JP2017034805A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2017034805A
JP2017034805A JP2015151048A JP2015151048A JP2017034805A JP 2017034805 A JP2017034805 A JP 2017034805A JP 2015151048 A JP2015151048 A JP 2015151048A JP 2015151048 A JP2015151048 A JP 2015151048A JP 2017034805 A JP2017034805 A JP 2017034805A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
command value
value
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015151048A
Other languages
English (en)
Inventor
佑介 河野
Yusuke Kono
佑介 河野
雅之 野木
Masayuki Nogi
雅之 野木
康次 真木
Koji Maki
康次 真木
中沢 洋介
Yosuke Nakazawa
洋介 中沢
加藤 仁
Hitoshi Kato
仁 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015151048A priority Critical patent/JP2017034805A/ja
Publication of JP2017034805A publication Critical patent/JP2017034805A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

【課題】信頼性を向上させる。
【解決手段】第1のコンバータは第1のコンデンサ14を有し、逆並列接続されるダイオードを有する一方のスイッチングデバイスが単相交流電源と接続される第1の接続点41を介して2個直列且つ第1のコンデンサに並列に接続され、他方のデバイスが第2の接続点42を介して2個直列且つ第1のコンデンサと並列接続される。第2のコンバータは、第1のコンバータと同一構成を有し、第2のコンデンサ16、電源と接続される第3の接続点61、第4の接続点62を備える。3レベルコンバータは第1のコンバータと類似の構成を有し、2個直列接続される第3のコンデンサ15と、第2の接続点に接続される第5の接続点42aと、第6の接続点42bを有し、第6の接続点から中性点9までの経路上に、双方向スイッチが設けられ、第3のコンデンサと並列に負荷3が接続され、第4の接続点が第5の接続点又は第6の接続点に接続される。
【選択図】図3

Description

本発明の実施形態は、電力変換装置に関する。
従来から、交流電気車では、車上の電力変換装置において架線の交流電圧を直流電圧に変換するコンバータ装置を備えている。コンバータ装置は、PWM(pulse width modulation)動作により電力変換を行うが、入力電流にスイッチングキャリアに伴う高調波が重畳される。重畳される高調波成分は抑制するのが望ましい。
例えば、入力電流の高調波成分を抑制する技術としては、変圧器の複数の二次巻線に複数のコンバータを接続し、コンバータ間のキャリアに位相差を設定して動作させることで、一次側入力電流の特定の高調波成分を抑制する技術が提案されている。
しかしながら一次巻線側に流れる一次側電流の高調波成分を抑制できても、二次巻線に流れる二次側電流の高調波成分は、各コンバータ間の位相差とは関係なく、コンバータのキャリア周波数や出力電圧レベル数に依存する。
2レベルコンバータやキャリア周波数の低いコンバータでは、二次側電流の高調波が高くなり、主変圧器の高調波損失が大きくなる。高調波損失は、コンバータがスイッチングしている限り、負荷量とはほぼ無関係に発生する。
そこで、複数の回路を組み合わせた上で、高調波を抑制するマルチレベル回路の適用が考えられる。例えば、2レベルコンバータと3レベルコンバータとを組み合わせたマルチレベルコンバータの電流は、従来の2レベルコンバータや3レベルコンバータと比較して高調波成分が抑制できる。
特開平9−154203号公報 特開2013−198200号公報
しかしながら、2レベルコンバータと3レベルコンバータとを組み合わせたマルチレベルコンバータを、それぞれの二次巻線に接続した場合、回路を構成する素子数や素子ゲート線などの部品点数が増加する。
本発明は、上記に鑑みてなされたものであって、素子数を低減して、信頼性を向上させた電力変換装置を提供することを目的とする。
実施形態の電力変換装置は、第1の2レベルコンバータと、第2の2レベルコンバータと、3レベルコンバータとを備える。第1の2レベルコンバータは、第1のコンデンサが設けられ、スイッチング素子と当該スイッチング素子と逆並列に接続されるダイオードとを有する一方のスイッチングデバイスが、単相交流電力を供給する電源と接続される第1の接続点を介して2個直列且つ第1のコンデンサに並列に接続され、他方のスイッチングデバイスが、第2の接続点を介して2個直列且つ第1のコンデンサと並列に接続される。第2の2レベルコンバータは、第2のコンデンサが設けられ、一方のスイッチングデバイスが、電源と接続される第3の接続点を介して2個直列且つ第2のコンデンサに並列に接続され、他方のスイッチングデバイスが、第4の接続点を介して2個直列且つ第2のコンデンサと並列に接続される。3レベルコンバータは、2個直列接続される第3のコンデンサが設けられ、一方のスイッチングデバイスが第2の接続点に接続される第5の接続点を介して2個直列且つ2個直列接続される第3のコンデンサと並列に接続され、他方のスイッチングデバイスが、第6の接続点を介して2個直列且つ2個直列接続される第3のコンデンサと並列に接続され、第6の接続点から中性点までの経路上に、複数のスイッチングデバイスを逆極性に直列に接続する双方向スイッチが設けられ、2個直列接続される第3のコンデンサと並列に、第1のコンデンサ、第2のコンデンサ、及び第3のコンデンサのうちいずれか一つ以上から電力が供給される負荷と接続され、第4の接続点が第5の接続点又は第6の接続点に接続される。
図1は、第1の実施形態にかかるマルチレベルコンバータを含む電力変換装置11のコンバータ間の接続を例示した図である。 図2は、従来の多重式コンバータのコンバータ間の接続を例示した図である。 図3は、第1の実施形態のマルチレベルコンバータを含む電力変換装置11の構成を例示した図である。 図4は、第1の実施形態の制御基板の構成を例示したブロック図である。 図5は、第1の実施形態の3レベルコンバータ出力電圧演算部の構成を例示した図である。 図6は、第1の実施形態の単相3レベルコンバータの出力電圧の遷移を示した図である。 図7は、第1の実施形態のマルチレベルコンバータの動作波形の第1の例を示した図である。 図8は、第1の実施形態のマルチレベルコンバータの動作波形の第2の例を示した図である。 図9は、第1の実施形態のマルチレベルコンバータの動作波形の第3の例を示した図である。 図10は、変形例にかかるマルチレベルコンバータを含む電力変換装置11のコンバータ間の接続を例示した図である。 図11は、第2の実施形態のマルチレベルコンバータを含む電力変換装置11の構成を例示した図である。
(第1の実施形態)
図1は、第1の実施形態にかかるマルチレベルコンバータ1を含む電力変換装置11のコンバータ間の接続を例示した図である。図1に示すように、本実施形態にかかる電力変換装置11は、単相3レベルコンバータ50に対して、第1の単相2レベルPWMコンバータ40を直列接続すると共に、単相3レベルコンバータ50に対して、第2の単相2レベルPWMコンバータ60を直列接続する。また、第1の単相2レベルPWMコンバータ40、及び第2の単相2レベルPWMコンバータ60は、並列接続されている。
図1に示されるマルチレベルコンバータ1は、単相交流電力を直流電力に変換した後、負荷3に対して電力を供給する。なお、本実施形態は、電力変換装置11が搭載される車両を制限するものではなく、様々な車両に搭載して良い。負荷3は、本実施形態ではインバータとモータで構成されているが、どのような構成でも良い。
図1に示されるように、第1の単相2レベルPWMコンバータ40は、第1の接続点41と、第2の接続点42と、を有している。また、第2の単相2レベルPWMコンバータ60は、第3の接続点61と、第4の接続点62と、を有している。また、単相3レベルコンバータ50は、第5の接続点42aと、第6の接続点42bと、を有している。第5の接続点42aは、第2の接続点42及び第4の接続点62と接続されている。第6の接続点42bは、第1の接続点41及び第3の接続点61と接続されている。
