体粉末を均一に分散させることが困難であり、放射する光に、色ムラや、放射角度によるバラツキが生じやすいという課題を持つ。   However, since the wavelength conversion member described in Patent Document 2 is made of glass as a matrix, heat resistance and durability are improved, but it is difficult to uniformly disperse phosphor powder in the glass as a matrix. In the light to be emitted, there is a problem that color unevenness and variation due to the radiation angle are likely to occur.

また、特許文献3に記載されたセラミックス複合体は、マトリックス(透光相)がセラミックスであり、透光相に蛍光体粉末が分散した構造ではないので、耐熱性、耐久性等の問題も、蛍光体粉末の分散性の問題もないものの、光学特性の向上には更なる改良が必要である。   In addition, the ceramic composite described in Patent Document 3 has a matrix (translucent phase) made of ceramics, and is not a structure in which phosphor powder is dispersed in the translucent phase. Although there is no problem of the dispersibility of the phosphor powder, further improvement is necessary to improve the optical characteristics.

また、特許文献4、5に記載されたセラミックス板は、単一相からなる多結晶セラミックスであり、透光相に蛍光体粉末が分散した構造ではないので、耐熱性、耐久性等の問題も、蛍光体粉末の分散性の問題もないものの、光学特性の向上には更なる改良が必要である。なお、非特許文献1、2に記載されているのは、所定の形態を有する光変換部材ではなく、蛍光体粉末であるに過ぎない。   Further, the ceramic plates described in Patent Documents 4 and 5 are polycrystalline ceramics composed of a single phase, and since the phosphor powder is not dispersed in the light transmitting phase, there are problems such as heat resistance and durability. Although there is no problem with the dispersibility of the phosphor powder, further improvement is required to improve the optical characteristics. In addition, what is described in Non-Patent Documents 1 and 2 is not a light conversion member having a predetermined form but only a phosphor powder.

そこで、本発明は、白色発光ダイオード等の光デバイスに適用した場合に、耐熱性、耐久性等に優れ、放射光の色ムラやバラツキを少なくでき、更に、高い内部量子効率、外部量子効率および蛍光強度を有する多結晶セラミックス光変換部材、その製造方法、及びそのような光変換部材を備える発光装置を提供することを目的とする。   Therefore, the present invention, when applied to an optical device such as a white light-emitting diode, is excellent in heat resistance, durability, etc., can reduce color unevenness and variation of radiated light, and has high internal quantum efficiency, external quantum efficiency and It is an object of the present invention to provide a polycrystalline ceramic light conversion member having fluorescence intensity, a method for producing the same, and a light emitting device including such a light conversion member.

本発明者らは、前記課題を解決するために鋭意検討した結果、実質的に、特定の組成の多結晶セラミックスからなる光変換部材が、高い内部量子効率および蛍光強度を有することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a light conversion member substantially made of polycrystalline ceramics having a specific composition has high internal quantum efficiency and fluorescence intensity. The invention has been completed.

即ち、本発明の第1の態様は、実質的に(Ln1―x−yLaCe12(LnはY、Gd、Tb、及びLuからなる群から選択される少なくとも一種の元素であり、MはAl及びGaからなる群から選択される少なくとも一種の元素であり、Ceは賦活元素である。但し、0<x≦0.13、0<y<0.04である。)からなる多結晶セラミックス光変換部材を提供する。 That is, the first aspect of the present invention is at least substantially selected from the group consisting of (Ln 1-xy La x Ce y ) 3 M 5 O 12 (Ln is Y, Gd, Tb, and Lu). M is at least one element selected from the group consisting of Al and Ga, and Ce is an activation element, provided that 0 <x ≦ 0.13 and 0 <y <0.04. There is provided a polycrystalline ceramic light conversion member comprising:

本発明の第1の態様においては、前記xが、0<x≦0.09であることが好ましい。
また、本発明の第1の態様においては、前記yが、0<y<0.02であることが好ましい。
In the first aspect of the present invention, x is preferably 0 <x ≦ 0.09.
In the first aspect of the present invention, the y is preferably 0 <y <0.02.

本発明の第2の態様は、Ln源化合物(LnはY、Gd、Tb、及びLuからなる群から選択される少なくとも一種の元素である。)、M源化合物(MはAl及びGaからなる群から選択される少なくとも一種の元素である。)、La源化合物、およびCe源化合物を含む混合粉末を仮焼する仮焼工程と、前記仮焼工程で得られた仮焼粉末を成形する成形工程と、前記成形工程で得られた成形体を焼成する焼成工程とを備えることを特徴とする前記多結晶セラミックス光変換部材の製造方法を提供する。   In a second aspect of the present invention, an Ln source compound (Ln is at least one element selected from the group consisting of Y, Gd, Tb, and Lu), an M source compound (M consists of Al and Ga). At least one element selected from the group), a calcining step of calcining a mixed powder containing a La source compound and a Ce source compound, and a molding for molding the calcined powder obtained in the calcining step The manufacturing method of the said polycrystalline-ceramics light conversion member characterized by including the process and the baking process which bakes the molded object obtained at the said formation process.

本発明の第2の態様においては、前記仮焼粉末が(Ln1―x−yLaCe12(LnはY、Gd、Tb、及びLuからなる群から選択される少なくとも一種の元素であり、MはAl及びGaからなる群から選択される少なくとも一種の元素であり、Ceは賦活元素である。但し、0<x≦0.13、0<y<0.04である。)であることが好ましい。 In a second aspect of the present invention, the calcined powder (Ln 1-x-y La x Ce y) 3 M 5 O 12 (Ln is selected Y, Gd, Tb, and from the group consisting of Lu At least one element, M is at least one element selected from the group consisting of Al and Ga, and Ce is an activation element, provided that 0 <x ≦ 0.13 and 0 <y <0.04. It is preferable that

本発明の第2の態様においては、前記焼成工程の後に、不活性ガス雰囲気又は還元性ガス雰囲気中で熱処理する熱処理工程を備えることが好ましい。   In the 2nd aspect of this invention, it is preferable to provide the heat processing process heat-processed in inert gas atmosphere or reducing gas atmosphere after the said baking process.

本発明の第3の態様は、発光素子と、前記多結晶セラミックス光変換部材とを備えることを特徴とする発光装置を提供する。   According to a third aspect of the present invention, there is provided a light emitting device comprising a light emitting element and the polycrystalline ceramic light converting member.

本発明の第3の態様においては、前記発光素子が、発光ダイオード素子またはレーザーダイオード素子であることが好ましい。   In the third aspect of the present invention, the light emitting element is preferably a light emitting diode element or a laser diode element.

本発明によれば、白色発光ダイオード等の光デバイスの光変換部材として、耐熱性、耐久性等に優れ、放射光の色ムラやバラツキを少なくでき、更に、高い内部量子効率、外部量子効率および蛍光強度を有する多結晶セラミックス光変換部材およびその製造方法が提供される。   According to the present invention, as a light conversion member of an optical device such as a white light-emitting diode, it is excellent in heat resistance, durability, etc., can reduce color unevenness and variation of radiated light, and further has high internal quantum efficiency, external quantum efficiency and A polycrystalline ceramic light converting member having fluorescence intensity and a method for producing the same are provided.

また、本発明によれば、光や熱によって劣化する樹脂等を用いることなく無機結晶質物で発光ダイオード等の光デバイスの光変換部を構成でき、光デバイスの長寿命化を図ることができ、また、前記光変換部に光変換部材としてそれ自体のみで使用される、従来のセラミックス複合体やセラミックス板と比べて、内部量子効率、外部量子効率および蛍光強度が高いため、光デバイスの効率化を図ることができる多結晶セラミックス光変換部材およびその製造方法が提供される。   Further, according to the present invention, it is possible to configure a light conversion part of an optical device such as a light emitting diode with an inorganic crystalline material without using a resin or the like that deteriorates due to light or heat, and it is possible to extend the life of the optical device, In addition, the internal quantum efficiency, external quantum efficiency, and fluorescence intensity are higher than conventional ceramic composites and ceramic plates that are used solely as light conversion members themselves in the light conversion unit, so that the efficiency of optical devices is improved. A polycrystalline ceramic light converting member capable of achieving the above and a method for manufacturing the same are provided.

さらに、本発明によれば、内部量子効率、外部量子効率および蛍光強度が高い多結晶セラミックス光変換部材と、発光ダイオード、又はレーザーダイオードとを組み合わせた高い効率を有する発光装置が提供される。   Furthermore, according to the present invention, there is provided a light emitting device having high efficiency in which a polycrystalline ceramic light conversion member having high internal quantum efficiency, external quantum efficiency, and fluorescence intensity is combined with a light emitting diode or a laser diode.

実施例2及び比較例1に係る多結晶セラミックス光変換部材のXRD回折パターンを示す特性図である。It is a characteristic view which shows the XRD diffraction pattern of the polycrystalline-ceramics light conversion member based on Example 2 and Comparative Example 1. 実施例24に係る多結晶セラミックス光変換部材のXRD回折パターンを示す特性図である。It is a characteristic view which shows the XRD diffraction pattern of the polycrystalline-ceramics light conversion member based on Example 24.

以下、本発明の種々の実施形態について詳しく説明する。   Hereinafter, various embodiments of the present invention will be described in detail.

(多結晶セラミックス光変換部材)
本発明の第1の実施形態に係る多結晶セラミックス光変換部材は、実質的に(Ln1―x−yLaCe12(LnはY、Gd、Tb、及びLuからなる群から選択される少なくとも一種の元素であり、MはAl及びGaからなる群から選択される少なくとも一種の元素であり、Ceは賦活元素である。但し、0<x≦0.13、0<y<0.04である。)からなる多結晶セラミックス光変換部材である。
(Polycrystalline ceramic light conversion member)
Polycrystalline ceramic optical converting member according to the first embodiment of the present invention is substantially (Ln 1-x-y La x Ce y) 3 M 5 O 12 (Ln is Y, Gd, Tb, and Lu, And at least one element selected from the group consisting of Al and Ga, and Ce is an activating element, where 0 <x ≦ 0.13, 0 <Y <0.04)).

ここで、「実質的に(Ln1―x−yLaCe12からなる多結晶セラミックス光変換部材」とは、他の成分を含まない(Ln1―x−yLaCe12のみからなる多結晶セラミックスに限らず、(Ln1―x−yLaCe12のみからなる多結晶セラミックスに対し、蛍光特性に影響を与えない成分の添加、又は蛍光特性に影響を与えない程度の微量の成分の添加を許容するものであり、特に、蛍光特性に影響を与えない程度の微量の、(Ln1―x−yLaCe12以外の結晶相を含む多結晶セラミックス光変換部材を包含するものである。 Here, “a polycrystalline ceramic light conversion member substantially composed of (Ln 1-xy La x Ce y ) 3 M 5 O 12 ” does not include other components (Ln 1-xy La x Ce y) is not limited to 3 M 5 O 12 polycrystal ceramic consisting only, (Ln 1-x-y La x Ce y) 3 M 5 O 12 only made of polycrystalline ceramics with respect to the effect on the fluorescent properties The addition of a component that does not affect or the addition of a minute amount of component that does not affect the fluorescence characteristics is allowed, and in particular, a minute amount that does not affect the fluorescence property (Ln 1-xy La it is intended to encompass a polycrystalline ceramic light conversion member including an x Ce y) 3 M 5 O 12 other than the crystalline phase.

なお、「実質的に(Ln1―x−yLaCe12からなる多結晶セラミックス光変換部材」は、「実質的に(Ln1―x−yLaCe12のみからなる多結晶セラミックス光変換部材」ということもできる。 Note that "substantially (Ln 1-x-y La x Ce y) 3 M consisting 5 O 12 polycrystal ceramic light converting member", "substantially (Ln 1-x-y La x Ce y) It can also be referred to as a “polycrystalline ceramics light conversion member comprising only 3 M 5 O 12 ”.

このような(Ln1―x−yLaCe12以外の結晶相としては、Al、YAlO、GdAlO、TbAlO、LuAlO、CeAlO、YAl1118、GdAl1118、TbAl1118、LuAl1118、CeAl1118、Ga、YGaO、GdGaO、TbGaO、LuGaO、CeGaO、YGa1118、GdGa1118、TbGa1118、LuGa1118、LaGa1118、Y、CeO、Gd、Tb、Tb、Lu、La等が挙げられる。本実施形態に係る多結晶セラミックス光変換部材は、これらの結晶相を、蛍光特性に影響を与えない程度に微量含むことがある。 Such (Ln 1-x-y La x Ce y) 3 M 5 O 12 other than the crystalline phase, Al 2 O 3, YAlO 3 , GdAlO 3, TbAlO 3, LuAlO 3, CeAlO 3, YAl 11 O 18 , GdAl 11 O 18 , TbAl 11 O 18 , LuAl 11 O 18 , CeAl 11 O 18 , Ga 2 O 3 , YGaO 3 , GdGaO 3 , TbGaO 3 , LuGaO 3 , CeGaO 3 O, YGa 11 O 18 , YGa 11 O 18 18 , TbGa 11 O 18 , LuGa 11 O 18 , LaGa 11 O 18 , Y 2 O 3 , CeO 2 , Gd 2 O 3 , Tb 2 O 3 , Tb 4 O 7 , Lu 2 O 3 , La 2 O 3 etc. Is mentioned. The polycrystalline ceramic light conversion member according to this embodiment may contain a small amount of these crystal phases to such an extent that the fluorescence characteristics are not affected.

