JP2017032530A - Displacement measurement method of raw material - Google Patents

Displacement measurement method of raw material Download PDF

Info

Publication number
JP2017032530A
JP2017032530A JP2015156096A JP2015156096A JP2017032530A JP 2017032530 A JP2017032530 A JP 2017032530A JP 2015156096 A JP2015156096 A JP 2015156096A JP 2015156096 A JP2015156096 A JP 2015156096A JP 2017032530 A JP2017032530 A JP 2017032530A
Authority
JP
Japan
Prior art keywords
mold
coarse material
pattern
displacement
spot pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015156096A
Other languages
Japanese (ja)
Inventor
高嗣 冨田
Takashi Tomita
高嗣 冨田
亮 菊池
Akira Kikuchi
亮 菊池
祐介 横田
Yusuke Yokota
祐介 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015156096A priority Critical patent/JP2017032530A/en
Publication of JP2017032530A publication Critical patent/JP2017032530A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a displacement measurement method of a raw material, which can measure displacement of the raw material right after mold opening.SOLUTION: In a first step S1, a first coating material is sprayed on a molding surface of a mold so that a spot pattern is formed on the molding surface of the mold. In a second step S2, a measurement device determines whether or not the spot pattern is recognizable. In a third step S3, when the spot pattern is determined to be recognizable in the second step S2, a second coating material is sprayed on the spot pattern so that a protective film is formed in a manner to cover the spot pattern. In a fourth step S4, after the third step S3, a molten metal is poured in the mold so that a raw material is molded. In a fifth step S5, displacement of the raw material is measured by using an image correlation method on the basis of the spot pattern transferred to the molded raw material.SELECTED DRAWING: Figure 1

Description

本発明は、粗材の変位量計測方法に関する。   The present invention relates to a method for measuring the amount of displacement of a coarse material.

特許文献1では、マークとして斑点模様を被測定物に施し、画像相関法により変位量を計測する方法が開示されている。   Patent Document 1 discloses a method of applying a speckle pattern as a mark to an object to be measured and measuring a displacement amount by an image correlation method.

特開2007−205875号公報JP 2007-205875 A

被測定物が、ダイカスト鋳造における型開き直後の粗材である場合、型開き後に粗材に斑点模様を施す時間と、斑点模様の認識の確認を行う時間とがかかるため、型開き直後において、粗材の変位量を計測することができないことがあった。   When the object to be measured is a rough material immediately after mold opening in die casting, it takes time to apply a spot pattern to the rough material after mold opening and time to confirm the recognition of the spot pattern. In some cases, the displacement of the coarse material could not be measured.

本発明は、型開き直後における粗材の変位量を計測することのできる粗材の変位量計測方法を提供するものである。   The present invention provides a method for measuring the amount of displacement of a coarse material that can measure the amount of displacement of the coarse material immediately after mold opening.

本発明に係る粗材の変位量計測方法は、
第1の塗料を金型の成形面にスプレー塗布し、前記金型の前記成形面上に斑点模様を形成する第1の工程と、
計測器が前記斑点模様を認識可能か否かということを判断する第2の工程と、
前記第2の工程で認識可能と判断された場合に、第2の塗料を前記斑点模様上にスプレー塗布し、前記斑点模様を覆うように保護膜を形成する第3の工程と、
前記第3の工程の後で、溶湯を前記金型に流し込み、粗材を成形する第4の工程と、
成形された前記粗材に転写された前記斑点模様に基づいて、画像相関法を用いて前記粗材の変位量を計測する第5の工程と、
を含む。
The displacement measuring method of the coarse material according to the present invention is:
Spraying a first paint onto a molding surface of a mold, and forming a spotted pattern on the molding surface of the mold;
A second step of determining whether the measuring instrument can recognize the speckled pattern;
A third step of spraying a second paint on the spotted pattern and forming a protective film so as to cover the spotted pattern when it is determined that recognition is possible in the second step;
After the third step, a fourth step of pouring the molten metal into the mold and molding a coarse material;
A fifth step of measuring a displacement amount of the coarse material using an image correlation method based on the spotted pattern transferred to the formed coarse material;
including.

このような構成によれば、粗材を成形する前に認識可能と判断された斑点模様が粗材に転写されるため、型開き直後に斑点模様を形成する工程と、斑点模様の認識可否の判断を行う工程とを行う必要がなくなる。したがって、型開き直後において、粗材の変位量を計測することができる。   According to such a configuration, since the spot pattern determined to be recognizable before forming the rough material is transferred to the rough material, the step of forming the spot pattern immediately after the mold opening, and whether or not the spot pattern can be recognized. It is not necessary to perform the process of making a judgment. Therefore, the amount of displacement of the coarse material can be measured immediately after the mold opening.