図2は、従来の多重式コンバータのコンバータ間の接続を例示した図である。ところで、従来から、複数の二次巻線に複数のコンバータを接続する手法は用いられていた。図2に示されるように、従来の多重式コンバータでは、第1のPWMコンバータ201及び第2のPWMコンバータ202が、それぞれ負荷203に対して直列に接続されていた。
このような従来の多重式コンバータのPWMコンバータを、単相2レベルPWMコンバータと単相3レベルコンバータとを組み合わせたマルチレベルコンバータで置き換えると、単相2レベルPWMコンバータ2個と単相3レベルコンバータ2個とを組み合わせた構成となる。このような構成では、部品点数が多くなる。
そこで、本実施形態のマルチレベルコンバータ1を含む電力変換装置11では、単相2レベルPWMコンバータを2個、及び単相3レベルコンバータ1個を備えた上で、上述した接続を行うこととした。これにより、部品点数の削減が可能となる。次に、本実施形態の電力変換装置11の構成について説明する。
図3は、本実施形態のマルチレベルコンバータ1を含む電力変換装置11の構成を例示した図である。図3に示されるように、電力変換装置11は、図1で示した構成の具体例であり、第1の単相2レベルPWMコンバータ40と、第2の単相2レベルPWMコンバータ60と、単相3レベルコンバータ50と、を備えている。
電力変換装置11は、主変圧器110を介して電力系統等の交流電源100と接続している。
第1の単相2レベルPWMコンバータ40は、スイッチングデバイス4a〜4dと、(直流)コンデンサ14と、で構成される。第1の接続点41は、主変圧器110の第1の二次巻線110aを介して単相交流電力を供給する交流電源100と接続される。そして、スイッチングデバイス4a、4bは、第1の接続点41を介して、2個直列且つ当該コンデンサ14と並列に接続される。第2の接続点42は、単相3レベルコンバータ50の第5の接続点42aと接続される。そして、スイッチングデバイス4c、4dが、第2の接続点42を介して、2個直列且つコンデンサ14と並列に接続される。
なお、各スイッチングデバイス4a〜4dには、自己消弧能力を有すると共にスイッチングを行うトランジスタと、トランジスタに対して逆並列に接続された(還流)ダイオードと、が含まれている。また、以降に示されるスイッチングデバイス6a〜6d、及びスイッチングデバイス5a〜5fも同様の構成とする。
第1の単相2レベルPWMコンバータ40は、コンデンサ14より交流電源100側に、スイッチングデバイス4aと、スイッチングデバイス4bと、を直列に接続している。スイッチングデバイス4aは、コンデンサ14の正電位側に設けられ、スイッチングデバイス4bは、コンデンサ14の負電位側に設けられている。第1の単相2レベルPWMコンバータ40は、スイッチングデバイス4aとスイッチングデバイス4bとの間の第1の接続点41を交流入出力点とし、第1の接続点41から、主変圧器110の第1の二次巻線110aを介して電力系統等の交流電源100と接続されている。
また、第1の単相2レベルPWMコンバータ40は、コンデンサ14より負荷3側に、スイッチングデバイス4cと、スイッチングデバイス4dと、を直列に接続している。スイッチングデバイス4cは、コンデンサ14の正電位側に設けられ、スイッチングデバイス4dは、コンデンサ14の負電位側に設けられている。そして、スイッチングデバイス4cとスイッチングデバイス4dと、の間の第2の接続点42(交流入出力点)から単相3レベルコンバータ50と接続されている。
第2の単相2レベルPWMコンバータ60は、単相コンバータであり、スイッチングデバイス6a〜6dと、(直流)コンデンサ16と、で構成される。第3の接続点61は、主変圧器110の二次巻線110bを介して単相交流電力を供給する交流電源100と接続される。また、第2の単相2レベルPWMコンバータ60は、スイッチングデバイス6a、6bが、主変圧器110の第2の二次巻線110bを介して2個直列且つコンデンサ16と並列に接続される。第4の接続点62は、単相3レベルコンバータ50の第5の接続点42aと接続される。そして、スイッチングデバイス6c、6dが、第4の接続点62を介して2個直列且つコンデンサ16と並列に接続される。
第2の単相2レベルPWMコンバータ60は、コンデンサ16より交流電源100側に、スイッチングデバイス6aと、スイッチングデバイス6bと、を直列に接続している。スイッチングデバイス6aは、コンデンサ16の正電位側に設けられ、スイッチングデバイス6bは、コンデンサ16の負電位側に設けられている。そして、第2の単相2レベルPWMコンバータ60は、スイッチングデバイス6aとスイッチングデバイス6bとの間の第3の接続点61を交流入出力点とし、第3の接続点61から、主変圧器110の二次巻線110bを介して電力系統等の交流電源100と接続されている。
また、単相2レベルPWMコンバータ60は、コンデンサ16より負荷3側に、スイッチングデバイス6cと、スイッチングデバイス6dと、を直列に接続している。スイッチングデバイス6cは、コンデンサ16の正電位側に設けられ、スイッチングデバイス6dは、コンデンサ16の負電位側に設けられている。そして、スイッチングデバイス6cとスイッチングデバイス6dと、の間の第4の接続点62(交流入出力点)から単相3レベルコンバータ50と接続されている。
次に、第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60と、負荷3と、の間に接続されている単相3レベルコンバータ50について説明する。単相3レベルコンバータ50は、2個のレグと、双方向スイッチングデバイス7と、コンデンサ部15と、を備える。コンデンサ部15は、コンデンサ15a、及びコンデンサ15bで構成されている。
単相3レベルコンバータ50が備える2個のレグのうち一方は、スイッチングデバイス5a、5bにより構成される。スイッチングデバイス5a、5bは、(第2の接続点42と第4の接続点62と接続される)第5の接続点42aを介して2個直列接続されている。スイッチングデバイス5a、5bは、2個直列接続されるコンデンサ15a、15bと並列に接続される。
スイッチングデバイス5aは、コンデンサ部15の正電位と第5の接続点42aとの間に接続される。スイッチングデバイス5bは、コンデンサ部15の負電位と第5の接続点42aとの間に接続される。第5の接続点42aは、第2の接続点42および第4の接続点62と接続する点とする。まず、スイッチングデバイス5aと5bは、コンデンサ部15と並列に、負荷3と接続されている。これにより、負荷3は、コンデンサ14、16、及びコンデンサ部のうちいずれか一つ以上から電力が供給される。
単相3レベルコンバータ50が備える2個のレグのうち他方は、スイッチングデバイス5c、5dにより構成される。スイッチングデバイス5c、5dは、第6の接続点42bを介して2個直列に接続されている。スイッチングデバイス5c、5dは、2個直列接続されるコンデンサ15a、15bと並列に接続される。
スイッチングデバイス5cは、コンデンサ部15の正電位と(双方向スイッチングデバイス7及び中性点9側と接続する)第6の接続点42bとの間に接続される。スイッチングデバイス5dは、コンデンサ部15の負電位と第6の接続点42bの間に接続される。
他方のレグの第6の接続点42b(他方の交流入出力点)から、負荷3側且つ中性点9までの経路上に、双方向スイッチングデバイス7が設けられている。双方向スイッチングデバイス7は、逆極性に直列に接続されたスイッチングデバイス5e、5fを有している。
単相3レベルコンバータ50は、スイッチングデバイス5c、5d、5eを接続する第6の接続点42bを交流入出力点とし、主変圧器110を介して電力系統等の交流電源100と接続される。
また、双方向スイッチングデバイス7の負荷3側には、コンデンサ部15が設けられている。
コンデンサ部15は、コンデンサ15a、コンデンサ15bを有している。コンデンサ15aとコンデンサ15bは直列に接続される。コンデンサ15a、15bの間は、中性点9と接続される。
コンデンサ15aは、負荷3の正電位導線10aを正側に、中性点9を負側に接続する。コンデンサ15bは、中性点9を正側に、負荷3の負電位導線10bを負側に接続する。