本実施形態に係る多結晶セラミックス光変換部材とは、それ自体のみで発光装置の光変換部材を構成できる、セラミックスのみからなる光変換部材のことであり、具体的には、焼結体、バルク単結晶、薄膜等の形態を有する光変換部材のことであり、樹脂やガラスなどに封入されることで光変換部材を構成する蛍光体粉末とは区別される。   The polycrystalline ceramic light conversion member according to the present embodiment is a light conversion member made only of ceramics that can constitute a light conversion member of a light-emitting device by itself, and specifically, a sintered body, a bulk It is a light conversion member having a form such as a single crystal or a thin film, and is distinguished from the phosphor powder constituting the light conversion member by being enclosed in resin or glass.

即ち、本実施形態に係る多結晶セラミックス光変換部材は、複数の(Ln1―x−yLaCe12(LnはY、Gd、Tb、及びLuからなる群から選択される少なくとも一種の元素であり、MはAl及びGaからなる群から選択される少なくとも一種の元素であり、Ceは賦活元素である。但し、0<x≦0.13、0<y<0.04である。)の結晶粒子からなり、それ自体のみで発光装置の光変換部材を構成することができる。具体的には、多結晶セラミックスの焼結体や薄膜等の所定の形態を有する光変換部材である。 That is, the polycrystalline ceramic optical converting member according to the present embodiment, the selection is more (Ln 1-x-y La x Ce y) 3 M 5 O 12 (Ln Y, Gd, Tb, and from the group consisting of Lu M is at least one element selected from the group consisting of Al and Ga, and Ce is an activation element, provided that 0 <x ≦ 0.13 and 0 <y <0. .04)), and the light conversion member of the light emitting device can be constituted by itself. Specifically, it is a light conversion member having a predetermined form such as a sintered body or thin film of polycrystalline ceramic.

本実施形態に係る多結晶セラミックス光変換部材は、焼結体であることが好ましい。焼結体である場合は、特別な製造装置を必要とせず、従来から用いられているセラミックス焼結体の製造プロセスを用いることが可能であるため、比較的低コストで製造可能だからである。   The polycrystalline ceramic light conversion member according to this embodiment is preferably a sintered body. In the case of a sintered body, a special manufacturing apparatus is not required, and a conventionally used manufacturing process of a ceramic sintered body can be used, so that it can be manufactured at a relatively low cost.

本実施形態に係る多結晶セラミックス光変換部材において、xは0<x≦0.13であり、x>0.13である場合には、内部量子効率、外部量子効率及び蛍光強度が低くなる。xが0<x≦0.09である場合には、内部量子効率、外部量子効率及び蛍光強度がより高くなるため、より好ましい。   In the polycrystalline ceramic light conversion member according to the present embodiment, x is 0 <x ≦ 0.13, and when x> 0.13, the internal quantum efficiency, the external quantum efficiency, and the fluorescence intensity are low. When x is 0 <x ≦ 0.09, the internal quantum efficiency, the external quantum efficiency, and the fluorescence intensity are higher, which is more preferable.

本実施形態に係る多結晶セラミックス光変換部材において、yは0<y<0.04であり、y≧0.04である場合には、内部量子効率、外部量子効率及び蛍光強度が低くなる。yが0<y<0.02である場合には、内部量子効率、外部量子効率及び蛍光強度がより高くなるため、より好ましい。   In the polycrystalline ceramic light conversion member according to this embodiment, y is 0 <y <0.04, and when y ≧ 0.04, the internal quantum efficiency, the external quantum efficiency, and the fluorescence intensity are low. When y is 0 <y <0.02, it is more preferable because internal quantum efficiency, external quantum efficiency, and fluorescence intensity become higher.

本実施形態に係る多結晶セラミックス光変換部材は、波長420〜500nmにピークを有する光(励起光)を吸収することによって、500〜580nmにピーク波長を有する蛍光を効率よく発することができる。これにより、緑〜黄色蛍光を効率良く得ることができる。励起光が、波長400〜419nm、もしくは501〜530nmでも、効率が低下するものの、本実施形態に係る多結晶セラミックス光変換部材は、蛍光を発することができる。さらに励起光が、波長300〜360nmの近紫外光でも、本実施形態に係る多結晶セラミックス光変換部材は、蛍光を発することができる。   The polycrystalline ceramic light conversion member according to this embodiment can efficiently emit fluorescence having a peak wavelength at 500 to 580 nm by absorbing light (excitation light) having a peak at a wavelength of 420 to 500 nm. Thereby, green to yellow fluorescence can be obtained efficiently. Even when the excitation light has a wavelength of 400 to 419 nm or 501 to 530 nm, the efficiency is lowered, but the polycrystalline ceramic light conversion member according to the present embodiment can emit fluorescence. Furthermore, even if the excitation light is near ultraviolet light having a wavelength of 300 to 360 nm, the polycrystalline ceramic light conversion member according to the present embodiment can emit fluorescence.

また、本実施形態に係る多結晶セラミックス光変換部材は、任意の形状に加工することができるが、板状体であることが好ましい。板状体は、容易に成形加工できる形状であり、所望の色度の発光が得られるように厚みを調整して、光デバイスに設置するだけで、光源の光を変換して発光する光デバイスを構成することが可能だからである。   The polycrystalline ceramic light conversion member according to this embodiment can be processed into an arbitrary shape, but is preferably a plate-like body. The plate-like body has a shape that can be easily molded, adjusts the thickness so that light emission of the desired chromaticity can be obtained, and simply installs it in the optical device. Because it is possible to configure.

なお、本実施形態に係る、実質的に(Ln1―x−yLaCe12からなる多結晶セラミックス光変換部材は、高い内部量子効率、外部量子効率および蛍光強度を示し、光デバイスの効率化を図ることができるという優れた効果を奏する。これに対し、非特許文献1及び非特許文献2に記載されているような、蛍光波長をシフトさせる目的でYの一部をLaと置換させたYAG:Ceなどのガーネット相の蛍光体粉末は、本実施形態に係る多結晶セラミックス光変換部材と同様の組成を有するにも関わらず、例えば、非特許文献1のFig.3の説明文(1659頁中段)や、非特許文献2のFig.5およびその説明文(21頁左欄)に記載されているように、Laを含まない蛍光体粉末よりもその蛍光強度は小さくなることが一般的な知見である。 Incidentally, according to this embodiment, substantially (Ln 1-x-y La x Ce y) 3 M 5 O 12 polycrystal ceramic light conversion member made of the high internal quantum efficiency, external quantum efficiency and fluorescence intensity And an excellent effect that the efficiency of the optical device can be improved. On the other hand, as described in Non-Patent Document 1 and Non-Patent Document 2, a garnet phase phosphor powder such as YAG: Ce in which part of Y is replaced with La for the purpose of shifting the fluorescence wavelength is as follows. Despite having the same composition as the polycrystalline ceramic light conversion member according to the present embodiment, for example, FIG. 3 (1605 page middle), Non-Patent Document 2, FIG. 5 and its description (left column on page 21), it is a general finding that the fluorescence intensity is lower than that of a phosphor powder not containing La.

(多結晶セラミックス光変換部材の製造方法)
本発明の第2の実施形態に係る多結晶セラミックス光変換部材の製造方法は、原料粉末を、所望する成分比率の多結晶セラミックス光変換部材が得られる割合で混合して、得られた原料混合粉末を仮焼し、仮焼粉末を成形し、焼成する各工程を備えている。
(Production method of polycrystalline ceramic light conversion member)
In the method for producing a polycrystalline ceramic light conversion member according to the second embodiment of the present invention, the raw material powders are mixed at a ratio at which a polycrystalline ceramic light conversion member having a desired component ratio is obtained, and the obtained raw material mixing is performed. Each step includes calcining the powder, forming the calcined powder, and firing.

好ましい製造方法としては、まず、多結晶セラミックス光変換部材を得るための原料粉末としてのLn源化合物(LnはY、Gd、Tb、及びLuからなる群から選択される少なくとも一種の元素である。)、M源化合物(MはAl及びGaからなる群から選択される少なくとも一種の元素である。)、およびCe源化合物を混合し、得られた混合粉末を仮焼して、(Ln1―x−yLaCe12(LnはY、Gd、Tb、及びLuからなる群から選択される少なくとも一種の元素であり、MはAl及びGaからなる群から選択される少なくとも一種の元素であり、Ceは賦活元素である。)から構成される仮焼粉末を予め調製した後、仮焼粉末を成形して、焼成する方法を採用することができる。この方法であれば、短い焼成時間でも、上述した第1の実施形態に係る多結晶セラミックス光変換部材を製造することができる。 As a preferable production method, first, an Ln source compound (Ln is at least one element selected from the group consisting of Y, Gd, Tb, and Lu) as a raw material powder for obtaining a polycrystalline ceramic light conversion member. ), An M source compound (M is at least one element selected from the group consisting of Al and Ga), and a Ce source compound, and the obtained mixed powder is calcined (Ln 1− xy La x Ce y ) 3 M 5 O 12 (Ln is at least one element selected from the group consisting of Y, Gd, Tb, and Lu, and M is selected from the group consisting of Al and Ga) It is possible to employ a method in which a calcined powder composed of at least one element and Ce is an activation element is prepared in advance, and then calcined and fired. With this method, the polycrystalline ceramic light conversion member according to the first embodiment described above can be manufactured even with a short firing time.

Ln源化合物、M源化合物およびCe源化合物は、それぞれの金属元素の酸化物である、Ln、Ln(LnはY、Gd、Tb、及びLuからなる群から選択される少なくとも一種の元素である。)、M(MはAl及びGaからなる群から選択される少なくとも一種の元素である。)およびCeOであることが好ましいが、混合時に酸化物でなくてもよく、焼成過程などで、容易に酸化物に変化する炭酸塩などの化合物でもよい。 The Ln source compound, the M source compound, and the Ce source compound are oxides of the respective metal elements, Ln 2 O 3 , Ln 4 O 7 (Ln is selected from the group consisting of Y, Gd, Tb, and Lu) It is preferably at least one element.), M 2 O 3 (M is at least one element selected from the group consisting of Al and Ga) and CeO 2 . Alternatively, a compound such as a carbonate that easily changes to an oxide during the firing process or the like may be used.

原料粉末の混合方法については特別の制限はなく、それ自体公知の方法、例えば、乾式混合する方法、原料各成分と実質的に反応しない不活性溶媒中で湿式混合した後に溶媒を除去する方法などを採用することができる。湿式混合する方法を用いる際の溶媒としては、メタノール、エタノールのようなアルコールが一般に使用される。混合装置としては、V型混合機、ロッキングミキサー、ボールミル、振動ミル、媒体撹拌ミルなどが好適に使用される。   There are no particular restrictions on the method of mixing the raw material powder, and a method known per se, for example, a dry mixing method, a method of removing the solvent after wet mixing in an inert solvent that does not substantially react with each component of the raw material, etc. Can be adopted. As a solvent used in the wet mixing method, an alcohol such as methanol or ethanol is generally used. As the mixing device, a V-type mixer, a rocking mixer, a ball mill, a vibration mill, a medium stirring mill, or the like is preferably used.

仮焼粉末を予め調製する場合、仮焼の際の雰囲気には特に制限はないが、大気雰囲気、不活性雰囲気、または真空雰囲気であることが好ましく、仮焼の際の温度は、(Ln1―x−yLaCe12(LnはY、Gd、Tb、及びLuからなる群から選択される少なくとも一種の元素であり、MはAl及びGaからなる群から選択される少なくとも一種の元素であり、Ceは賦活元素である。)から構成される粉末が生成する温度であり、かつ焼結が進みすぎない温度であることが好ましい。仮焼の際の温度は、具体的には1350〜1550℃であることが好ましい。前記条件での熱処理が可能であれば、仮焼に使用される加熱炉については、特別の制限はない。例えば、高周波誘導加熱方式または抵抗加熱方式によるバッチ式電気炉、ロータリーキルン、流動化焼成炉、プッシャー式電気炉などを使用することができる。 When the calcined powder is prepared in advance, the atmosphere at the time of calcining is not particularly limited, but is preferably an air atmosphere, an inert atmosphere, or a vacuum atmosphere, and the temperature at the time of calcining is (Ln 1 —Xy La x Ce y ) 3 M 5 O 12 (Ln is at least one element selected from the group consisting of Y, Gd, Tb, and Lu, and M is selected from the group consisting of Al and Ga) At least one kind of element, and Ce is an activating element). Specifically, the temperature during calcination is preferably 1350 to 1550 ° C. If the heat treatment under the above conditions is possible, there is no particular limitation on the heating furnace used for calcination. For example, a batch type electric furnace, a rotary kiln, a fluidized firing furnace, a pusher type electric furnace, or the like by a high frequency induction heating method or a resistance heating method can be used.