本発明に係る粗材の変位量計測方法は、型開き直後における粗材の変位量を計測することができる。   The method for measuring the amount of displacement of the coarse material according to the present invention can measure the amount of displacement of the coarse material immediately after mold opening.

実施の形態1に係る粗材の変位量計測方法を示すフローチャートである。3 is a flowchart showing a method for measuring a displacement amount of a coarse material according to the first embodiment. 実施の形態1に係る粗材の変位量計測方法の一工程を示す概略図である。FIG. 3 is a schematic diagram showing one step of a method for measuring a displacement amount of a coarse material according to the first embodiment. 実施の形態1に係る粗材の変位量計測方法の一工程を示す概略図である。FIG. 3 is a schematic diagram showing one step of a method for measuring a displacement amount of a coarse material according to the first embodiment. 実施の形態1に係る粗材の変位量計測方法の一工程を示す概略図である。FIG. 3 is a schematic diagram showing one step of a method for measuring a displacement amount of a coarse material according to the first embodiment. 実施の形態1に係る粗材の変位量計測方法の一工程を示す概略図である。FIG. 3 is a schematic diagram showing one step of a method for measuring a displacement amount of a coarse material according to the first embodiment. 実施の形態1に係る粗材の変位量計測方法の一工程を示す概略図である。FIG. 3 is a schematic diagram showing one step of a method for measuring a displacement amount of a coarse material according to the first embodiment.

実施の形態1
図1〜図6を参照して、実施の形態1に係る粗材の変位量計測方法について説明する。図1は、実施の形態1に係る粗材の変位量計測方法を示すフローチャートである。図2〜図6は、実施の形態1に係る粗材の変位量計測方法の一工程を示す概略図である。
Embodiment 1
With reference to FIGS. 1-6, the displacement measuring method of the coarse material which concerns on Embodiment 1 is demonstrated. FIG. 1 is a flowchart showing a method for measuring the amount of displacement of a coarse material according to the first embodiment. 2-6 is the schematic which shows 1 process of the displacement amount measuring method of the coarse material which concerns on Embodiment 1. FIG.

まず、図2に示すように、第1の塗料を金型1にスプレー塗布し、斑点模様2を形成する(斑点模様形成工程S1)。具体的には、スプレーを用いて、第1の塗料を可動型1aの成形面1cに霧状にして吹き付けることによって、斑点模様2を成形面1cに形成する。   First, as shown in FIG. 2, the 1st coating material is spray-applied to the metal mold | die 1, and the spot pattern 2 is formed (spot pattern formation process S1). Specifically, the spotted pattern 2 is formed on the molding surface 1c by spraying the first paint on the molding surface 1c of the movable mold 1a in the form of a mist using a spray.

金型1は、固定型1bと、成形面1cを有する可動型1aとを備える。可動型1aは、固定型1bに密着可能、及び、固定型1bから離間可能に設置されている。金型1は、鋳造用金型又はダイカスト用金型として用いることができる。   The mold 1 includes a fixed mold 1b and a movable mold 1a having a molding surface 1c. The movable mold 1a is installed so that it can be in close contact with the fixed mold 1b and can be separated from the fixed mold 1b. The mold 1 can be used as a casting mold or a die casting mold.

第1の塗料は、例えば、黒色の塗料である。また、第1の塗料は、溶湯の温度に耐える耐熱性を有すればよく、具体的には、後述する鋳造工程S4において溶湯から熱を与えられても、粗材の変位量を計測することができるようにその構成を維持できればよい。例えば、溶湯がダイカスト用アルミニウム合金である場合、第1の塗料は、700℃に耐える耐熱性を有すればよい。   The first paint is, for example, a black paint. Moreover, the 1st coating material should just have the heat resistance which can endure the temperature of a molten metal, and specifically, even if heat is given from a molten metal in casting process S4 mentioned later, the displacement amount of a coarse material is measured. It is only necessary to maintain the configuration so that For example, when the molten metal is an aluminum alloy for die casting, the first paint only needs to have heat resistance that can withstand 700 ° C.

斑点模様2は、成形面1cに覆う膜状体、又は、成形面1cに点在して配置される複数の粒状体であってもよい。斑点模様2は、粗材の各部位の変位を示すマークとして用いられる。   The spotted pattern 2 may be a film-like body that covers the molding surface 1c, or a plurality of granular bodies that are scattered on the molding surface 1c. The speckle pattern 2 is used as a mark indicating the displacement of each part of the rough material.