また、本実施形態の電力変換装置11においては、マルチレベルコンバータ1の状態を検出するための各種検出器が設けられている。本実施形態の電力変換装置11では、第1の電流センサー44と、第2の電流センサー64と、第1の電圧センサー43と、第2の電圧センサー63と、第3の電圧センサー53aと、第4の電圧センサー53bと、を備えている。
第1の電流センサー44は、第1の単相2レベルPWMコンバータ40の入力電流値is1を検出し、検出結果を制御基板150に出力する。
第2の電流センサー64は、第2の単相2レベルPWMコンバータ60の入力電流値is2を検出し、検出結果を制御基板150に出力する。
第1の電圧センサー43は、第1の単相2レベルPWMコンバータ40のコンデンサ14の電圧値vDCH1を検出し、検出結果を制御基板150に出力する。
第2の電圧センサー63は、第2の単相2レベルPWMコンバータ60のコンデンサ16の電圧値vDCH2を検出し、検出結果を制御基板150に出力する。
第3の電圧センサー53aは、単相3レベルコンバータ50のコンデンサ15aの電圧値vDCPを検出し、検出結果を制御基板150に出力する。
第4の電圧センサー53bは、単相3レベルコンバータ50のコンデンサ15bの電圧値vDCNを検出し、検出結果を制御基板150に出力する。
そして、制御基板150は、指令値生成部151と、制御部152と、を備え、マルチレベルコンバータ1を制御する。
指令値生成部151は、車両の制御に基づいて、単相3レベルコンバータ50の直流電圧指令値VDC_ref、第1の単相2レベルPWMコンバータ40の直流電圧指令値VDCH1_ref、及び第2の単相2レベルPWMコンバータ60の直流電圧指令値VDCH2_refを生成する。
制御部152は、指令値生成部151により生成された直流電圧指令値と、各種センサーからの検出結果と、主変圧器110の電圧値(以下、電源電圧検出値とも称す)vsと、負荷3内部のインバータの出力電圧実効値vinvと、出力電流実効値iinvと、に基づいて、単相3レベルコンバータ50と、第1の単相2レベルPWMコンバータ40と、第2の単相2レベルPWMコンバータ60と、を制御する。
このため、本実施形態の制御部152は、第1の単相2レベルPWMコンバータ40に対して、第1の単相2レベルPWMコンバータ40用の電圧指令値vHC1_refと、第1の単相2レベルPWMコンバータ40用のゲート信号と、を出力する。また、制御部152は、第2の単相2レベルPWMコンバータ40に対して、第2の単相2レベルPWMコンバータ60用の電圧指令値vHC2_refと、第2の単相2レベルPWMコンバータ60用のゲート信号と、を出力する。本実施形態の制御部152は、単相3レベルコンバータ50に対して、単相3レベルコンバータ50用の電圧指令値v3lv_refと、単相3レベルコンバータ50用のゲート信号と、を出力する。
図4は、本実施形態の制御部152の構成を例示したブロック図である。図4に示されるように、制御部152は、第1の演算部401と、第2の演算部402と、実効値演算部403と、PLLブロック部404と、sin演算部405と、を備えている。
また、制御部152は、さらに、パラメータ等を入力するための構成として、入力I/F451と、入力処理部452と、第1のセンサー入力I/F461と、第2のセンサー入力I/F462と、第3のセンサー入力I/F463と、第4のセンサー入力I/F464と、第5のセンサー入力I/F465と、第6のセンサー入力I/F466と、第7のセンサー入力I/F467と、を備える。
入力I/F451は、負荷3に含まれているインバータから検出された、当該インバータの出力電圧実効値vinvと、当該インバータの出力電流実効値iinvと、を入力処理する。
入力処理部452は、指令値生成部151により生成された指令値を入力処理する。本実施形態の入力処理部452は、指令値生成部151から、単相3レベルコンバータ50の直流電圧指令値VDC_refと、第1の単相2レベルPWMコンバータ40のコンデンサ14の直流電圧指令値VDCH1_refと、第2の単相2レベルPWMコンバータ60のコンデンサ16の直流電圧指令値VDCH2_refと、を入力処理する。
第1のセンサー入力I/F461は、主変圧器110で検出された電源電圧検出値vsを入力処理する。
第2のセンサー入力I/F462は、第3の電圧センサー53aから、単相3レベルコンバータ50のコンデンサ15aの実際の電圧値vDCPを入力処理する。
第3のセンサー入力I/F463は、第4の電圧センサー53bから、単相3レベルコンバータ50のコンデンサ15bの実際の電圧値vDCNを入力処理する。
第4のセンサー入力I/F464は、第1の電圧センサー43から、コンデンサ14の実際の電圧値vDCH1を入力処理する。
第5のセンサー入力I/F465は、第2の電圧センサー63から、コンデンサ16の実際の電圧値vDCH2を入力処理する。
第6のセンサー入力I/F466は、第1の電流センサー44から、第1の単相2レベルPWMコンバータ40の入力電流is1を入力処理する。
第7のセンサー入力I/F467は、第2の電流センサー64から、第2の単相2レベルPWMコンバータ60の入力電流is2を入力処理する。
第1の演算部401は、入力I/F451により入力処理された、インバータの出力電圧実効値vinvと、インバータの出力電流実効値iinvとを乗算し、乗算結果を出力する。
実効値演算部403は、第1のセンサー入力I/F461により入力処理された、電源電圧検出値vsから実効値を演算し、演算結果を出力する。
第2の演算部402は、第1の演算部401の演算結果を、実効値演算部403から出力された実効値を除算することで、負荷電流フィードフォーワード値is_FFを算出する。
PLLブロック部404は、電源電圧検出値vsに対してフィードバック制御を加えて、電源電圧の位相θを示す信号を出力する。
sin演算部405は、電源電圧の位相θから、sinθ(なお、電源電圧の位相θ)を演算して出力する。
さらに、制御部152は、3レベル用直流電圧制御部411と、第1の2レベル用直流電圧制御部412と、第2の2レベル用直流電圧制御部413と、演算部423〜426と、第1の交流電流制御部431と、第2の交流電流制御部432と、演算部441〜442と、PWMブロック443〜444と、3レベルコンバータ出力電圧演算部450と、を備えている。
演算部414は、第2のセンサー入力I/F462により入力処理された、単相3レベルコンバータ50のコンデンサ15aの実際の電圧値vDCPに、第3のセンサー入力I/F463により入力処理された、単相3レベルコンバータ50のコンデンサ15bの実際の電圧値vDCNを加算して、コンデンサ部15の実際の電圧値vDCを算出する。
3レベル用直流電圧制御部411は、演算部と、PI制御部と、を備えている。3レベル用直流電圧制御部411内の演算部は、単相3レベルコンバータ50用のコンデンサ部15の電圧指令値vDC_refから、演算部414からのコンデンサ部15の実際の電圧値vDCを減算し、電圧指令値と実際の電圧値との差分を算出する。そして、3レベル用直流電圧制御部411のPI制御部が、算出された差分を用いてPI制御を行う。
演算部421が、第2の演算部402からの負荷電流フィードフォーワード値is_FFに対して、3レベル用直流電圧制御部411の電源電圧の差分のPI制御結果を加算する。負荷電流フィードフォーワード値is_FFを加算されることで、負荷変動が大きい場合に早急に追従することが可能となる。
演算部422が、演算部421の演算結果に対して1/2を乗算することで、単相2レベルPWMコンバータの各々に割り当てる電流指令値振幅is_ref_DCを算出する。
第1の2レベル用直流電圧制御部412は、演算部と、PI制御部と、を備えている。第1の2レベル用直流電圧制御部412内の演算部は、第1の単相2レベルPWMコンバータ40用のコンデンサ14の電圧指令値vDCH1_refから、コンデンサ14の実際の電圧値vDCH1を減算し、電圧指令値と実際の電圧値との差分を算出する。そして、第1の2レベル用直流電圧制御部412のPI制御部が、算出された差分を用いたPI制御を行う。
演算部423が、第1の2レベル用直流電圧制御部412の出力結果に、演算部422の演算結果である電流指令値振幅is_ref_DCを加算する。演算部425が、演算部423の演算結果に、sinθを乗算することで、第1の単相2レベルPWMコンバータ40の交流入力電流指令値is1_refを算出する。
第1の交流電流制御部431は、演算部と、PI制御部と、を備える。第1の交流電流制御部431の演算部は、交流入力電流指令値is1_refから、第1の単相2レベルPWMコンバータ40の入力電流is1を減算し、電流指令値と実際の入力電流の差分を算出する。