仮焼粉末を予め調製する場合、仮焼粉末は、原料粉末の粒度分布や仮焼条件にもよるが、凝集または焼結していることがあるので、必要に応じて粉砕を行う。粉砕方法については特別の制限はなく、それ自体公知の方法、例えば、乾式粉砕、仮焼粉末各成分と実質的に反応しない不活性溶媒中で湿式粉砕した後に溶媒を除去する方法などを採用することができる。湿式粉砕する方法を用いる際の溶媒としては、メタノール、エタノールのようなアルコールが一般に使用される。粉砕装置としては、ロールクラッシャー、ボールミル、ビーズミル、スタンプミルなどが好適に使用される。   When the calcined powder is prepared in advance, the calcined powder may be agglomerated or sintered depending on the particle size distribution of the raw material powder and the calcining conditions. There is no particular limitation on the pulverization method, and a known method such as dry pulverization, wet pulverization in an inert solvent that does not substantially react with each component of the calcined powder, and then removing the solvent is adopted. be able to. As a solvent used in the wet pulverization method, an alcohol such as methanol or ethanol is generally used. As the pulverizer, a roll crusher, a ball mill, a bead mill, a stamp mill or the like is preferably used.

仮焼粉末の成形方法は、特に制限されないが、プレス成形法や、シート成形法、押し出し成形法等が好適である。板状体の多結晶セラミックス光変換部材を得る場合には、シート成形法の一種であるドクターブレード法を採用することが好ましく、より緻密な多結晶セラミックス光変換部材を得るためには、シート成形後に、プレス成形法の一種である温間等方圧プレスなどの成形法を採用することが好ましい。   The method for forming the calcined powder is not particularly limited, but a press molding method, a sheet molding method, an extrusion molding method, and the like are preferable. In order to obtain a plate-like polycrystalline ceramic light conversion member, it is preferable to employ a doctor blade method, which is a kind of sheet molding method. Later, it is preferable to adopt a molding method such as a warm isostatic press which is a kind of press molding method.

以上の成形方法により得られた成形体の焼成方法は、次の通りである。成形体の焼成の際の雰囲気は、特に制限はないが、大気雰囲気、不活性雰囲気、または真空雰囲気であることが好ましい。焼成の際の温度は、本実施形態に係る多結晶セラミックス光変換部材の構成相が形成される温度であれば特に制限はないが、1600〜1750℃であることが好ましい。前記条件での熱処理が可能であれば、焼成に使用される加熱炉については、特別の制限はない。例えば、高周波誘導加熱方式または抵抗加熱方式によるバッチ式電気炉、ロータリーキルン、流動化焼成炉、プッシャー式電気炉などを使用することができる。あるいは、成形と焼成を同時に行うホットプレス法を採用することもできる。   The method for firing the molded body obtained by the above molding method is as follows. The atmosphere for firing the molded body is not particularly limited, but is preferably an air atmosphere, an inert atmosphere, or a vacuum atmosphere. The temperature at the time of firing is not particularly limited as long as the constituent phase of the polycrystalline ceramic light conversion member according to the present embodiment is formed, but is preferably 1600 to 1750 ° C. If the heat treatment under the above conditions is possible, there is no particular limitation on the heating furnace used for firing. For example, a batch type electric furnace, a rotary kiln, a fluidized firing furnace, a pusher type electric furnace, or the like by a high frequency induction heating method or a resistance heating method can be used. Or the hot press method which performs shaping | molding and baking simultaneously can also be employ | adopted.

前記の方法により焼成して得られた多結晶セラミックス光変換部材は、更に不活性ガス雰囲気または還元性ガス雰囲気中で熱処理してもよい。前記の方法により焼成して得られた多結晶セラミックス光変換部材を、不活性ガス雰囲気または還元性ガス雰囲気中、1100〜1600℃の温度範囲で熱処理することで、多結晶セラミックス光変換部材の蛍光強度をさらに向上させることができる。   The polycrystalline ceramic light conversion member obtained by firing by the above method may be further heat-treated in an inert gas atmosphere or a reducing gas atmosphere. The polycrystalline ceramic light conversion member obtained by firing by the above method is heat-treated in an inert gas atmosphere or a reducing gas atmosphere at a temperature range of 1100 to 1600 ° C. The strength can be further improved.

(発光装置)
本発明の第3の実施形態に係る発光装置は、発光素子と、上述した本発明の第1の実施形態に係る多結晶セラミックス光変換部材とを備える。発光素子は、波長420〜500nmにピークを有する光を発する発光素子であることが好ましい。本発明の第1の実施形態に係る光変換用セラミック部材は、この波長の光の吸収率が大きく、効率的に蛍光を発するからである。発光素子は、波長440〜480nmにピークを有する光を発する発光素子であることがさらに好ましい。本発明の第1の実施形態に係る光変換用セラミック部材は、この波長の光の吸収率がさらに大きく、発光装置の高効率化に好適であるためである。発光素子としては、発光ダイオード素子またはレーザーダイオード素子が好ましい。発光ダイオード素子またはレーザーダイオード素子は、青色発光ダイオード素子または青色レーザーダイオード素子であることが好ましく、発光装置は白色発光装置であることが好ましい。
(Light emitting device)
The light emitting device according to the third embodiment of the present invention includes a light emitting element and the above-described polycrystalline ceramic light conversion member according to the first embodiment of the present invention. The light emitting element is preferably a light emitting element that emits light having a peak at a wavelength of 420 to 500 nm. This is because the ceramic member for light conversion according to the first embodiment of the present invention has a large absorption rate of light of this wavelength and emits fluorescence efficiently. The light emitting element is more preferably a light emitting element that emits light having a peak at a wavelength of 440 to 480 nm. This is because the ceramic member for light conversion according to the first embodiment of the present invention has a larger light absorptance of light of this wavelength and is suitable for increasing the efficiency of the light emitting device. As a light emitting element, a light emitting diode element or a laser diode element is preferable. The light emitting diode element or the laser diode element is preferably a blue light emitting diode element or a blue laser diode element, and the light emitting device is preferably a white light emitting device.

本実施形態に係る発光装置は、本発明の第1の実施形態に係る多結晶セラミックス光変換部材を備えているので、青色発光素子と組み合わせて高効率の白色発光装置を得ることができる。また、本実施形態に係る発光装置は、本発明の第1の実施形態に係る多結晶セラミックス光変換部材を備えているので、白色に調整可能であり、色むら・バラツキが小さく、また多結晶セラミックス光変換部材は封入樹脂を必要としないので、熱・光による劣化がなく、高出力化・高効率化が可能である。   Since the light-emitting device according to this embodiment includes the polycrystalline ceramic light conversion member according to the first embodiment of the present invention, a highly efficient white light-emitting device can be obtained in combination with a blue light-emitting element. In addition, since the light emitting device according to the present embodiment includes the polycrystalline ceramic light conversion member according to the first embodiment of the present invention, the light emitting device can be adjusted to white, color unevenness / variation is small, and polycrystalline Since the ceramic light conversion member does not require an encapsulating resin, there is no deterioration due to heat and light, and high output and high efficiency are possible.

以下、本発明の具体的実施例を比較例とともに挙げ、本発明を更に詳しく説明する。まず、各実施明および比較例において使用した測定方法について説明する。   Hereinafter, specific examples of the present invention will be described together with comparative examples to further explain the present invention. First, the measurement methods used in the respective examples and comparative examples will be described.

(多結晶セラミックス光変換部材の構成相の同定方法)
多結晶セラミックス光変換部材を構成する結晶相の同定は、CuKα線を用いたリガク社製X線回折装置(Ultima IV Protectus)、および同装置に付帯する統合粉末X線解析ソフトウェアPDXLを用いて行った。即ち、多結晶セラミックス光変換部材のX線回折データを前記X線回折装置により得て、PDXLにより多結晶セラミックス光変換部材の結晶相を同定した。
(Identification method of constituent phase of polycrystalline ceramic light conversion member)
Identification of the crystal phase constituting the polycrystalline ceramic light conversion member is performed using an Rigaku X-ray diffraction apparatus (Ultima IV Protectus) using CuKα rays, and integrated powder X-ray analysis software PDXL attached to the apparatus. It was. That is, X-ray diffraction data of the polycrystalline ceramic light conversion member was obtained by the X-ray diffractometer, and the crystal phase of the polycrystalline ceramic light conversion member was identified by PDXL.

(多結晶セラミックス光変換部材の蛍光特性の評価方法)
多結晶セラミックス光変換部材の、蛍光の色度座標、最大蛍光強度、吸収率、内部量子効率、および外部量子効率は、大塚電子製QE−1100Fに積分球を組み合わせた固体量子効率測定装置により測定し、算出した。即ち、多結晶セラミックス光変換部材の一部をφ16×0.2mmの円板状に加工した後、積分球内にセットして、固体量子効率測定装置を用いて、励起波長460nmにおける励起光スペクトルと蛍光スペクトルとを測定し、同時に内部量子効率を測定した。内部量子効率は、下記の式(1)により算出した。
内部量子効率(%)=(蛍光光量子/吸収光量子)×100 (1)
(Evaluation method of fluorescence characteristics of polycrystalline ceramics light conversion member)
Fluorescence chromaticity coordinates, maximum fluorescence intensity, absorption rate, internal quantum efficiency, and external quantum efficiency of a polycrystalline ceramic light conversion member are measured by a solid quantum efficiency measurement device combining an integrating sphere with QE-1100F manufactured by Otsuka Electronics. And calculated. That is, after processing a part of the polycrystalline ceramic light conversion member into a disk shape of φ16 × 0.2 mm, it is set in an integrating sphere, and an excitation light spectrum at an excitation wavelength of 460 nm is used using a solid quantum efficiency measurement device. And the fluorescence spectrum were measured, and the internal quantum efficiency was measured at the same time. The internal quantum efficiency was calculated by the following formula (1).
Internal quantum efficiency (%) = (fluorescence photon / absorption photon) × 100 (1)

各実施例及び比較例においては、多結晶セラミックス光変換部材が(Y0.99Ce0.01Al12からなる比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の、各例に係る多結晶セラミックス光変換部材の最大蛍光強度の相対値を、各例に係る多結晶セラミックス光変換部材の相対蛍光強度として算出した。 In each Example and Comparative Example, the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 in which the polycrystalline ceramic light conversion member is made of (Y 0.99 Ce 0.01 ) 3 Al 5 O 12 is 100. %, The relative value of the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to each example was calculated as the relative fluorescence intensity of the polycrystalline ceramic light conversion member according to each example.

(実施例1)
多結晶セラミックス光変換部材が下記表1に示す組成になるように、原料のα−Al粉末(純度99.99%)12.83g、Y粉末(純度99.9%)16.71g、La粉末(純度99.9%)0.25g、およびCeO粉末(純度99.9%)0.26gを秤量し、これらの原料粉末を、エタノール中、ボールミルによって24時間湿式混合した後、エバポレーターを用いてエタノールを脱媒し、仮焼に供する混合粉末を調製した。得られた、仮焼に供する混合粉末をAlるつぼに入れて、バッチ式電気炉に仕込み、大気雰囲気中1500℃で3時間保持して仮焼し、(Y0.98La0.01Ce0.01Al12からなる仮焼粉末を得た。
Example 1
Raw material α-Al 2 O 3 powder (purity 99.99%) 12.83 g, Y 2 O 3 powder (purity 99.9%) so that the polycrystalline ceramic light conversion member has the composition shown in Table 1 below. 16.71 g, La 2 O 3 powder (purity 99.9%) 0.25 g, and CeO 2 powder (purity 99.9%) 0.26 g were weighed, and these raw material powders were mixed in ethanol by a ball mill for 24 hours. After wet-mixing for a period of time, ethanol was removed using an evaporator to prepare a mixed powder for calcination. The obtained mixed powder to be calcined is put in an Al 2 O 3 crucible, charged into a batch type electric furnace, and calcined by holding at 1500 ° C. for 3 hours in an air atmosphere (Y 0.98 La 0. A calcined powder composed of 01 Ce 0.01 ) 3 Al 5 O 12 was obtained.