続いて、図3に示すように、斑点模様2を3次元計測器5を用いて認識できるか否かを確認する(斑点模様認識可否確認工程S2)。具体的には、3次元計測器5を用いることによって、斑点模様2を撮影し、撮影した画像情報を解析する。この画像情報は、例えば、斑点模様2の大きさ、斑点模様2に含まれる個々の斑点の大きさ、輝度値を含む。ここで、輝度値は、斑点模様2の斑点とその背景となる成形面1cと明暗差である。3次元計測器5は、画像相関法を適用したものであればよい。画像相関法では、具体的には、まず、撮影対象にマークを付与した後、撮影対象をメッシュ分割して、分割要素を形成する。この分割要素内におけるマークの形状や輝度値に基づいて対象点を特定する。これによって、撮影対象の形状を認識させ、変形前後における対象点の変位を追跡する。また、対象物の変形過程を連続撮影し、2つのカメラを用いてステレオ法を用いて、変形する3次元形状の上に計算結果を表示することができる。   Subsequently, as shown in FIG. 3, it is confirmed whether or not the spotted pattern 2 can be recognized using the three-dimensional measuring instrument 5 (spotted pattern recognition availability confirmation step S <b> 2). Specifically, the spot pattern 2 is photographed by using the three-dimensional measuring instrument 5 and the photographed image information is analyzed. This image information includes, for example, the size of the speckled pattern 2, the size of each speckle included in the speckled pattern 2, and the luminance value. Here, the luminance value is the difference between the spots of the spotted pattern 2 and the molding surface 1c serving as the background thereof, and the difference in brightness. The three-dimensional measuring instrument 5 only needs to apply the image correlation method. Specifically, in the image correlation method, first, after a mark is given to a shooting target, the shooting target is mesh-divided to form divided elements. The target point is specified based on the shape of the mark and the luminance value in the divided element. Thereby, the shape of the object to be imaged is recognized, and the displacement of the object point before and after the deformation is tracked. Also, the deformation process of the object can be continuously photographed, and the calculation result can be displayed on the three-dimensional shape to be deformed using the stereo method using two cameras.

続いて、斑点模様2を3次元計測器5を用いて認識できることを確認した場合(斑点模様認識可否確認工程S2:OK)、図4に示すように、第2の塗料を斑点模様2にスプレー塗布し、斑点模様2上に保護膜3を形成する(保護膜形成工程S3)。具体的には、スプレーを用いて、第2の塗料を斑点模様2に霧状に吹き付けることによって、保護膜3を斑点模様2上に形成する。第2の塗料は、第1の塗料と明暗差を有する色の塗料であればよく、例えば、白色の塗料である。第2の塗料は、第1の塗料と同じ程度の耐熱性を有するものであればよい。保護膜3は、斑点模様2を覆うように、形成される。なお、斑点模様2を3次元計測器5を用いて認識できることを確認できなった場合(斑点模様認識可否確認工程S2:NG)、斑点模様形成工程S1に戻る。   Subsequently, when it is confirmed that the spot pattern 2 can be recognized using the three-dimensional measuring instrument 5 (spot pattern recognition recognition confirmation step S2: OK), the second paint is sprayed on the spot pattern 2 as shown in FIG. Application is performed to form a protective film 3 on the speckled pattern 2 (protective film forming step S3). Specifically, the protective film 3 is formed on the spotted pattern 2 by spraying the second paint onto the spotted pattern 2 in a mist form using a spray. The second paint may be a paint having a color difference between the first paint and the first paint, for example, a white paint. The second coating material only needs to have the same degree of heat resistance as the first coating material. The protective film 3 is formed so as to cover the spotted pattern 2. In addition, when it cannot confirm that the spot pattern 2 can be recognized using the three-dimensional measuring device 5 (spot pattern recognition possibility confirmation process S2: NG), it returns to the spot pattern formation process S1.

続いて、図5に示すように、溶湯(図示略)を金型1に流し込み、凝固させて、粗材4を形成する(鋳造工程S4)。具体的には、溶湯が金型1に流れると、保護膜3が斑点模様2を溶湯の流れから保護し、斑点模様2の構成が維持される。溶湯が凝固し、粗材4が形成すると、斑点模様2及び保護膜3の少なくとも一部が粗材4の表面に転写される。斑点模様2及び保護膜3の一部が金型1の成形面1cに残存してもよい。   Subsequently, as shown in FIG. 5, molten metal (not shown) is poured into the mold 1 and solidified to form the coarse material 4 (casting step S4). Specifically, when the molten metal flows into the mold 1, the protective film 3 protects the speckle pattern 2 from the flow of the molten metal, and the configuration of the speckle pattern 2 is maintained. When the molten metal solidifies and the coarse material 4 is formed, at least a part of the speckled pattern 2 and the protective film 3 is transferred to the surface of the coarse material 4. A part of the speckled pattern 2 and the protective film 3 may remain on the molding surface 1 c of the mold 1.