第1の交流電流制御部431のPI制御部が、第1の交流電流制御部431の演算部で算出された差分を用いたPI制御を行うことで、一方のマルチレベルコンバータの電圧指令値vCA_refを出力する。なお、一方のマルチレベルコンバータとは、第1の単相2レベルPWMコンバータ40と、単相3レベルコンバータと、の組み合わせとする。
一方のマルチレベルコンバータの電圧指令値vCA_refは、演算部441に出力されると共に、3レベルコンバータ出力電圧演算部450にも出力される。
第2の2レベル用直流電圧制御部413は、演算部と、PI制御部と、を備えている。第2の2レベル用直流電圧制御部413内の演算部は、指令値生成部151からの第2の単相2レベルPWMコンバータ60用のコンデンサ16の電圧指令値vDCH2_refから、コンデンサ16の実際の電圧値vDCH2を減算し、電圧指令値と実際の電圧値との差分を算出する。そして、第2の2レベル用直流電圧制御部413のPI制御部が、算出された差分を用いたPI制御を行う。
演算部424が、第2の2レベル用直流電圧制御部413の出力結果に、演算部422の演算結果である電流指令値振幅is_ref_DCを加算する。そして、演算部426が、演算部424の演算結果に、sinθを乗算することで、第2の単相2レベルPWMコンバータ60の交流入力電流指令値is2_refを算出する。
第2の交流電流制御部432は、演算部と、PI制御部と、を備える。第2の交流電流制御部432の演算部は、交流入力電流指令値is2_refから、第2の単相2レベルPWMコンバータ60の入力電流is2を減算し、電流指令値と実際の入力電流の差分を算出する。そして、第2の交流電流制御部432のPI制御部が、算出された差分を用いたPI制御を行うことで、他方のマルチレベルコンバータの電圧指令値vCB_refを出力する。なお、他方のマルチレベルコンバータとは、第2の単相2レベルPWMコンバータ60と、単相3レベルコンバータ50と、の組み合わせとする。
他方のマルチレベルコンバータの電圧指令値vCB_refは、演算部442に出力されると共に、3レベルコンバータ出力電圧演算部450にも出力される。
3レベルコンバータ出力電圧演算部450は、入力される各種電圧指令値、及び実際の電圧値に基づいて、単相3レベルコンバータ50用の電圧指令値v3lv_refと、単相3レベルコンバータ50用のゲート信号と、を算出する。
3レベルコンバータ出力電圧演算部450に入力される各種電圧指令値としては、コンデンサ部15の電圧指令値vDC_ref、コンデンサ14の電圧指令値vDCH1_ref、コンデンサ16の電圧指令値vDCH2_ref、一方のマルチレベルコンバータの電圧指令値vCA_ref、他方のマルチレベルコンバータの電圧指令値vCB_refとする。
また、3レベルコンバータ出力電圧演算部450に入力される実際の電圧値としては、コンデンサ15aの実際の電圧値vDCP、コンデンサ15bの実際の電圧値vDCN、コンデンサ14の実際の電圧値vDCH1、コンデンサ16の実際の電圧値vDCH2とする。
ところで、マルチレベルコンバータ1に入力される電力がコンデンサ14、15、16にどのように分配されるかは、単相3レベルコンバータ50の出力電圧に依存している。
そこで、本実施形態の3レベルコンバータ出力電圧演算部450は、コンデンサ14、15、16のコンデンサ電圧がそれぞれのコンデンサ電圧指令値に近づくよう、単相3レベルコンバータ50の出力電圧を演算する。
演算部441が、一方のマルチレベルコンバータの電圧指令値vCA_refから、単相3レベルコンバータ50用の電圧指令値v3lv_refを減算し、第1の単相2レベルPWMコンバータ40用の電圧指令値vHC1_refを算出する。
そして、PWMブロック443が、第1の単相2レベルPWMコンバータ40用の電圧指令値vHC1_refから、第1の単相2レベルPWMコンバータ40用のゲート信号を生成し、出力する。
また、演算部442が、他方のマルチレベルコンバータの電圧指令値vCB_refから、単相3レベルコンバータ50用の電圧指令値v3lv_refを減算し、第2の単相2レベルPWMコンバータ60用の電圧指令値vHC2_refを算出する。
そして、PWMブロック444が、第2の単相2レベルPWMコンバータ60用の電圧指令値vHC2_refから、第2の単相2レベルPWMコンバータ60用のゲート信号を生成し、出力する。
さらに、制御部152は、第1の出力I/F471と、第2の出力I/F472と、第3の出力I/F473と、を備えている。
第1の出力I/F471は、PWMブロック443により生成された、第1の単相2レベルPWMコンバータ40用のゲート信号を第1の単相2レベルPWMコンバータ40に出力する。
第2の出力I/F472は、PWMブロック444により生成された、第2の単相2レベルPWMコンバータ60用のゲート信号を第2の単相2レベルPWMコンバータ60に出力する。
第3の出力I/F473は、単相3レベルコンバータ50用のゲート信号を単相3レベルコンバータ50に出力する。
本実施形態では、制御部152が、上述した構成を備えることで、各種コンバータ用の電圧指令値、及びゲート信号を出力できる。次に、3レベルコンバータ出力電圧演算部450の構成について説明する。
図5は、本実施形態の3レベルコンバータ出力電圧演算部450の構成を例示した図である。図5に示されるように、3レベルコンバータ出力電圧演算部450は、第1の電圧閾値制御部503と、第2の電圧閾値制御部502と、第3の電圧閾値制御部501と、演算部504と、第1のゲイン補正部506と、第2のゲイン補正部505と、演算部507と、演算部508と、演算部509と、演算部510と、3レベルコンバータスイッチングパターン演算部512と、を備えている。
本実施形態の単相3レベルコンバータ50の出力電圧は、矩形波状の電圧を想定している。本実施形態の3レベルコンバータ出力電圧演算部450は、単相3レベルコンバータ50が矩形波形状の電圧を出力できるように、ゲート信号と、出力電圧指令値v3lv_refと、を算出し、出力する。
単相3レベルコンバータ50のコンデンサ15aの実際の電圧値vDCP、及び単相3レベルコンバータ50のコンデンサ15bの実際の電圧値vDCNは、第1の電圧閾値制御部503に入力されると共に、3レベルコンバータスイッチングパターン演算部512に入力される。
第1の電圧閾値制御部503は、演算部と、PI制御部と、を備えている。第1の電圧閾値制御部503の演算部は、単相3レベルコンバータ50のコンデンサ15aの実際の電圧値vDCPから、単相3レベルコンバータ50のコンデンサ15bの実際の電圧値vDCNを減算し、差分を算出する。第1の電圧閾値制御部503のPI制御部が、算出された差分を用いたPI制御を行う。
そして、第1のゲイン補正部506が、第1の電圧閾値制御部503からの出力に、電流指令値振幅is_ref_DCに応じたゲインを乗算して、パラメータΔvth1を算出する。
そして、演算部510は、パラメータΔvth1から、第1の電圧閾値vth1を加算して、第1の正電圧閾値vth1_Pを算出する。なお、第1の電圧閾値vth1は、単相3レベルコンバータ50が出力する電圧に基づいて予め設定された値として、説明を省略する。
次に、演算部509は、パラメータΔvth1から、第1の電圧閾値vth1を減算して、第1の負電圧閾値vth1_Nを算出する。
第3の電圧閾値制御部501は、演算部と、PI制御部と、を備えている。第3の電圧閾値制御部501の演算部は、第1の単相2レベルPWMコンバータ40用のコンデンサ14の電圧指令値vDCH1_refから、コンデンサ14の実際の電圧値vDCH1を減算し、差分を算出する。そして、第3の電圧閾値制御部501のPI制御部が、算出された差分を用いてPI制御を行う。
第2の電圧閾値制御部502は、演算部と、PI制御部と、を備えている。第2の電圧閾値制御部502の演算部は、第2の単相2レベルPWMコンバータ60用のコンデンサ16の電圧指令値vDCH2_refから、コンデンサ16の実際の電圧値vDCH2を減算し、差分を算出する。そして、第2の電圧閾値制御部502のPI制御部が、算出された差分を用いてPI制御を行う。
演算部504が、第3の電圧閾値制御部501の演算結果に、第2の電圧閾値制御部502の演算結果を加算する。
そして、第2のゲイン補正部505が、演算部504からの出力に、電流指令値振幅is_ref_DCに応じたゲインを乗算して、パラメータΔvth2を算出する。
そして、演算部507は、パラメータΔvth2に、第2の電圧閾値vth2を加算して、第2の正電圧閾値vth2_Pを算出する。なお、第2の電圧閾値vth2は、単相3レベルコンバータ50が出力する電圧に基づいて予め設定された値として、説明を省略する。