次に、得られた仮焼粉末をエタノール中、ボールミルによって90時間湿式粉砕した後、エバポレーターを用いてエタノールを脱媒して、粉末を調製した。得られた粉末100質量部に対して、ポリビニルブチラール等のバインダ樹脂15.75質量部、フタル酸ジブチル等の可塑剤2.25質量部、分散剤4質量部、トルエン等の有機溶剤135質量部を添加して、混合スラリーを作製した。得られた混合スラリーをドクターブレードのスラリー収容槽に収容し、スラリー収容槽下方の隙間の高さを調節できる可変式ブレードを調節して、スラリー収容槽下方より混合スラリーをシート状に流出させた。流出させた混合スラリーを、真空吸盤にて搬送台に固定されたPETフィルム上に、厚みが50μm程度となるように塗工し、乾燥し、グリーンシートを作製した。得られたグリーンシートを、焼成後の厚みが220〜230μmとなるよう5枚積層し、温度85℃、圧力20MPaの温間等方圧プレスにより圧着して、積層体を作製した。加熱により積層体から剥離できる発泡剥離シート上に積層体を固定し、所定の形状となるように切断した。切断した積層体を乾燥機にて加熱し、発泡剥離シートから分離させた。得られた積層体を、バッチ式電気炉を用いて、大気雰囲気中、1675℃で6時間保持して、焼成した。以上のようにして、実施例1に係る多結晶セラミックス光変換部材を得た。   Next, the obtained calcined powder was wet pulverized in ethanol by a ball mill for 90 hours, and then ethanol was removed using an evaporator to prepare a powder. With respect to 100 parts by mass of the obtained powder, 15.75 parts by mass of a binder resin such as polyvinyl butyral, 2.25 parts by mass of a plasticizer such as dibutyl phthalate, 4 parts by mass of a dispersant, and 135 parts by mass of an organic solvent such as toluene. Was added to prepare a mixed slurry. The obtained mixed slurry was accommodated in a slurry accommodating tank of a doctor blade, and a variable blade capable of adjusting the height of the gap below the slurry accommodating tank was adjusted to allow the mixed slurry to flow out in a sheet form from below the slurry accommodating tank. . The mixed slurry that had flowed out was coated on a PET film fixed to a carrier with a vacuum suction cup so as to have a thickness of about 50 μm and dried to produce a green sheet. Five sheets of the obtained green sheets were laminated so that the thickness after firing was 220 to 230 μm, and pressed by a warm isostatic press at a temperature of 85 ° C. and a pressure of 20 MPa to produce a laminate. The laminate was fixed on a foam release sheet that could be peeled off from the laminate by heating, and was cut into a predetermined shape. The cut laminate was heated with a dryer and separated from the foam release sheet. The obtained laminate was baked using a batch type electric furnace in an air atmosphere at 1675 ° C. for 6 hours. As described above, the polycrystalline ceramic light conversion member according to Example 1 was obtained.

得られた多結晶セラミックス光変換部材の結晶相の同定を、上記(多結晶セラミックス光変換部材の構成相の同定方法)にて説明した方法で行い、実施例1の多結晶セラミックス光変換部材がYAl12相からなることを確認した。 The crystal phase of the obtained polycrystalline ceramic light conversion member is identified by the method described in the above (Method for identifying the constituent phases of the polycrystalline ceramic light conversion member), and the polycrystalline ceramic light conversion member of Example 1 is obtained. It was confirmed to be composed of a Y 3 Al 5 O 12 phase.

実施例1に係る多結晶セラミックス光変換部材の蛍光特性を、上記(多結晶セラミックス光変換部材の蛍光特性の評価方法)にて説明した方法により測定した。励起光の波長は460nmとして蛍光特性評価を行った。得られた蛍光スペクトルから色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を算出した。後述の比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の、実施例1に係る多結晶セラミックス光変換部材の最大蛍光強度の相対値を相対蛍光強度として算出した。   The fluorescence characteristics of the polycrystalline ceramic light conversion member according to Example 1 were measured by the method described above (Method for evaluating fluorescence characteristics of polycrystalline ceramic light conversion member). The fluorescence characteristics were evaluated by setting the wavelength of the excitation light to 460 nm. Chromaticity coordinates, absorptance, internal quantum efficiency, external quantum efficiency, and maximum fluorescence intensity were calculated from the obtained fluorescence spectrum. When the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 described later is 100%, the relative value of the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Example 1 was calculated as the relative fluorescence intensity. .

下記表1に、実施例1に係る多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表1から、実施例1に係る多結晶セラミックス光変換部材は、(Y0.98La0.01Ce0.01Al12からなり、460nmの波長の光で励起した場合の色度座標(Cx,Cy)は(0.444、0.543)で、内部量子効率は82.8%、外部量子効率は75.3%、相対蛍光強度は110%と、いずれの蛍光特性の値も、Laを含んでいない(Y0.99Ce0.01Al12からなる、後述する比較例1に係る多結晶セラミックス光変換部材に比べて高い値を示していることがわかる。 Table 1 below shows the chromaticity coordinates, absorption rate, internal quantum efficiency, external quantum efficiency, and relative fluorescence intensity of fluorescence when excited with light having a wavelength of 460 nm of the polycrystalline ceramic light conversion member according to Example 1. Show. From Table 1 below, the polycrystalline ceramic light conversion member according to Example 1 is made of (Y 0.98 La 0.01 Ce 0.01 ) 3 Al 5 O 12 and excited with light having a wavelength of 460 nm. The chromaticity coordinates (Cx, Cy) are (0.444, 0.543), the internal quantum efficiency is 82.8%, the external quantum efficiency is 75.3%, and the relative fluorescence intensity is 110%. The value of is also higher than the polycrystalline ceramic light conversion member according to Comparative Example 1 described later, which is made of (Y 0.99 Ce 0.01 ) 3 Al 5 O 12 not containing La. I understand.

(実施例2〜9)
多結晶セラミックス光変換部材が各々下記表1に示す組成になるように、原料のα−Al粉末、Y粉末、La粉末およびCeO粉末を秤量し、原料粉末を調製したこと以外は、実施例1と同様の方法で仮焼粉末を得た。さらに、実施例1と同様の方法で、仮焼粉末を成形、焼成し、多結晶セラミックス光変換部材を得た。得られた多結晶セラミックス光変換部材について、実施例1と同様の方法で結晶相の同定を行い、いずれの実施例の多結晶セラミックス光変換部材についてもYAl12相からなることを確認した。
(Examples 2-9)
Raw material α-Al 2 O 3 powder, Y 2 O 3 powder, La 2 O 3 powder, and CeO 2 powder are weighed so that the polycrystalline ceramic light conversion member has the composition shown in Table 1 below. A calcined powder was obtained in the same manner as in Example 1 except that was prepared. Further, the calcined powder was molded and fired in the same manner as in Example 1 to obtain a polycrystalline ceramic light conversion member. About the obtained polycrystalline ceramic light converting member, the crystal phase is identified by the same method as in Example 1, and the polycrystalline ceramic light converting member of any Example is composed of the Y 3 Al 5 O 12 phase. confirmed.

実施例2に係る多結晶セラミックス光変換部材のXRD回折パターンを、図1に、比較例1に係る多結晶セラミックス光変換部材のXRD回折パターンと併せて示す。また、実施例1と同様の方法で得られた多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を測定した。後述する比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の、実施例2〜9に係る多結晶セラミックス光変換部材の最大蛍光強度の相対値を相対蛍光強度として算出した。   The XRD diffraction pattern of the polycrystalline ceramic light conversion member according to Example 2 is shown in FIG. 1 together with the XRD diffraction pattern of the polycrystalline ceramic light conversion member according to Comparative Example 1. Further, when the polycrystalline ceramic light conversion member obtained by the same method as in Example 1 is excited with light having a wavelength of 460 nm, the chromaticity coordinates of fluorescence, the absorptance, the internal quantum efficiency, the external quantum efficiency, and the maximum The fluorescence intensity was measured. When the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 described later is 100%, the relative value of the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Examples 2 to 9 is defined as the relative fluorescence intensity. Calculated.

下記表1に、実施例2〜9に係る多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。La量(x)が、x=0.05である(Y0.94La0.05Ce0.01Al12からなる実施例5が最も高い相対蛍光強度、内部量子効率、外部量子効率を示した。 Table 1 below shows the chromaticity coordinates, absorption rate, internal quantum efficiency, external quantum efficiency, and relative fluorescence of the polycrystalline ceramic light conversion members according to Examples 2 to 9 when excited with light having a wavelength of 460 nm. Indicates strength. La amount (x) is the x = 0.05 (Y 0.94 La 0.05 Ce 0.01) 3 Al 5 O 12 highest relative fluorescence intensity Example 5 consisting of, internal quantum efficiency, external The quantum efficiency is shown.

(比較例1)
多結晶セラミックス光変換部材が下記表1に示す組成になるように、原料からLa粉末を除いて、α−Al粉末、Y粉末、CeO粉末を秤量し、原料粉末を調製したこと以外は、実施例1と同様の方法で、比較例1に係る多結晶セラミックス光変換部材を得た。得られた多結晶セラミックス光変換部材の結晶相の同定を、上記(多結晶セラミックス光変換部材の構成相の同定方法)にて説明した方法で行い、比較例1に係る多結晶セラミックス光変換部材がYAl12相からなることを確認した。そのXRD回折パターンを図1に示す。また、実施例1と同様の方法で、得られた多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の主波長、内部量子効率および最大蛍光強度を測定した。なお、他の実施例及び比較例の多結晶セラミックス光変換部材の相対蛍光強度は、比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の値である。
(Comparative Example 1)
In order for the polycrystalline ceramic light converting member to have the composition shown in Table 1 below, the La 2 O 3 powder is removed from the raw material, and α-Al 2 O 3 powder, Y 2 O 3 powder, CeO 2 powder are weighed, A polycrystalline ceramic light conversion member according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the raw material powder was prepared. The crystal phase of the obtained polycrystalline ceramic light conversion member is identified by the method described in the above (Method for identifying constituent phases of polycrystalline ceramic light conversion member), and the polycrystalline ceramic light conversion member according to Comparative Example 1 is used. Was made of Y 3 Al 5 O 12 phase. The XRD diffraction pattern is shown in FIG. Further, in the same manner as in Example 1, the main wavelength of fluorescence, the internal quantum efficiency, and the maximum fluorescence intensity of the obtained polycrystalline ceramic light conversion member when excited with light having a wavelength of 460 nm were measured. In addition, the relative fluorescence intensity of the polycrystalline ceramic light conversion member of another Example and a comparative example is a value when the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 is 100%.

下記表1に、比較例1に係る多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表1から、Laを含まない比較例1の多結晶セラミックス光変換部材の相対蛍光強度は100%、内部量子効率は74.8%、外部量子効率は68.2%と、Laを原子比xで0.01〜0.13含む実施例1〜9に比べ、何れの蛍光特性も低い値を示していることがわかる。   Table 1 below shows the chromaticity coordinates, absorption rate, internal quantum efficiency, external quantum efficiency, and relative fluorescence intensity of fluorescence when excited with light having a wavelength of 460 nm of the polycrystalline ceramic light conversion member according to Comparative Example 1. Show. From Table 1 below, the relative fluorescence intensity of the polycrystalline ceramic light conversion member of Comparative Example 1 containing no La is 100%, the internal quantum efficiency is 74.8%, the external quantum efficiency is 68.2%, and La is the atomic ratio. It can be seen that all of the fluorescence characteristics show lower values than Examples 1 to 9 containing 0.01 to 0.13 in x.

(比較例2)
多結晶セラミックス光変換部材が下記表1に示す組成になるように、原料のα−Al粉末、Y粉末、La粉末およびCeO粉末を秤量し、原料粉末を調製したこと以外は、実施例1と同様の方法で仮焼粉末を得た。さらに、実施例1と同様の方法で、仮焼粉末を成形、焼成し、多結晶セラミックス光変換部材を得た。得られた多結晶セラミックス光変換部材の結晶相の同定を、上記(多結晶セラミックス光変換部材の構成相の同定方法)にて説明した方法で行い、比較例2の多結晶セラミックス光変換部材がYAl12相からなることを確認した。また、実施例1と同様の方法で、得られた多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を測定した。比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の、比較例2に係る多結晶セラミックス光変換部材の最大蛍光強度の相対値を相対蛍光強度として算出した。
(Comparative Example 2)
The raw material α-Al 2 O 3 powder, Y 2 O 3 powder, La 2 O 3 powder and CeO 2 powder are weighed so that the polycrystalline ceramic light conversion member has the composition shown in Table 1 below. A calcined powder was obtained in the same manner as in Example 1 except that it was prepared. Further, the calcined powder was molded and fired in the same manner as in Example 1 to obtain a polycrystalline ceramic light conversion member. The identification of the crystal phase of the obtained polycrystalline ceramic light conversion member was carried out by the method described above (Method for identifying the constituent phases of the polycrystalline ceramic light conversion member), and the polycrystalline ceramic light conversion member of Comparative Example 2 was obtained. It was confirmed to be composed of a Y 3 Al 5 O 12 phase. Further, in the same manner as in Example 1, when the polycrystalline ceramic light conversion member obtained was excited with light having a wavelength of 460 nm, the chromaticity coordinates of fluorescence, the absorptance, the internal quantum efficiency, the external quantum efficiency, and Maximum fluorescence intensity was measured. When the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 was 100%, the relative value of the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 2 was calculated as the relative fluorescence intensity.