続いて、図6に示すように、可動型1aを開き、粗材4を3次元計測器5で撮影する(変形後形状撮影工程S5)。具体的には、可動型1aを固定型1bから離間させた後で、3次元計測器5を用いて、粗材4に転写された斑点模様2を撮影する。   Subsequently, as shown in FIG. 6, the movable mold 1a is opened, and the coarse material 4 is imaged by the three-dimensional measuring instrument 5 (post-deformation shape imaging step S5). Specifically, after the movable mold 1a is separated from the fixed mold 1b, the spotted pattern 2 transferred to the coarse material 4 is photographed using the three-dimensional measuring instrument 5.

最後に、粗材4の設計形状と、粗材4の実体形状とを比較解析し、変位量を計測する(形状比較解析工程S6)。具体的には、粗材4の設計形状と、粗材4の実体形状との対象点の変位を求めることで、比較解析を行う。粗材4の設計形状は、設計によって決められた形状であり、例えば、CAD(Computer-Aided Design)データである。粗材4の設計形状は、正寸とも称してもよい。金型1のキャビティ、又は、可動型1aの成形面1cは、粗材4の設計形状等に基づいて、決定される。粗材4の実体形状は、変形後形状撮影工程S5において、可動型1aを開いた後の粗材4の形状である。   Finally, the design shape of the coarse material 4 and the actual shape of the coarse material 4 are compared and analyzed, and the amount of displacement is measured (shape comparison analysis step S6). Specifically, the comparative analysis is performed by obtaining the displacement of the target point between the design shape of the coarse material 4 and the actual shape of the coarse material 4. The design shape of the coarse material 4 is a shape determined by design, for example, CAD (Computer-Aided Design) data. The design shape of the coarse material 4 may also be referred to as the exact size. The cavity of the mold 1 or the molding surface 1c of the movable mold 1a is determined based on the design shape of the coarse material 4 and the like. The substantial shape of the coarse material 4 is the shape of the coarse material 4 after the movable mold 1a is opened in the post-deformation shape photographing step S5.

以上より、鋳造工程S4の前、すなわち、粗材4を成形する前の斑点模様認識可否確認工程S2において、斑点模様2が3次元計測器5を用いて認識可能と判断されている。また、鋳造工程S4では、斑点模様2が粗材4に転写される。そのため、型開き直後に斑点模様を形成する工程と、斑点模様の認識可否の判断を行う工程とを行う必要がなくなる。したがって、型開き直後において、粗材の変位量を計測することができる。   As described above, it is determined that the spot pattern 2 can be recognized using the three-dimensional measuring instrument 5 in the spot pattern recognition possibility confirmation step S2 before the casting step S4, that is, before the rough material 4 is formed. In the casting step S4, the speckle pattern 2 is transferred to the rough material 4. Therefore, there is no need to perform a step of forming a spot pattern immediately after mold opening and a step of determining whether or not the spot pattern can be recognized. Therefore, the amount of displacement of the coarse material can be measured immediately after the mold opening.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

1 金型
1a 可動型 1b 固定型
1c 成形面
2 斑点模様 3 保護膜
4 粗材
S1 斑点模様形成工程 S2 斑点模様認識可否確認工程
S3 保護膜形成工程 S4 鋳造工程
S5 変形後形状撮影工程 S6 形状比較解析工程
DESCRIPTION OF SYMBOLS 1 Mold 1a Movable mold 1b Fixed mold 1c Molding surface 2 Spot pattern 3 Protective film 4 Rough material S1 Spot pattern forming process S2 Spot pattern recognition availability confirmation process S3 Protective film forming process S4 Casting process S5 Deformation shape photographing process S6 Shape comparison Analysis process

Claims (1)