演算部508は、正電圧閾値vth2_Pの符号を反転して、第2の負電圧閾値vth2_Nを算出する。
平均化部511は、一方のマルチレベルコンバータの電圧指令値vCA_refと、他方のマルチレベルコンバータの電圧指令値vCB_refと、の間の平均されたマルチレベルコンバータの電圧指令値vC_refを算出し、3レベルコンバータスイッチングパターン演算部512に出力する。
そして、3レベルコンバータスイッチングパターン演算部512は、4つの閾値(第1の正電圧閾値vth1_P、第1の負電圧閾値vth1_N、第2の正電圧閾値vth2_P、第2の負電圧閾値vth2_N)と、平均化されたマルチレベルコンバータの電圧指令値vC_refと、に基づいて、単相3レベルコンバータ50の出力電圧指令値v3lv_refと、単相3レベルコンバータ50のゲート信号と、を制御する。
Figure 2017034805
上記の表1に示されるように、閾値と、平均化されたマルチレベルコンバータの電圧指令値vC_refとの関係に基づいて、スイッチングパターンが変化する。表に示されるようにスイッチングパターンは、パターン1〜パターン6まで存在する。
図6は、本実施形態の単相3レベルコンバータの出力電圧の遷移を示した図である。図6の例に示されるように、電圧指令値vC_refと、閾値と、の関係に基づいて、パターン1〜パターン6が設定される。なお、線602が、電圧指令値vC_refであり、出力電圧値であり、線601が、単相3レベルコンバータ50の出力電圧値とする。
例えば、電圧指令値vC_ref≧第2の正電圧閾値vth2_Pの条件を満たした場合に、パターン1が適用される。そして、3レベルコンバータスイッチングパターン演算部512は、単相3レベルコンバータ50の出力電圧指令値v3lv_refとして、出力電圧値vDCP+vDCNを出力する。さらに、3レベルコンバータのゲート信号として、スイッチングデバイス5a=“1”、スイッチングデバイス5b=“0”、スイッチングデバイス5c=“0”、スイッチングデバイス5d=“1”、スイッチングデバイス5e=“1”、スイッチングデバイス5f=“0”を出力する。なお、“1”はオンを示し、“0”は、オフを示しているものとする。
また、第2の正電圧閾値vth2_P>電圧指令値vC_ref≧第1の正電圧閾値vth1_Pの条件を満たした場合に、パターン2が適用される。そして、3レベルコンバータスイッチングパターン演算部512は、単相3レベルコンバータ50の出力電圧指令値v3lv_refとして、出力電圧値vDCPを出力する。さらに、3レベルコンバータのゲート信号として、スイッチングデバイス5a=“1”、スイッチングデバイス5b=“0”、スイッチングデバイス5c=“0”、スイッチングデバイス5d=“0”、スイッチングデバイス5e=“1”、スイッチングデバイス5f=“1”を出力する。
本実施形態では、また、第1の正電圧閾値vth1_P>電圧指令値vC_ref≧第1の負電圧閾値vth1_Nの条件を満たした場合に、パターン3又はパターン4が適応される。本実施の形態では、前のパターンに応じてパターン3かパターン4が決定される。つまり前のパターンがパターン2の場合に、パターン4が適応され、前のパターンがパターン5の場合に、パターン3が適応される。これによりスイッチングデバイスの負荷を分散させることができる。
パターン4が適用された場合に、3レベルコンバータスイッチングパターン演算部512は、単相3レベルコンバータ50の出力電圧指令値v3lv_refとして、出力電圧値“0”を出力する。さらに、3レベルコンバータのゲート信号として、スイッチングデバイス5a=“0”、スイッチングデバイス5b=“1”、スイッチングデバイス5c=“0”、スイッチングデバイス5d=“1”、スイッチングデバイス5e=“1”、スイッチングデバイス5f=“0”を出力する。
パターン3が適用された場合に、3レベルコンバータスイッチングパターン演算部512は、単相3レベルコンバータ50の出力電圧指令値v3lv_refとして、出力電圧値“0”を出力する。さらに、3レベルコンバータのゲート信号として、スイッチングデバイス5a=“1”、スイッチングデバイス5b=“0”、スイッチングデバイス5c=“1”、スイッチングデバイス5d=“0”、スイッチングデバイス5e=“0”、スイッチングデバイス5f=“1”を出力する。
また、第1の負電圧閾値vth1_N>電圧指令値vC_ref≧第2の負電圧閾値vth2_Nの条件を満たした場合に、パターン5が適用される。そして、3レベルコンバータスイッチングパターン演算部512は、単相3レベルコンバータ50の出力電圧指令値v3lv_refとして、出力電圧値−vDCNを出力する。さらに、3レベルコンバータのゲート信号として、スイッチングデバイス5a=“0”、スイッチングデバイス5b=“1”、スイッチングデバイス5c=“0”、スイッチングデバイス5d=“0”、スイッチングデバイス5e=“1”、スイッチングデバイス5f=“1”を出力する。
また、第2の負電圧閾値vth2_N≧電圧指令値vC_refの条件を満たした場合に、パターン6が適用される。そして、3レベルコンバータスイッチングパターン演算部512は、単相3レベルコンバータ50の出力電圧指令値v3lv_refとして、出力電圧値−vDCP−vDCNを出力する。さらに、3レベルコンバータのゲート信号として、スイッチングデバイス5a=“0”、スイッチングデバイス5b=“1”、スイッチングデバイス5c=“1”、スイッチングデバイス5d=“0”、スイッチングデバイス5e=“0”、スイッチングデバイス5f=“1”を出力する。
これにより、単相3レベルコンバータ50は、図6の線601に示されるような出力電圧値を実現できる。
次に、本実施形態のマルチレベルコンバータ1の動作波形について説明する。以降では、マルチレベルコンバータ1の出力電圧と第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60の入力電流の位相が同期している力行時を想定する。
図7は、本実施形態のマルチレベルコンバータ1の動作波形の第1の例を示した図である。図7で示される例では、第1の単相2レベルPWMコンバータ40のコンデンサ14、第2の単相2レベルPWMコンバータ60のコンデンサ16、単相3レベルコンバータ50のコンデンサ15a、15bの電圧が、出力電圧指令値と同じ場合を示している例とする。
図7(A)は、第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60の出力電圧指令値を示している。図7(A)に示される例では、第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60の出力電圧指令値が一致しているものとする。図7(A)に示されるように、単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60の出力電圧指令値は、図6のマルチレベルコンバータの電圧指令値vCA_ref(又は電圧指令値vCB_ref)から、単相3レベルコンバータ50の出力電圧指令値v3lv_refを減算した出力電圧値となる。
図7(B)は、単相3レベルコンバータ50の出力電圧指令値v3lv_refを示している。
図7(C)は、第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60の入力電流指令値を示している。図7(C)に示される例では、第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60の入力電流指令値が一致しているものとする。
図7(D)は、第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60の入出力エネルギーを示している。図7(D)に示される例では、第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60の入出力エネルギーが一致しているものとする。
図7に示される例は、第1の単相2レベルPWMコンバータ40のコンデンサ14、第2の単相2レベルPWMコンバータ60のコンデンサ16の直流電圧が、直流電圧指令値と同じ場合であるため、入出力エネルギーが一周期で“0”になるように制御がなされている。
図7(E)は、単相3レベルコンバータ50の入出力エネルギーを示している。図7(E)に示される例は、単相3レベルコンバータ50のコンデンサ15a、15bの直流電圧が、直流電圧指令値と同じ場合であるため、入出力エネルギーが一周期で“0”になるように制御がなされている。