下記表1に、比較例2に係る多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表1から、Laの原子比xが0.15である比較例2の多結晶セラミックス光変換部材の相対蛍光強度は100%、内部量子効率は75.2%、外部量子効率は68.1%と、Laを原子比xで0.01〜0.13含む実施例1〜9に比べ、何れの蛍光特性も低い値を示していることがわかる。   Table 1 below shows the chromaticity coordinates, absorption rate, internal quantum efficiency, external quantum efficiency, and relative fluorescence intensity of fluorescence when excited with light having a wavelength of 460 nm of the polycrystalline ceramic light conversion member according to Comparative Example 2. Show. From Table 1 below, the relative fluorescence intensity of the polycrystalline ceramic light conversion member of Comparative Example 2 in which the atomic ratio x of La is 0.15 is 100%, the internal quantum efficiency is 75.2%, and the external quantum efficiency is 68.1. It can be seen that all of the fluorescence characteristics show lower values than those of Examples 1 to 9 including 0.01% to 0.13% of La and an atomic ratio x of 0.01 to 0.13.

Figure 2017058550
Figure 2017058550

(実施例10〜18)
実施例1〜9に係る多結晶セラミックス光変換部材を、さらに窒素雰囲気中1500℃で4時間保持する条件で熱処理して、実施例10〜18に係る多結晶セラミックス光変換部材を得た。得られた多結晶セラミックス光変換部材について、実施例1と同様の方法で結晶相の同定を行い、いずれの実施例の多結晶セラミックス光変換部材についてもYAl12相からなることを確認した。実施例1と同様の方法で、得られた多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の主波長、内部量子効率および最大蛍光強度を測定した。比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の、実施例10〜18に係る多結晶セラミックス光変換部材の最大蛍光強度の相対値を相対蛍光強度として算出した。
(Examples 10 to 18)
The polycrystalline ceramic light conversion member according to Examples 1 to 9 was further heat-treated under the condition of holding at 1500 ° C. for 4 hours in a nitrogen atmosphere to obtain the polycrystalline ceramic light conversion member according to Examples 10 to 18. About the obtained polycrystalline ceramic light converting member, the crystal phase is identified by the same method as in Example 1, and the polycrystalline ceramic light converting member of any Example is composed of the Y 3 Al 5 O 12 phase. confirmed. In the same manner as in Example 1, the main wavelength of fluorescence, the internal quantum efficiency, and the maximum fluorescence intensity of the obtained polycrystalline ceramic light conversion member when excited with light having a wavelength of 460 nm were measured. When the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 was 100%, the relative value of the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Examples 10 to 18 was calculated as the relative fluorescence intensity. .

下記表2に、実施例10〜18に係る多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表2から、実施例10〜18の多結晶セラミックス光変換部材の相対蛍光強度は119〜130%、内部量子効率は89.4〜96.8%、外部量子効率は81.4〜88.4%と、窒素雰囲気中での熱処理を行っていない実施例1〜9に比べ、何れの蛍光特性も高い値を示していることがわかる。   Table 2 below shows the chromaticity coordinates of the fluorescence, the absorptance, the internal quantum efficiency, the external quantum efficiency, and the relative fluorescence of the polycrystalline ceramic light conversion member according to Examples 10 to 18 when excited with light having a wavelength of 460 nm. Indicates strength. From Table 2 below, the relative fluorescence intensity of the polycrystalline ceramic light conversion members of Examples 10 to 18 is 119 to 130%, the internal quantum efficiency is 89.4 to 96.8%, and the external quantum efficiency is 81.4 to 88.88. It can be seen that all of the fluorescence characteristics show a high value of 4% as compared with Examples 1 to 9 in which heat treatment in a nitrogen atmosphere is not performed.

(実施例19、20)
多結晶セラミックス光変換部材が各々下記表2に示す組成になるように、原料のα−Al粉末、Y粉末、La粉末およびCeO粉末を秤量し、原料粉末を調製したこと以外は、実施例1と同様の方法で仮焼粉末を得た。さらに、実施例10と同様の方法で、仮焼粉末を成形、焼成、熱処理し、多結晶セラミックス光変換部材を得た。得られた多結晶セラミックス光変換部材について、実施例1と同様の方法で結晶相の同定を行い、いずれの実施例の多結晶セラミックス光変換部材についてもYAl12相からなることを確認した。また、実施例1と同様の方法で、得られた多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を測定した。前述の比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の、実施例19、20に係る多結晶セラミックス光変換部材の最大蛍光強度の相対値を相対蛍光強度として算出した。
(Examples 19 and 20)
Raw material α-Al 2 O 3 powder, Y 2 O 3 powder, La 2 O 3 powder and CeO 2 powder are weighed so that the polycrystalline ceramic light conversion member has the composition shown in Table 2 below. A calcined powder was obtained in the same manner as in Example 1 except that was prepared. Further, the calcined powder was molded, fired, and heat treated in the same manner as in Example 10 to obtain a polycrystalline ceramic light conversion member. About the obtained polycrystalline ceramic light converting member, the crystal phase is identified by the same method as in Example 1, and the polycrystalline ceramic light converting member of any Example is composed of the Y 3 Al 5 O 12 phase. confirmed. Further, in the same manner as in Example 1, when the polycrystalline ceramic light conversion member obtained was excited with light having a wavelength of 460 nm, the chromaticity coordinates of fluorescence, the absorptance, the internal quantum efficiency, the external quantum efficiency, and Maximum fluorescence intensity was measured. When the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 is 100%, the relative value of the maximum fluorescence intensity of the polycrystalline ceramic light conversion members according to Examples 19 and 20 is defined as the relative fluorescence intensity. Calculated.

下記表2に、実施例19、20に係る多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表2から、実施例19、20の多結晶セラミックス光変換部材の相対蛍光強度は118、109%、内部量子効率は87.2、81.3%、外部量子効率は80.3、74.5%と、比較的高い蛍光特性を示していることがわかる。しかし、Ce量(y)が0.02(実施例19)、0.03(実施例20)であるため、Ce量(y)が0.01である実施例11に比べると、蛍光特性は低くなっており、Ce量(y)は、0<y<0.02が好ましいことがわかる。   Table 2 below shows the chromaticity coordinates of the fluorescence, the absorptance, the internal quantum efficiency, the external quantum efficiency, and the relative fluorescence of the polycrystalline ceramic light conversion member according to Examples 19 and 20 when excited with light having a wavelength of 460 nm. Indicates strength. From Table 2 below, the relative fluorescence intensity of the polycrystalline ceramic light conversion members of Examples 19 and 20 is 118, 109%, the internal quantum efficiency is 87.2, 81.3%, and the external quantum efficiency is 80.3, 74. It can be seen that the comparatively high fluorescence characteristic is 5%. However, since the Ce amount (y) is 0.02 (Example 19) and 0.03 (Example 20), compared with Example 11 in which the Ce amount (y) is 0.01, the fluorescence characteristics are It can be seen that the Ce amount (y) is preferably 0 <y <0.02.

(比較例3)
多結晶セラミックス光変換部材が下記表2に示す組成になるように、原料のα−Al粉末、Y粉末、La粉末およびCeO粉末を秤量し、原料粉末を調製したこと以外は、実施例1と同様の方法で仮焼粉末を得た。さらに、実施例10と同様の方法で、仮焼粉末を成形、焼成、熱処理し、多結晶セラミックス光変換部材を得た。得られた多結晶セラミックス光変換部材の結晶相の同定を、上記(光変換用セラミックス複合材料の結晶相の同定および定量方法)にて説明した方法で行い、比較例3の多結晶セラミックス光変換部材がYAl12相からなることを確認した。また、実施例1と同様の方法で、得られた多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を測定した。前述の比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の、比較例3に係る多結晶セラミックス光変換部材の最大蛍光強度の相対値を相対蛍光強度として算出した。
(Comparative Example 3)
The raw material α-Al 2 O 3 powder, Y 2 O 3 powder, La 2 O 3 powder and CeO 2 powder are weighed so that the polycrystalline ceramic light conversion member has the composition shown in Table 2 below. A calcined powder was obtained in the same manner as in Example 1 except that it was prepared. Further, the calcined powder was molded, fired, and heat treated in the same manner as in Example 10 to obtain a polycrystalline ceramic light conversion member. The identification of the crystal phase of the obtained polycrystalline ceramic light conversion member was performed by the method described above (Method for identifying and quantifying the crystal phase of the ceramic composite material for light conversion), and the polycrystalline ceramic light conversion of Comparative Example 3 was performed. It was confirmed that the member was composed of a Y 3 Al 5 O 12 phase. Further, in the same manner as in Example 1, when the polycrystalline ceramic light conversion member obtained was excited with light having a wavelength of 460 nm, the chromaticity coordinates of fluorescence, the absorptance, the internal quantum efficiency, the external quantum efficiency, and Maximum fluorescence intensity was measured. When the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 is 100%, the relative value of the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 3 was calculated as the relative fluorescence intensity. .

下記表2に、比較例3に係る多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表2から、比較例3の多結晶セラミックス光変換部材は、Ce量(y)が0.04であるため、その相対蛍光強度は87%、内部量子効率は72.0%、外部量子効率は66.1%と、Ce量(y)が、0<y<0.04である実施例1〜20に比べ低い蛍光特性を示していることがわかる。   Table 2 below shows the chromaticity coordinates, absorption rate, internal quantum efficiency, external quantum efficiency, and relative fluorescence intensity of fluorescence when excited with light having a wavelength of 460 nm of the polycrystalline ceramic light conversion member according to Comparative Example 3. Show. From Table 2 below, the polycrystalline ceramic light conversion member of Comparative Example 3 has a Ce amount (y) of 0.04, so that the relative fluorescence intensity is 87%, the internal quantum efficiency is 72.0%, and the external quantum efficiency. 66.1%, and it can be seen that the Ce amount (y) shows lower fluorescence characteristics than Examples 1 to 20 where 0 <y <0.04.

(実施例21、22)
多結晶セラミックス光変換部材が各々下記表2に示す組成になるように、原料にGd粉末又はTb粉末を加えて、原料のα−Al粉末、Y粉末、Gd粉末、Tb粉末、La粉末およびCeO粉末を秤量し、原料粉末を調製したこと以外は、実施例1と同様の方法で仮焼粉末を得た。さらに、実施例10と同様の方法で、仮焼粉末を成形、焼成、熱処理し、多結晶セラミックス光変換部材を得た。得られた多結晶セラミックス光変換部材について、実施例1と同様の方法で結晶相の同定を行い、いずれの実施例の多結晶セラミックス光変換部材についてもYAl12相からなることを確認した。また、実施例1と同様の方法で、得られた多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を測定した。前述の比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の、実施例21、22に係る多結晶セラミックス光変換部材の最大蛍光強度の相対値を相対蛍光強度として算出した。
(Examples 21 and 22)
Gd 2 O 3 powder or Tb 4 O 7 powder is added to the raw material so that the polycrystalline ceramic light conversion member has the composition shown in Table 2 below, and the raw material α-Al 2 O 3 powder, Y 2 O 3 A calcined powder was obtained in the same manner as in Example 1 except that the powder, Gd 2 O 3 powder, Tb 4 O 7 powder, La 2 O 3 powder and CeO 2 powder were weighed and the raw material powder was prepared. . Further, the calcined powder was molded, fired, and heat treated in the same manner as in Example 10 to obtain a polycrystalline ceramic light conversion member. About the obtained polycrystalline ceramic light converting member, the crystal phase is identified by the same method as in Example 1, and the polycrystalline ceramic light converting member of any Example is composed of the Y 3 Al 5 O 12 phase. confirmed. Further, in the same manner as in Example 1, when the polycrystalline ceramic light conversion member obtained was excited with light having a wavelength of 460 nm, the chromaticity coordinates of fluorescence, the absorptance, the internal quantum efficiency, the external quantum efficiency, and Maximum fluorescence intensity was measured. When the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 is 100%, the relative value of the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Examples 21 and 22 is defined as the relative fluorescence intensity. Calculated.

下記表2に、実施例21、22に係る多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表2から、実施例21、22の多結晶セラミックス光変換部材の相対蛍光強度は123、120%、内部量子効率は92.6、89.8%、外部量子効率は84.0、81.6%と、高い蛍光特性を示していることがわかる。   Table 2 below shows the chromaticity coordinates, absorption rate, internal quantum efficiency, external quantum efficiency, and relative fluorescence of the polycrystalline ceramic light conversion member according to Examples 21 and 22 when excited with light having a wavelength of 460 nm. Indicates strength. From Table 2 below, the relative fluorescence intensity of the polycrystalline ceramic light conversion members of Examples 21 and 22 is 123, 120%, the internal quantum efficiency is 92.6, 89.8%, and the external quantum efficiency is 84.0, 81. It can be seen that the fluorescence characteristics are as high as 6%.