第1の塗料を金型の成形面にスプレー塗布し、前記金型の前記成形面上に斑点模様を形成する第1の工程と、
計測器が前記斑点模様を認識可能か否かということを判断する第2の工程と、
前記第2の工程で認識可能と判断された場合に、第2の塗料を前記斑点模様上にスプレー塗布し、前記斑点模様を覆うよう保護膜を形成する第3の工程と、
前記第3の工程の後で、溶湯を前記金型に流し込み、粗材を成形する第4の工程と、
成形された前記粗材に転写された前記斑点模様に基づいて、画像相関法を用いて前記粗材の変位量を計測する第5の工程と、
を含む粗材の変位量計測方法。
Spraying a first paint onto a molding surface of a mold, and forming a spotted pattern on the molding surface of the mold;
A second step of determining whether the measuring instrument can recognize the speckled pattern;
A third step of spraying a second paint on the spotted pattern and forming a protective film so as to cover the spotted pattern when it is determined that the second step can be recognized;
After the third step, a fourth step of pouring the molten metal into the mold and molding a coarse material;
A fifth step of measuring a displacement amount of the coarse material using an image correlation method based on the spotted pattern transferred to the formed coarse material;
Measuring method of displacement of coarse material including
JP2015156096A 2015-08-06 2015-08-06 Displacement measurement method of raw material Pending JP2017032530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015156096A JP2017032530A (en) 2015-08-06 2015-08-06 Displacement measurement method of raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156096A JP2017032530A (en) 2015-08-06 2015-08-06 Displacement measurement method of raw material

Publications (1)

Publication Number Publication Date
JP2017032530A true JP2017032530A (en) 2017-02-09

Family

ID=57988757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156096A Pending JP2017032530A (en) 2015-08-06 2015-08-06 Displacement measurement method of raw material

Country Status (1)

Country Link
JP (1) JP2017032530A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019130860A (en) * 2018-02-02 2019-08-08 株式会社日本製鋼所 Initial condition setting method for molding condition
JP7150435B2 (en) 2017-04-25 2022-10-11 ザ・ボーイング・カンパニー Method for Measuring Residual Strain in Cured Composite Parts
CN116878413A (en) * 2023-09-06 2023-10-13 中国航发四川燃气涡轮研究院 Preparation method of surface speckle of blisk blade

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7150435B2 (en) 2017-04-25 2022-10-11 ザ・ボーイング・カンパニー Method for Measuring Residual Strain in Cured Composite Parts
JP2019130860A (en) * 2018-02-02 2019-08-08 株式会社日本製鋼所 Initial condition setting method for molding condition
CN116878413A (en) * 2023-09-06 2023-10-13 中国航发四川燃气涡轮研究院 Preparation method of surface speckle of blisk blade
CN116878413B (en) * 2023-09-06 2023-11-17 中国航发四川燃气涡轮研究院 Preparation method of surface speckle of blisk blade

Similar Documents

Publication Publication Date Title
JP2017032530A (en) Displacement measurement method of raw material
WO2016132196A8 (en) Method for identifying a cast part
WO2019078813A1 (en) 3d printer
US20170266886A1 (en) Camera-based determining of roughness for additively manufactured components
EP3170584B1 (en) Gate position detection system, casting device, gate position detection method, and method for manufacturing cast product
CN105772656A (en) Image processing device for liquid casting powder thickness detection of continuous casting machine and use method thereof
EP1381705A1 (en) An automated spray form cell
US11802797B2 (en) Inspection method, inspection apparatus, production method, and production system for heatsink
WO2015114659A3 (en) System and method for design analysis for metal casting design
Sowa et al. The influence of riser shape on feeding effectiveness of solidifying casting
Bazhenov et al. Determination of the heat-transfer coefficient between the AK7ch (A356) alloy casting and no-bake mold
JP5040618B2 (en) Cast crack estimation method, sink crack estimation device, sink crack estimation program, recording medium recording the program, and mold manufacturing method thereof
JP2022190798A (en) Prediction system, prediction method and program
JP5330341B2 (en) Ranging device using in-vehicle camera
JP2016128183A (en) Coating state detection method of mold release agent
JP2019084578A (en) Evaluation method
JP2016065811A (en) Device and method for measuring temperature
US20230286037A1 (en) System and method for monitoring metal level during casting
JP6408950B2 (en) Method for selecting mold powder for continuous casting and method for producing cast piece
JP2017136632A (en) Method for manufacturing high dimensional accuracy die casting
JP7493093B2 (en) System and method for monitoring ingot separation from bottom block - Patents.com
JP6308066B2 (en) Mold manufacturing method
JP5525912B2 (en) Method for identifying deformation cause part of resin molded product and method for suppressing deformation defect
JP2014076622A (en) Printer and peripheral velocity correction method
JP7345976B2 (en) Temperature measuring device for casting molds