図8は、本実施形態のマルチレベルコンバータ1の動作波形の第2の例を示した図である。図8で示される例では、第1の単相2レベルPWMコンバータ40のコンデンサ14、第2の単相2レベルPWMコンバータ60のコンデンサ16の直流電圧が直流電圧指令値より低く、単相3レベルコンバータ50のコンデンサ15a、15bの電圧が、出力電圧指令値より高い場合を示している例とする。
このような場合に、単相3レベルコンバータ50のコンデンサ15a、15bの放電を行うと共に、第1の単相2レベルPWMコンバータ40のコンデンサ14、第2の単相2レベルPWMコンバータ60のコンデンサ16の充電を行う必要がある。
図8に示される状態では、第1の単相2レベルPWMコンバータ40のコンデンサ14、第2の単相2レベルPWMコンバータ60のコンデンサ16の直流電圧が、直流電圧指令値より低くなる。このため、図5に示される、第3の電圧閾値制御部501、及び第2の電圧閾値制御部502が出力する値は、正方向に大きくなる。また、車両の力行時は電流指令値振幅is_ref_DCは、正方向である。これにより、第2のゲイン補正部505から出力される、パラメータΔvth2も正方向に大きくなる。同様に、演算部507は、パラメータΔvth2に、第2の電圧閾値vth2を加算する以上、第2の正電圧閾値vth2_Pも正方向に大きくなる。
これにより、図8の(B)に示されるような、スイッチングパターン1及びスイッチングパターン6となる、第2の正電圧閾値vth2_Pが正方向に移動する一方、第2の負電圧閾値vth2_Nは負方向に移動するため、矩形波電圧の最大値、及び最小値が出力される期間が短縮される。
なお、図8(A)は、第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60の出力電圧指令値を示し、図8(B)は、単相3レベルコンバータ50の出力電圧指令値v3lv_refを示している。
図8(C)は、第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60の入力電流指令値であって、図7(C)と同様とする。
図8(D)は、第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60の入出力エネルギーを示している。図8(D)に示される例では、スイッチングパターン1及びスイッチングパターン6の期間が短縮されたことで、エネルギーを出力するする期間が短縮される。これにより、入出力エネルギーが一周期で正となるため、第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60のエネルギーの増加、換言すれば充電が行われる。
図8(E)は、単相3レベルコンバータ50の入出力エネルギーを示している。図8(E)に示される例では、スイッチングパターン1及びスイッチングパターン6の期間が短縮されたことで、エネルギーを入力する期間が短縮される。これにより、入出力エネルギーが一周期で負となるため、単相3レベルコンバータ50のエネルギーの減少、換言すれば放電が行われる。
図9は、本実施形態のマルチレベルコンバータ1の動作波形の第3の例を示した図である。図9で示される例では、第2の単相2レベルPWMコンバータ60のコンデンサ16の直流電圧が出力電圧指令値より低く、第1の単相2レベルPWMコンバータ40のコンデンサ14、単相3レベルコンバータ50のコンデンサ15a、15bの電圧は、出力電圧指令値と同様の場合を示している例とする。
第2の単相2レベルPWMコンバータ60のコンデンサ16の直流電圧が出力電圧指令値より低くなる状態で、第2の単相2レベルPWMコンバータ60のコンデンサ16を利用し続けると、第2の単相2レベルPWMコンバータ60のコンデンサ16の直流電圧がさらに低下する可能性がある。この場合、単相2レベルPWMコンバータ60のコンデンサ16は、図7(A)に示されるような波形で出力電圧値を出力するのが難しくなる可能性がある。このため、第2の単相2レベルPWMコンバータ60のコンデンサ16を充電する必要がある。
図9に示される状態では、第2の単相2レベルPWMコンバータ60のコンデンサ16の直流電圧が、直流電圧指令値より低くなる。このため、図4に示される、第2の2レベル用直流電圧制御部413の演算部が出力する値は、正方向に大きくなる。このため、演算部426が出力する、第2の単相2レベルPWMコンバータ60の交流入力電流指令値is2_refが増加する。これに従って、第2の交流電流制御部432が、第2の単相2レベルPWMコンバータ60用の第2の単相2レベルPWMコンバータ60用に出力する電圧指令値vHC2_refも増加する。
図9(A)は、第1の単相2レベルPWMコンバータ40の電圧指令値vHC1_refの遷移901と、第2の単相2レベルPWMコンバータ60の電圧指令値vHC2_refの遷移902と、が示されている。図9(A)に示されるように、第2の単相2レベルPWMコンバータ60は、第1の単相2レベルPWMコンバータ40と比べて、出力電圧が増加する。
図9(B)は、単相3レベルコンバータ50の出力電圧指令値v3lv_refである。
図9(C)は、第1の単相2レベルPWMコンバータ40の入力電流指令値の遷移911と、第2の単相2レベルPWMコンバータ60の入力電流指令値の遷移912と、が示されている。図9(C)に示されるように、第2の単相2レベルPWMコンバータ60の入力電流指令値は、第1の単相2レベルPWMコンバータ40の入力電流指令値と比べて増加している。
図9(D)は、第1の単相2レベルPWMコンバータ40及び第2の単相2レベルPWMコンバータ60の入出力エネルギーを示している。上述したように、第2の単相2レベルPWMコンバータ60の入力電流指令値及び電圧指令値vHC2_refが、第1の単相2レベルPWMコンバータ40と比べて、増加している。このため、図8(D)に示される例では、第2の単相2レベルPWMコンバータ60の入出力エネルギー923が、第1の単相2レベルPWMコンバータ40の入出力エネルギー921より増加する、換言すれば充電が行われる。
図9(E)は、単相3レベルコンバータ50の入出力エネルギーを示しており、図7の(E)と同様とする。
なお、本実施形態は、コンデンサ16の直流電圧と直流電圧指令値との差分により、電圧指令値vHC2_refを増加させる場合について説明した。しかしながら、このような制御に制限するものではなく、例えば回生時に、第2の交流電流制御部432は、コンデンサ16の直流電圧と直流電圧指令値との差分により、電圧指令値vHC2_refを減少させる制御を行ってもよい。このように、第2の交流電流制御部432は、電圧指令値vHC2_refを変化させる制御を行う。また、本実施形態の第2の交流電流制御部432が、第2の単相2レベルPWMコンバータ60用に出力する電圧指令値vHC2_refを変化させる例について説明したが、第1の単相2レベルPWMコンバータ40用のコンデンサ14に出力する電圧指令値vHC1_refを変化させてもよい。
本実施形態のマルチレベルコンバータ1においては、第1の単相2レベルPWMコンバータ40と、第2の単相2レベルPWMコンバータ60と、単相3レベルコンバータ50と、を組み合わせることとした。これにより、マルチレベルコンバータを複数備える場合と同様の効果を奏すると共に、部品点数の低減を実現できる。
(変形例)
第1の実施形態のマルチレベルコンバータ1は、コンバータ間を図1で示されるような接続を行った場合について説明した。しかしながら、第1の実施形態は、図1で示されるような接続を行う場合に制限するものではない。
図10は、変形例にかかるマルチレベルコンバータ1000を含む電力変換装置11のコンバータ間の接続を例示した図である。図10に示される例では、第1の実施形態と同様の、単相3レベルコンバータ50と、第1の単相2レベルPWMコンバータ40と、第2の単相2レベルPWMコンバータ60と、を備えている例とする。
図10で示される例では、第5の接続点42aが、第2の接続点42及び第3の接続点61と接続され、第6の接続点42bが、第1の接続点41及び第4の接続点62と接続されている。このような接続でも第1の実施形態と同様の効果を実現することができる。
(第2の実施形態)
第1の実施形態では、制御基板150でコンバータ・インバータの制御を一括で行う場合の構成について説明した。しかしながら、制御基板150のみで制御する場合に制限するものではない。そこで、第2の実施形態では、コンバータの制御を行う構成と、インバータの制御を行う構成と、を分けた場合について説明する。