(比較例4、5)
多結晶セラミックス光変換部材が各々下記表2に示す組成になるように、原料からLa粉末を除いて、α−Al粉末、Y粉末、Gd粉末、Tb粉末、およびCeO粉末を秤量し、原料粉末を調製したこと以外は、実施例1と同様の方法で、比較例4、5に係る仮焼粉末を得た。さらに、実施例10と同様の方法で、仮焼粉末を成形、焼成、熱処理し、多結晶セラミックス光変換部材を得た。得られた多結晶セラミックス光変換部材の結晶相の同定を、上記(多結晶セラミックス光変換部材の構成相の同定方法)にて説明した方法で行い、比較例4、5の多結晶セラミックス光変換部材がYAl12相からなることを確認した。また、実施例1と同様の方法で、得られた多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を測定した。前述の比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の、比較例4、5に係る多結晶セラミックス光変換部材の最大蛍光強度の相対値を相対蛍光強度として算出した。
(Comparative Examples 4 and 5)
As polycrystalline ceramic light conversion member is each composition shown in Table 2, with the exception of La 2 O 3 powder from the raw material, alpha-Al 2 O 3 powder, Y 2 O 3 powder, Gd 2 O 3 powder, The calcined powder according to Comparative Examples 4 and 5 was obtained in the same manner as in Example 1 except that Tb 4 O 7 powder and CeO 2 powder were weighed and raw material powder was prepared. Further, the calcined powder was molded, fired, and heat treated in the same manner as in Example 10 to obtain a polycrystalline ceramic light conversion member. The crystal phase of the obtained polycrystalline ceramic light conversion member is identified by the method described in the above (Method for identifying the constituent phases of the polycrystalline ceramic light conversion member). It was confirmed that the member was composed of a Y 3 Al 5 O 12 phase. Further, in the same manner as in Example 1, when the polycrystalline ceramic light conversion member obtained was excited with light having a wavelength of 460 nm, the chromaticity coordinates of fluorescence, the absorptance, the internal quantum efficiency, the external quantum efficiency, and Maximum fluorescence intensity was measured. When the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 is 100%, the relative value of the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Examples 4 and 5 is defined as the relative fluorescence intensity. Calculated.

下記表2に、比較例4、5に係る多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表2から、比較例4、5の多結晶セラミックス光変換部材の相対蛍光強度は96、91%、内部量子効率は71.9、68.3%、外部量子効率は65.3、61.9%と、Laを含んでいる実施例1〜22に比べ低い蛍光特性を示していることがわかる。   Table 2 below shows the chromaticity coordinates of the fluorescence, the absorption rate, the internal quantum efficiency, the external quantum efficiency, and the relative fluorescence of the polycrystalline ceramic light conversion member according to Comparative Examples 4 and 5 when excited with light having a wavelength of 460 nm. Indicates strength. From Table 2 below, the relative fluorescence intensity of the polycrystalline ceramic light conversion members of Comparative Examples 4 and 5 is 96, 91%, the internal quantum efficiency is 71.9, 68.3%, and the external quantum efficiency is 65.3, 61. It can be seen that the fluorescence characteristics are 9%, which is lower than those of Examples 1 to 22 containing La.

Figure 2017058550
Figure 2017058550

(実施例23)
多結晶セラミックス光変換部材が下記表3に示す組成になるように、原料のα−Al粉末(純度99.99%)9.01g、Lu粉末(純度99.9%)20.67g、La粉末(純度99.9%)0.17g、およびCeO粉末(純度99.9%)0.18gを秤量し、これらの原料粉末を、エタノール中、ボールミルによって24時間湿式混合した後、エバポレーターを用いてエタノールを脱媒し、仮焼に供する混合粉末を調製した。得られた、仮焼に供する混合粉末をAlるつぼに入れて、バッチ式電気炉に仕込み、大気雰囲気中1500℃で3時間保持して仮焼し、(Lu0.98La0.01Ce0.01Al12からなる仮焼粉末を得た。
(Example 23)
Raw material α-Al 2 O 3 powder (purity 99.99%) 9.01 g, Lu 2 O 3 powder (purity 99.9%) so that the polycrystalline ceramic light conversion member has the composition shown in Table 3 below. 20.67 g, 0.17 g of La 2 O 3 powder (purity 99.9%) and 0.18 g of CeO 2 powder (purity 99.9%) were weighed, and these raw material powders were mixed in ethanol by a ball mill for 24 hours. After wet-mixing for a period of time, ethanol was removed using an evaporator to prepare a mixed powder for calcination. The obtained mixed powder to be calcined is put in an Al 2 O 3 crucible, charged into a batch-type electric furnace, kept at 1500 ° C. in an air atmosphere for 3 hours and calcined (Lu 0.98 La 0. A calcined powder composed of 01 Ce 0.01 ) 3 Al 5 O 12 was obtained.

次に、得られた仮焼粉末をエタノール中、ボールミルによって90時間湿式粉砕した後、エバポレーターを用いてエタノールを脱媒して、粉末を調製した。得られた粉末100質量部に対して、ポリビニルブチラール等のバインダ樹脂15.75質量部、フタル酸ジブチル等の可塑剤2.25質量部、分散剤4質量部、トルエン等の有機溶剤135質量部を添加して、混合スラリーを作製した。得られた混合スラリーをドクターブレードのスラリー収容槽に収容し、スラリー収容槽下方の隙間の高さを調節できる可変式ブレードを調節して、スラリー収容槽下方より混合スラリーをシート状に流出させた。流出させた混合スラリーを、真空吸盤にて搬送台に固定されたPETフィルム上に、厚みが50μm程度となるように塗工し、乾燥し、グリーンシートを作製した。得られたグリーンシートを、焼成後の厚みが220〜230μmとなるよう5枚積層し、温度85℃、圧力20MPaの温間等方圧プレスにより圧着して、積層体を作製した。加熱により積層体から剥離できる発泡剥離シート上に積層体を固定し、所定の形状となるように切断した。切断した積層体を乾燥機にて加熱し、発泡剥離シートから分離させた。得られた積層体を、バッチ式電気炉を用いて、大気雰囲気中1675℃で6時間保持して、焼成した。さらに窒素雰囲気中1500℃で4時間保持する条件で熱処理を行い、多結晶セラミックス光変換部材を得た。   Next, the obtained calcined powder was wet pulverized in ethanol by a ball mill for 90 hours, and then ethanol was removed using an evaporator to prepare a powder. With respect to 100 parts by mass of the obtained powder, 15.75 parts by mass of a binder resin such as polyvinyl butyral, 2.25 parts by mass of a plasticizer such as dibutyl phthalate, 4 parts by mass of a dispersant, and 135 parts by mass of an organic solvent such as toluene. Was added to prepare a mixed slurry. The obtained mixed slurry was accommodated in a slurry accommodating tank of a doctor blade, and a variable blade capable of adjusting the height of the gap below the slurry accommodating tank was adjusted to allow the mixed slurry to flow out in a sheet form from below the slurry accommodating tank. . The mixed slurry that had flowed out was coated on a PET film fixed to a carrier with a vacuum suction cup so as to have a thickness of about 50 μm and dried to produce a green sheet. Five sheets of the obtained green sheets were laminated so that the thickness after firing was 220 to 230 μm, and pressed by a warm isostatic press at a temperature of 85 ° C. and a pressure of 20 MPa to produce a laminate. The laminate was fixed on a foam release sheet that could be peeled off from the laminate by heating, and was cut into a predetermined shape. The cut laminate was heated with a dryer and separated from the foam release sheet. The obtained laminate was baked by using a batch type electric furnace and holding at 1675 ° C. in an air atmosphere for 6 hours. Furthermore, heat treatment was performed under the condition of holding at 1500 ° C. for 4 hours in a nitrogen atmosphere to obtain a polycrystalline ceramic light conversion member.

得られた多結晶セラミックス光変換部材の結晶相の同定を、上記(多結晶セラミックス光変換部材の構成相の同定方法)にて説明した方法で行い、実施例23に係る多結晶セラミックス光変換部材がLuAl12相からなることを確認した。 The identification of the crystal phase of the obtained polycrystalline ceramic light conversion member was performed by the method described in the above (Method for identifying the constituent phases of the polycrystalline ceramic light conversion member), and the polycrystalline ceramic light conversion member according to Example 23 was obtained. Was confirmed to be composed of the Lu 3 Al 5 O 12 phase.

実施例23に係る多結晶セラミックス光変換部材を、実施例1と同様の方法で、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を測定した。比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の、実施例23に係る多結晶セラミックス光変換部材の最大蛍光強度の相対値を相対蛍光強度として算出した。   When the polycrystalline ceramic light conversion member according to Example 23 is excited with light having a wavelength of 460 nm in the same manner as in Example 1, the chromaticity coordinates of fluorescence, the absorptance, the internal quantum efficiency, the external quantum efficiency, and Maximum fluorescence intensity was measured. When the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 was 100%, the relative value of the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Example 23 was calculated as the relative fluorescence intensity.

下記表3に、実施例23に係る多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を示す。下記表3から、実施例23の多結晶セラミックス光変換部材の相対蛍光強度は123%、内部量子効率は91.6%、外部量子効率は83.6%と、高い蛍光特性を示していることがわかる。   Table 3 below shows the chromaticity coordinates, absorptance, internal quantum efficiency, external quantum efficiency, and maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Example 23 when excited with light having a wavelength of 460 nm. Show. From Table 3 below, the relative fluorescence intensity of the polycrystalline ceramic light conversion member of Example 23 is 123%, the internal quantum efficiency is 91.6%, and the external quantum efficiency is 83.6%, indicating high fluorescence characteristics. I understand.

(実施例24〜31)
多結晶セラミックス光変換部材が各々下記表3に示す組成になるように、原料のα−Al粉末、Lu粉末、La粉末およびCeO粉末を秤量し、原料粉末を調製したこと以外は、実施例23と同様の方法で仮焼粉末を得た。さらに、実施例23と同様の方法で、仮焼粉末を成形、焼成、熱処理し、多結晶セラミックス光変換部材を得た。得られた多結晶セラミックス光変換部材について、実施例23と同様の方法で結晶相の同定を行い、実施例24〜31に係る多結晶セラミックス光変換部材がLuAl12相からなることを確認した。実施例24に係る多結晶セラミックス光変換部材のXRD回折パターンを図2に示す。
(Examples 24-31)
Raw material α-Al 2 O 3 powder, Lu 2 O 3 powder, La 2 O 3 powder and CeO 2 powder are weighed so that the polycrystalline ceramic light conversion member has the composition shown in Table 3 below. A calcined powder was obtained in the same manner as in Example 23 except that was prepared. Further, the calcined powder was molded, fired, and heat treated in the same manner as in Example 23 to obtain a polycrystalline ceramic light conversion member. About the obtained polycrystalline ceramic light conversion member, the crystal phase is identified by the same method as in Example 23, and the polycrystalline ceramic light conversion member according to Examples 24-31 is composed of a Lu 3 Al 5 O 12 phase. It was confirmed. The XRD diffraction pattern of the polycrystalline ceramic light conversion member according to Example 24 is shown in FIG.

また、実施例1と同様の方法で、得られた多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を測定した。比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の、実施例24〜31に係る多結晶セラミックス光変換部材の最大蛍光強度の相対値を相対蛍光強度として算出した。   Further, in the same manner as in Example 1, when the polycrystalline ceramic light conversion member obtained was excited with light having a wavelength of 460 nm, the chromaticity coordinates of fluorescence, the absorptance, the internal quantum efficiency, the external quantum efficiency, and Maximum fluorescence intensity was measured. When the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 was 100%, the relative value of the maximum fluorescence intensity of the polycrystalline ceramic light conversion members according to Examples 24-31 was calculated as the relative fluorescence intensity. .

下記表3に、実施例24〜31に係る多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。La量(x)が、x=0.02である(Lu0.97La0.02Ce0.01Al12からなる実施例24が最も高い相対蛍光強度、内部量子効率、外部量子効率を示した。 Table 3 below shows the chromaticity coordinates of fluorescence, the absorptance, the internal quantum efficiency, the external quantum efficiency, and the relative fluorescence of the polycrystalline ceramic light conversion member according to Examples 24-31 when excited with light having a wavelength of 460 nm. Indicates strength. Example 24 consisting of (Al 0.97 La 0.02 Ce 0.01 ) 3 Al 5 O 12 where La amount (x) is x = 0.02 is the highest relative fluorescence intensity, internal quantum efficiency, external The quantum efficiency is shown.

(実施例32)
多結晶セラミックス光変換部材が下記表3に示す組成になるように、原料にGa粉末を加えて、α−Al粉末、Ga粉末、Lu粉末、La粉末およびCeO粉末を秤量し、原料粉末を調製したこと以外は、実施例23と同様の方法で仮焼粉末を得た。さらに、実施例23と同様の方法で、仮焼粉末を成形、焼成、熱処理し、多結晶セラミックス光変換部材を得た。得られた多結晶セラミックス光変換部材について、実施例23と同様の方法で結晶相の同定を行い、実施例32に係る多結晶セラミックス光変換部材がLuAl12相からなることを確認した。また、実施例1と同様の方法で、得られた多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を測定した。比較例1に係る多結晶セラミックス光変換部材の最大蛍光強度を100%とした場合の、実施例32に係る多結晶セラミックス光変換部材の最大蛍光強度の相対値を相対蛍光強度として算出した。
(Example 32)
In order for the polycrystalline ceramic light conversion member to have the composition shown in Table 3 below, Ga 2 O 3 powder is added to the raw material, and α-Al 2 O 3 powder, Ga 2 O 3 powder, Lu 2 O 3 powder, La A calcined powder was obtained in the same manner as in Example 23 except that 2 O 3 powder and CeO 2 powder were weighed and raw material powder was prepared. Further, the calcined powder was molded, fired, and heat treated in the same manner as in Example 23 to obtain a polycrystalline ceramic light conversion member. About the obtained polycrystalline ceramic light conversion member, the crystal phase was identified by the same method as in Example 23, and it was confirmed that the polycrystalline ceramic light conversion member according to Example 32 was composed of a Lu 3 Al 5 O 12 phase. did. Further, in the same manner as in Example 1, when the polycrystalline ceramic light conversion member obtained was excited with light having a wavelength of 460 nm, the chromaticity coordinates of fluorescence, the absorptance, the internal quantum efficiency, the external quantum efficiency, and Maximum fluorescence intensity was measured. When the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Comparative Example 1 was 100%, the relative value of the maximum fluorescence intensity of the polycrystalline ceramic light conversion member according to Example 32 was calculated as the relative fluorescence intensity.

下記表3に、実施例32に係る多結晶セラミックス光変換部材の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表3から、実施例32の多結晶セラミックス光変換部材の相対蛍光強度は128%、内部量子効率は95.8%、外部量子効率は87.4%と、高い蛍光特性を示していることがわかる。   Table 3 below shows the chromaticity coordinates, absorptance, internal quantum efficiency, external quantum efficiency, and relative fluorescence intensity of fluorescence when excited with light having a wavelength of 460 nm of the polycrystalline ceramic light conversion member according to Example 32. Show. From the following Table 3, the relative fluorescence intensity of the polycrystalline ceramic light conversion member of Example 32 is 128%, the internal quantum efficiency is 95.8%, and the external quantum efficiency is 87.4%, indicating high fluorescence characteristics. I understand.

Figure 2017058550
Figure 2017058550

以下の比較例6〜9は、多結晶セラミックス光変換部材ではない、蛍光体粉末に係る例である。   The following Comparative Examples 6 to 9 are examples relating to phosphor powder that are not polycrystalline ceramic light conversion members.

(比較例6)
得られる蛍光体粉末が下記表4に示す組成になるように、原料のα−Al粉末(純度99.99%)12.80g、Y粉末(純度99.9%)16.50g、La粉末(純度99.9%)0.49g、およびCeO粉末(純度99.9%)0.26gを秤量し、これらの原料粉末を、エタノール中、ボールミルによって24時間湿式混合した後、エバポレーターを用いてエタノールを脱媒し、混合粉末を調製した。得られた混合粉末をAlるつぼに入れて、バッチ式電気炉に仕込み、大気雰囲気中1500℃で3時間保持して焼成した。
(Comparative Example 6)
Raw material α-Al 2 O 3 powder (purity 99.99%) 12.80 g, Y 2 O 3 powder (purity 99.9%) 16 so that the obtained phosphor powder has the composition shown in Table 4 below. .50 g, 0.49 g of La 2 O 3 powder (purity 99.9%) and 0.26 g of CeO 2 powder (purity 99.9%) were weighed, and these raw material powders were stirred in ethanol by a ball mill for 24 hours. After wet mixing, ethanol was removed using an evaporator to prepare a mixed powder. The obtained mixed powder was put into an Al 2 O 3 crucible, charged into a batch type electric furnace, and calcined by holding at 1500 ° C. for 3 hours in an air atmosphere.

次に、得られた粉末をエタノール中、ボールミルによって90時間湿式粉砕した後、エバポレーターを用いてエタノールを脱媒して、蛍光体粉末を調製した。得られた蛍光体粉末の結晶相の同定を、上記(多結晶セラミックス光変換部材の構成相の同定方法)に記載したX線回折装置および同装置に付帯する統合粉末X線解析ソフトウェアを用いて行い、比較例6の蛍光体粉末がYAl12相からなることを確認した。得られた蛍光体粉末を、実施例1と同様の方法で、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を測定した。後述の比較例7に係る蛍光体粉末の最大蛍光強度を100%とした場合の、比較例6に係る蛍光体粉末の最大蛍光強度の相対値を相対蛍光強度として算出した。 Next, the obtained powder was wet pulverized in ethanol by a ball mill for 90 hours, and then ethanol was removed using an evaporator to prepare a phosphor powder. Identification of the crystal phase of the obtained phosphor powder is performed using the X-ray diffraction apparatus described in the above (Method for identifying constituent phases of polycrystalline ceramic light conversion member) and the integrated powder X-ray analysis software attached to the apparatus. The phosphor powder of Comparative Example 6 was confirmed to be composed of a Y 3 Al 5 O 12 phase. Measure the chromaticity coordinates, absorptance, internal quantum efficiency, external quantum efficiency and maximum fluorescence intensity of the obtained phosphor powder when excited with light having a wavelength of 460 nm in the same manner as in Example 1. did. The relative value of the maximum fluorescence intensity of the phosphor powder according to Comparative Example 6 was calculated as the relative fluorescence intensity when the maximum fluorescence intensity of the phosphor powder according to Comparative Example 7 described later was 100%.

下記表4に、比較例6に係る蛍光体粉末の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表4から、比較例6の蛍光体粉末の相対蛍光強度は94%、内部量子効率は79.5%、外部量子効率は29.6%と、実施例1〜40に係る多結晶セラミックス光変換部材に比べ低い蛍光特性を示しているとともに、後述するLaを含まない比較例7に係る蛍光体粉末に比べ、低い蛍光特性を示していることがわかる。   Table 4 below shows the chromaticity coordinates, absorptance, internal quantum efficiency, external quantum efficiency, and relative fluorescence intensity of the phosphor powder according to Comparative Example 6 when excited with light having a wavelength of 460 nm. From Table 4 below, the phosphor powder of Comparative Example 6 has a relative fluorescence intensity of 94%, an internal quantum efficiency of 79.5%, and an external quantum efficiency of 29.6%. It can be seen that the fluorescent property is lower than that of the conversion member, and the fluorescent property is lower than that of the phosphor powder according to Comparative Example 7 that does not include La described later.

(比較例7)
得られる蛍光体粉末が下記表4に示す組成になるように、原料からLa粉末を除いて、α−Al粉末、Y粉末およびCeO粉末を秤量し、原料粉末を調製したこと以外は、比較例6と同様の方法で、比較例7に係る蛍光体粉末を得た。得られた蛍光体粉末の結晶相の同定を、上記(多結晶セラミックス光変換部材の構成相の同定方法)に記載したX線回折装置および同装置に付帯する統合粉末X線解析ソフトウェアを用いて行い、比較例7の蛍光体粉末がYAl12相からなることを確認した。また、実施例1と同様の方法で、得られた蛍光体粉末の、460nmの波長の光で励起した場合の、蛍光の主波長、内部量子効率および最大蛍光強度を測定した。比較例7に係る蛍光体粉末の最大蛍光強度を100%とした。
(Comparative Example 7)
In order to obtain the phosphor powder having the composition shown in Table 4 below, the La 2 O 3 powder is removed from the raw material, and α-Al 2 O 3 powder, Y 2 O 3 powder and CeO 2 powder are weighed, A phosphor powder according to Comparative Example 7 was obtained in the same manner as in Comparative Example 6 except that the powder was prepared. Identification of the crystal phase of the obtained phosphor powder is performed using the X-ray diffraction apparatus described in the above (Method for identifying constituent phases of polycrystalline ceramic light conversion member) and the integrated powder X-ray analysis software attached to the apparatus. The phosphor powder of Comparative Example 7 was confirmed to be composed of a Y 3 Al 5 O 12 phase. Moreover, the main wavelength of fluorescence, internal quantum efficiency, and maximum fluorescence intensity when the phosphor powder obtained was excited with light having a wavelength of 460 nm were measured in the same manner as in Example 1. The maximum fluorescent intensity of the phosphor powder according to Comparative Example 7 was set to 100%.

下記表4に、比較例7に係る蛍光体粉末の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表4から、Laを含まない比較例7の蛍光体粉末の相対蛍光強度は100%、内部量子効率は79.2%、外部量子効率は31.3%と、実施例1〜40に係る多結晶セラミックス光変換部材よりも低いが、Laを含む比較例6に係る蛍光体粉末より高い蛍光特性を示していることがわかる。   Table 4 below shows the chromaticity coordinates, absorption rate, internal quantum efficiency, external quantum efficiency, and relative fluorescence intensity of the fluorescent powder of Comparative Example 7 when excited with light having a wavelength of 460 nm. From Table 4 below, the phosphor powder of Comparative Example 7 not containing La has a relative fluorescence intensity of 100%, an internal quantum efficiency of 79.2%, and an external quantum efficiency of 31.3%, according to Examples 1 to 40. Although it is lower than the polycrystalline ceramic light conversion member, it can be seen that the fluorescent characteristic is higher than that of the phosphor powder according to Comparative Example 6 containing La.

(比較例8)
得られる蛍光体粉末が下記表4に示す組成になるように、α−Al粉末(純度99.99%)8.66g、Lu粉末(純度99.9%)20.49g、La粉末(純度99.9%)0.35g、およびCeO粉末(純度99.9%)0.18gを秤量し、これらの原料粉末を、エタノール中、ボールミルによって24時間湿式混合した後、エバポレーターを用いてエタノールを脱媒し、混合粉末を調製した。得られた混合粉末をAlるつぼに入れて、バッチ式電気炉に仕込み、大気雰囲気中1500℃で3時間保持した。
(Comparative Example 8)
Α-Al 2 O 3 powder (purity 99.99%) 8.66 g, Lu 2 O 3 powder (purity 99.9%) 20.49 g so that the obtained phosphor powder has the composition shown in Table 4 below. , 0.35 g of La 2 O 3 powder (purity 99.9%) and 0.18 g of CeO 2 powder (purity 99.9%) were weighed, and these raw material powders were wet mixed in ethanol by a ball mill for 24 hours. After that, ethanol was removed using an evaporator to prepare a mixed powder. The obtained mixed powder was put into an Al 2 O 3 crucible, charged into a batch type electric furnace, and held at 1500 ° C. in an air atmosphere for 3 hours.

次に、得られた粉末をエタノール中、ボールミルによって90時間湿式粉砕した後、エバポレーターを用いてエタノールを脱媒して、蛍光体粉末を調製した。得られた蛍光体粉末の結晶相の同定を、上記(多結晶セラミックス光変換部材の構成相の同定方法)に記載したX線回折装置および同装置に付帯する統合粉末X線解析ソフトウェアを用いて行い、比較例8の蛍光体粉末がLuAl12相からなることを確認した。得られた蛍光体粉末を、実施例1と同様の方法で、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および最大蛍光強度を測定した。後述の比較例9に係る蛍光体粉末の最大蛍光強度を100%とした場合の、比較例8に係る蛍光体粉末の最大蛍光強度の相対値を相対蛍光強度として算出した。 Next, the obtained powder was wet pulverized in ethanol by a ball mill for 90 hours, and then ethanol was removed using an evaporator to prepare a phosphor powder. Identification of the crystal phase of the obtained phosphor powder is performed using the X-ray diffraction apparatus described in the above (Method for identifying constituent phases of polycrystalline ceramic light conversion member) and the integrated powder X-ray analysis software attached to the apparatus. The phosphor powder of Comparative Example 8 was confirmed to consist of a Lu 3 Al 5 O 12 phase. Measure the chromaticity coordinates, absorptance, internal quantum efficiency, external quantum efficiency and maximum fluorescence intensity of the obtained phosphor powder when excited with light having a wavelength of 460 nm in the same manner as in Example 1. did. The relative value of the maximum fluorescence intensity of the phosphor powder according to Comparative Example 8 was calculated as the relative fluorescence intensity when the maximum fluorescence intensity of the phosphor powder according to Comparative Example 9 described later was 100%.