図11は、本実施形態のマルチレベルコンバータ1を含む電力変換装置11の構成を例示した図である。図11に示される例では、コンバータ制御基板1150と、インバータ制御基板1151と、上位装置1100と、を備えている。
図11に示されるように、コンバータ制御基板1150、及びインバータ制御基板1151は、上位装置1100を介して情報の送受信が行われる。
インバータ制御基板1151は、上位装置1100からの信号に従って、負荷3に含まれているインバータを制御する構成とする。例えば、インバータ制御基板1151は、負荷3から入力されたインバータの出力電圧実効値vinv、及び出力電流実効値iinvを、上位装置1100に出力する。
上位装置1100は、車両の運転台からの運転・停止やノッチ指令等を受け、コンバータ制御基板1150やインバータ制御基板1151に対して指令を出力する。また、上位装置1100は、コンバータ制御基板1150やインバータ制御基板1151の変数をフィードバックし、コンバータ・インバータの状態監視や保護を行う。
例えば、上位装置1100は、インバータ制御基板1151から入力されたインバータの出力電圧実効値vinv、及び出力電流実効値iinvを、コンバータ制御基板1150に出力する。
コンバータ制御基板1150は、第1の実施形態の制御基板150と同様の制御を行う。但し、第1の実施形態の指令値生成部151を上位装置1100が備え、第1の実施形態の制御部152をコンバータ制御基板1150が備えるように構成しても良い。また、インバータの出力電圧実効値vinv、及び出力電流実効値iinvの受け取りは、上位装置1100を介して行われる。
上述した実施形態では、マルチレベルコンバータ1として、単相2レベルPWMコンバータを2個備えている場合について説明したが、単相2レベルPWMコンバータを2個備えている場合に制限するものではなく、単相2レベルPWMコンバータが3個以上備えられていても良い。このような場合でも、複数のマルチレベルコンバータと同様の効果を得られるとも共に、部品点数を削減できるという効果を両立させることができる。
上述した実施形態及び変形例では、マルチレベルコンバータが上述した構成を備えることで、マルチレベルコンバータが複数設けられた場合と同様の効果を得られると共に、部品点数の削減を実現できる。これにより、信頼性を向上させることができる。さらに、部品点数の削減で、コストを削減できると共に、マルチレベルコンバータが占める空間を削減できる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
11…電力変換装置、1…マルチレベルコンバータ、3…負荷、4a〜4d…スイッチングデバイス、5a〜5f…スイッチングデバイス、6a〜6d…スイッチングデバイス、7…双方向スイッチングデバイス、10a…正電位導線、10b…負電位導線、14…コンデンサ、15…コンデンサ部、15a…コンデンサ、15b…コンデンサ、16…コンデンサ、40…第1の単相2レベルPWMコンバータ、44…第1の電流センサー、64…第2の電流センサー、43…第1の電圧センサー、63…第2の電圧センサー、50…単相3レベルコンバータ、53a…第3の電圧センサー、53b…第4の電圧センサー、60…第2の単相2レベルPWMコンバータ、100…交流電源、110…主変圧器、110a…第1の二次巻線、110b…第2の二次巻線、150…制御基板、151…指令値生成部、152…制御部、401…第1の演算部、402…第2の演算部、403…実効値演算部、404…PLLブロック部、405…sin演算部、411…3レベル用直流電圧制御部、412…第1の2レベル用直流電圧制御部、413…第2の2レベル用直流電圧制御部、414…演算部、421…演算部、422…演算部、423…演算部、424…演算部、425…演算部、426…演算部、431…第1の交流電流制御部、432…第2の交流電流制御部、441…演算部、442…演算部、443…PWMブロック、444…PWMブロック、450…3レベルコンバータ出力電圧演算部、501…第3の電圧閾値制御部、502…第2の電圧閾値制御部、503…第1の電圧閾値制御部、504…演算部、505…第2のゲイン補正部、506…第1のゲイン補正部、507…演算部、508…演算部、509…演算部、510…演算部、511…平均化部、512…3レベルコンバータスイッチングパターン演算部、1000…マルチレベルコンバータ、1100…上位装置、1150…コンバータ制御基板、1151…インバータ制御基板。

Claims (4)

  1. 第1のコンデンサが設けられ、スイッチング素子と当該スイッチング素子と逆並列に接続されるダイオードとを有する一方のスイッチングデバイスが、前記単相交流電力を供給する電源と接続される第1の接続点を介して2個直列且つ前記第1のコンデンサに並列に接続され、他方のスイッチングデバイスが、第2の接続点を介して2個直列且つ前記第1のコンデンサと並列に接続される第1の2レベルコンバータと、
    第2のコンデンサが設けられ、一方のスイッチングデバイスが、前記電源と接続される第3の接続点を介して2個直列且つ前記第2のコンデンサに並列に接続され、他方のスイッチングデバイスが、第4の接続点を介して2個直列且つ前記第2のコンデンサと並列に接続される第2の2レベルコンバータと、
    2個直列接続される第3のコンデンサが設けられ、一方のスイッチングデバイスが前記第2の接続点に接続される第5の接続点を介して2個直列且つ前記2個直列接続される第3のコンデンサと並列に接続され、他方のスイッチングデバイスが、第6の接続点を介して2個直列且つ前記2個直列接続される第3のコンデンサと並列に接続され、前記第6の接続点から中性点までの経路上に、複数のスイッチングデバイスを逆極性に直列に接続する双方向スイッチが設けられ、前記2個直列接続される前記第3のコンデンサと並列に、前記第1のコンデンサ、前記第2のコンデンサ、及び前記第3のコンデンサのうちいずれか一つ以上から電力が供給される負荷と接続され、前記第4の接続点が前記第5の接続点又は前記第6の接続点に接続される、3レベルコンバータと、
    を備える電力変換装置。
  2. 前記第1の2レベルコンバータに対して、前記第1のコンデンサの電圧を指示する第1の電圧指令値と、第1のゲート信号と、を出力し、前記第2の2レベルコンバータに対して、前記第2のコンデンサの電圧を指示する第2の電圧指令値と、第2のゲート信号と、を出力し、前記3レベルコンバータに対して、前記第3のコンデンサの電圧を指示する第3の電圧指令値と、第3のゲート信号と、を出力する制御部を、さらに備え、
    当該制御部は、
    前記第1のコンデンサの電圧値と、前記第2のコンデンサの電圧値と、前記第3のコンデンサの電圧値と、前記電源の電圧値と、を入力するインターフェースと、
    前記第1の2レベルコンバータへの電圧の指示である第4の電圧指令値と、前記第2の2レベルコンバータへの電圧の指示である第5の電圧指令値と、前記3レベルコンバータへの電圧の指示である第6の電圧指令値と、を入力処理する入力処理部と、
    前記インターフェースにより入力された複数の値と、前記入力処理部により入力処理された複数の電圧指令値と、に基づいて、前記3レベルコンバータに出力する、前記第3の電圧指令値及び前記第3のゲート信号を生成する3レベルコンバータ演算部と、
    を備え、
    前記第4の電圧指令値と前記第1のコンデンサの電圧値との間の第1の差分、前記第5の電圧指令値と前記第2のコンデンサの電圧値との間の第2の差分、及び第6の電圧指令値と前記第3のコンデンサの電圧値との間の第3の差分を算出し、
    前記第1の差分と、前記第2の差分と、前記第3の差分と、前記第3の電圧指令値と、に基づいて、前記第1の2レベルコンバータに出力する、前記第1の電圧指令値と、前記第1のゲート信号と、前記第2の2レベルコンバータに出力する、前記第2の電圧指令値と、前記第2のゲート信号と、を生成する、
    請求項1に記載の電力変換装置。
  3. 前記制御部は、
    前記インターフェースが、さらに、前記第1の2レベルコンバータの入力電流値と、前記第2の2レベルコンバータの入力電流値と、を入力し、
    前記第1の差分と、前記第3の差分と、前記電源の電圧から算出された位相と、に基づいて、前記第1の2レベルコンバータに対する第1の入力電力指令値を算出し、当該第1の入力電力指令値と前記第1の2レベルコンバータの前記入力電流値との間の第4の差分を算出し、当該第4の差分と、前記第3の電圧指令値と、に基づいて、前記第1の2レベルコンバータに出力する、前記第1の電圧指令値と、前記第1のゲート信号と、を生成し、
    前記第2の差分と、前記第3の差分と、前記電源の電圧から算出された位相と、に基づいて、前記第2の2レベルコンバータに対する第2の入力電力指令値を算出し、当該第2の入力電力指令値と前記第2の2レベルコンバータの前記入力電流値との間の第5の差分を算出し、当該第5の差分と、前記第3の電圧指令値と、に基づいて、前記第2の2レベルコンバータに出力する、前記第2の電圧指令値と、前記第2のゲート信号と、を生成する、
    請求項2に記載の電力変換装置。
  4. 前記制御部は、
    前記インターフェースが、さらに、前記負荷に含まれているインバータの出力電圧実効値と、当該インバータの出力電流実効値と、を入力し、
    前記出力電圧実効値と、前記出力電流実効値と、を乗算する第1の演算部と、
    前記電源の前記電圧値から、当該電源の実効値を演算する実効値演算部と、
    前記第1の演算部の乗算結果を、前記電源の前記実効値で除算して、負荷電流フィードフォーワード値を算出する第2の演算部と、
    前記電源の前記電圧値に対して、フィードバック制御を加えて、前記電源の電圧の位相を示す位相信号を生成するPLLブロック部と、
    前記位相信号から、当該位相のsin演算するsin演算部と、
    前記3レベルコンバータの2個直列接続される前記第3のコンデンサへの指示である前記第6の電圧指令値から、前記第3のコンデンサの電圧値を減算して、前記第3の差分を算出し、前記第3の差分を用いてPI制御を行う3レベル用直流電圧制御部と、
    前記負荷電流フィードフォーワード値に対して、3レベル用直流電圧制御部によるPI制御結果を加算する第3の演算部と、
    前記第3の演算部の演算結果に対して1/2を乗算する第4の演算部と、
    前記第1の2レベルコンバータの前記第1のコンデンサへの指示である前記第4の電圧指令値から、前記第1のコンデンサの前記電圧値を減算して、前記第1の差分を算出し、前記第1の差分を用いたPI制御を行う第1の2レベル用直流電圧制御部と、
    前記第1の2レベル用直流電圧制御部のPI制御結果に、前記第4の演算部の演算結果を加算する第5の演算部と、
    前記第5の演算部の演算結果に、前記sin演算部のsin演算結果を乗算して、前記第1の入力電力指令値を算出する第6の演算部と、
    前記第1の入力電力指令値から、前記第1の2レベルコンバータの前記入力電流値を減算し、前記第4の差分を算出し、前記第4の差分を用いたPI制御を行う第1の交流電流制御部と、
    前記第2の2レベルコンバータの前記第2のコンデンサへの指示である前記第5の電圧指令値から、前記第2のコンデンサの電圧値を減算し、前記第2の差分を算出し、前記第2の差分を用いたPI制御を行う第2の2レベル用直流電圧制御部と、
    前記第2の2レベル用直流電圧制御部のPI制御結果に、前記第4の演算部の演算結果を加算する第7の演算部と、
    前記第7の演算部の演算結果に、前記sin演算部のsinの演算結果を乗算して、前記第2の入力電力指令値を算出する第8の演算部と、
    前記第2の入力電力指令値から、前記第2の2レベルコンバータの前記入力電流値を減算し、前記第5の差分を算出し、前記第5の差分を用いたPI制御を行う第2の交流電流制御部と、
    前記第1の交流電流制御部のPI制御結果に、前記3レベルコンバータ演算部により生成された前記第3の電圧指令値を減算し、前記第1の2レベルコンバータの前記第1の電圧指令値を算出する第9の演算部と、
    前記第1の電圧指令値から、前記第1のゲート信号を生成する第1のPWM制御部と、
    前記第1の交流電流制御部のPI制御結果に、前記3レベルコンバータ演算部により生成された前記第3の電圧指令値を減算し、前記第2の2レベルコンバータの前記第2の電圧指令値を算出する第10の演算部と、
    前記第2の電圧指令値から、前記第2のゲート信号を生成する第2のPWM制御部と、
    を備える、
    請求項3に記載の電力変換装置。
JP2015151048A 2015-07-30 2015-07-30 電力変換装置 Pending JP2017034805A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015151048A JP2017034805A (ja) 2015-07-30 2015-07-30 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015151048A JP2017034805A (ja) 2015-07-30 2015-07-30 電力変換装置

Publications (1)

Publication Number Publication Date
JP2017034805A true JP2017034805A (ja) 2017-02-09

Family

ID=57989055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015151048A Pending JP2017034805A (ja) 2015-07-30 2015-07-30 電力変換装置

Country Status (1)

Country Link
JP (1) JP2017034805A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186626A (ja) * 2017-04-25 2018-11-22 東芝三菱電機産業システム株式会社 3レベル電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186626A (ja) * 2017-04-25 2018-11-22 東芝三菱電機産業システム株式会社 3レベル電力変換装置

Similar Documents

Publication Publication Date Title
US9948200B2 (en) Charge and discharge circuit, control method for charge and discharge circuit, control device for charge and discharge circuit, and direct power converter
US7952896B2 (en) Power conversion architecture with zero common mode voltage
JP5279797B2 (ja) 電力変換装置
US10434882B2 (en) Track-bound vehicle converter
US8982587B2 (en) Compensating ripple on pulse with modulator outputs
US9401655B2 (en) Power conversion apparatus with inverter circuit and series converter circuit having power factor control
JPWO2007129456A1 (ja) 電力変換装置
JP2008022625A (ja) 交流−直流変換装置
JP5370519B2 (ja) 電力変換装置
US11177741B2 (en) AC-AC converter circuit
JP5523508B2 (ja) 電力変換装置
TW201838301A (zh) 電力變換裝置
CN111656664A (zh) 电力转换装置
KR20180020959A (ko) 변환 장치 및 그 제어 방법
JP4873317B2 (ja) インバータ装置
US9887617B2 (en) Power conversion device and control method thereof
JP5410551B2 (ja) 電力変換装置
JP5403090B2 (ja) 電力変換装置
US9438132B2 (en) Multilevel AC/DC power converting method and converter device thereof
JP2017034805A (ja) 電力変換装置
JP2014054152A (ja) 電力変換装置及び電力制御装置
JP2012080753A (ja) 電力変換装置
JP5400955B2 (ja) 電力変換装置
CN104852617A (zh) 一种基于磁场耦合的多电平变频器拓扑
JP2016127618A (ja) 電力変換装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170912