下記表4に、比較例8に係る蛍光体粉末の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表4から、比較例8の蛍光体粉末の相対蛍光強度は87%、内部量子効率は59.1%、外部量子効率は20.5%と、実施例1〜40に係る多結晶セラミックス光変換部材に比べ低い蛍光特性を示しているとともに、後述するLaを含まない比較例9に係る蛍光体粉末に比べ、低い蛍光特性を示している。   Table 4 below shows the chromaticity coordinates, absorptance, internal quantum efficiency, external quantum efficiency, and relative fluorescence intensity of the phosphor powder according to Comparative Example 8 when excited with light having a wavelength of 460 nm. From Table 4 below, the relative fluorescent intensity of the phosphor powder of Comparative Example 8 is 87%, the internal quantum efficiency is 59.1%, and the external quantum efficiency is 20.5%. In addition to the low fluorescence characteristics as compared with the conversion member, the fluorescence characteristics are low as compared with the phosphor powder according to Comparative Example 9 that does not contain La described later.

(比較例9)
得られる蛍光体粉末が下記表4に示す組成になるように、原料からLa粉末を除いて、α−Al粉末、Lu粉末、CeO粉末の量を変化させたこと以外は、比較例8と同様の方法で、比較例9に係る蛍光体粉末を得た。得られた蛍光体粉末の結晶相の同定を、上記(多結晶セラミックス光変換部材の構成相の同定方法)に記載したX線回折装置および同装置に付帯する統合粉末X線解析ソフトウェアを用いて行い、比較例9の蛍光体粉末がLuAl12相からなることを確認した。また、実施例1と同様の方法で、得られた蛍光体粉末の、460nmの波長の光で励起した場合の、蛍光の主波長、内部量子効率および最大蛍光強度を測定した。比較例9に係る蛍光体粉末の最大蛍光強度を100%とした。
(Comparative Example 9)
The amount of α-Al 2 O 3 powder, Lu 2 O 3 powder, and CeO 2 powder is changed by removing La 2 O 3 powder from the raw material so that the obtained phosphor powder has the composition shown in Table 4 below. A phosphor powder according to Comparative Example 9 was obtained in the same manner as in Comparative Example 8 except that. Identification of the crystal phase of the obtained phosphor powder is performed using the X-ray diffraction apparatus described in the above (Method for identifying constituent phases of polycrystalline ceramic light conversion member) and the integrated powder X-ray analysis software attached to the apparatus. It was confirmed that the phosphor powder of Comparative Example 9 was composed of a Lu 3 Al 5 O 12 phase. Moreover, the main wavelength of fluorescence, internal quantum efficiency, and maximum fluorescence intensity when the phosphor powder obtained was excited with light having a wavelength of 460 nm were measured in the same manner as in Example 1. The maximum fluorescence intensity of the phosphor powder according to Comparative Example 9 was set to 100%.

下記表4に、比較例9に係る蛍光体粉末の、460nmの波長の光で励起した場合の、蛍光の色度座標、吸収率、内部量子効率、外部量子効率および相対蛍光強度を示す。下記表4から、Laを含まない比較例9の蛍光体粉末の相対蛍光強度は100%、内部量子効率は65.3%、外部量子効率は23.6%と、実施例1〜40に係る多結晶セラミックス光変換部材よりも低いが、Laを含む比較例8に係る蛍光体粉末より高い蛍光特性を示していることがわかる。   Table 4 below shows the chromaticity coordinates of the fluorescence, the absorption rate, the internal quantum efficiency, the external quantum efficiency, and the relative fluorescence intensity of the phosphor powder according to Comparative Example 9 when excited with light having a wavelength of 460 nm. From Table 4 below, the phosphor powder of Comparative Example 9 containing no La has a relative fluorescence intensity of 100%, an internal quantum efficiency of 65.3%, and an external quantum efficiency of 23.6%, which are related to Examples 1 to 40. Although it is lower than the polycrystalline ceramic light conversion member, it can be seen that the fluorescent characteristic is higher than that of the phosphor powder according to Comparative Example 8 containing La.

Figure 2017058550
Figure 2017058550

上記表4から、蛍光体粉末では、同様の組成の多結晶セラミックス光変換部材の場合とは逆に、Laを含む場合に蛍光特性が低下することがわかる。即ち蛍光体粉末では、本発明とは異なり、Laを含むことによる効果は認められない。   From Table 4 above, it can be seen that, in the case of phosphor powder, the fluorescence characteristics deteriorate when La is contained, contrary to the case of the polycrystalline ceramic light conversion member having the same composition. That is, in the phosphor powder, unlike the present invention, the effect of including La is not recognized.

Claims (8)

実質的に(Ln1―x−yLaCe12(LnはY、Gd、Tb、及びLuから選択される少なくとも一種の元素であり、MはAl及びGaから選択される少なくとも一種の元素であり、Ceは賦活元素である。但し、0<x≦0.13、0<y<0.04である。)からなる多結晶セラミックス光変換部材。 Substantially (Ln 1-x-y La x Ce y) 3 M 5 O 12 (Ln is at least one element selected Y, Gd, Tb, and from Lu, M is selected from Al and Ga A polycrystalline ceramics light conversion member comprising Ce at least one element, wherein Ce is an activating element, where 0 <x ≦ 0.13 and 0 <y <0.04. xが0<x≦0.09であることを特徴とする請求項1に記載の多結晶セラミックス光変換部材。   2. The polycrystalline ceramic light converting member according to claim 1, wherein x is 0 <x ≦ 0.09. yが0<y<0.02であることを特徴とする請求項1または2に記載の多結晶セラミックス光変換部材。   The polycrystalline ceramic light converting member according to claim 1, wherein y is 0 <y <0.02. 発光素子と、請求項1〜3いずれか一項に記載の多結晶セラミックス光変換部材とを備えることを特徴とする発光装置。   A light-emitting device comprising: a light-emitting element; and the polycrystalline ceramic light conversion member according to claim 1. 前記発光素子が、発光ダイオード素子またはレーザーダイオード素子であることを特徴とする請求項4に記載の発光装置。   The light emitting device according to claim 4, wherein the light emitting element is a light emitting diode element or a laser diode element. Ln源化合物(LnはY、Gd、Tb、及びLuから選択される少なくとも一種の元素である。)、M源化合物(MはAl及びGaから選択される少なくとも一種の元素である。)、La源化合物、およびCe源化合物を含む混合粉末を仮焼する仮焼工程と、前記仮焼工程で得られた仮焼粉末を成形する成形工程と、前記成形工程で得られた成形体を焼成する焼成工程とを備えることを特徴とする請求項1〜3いずれか一項に記載の多結晶セラミックス光変換部材の製造方法。   Ln source compound (Ln is at least one element selected from Y, Gd, Tb, and Lu), M source compound (M is at least one element selected from Al and Ga), La A calcining step of calcining a mixed powder containing a source compound and a Ce source compound, a molding step of molding the calcined powder obtained in the calcining step, and firing the molded body obtained in the molding step A method for producing a polycrystalline ceramic light conversion member according to any one of claims 1 to 3, further comprising a firing step. 前記仮焼粉末が(Ln1―x−yLaCe12(LnはY、Gd、Tb、及びLuから選択される少なくとも一種の元素であり、MはAl及びGaから選択される少なくとも一種の元素であり、Ceは賦活元素である。但し、0<x≦0.13、0<y<0.04である。)であることを特徴とする請求項6に記載の多結晶セラミックス光変換部材の製造方法。 The calcined powder (Ln 1-x-y La x Ce y) 3 M 5 O 12 (Ln is at least one element selected Y, Gd, Tb, and from Lu, M is Al and Ga The selected element is at least one element, and Ce is an activating element, provided that 0 <x ≦ 0.13 and 0 <y <0.04). Manufacturing method of a polycrystalline ceramics light conversion member. 前記焼成工程の後に、不活性ガス雰囲気または還元性ガス雰囲気中で熱処理する熱処理工程を備えることを特徴とする請求項6または7に記載の多結晶セラミックス光変換部材の製造方法。   The method for producing a polycrystalline ceramic light converting member according to claim 6 or 7, further comprising a heat treatment step of performing a heat treatment in an inert gas atmosphere or a reducing gas atmosphere after the firing step.
JP2015184114A 2015-09-17 2015-09-17 Polycrystalline ceramics light conversion member, manufacturing method therefor, and light-emitting device Pending JP2017058550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015184114A JP2017058550A (en) 2015-09-17 2015-09-17 Polycrystalline ceramics light conversion member, manufacturing method therefor, and light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015184114A JP2017058550A (en) 2015-09-17 2015-09-17 Polycrystalline ceramics light conversion member, manufacturing method therefor, and light-emitting device

Publications (1)

Publication Number Publication Date
JP2017058550A true JP2017058550A (en) 2017-03-23

Family

ID=58390051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015184114A Pending JP2017058550A (en) 2015-09-17 2015-09-17 Polycrystalline ceramics light conversion member, manufacturing method therefor, and light-emitting device

Country Status (1)

Country Link
JP (1) JP2017058550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319486B2 (en) 2018-12-07 2022-05-03 Nichia Corporation Ceramic complex light emitting device using the same, and method for producing ceramic complex

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008844A (en) * 2003-02-26 2005-01-13 Nichia Chem Ind Ltd Phosphor, and light emitter using the same
CN100999662A (en) * 2006-12-29 2007-07-18 中国科学院长春应用化学研究所 Preparation process of fluorescent powder for white light LED excited by blue light
CN101144017A (en) * 2007-09-07 2008-03-19 江苏苏博特新材料股份有限公司 Fluorescent powder for white light luminescent diode and preparing method thereof
US20110309302A1 (en) * 2009-07-28 2011-12-22 Anatoly Vasilyevich Vishnyakov Inorganic luminescent material for solid-state white-light sources
WO2013058065A1 (en) * 2011-10-18 2013-04-25 株式会社村田製作所 Light-emitting element, method for producing same, and light-emitting device
JP2014525480A (en) * 2011-08-16 2014-09-29 日東電工株式会社 Phosphor composition and method for producing the same
JP2015129254A (en) * 2013-12-03 2015-07-16 パナソニックIpマネジメント株式会社 Oxychloride phosphor, light-emitting device, illumination device, and vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008844A (en) * 2003-02-26 2005-01-13 Nichia Chem Ind Ltd Phosphor, and light emitter using the same
CN100999662A (en) * 2006-12-29 2007-07-18 中国科学院长春应用化学研究所 Preparation process of fluorescent powder for white light LED excited by blue light
CN101144017A (en) * 2007-09-07 2008-03-19 江苏苏博特新材料股份有限公司 Fluorescent powder for white light luminescent diode and preparing method thereof
US20110309302A1 (en) * 2009-07-28 2011-12-22 Anatoly Vasilyevich Vishnyakov Inorganic luminescent material for solid-state white-light sources
JP2014525480A (en) * 2011-08-16 2014-09-29 日東電工株式会社 Phosphor composition and method for producing the same
WO2013058065A1 (en) * 2011-10-18 2013-04-25 株式会社村田製作所 Light-emitting element, method for producing same, and light-emitting device
JP2015129254A (en) * 2013-12-03 2015-07-16 パナソニックIpマネジメント株式会社 Oxychloride phosphor, light-emitting device, illumination device, and vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319486B2 (en) 2018-12-07 2022-05-03 Nichia Corporation Ceramic complex light emitting device using the same, and method for producing ceramic complex

Similar Documents

Publication Publication Date Title
JP6834491B2 (en) Manufacturing method of sintered phosphor, light emitting device, lighting device, vehicle headlight, and sintered phosphor
JP5862841B1 (en) CERAMIC COMPOSITE MATERIAL FOR LIGHT CONVERSION, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE EQUIPPED WITH THE SAME
JP5356822B2 (en) Light emitting device having improved CaAlSiN light conversion material
JP4420021B2 (en) White light emitting diode device
JP7056553B2 (en) Fluorescent material, light emitting device, lighting device and image display device
JP6897387B2 (en) Sintered phosphors, light emitting devices, lighting devices, image display devices and vehicle indicator lights
KR101660618B1 (en) Oxynitride phosphor powder
CN109642156B (en) Sintered phosphor, light-emitting device, lighting device, and display lamp for vehicle
JP6395701B2 (en) Composite ceramic containing conversion phosphor and material with negative coefficient of thermal expansion
JP3914987B2 (en) Sialon phosphor and method for producing the same
KR102062950B1 (en) Acid nitride phosphor powder and method for producing same
KR102059425B1 (en) Oxide Ceramic Fluorescent Material Having Rare Earth Diffused Therein
JP5954425B2 (en) Wavelength conversion member and light emitting device using the same
CN114599764B (en) Phosphor plate, light emitting device, and method for manufacturing phosphor plate
JP6492824B2 (en) Ceramic composite material for light conversion and manufacturing method thereof
JP2017058550A (en) Polycrystalline ceramics light conversion member, manufacturing method therefor, and light-emitting device
JP6205818B2 (en) Wavelength conversion member and light emitting device using the same
JP2017202962A (en) Ceramic composite material for light conversion, production method of the same, and light-emitting device including the same
RU2818556C1 (en) Method of producing luminescent oxide composition for radiation converter in white light sources
KR20180069271A (en) Manufacturing method of phosphor using alumina nano-powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191203