JP2017136632A - Method for manufacturing high dimensional accuracy die casting - Google Patents

Method for manufacturing high dimensional accuracy die casting Download PDF

Info

Publication number
JP2017136632A
JP2017136632A JP2016020769A JP2016020769A JP2017136632A JP 2017136632 A JP2017136632 A JP 2017136632A JP 2016020769 A JP2016020769 A JP 2016020769A JP 2016020769 A JP2016020769 A JP 2016020769A JP 2017136632 A JP2017136632 A JP 2017136632A
Authority
JP
Japan
Prior art keywords
shape
mold
casting
product
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016020769A
Other languages
Japanese (ja)
Inventor
祐司 菊池
Yuji Kikuchi
祐司 菊池
斉藤 憲明
Noriaki Saito
憲明 斉藤
豊 大竹
Yutaka Otake
豊 大竹
高志 瀬能
Takashi Seno
高志 瀬能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikuwa Corp
University of Tokyo NUC
Original Assignee
Kikuwa Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikuwa Corp, University of Tokyo NUC filed Critical Kikuwa Corp
Priority to JP2016020769A priority Critical patent/JP2017136632A/en
Publication of JP2017136632A publication Critical patent/JP2017136632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve improvement of productivity in manufacturing a die casting product by molding a final product without further performing a processing step for a casted product discharged from a metal mold.SOLUTION: A method for manufacturing a high dimensional accuracy die casting includes: a target shape selection step of selecting a target product shape; a trial casting molding step of molding a trial casting by using a trial metal mold having a metal mold shape as a shape similar to the target product shape; a three-dimensional shape model forming step of forming a three-dimensional shape model of the whole trial metal mold, and a three-dimensional shape model of the whole trial casting; a calculation step of comparing the two three-dimensional models formed in the three-dimensional shape model forming step, and calculating a contraction relation between the trial metal mold and the trial casting; and a corrected metal mold manufacturing step of designing and manufacturing a corrected metal mold having a corrected shape obtained by formulating an inverse vector of a construction amount vector when molding the trial casting from the trial metal mold on the basis of the contraction relation calculated in the calculation step, and folding the inverse vector.SELECTED DRAWING: Figure 3

Description

本発明は、例えばアルミ等からなる高寸法精度ダイカストの製造方法に関する。   The present invention relates to a method for manufacturing a high dimensional accuracy die casting made of, for example, aluminum.

従来、例えば自動車部品の製造等において鋳造した金属製品が用いられることが知られており、特にアルミ合金製であるアルミダイカスト製品が一般的に用いられている。金型を用いて立体造形を行う従来の製造技術においては、目標とする製品形状を策定し、当該目標製品寸法に経験則的な伸尺といわれる所定の一律倍率(3D倍率)をかけた寸法で金型を製作し、製作した金型を用いて鋳造が行われる。   Conventionally, for example, it is known that cast metal products are used in the production of automobile parts and the like, and aluminum die-cast products made of aluminum alloy are generally used. In the conventional manufacturing technology that performs three-dimensional modeling using a mold, a target product shape is formulated, and the target product dimension is multiplied by a predetermined uniform magnification (3D magnification) called empirical scaling. A mold is manufactured by using the manufactured mold and casting is performed.

また、ダイカスト製品の製造において用いる金型においては、その寸法精度向上のための種々の技術が創案されている。例えば特許文献1には、目標の製品寸法のダイカスト製品を、湯口側と、その対向側とで温度差があり、固体収縮に伴う変形時の変形量が異なる場合があるため、その差異を埋めるために金型寸法を湯口側と対向側とで異なるように設計する技術が開示されている。   Various techniques for improving the dimensional accuracy have been devised in the molds used in the manufacture of die-cast products. For example, in Patent Document 1, there is a temperature difference between the gate side and the opposite side of a die-cast product having a target product size, and the amount of deformation at the time of deformation accompanying solid shrinkage may be different, so that the difference is filled. Therefore, a technique for designing the mold dimensions to be different between the gate side and the opposite side is disclosed.

特開2004−306109号公報JP 2004-306109 A

アルミ合金からなる自動車部品等には、その部位に応じてより高度な寸法精度を求められる部品が存在する。上記従来のダイカスト製造技術では、金型から排出された鋳造後製品に関し金型熱間変形や素材凝固収縮による変形が生じることが分かっている。そのため、アルミダイカスト製品のような高度な寸法精度が求められる製品においては、鋳造後製品に対して加工を行うことで最終的な所定寸法を満たした製品が製造されてきた。   Among automotive parts made of an aluminum alloy, there are parts that require a higher degree of dimensional accuracy depending on the part. In the above conventional die casting manufacturing technology, it is known that the post-cast product discharged from the mold undergoes deformation due to mold hot deformation or material solidification shrinkage. Therefore, in products that require high dimensional accuracy such as aluminum die-cast products, products that satisfy final predetermined dimensions have been manufactured by processing the products after casting.

また、上記特許文献1に開示されているような寸法精度向上のための技術も創案されており、当該文献には、金型寸法を場所に応じて異なるように設計する旨は記載されている。しかしながら、その詳細な寸法形状設定は、これまでの経験に基づいたおおよその概算値に基いて定められているのが実情であり、鋳造後の製品寸法精度は、いわゆるJIS B 0403で定められる寸法公差にとどまっており、鋳造段階でより高精度な寸法精度が求められるような製品については適用が難しい。   Further, a technique for improving the dimensional accuracy as disclosed in Patent Document 1 has been devised, and this document describes that the mold dimensions are designed to be different depending on the location. . However, the detailed dimension and shape setting is actually determined based on an approximate value based on past experience, and the product dimensional accuracy after casting is a dimension determined by so-called JIS B 0403. It is difficult to apply to products that are limited in tolerance and require higher dimensional accuracy at the casting stage.

しかしながら、上述したように、従来は鋳造後製品に対して加工を行う工程が必要となるためコストの増大や製造工程の長期化が懸念される。また、当該加工工程では、加工面の品質不良が発生し、製品内部欠陥が問題となる場合がある。即ち、加工工程によって生産性の低下が問題となる。加えて、最終製品からのリバースエンジニアリングにより、生産工程の模倣が行われてしまう危険性も有る。   However, as described above, conventionally, since a process for processing the product after casting is required, there is a concern about an increase in cost and a prolonged manufacturing process. Moreover, in the said process, the quality defect of a process surface generate | occur | produces and a product internal defect may become a problem. That is, a decrease in productivity becomes a problem depending on the machining process. In addition, there is a risk that the production process is imitated by reverse engineering from the final product.

上記事情に鑑み、本発明の目的は、ダイカスト製品の製造において、金型から排出される段階において従来に比べて高い寸法精度を実現させて最終製品を造形することで、生産性の向上が実現される高寸法精度ダイカストの製造方法を提供することにある。   In view of the above circumstances, the object of the present invention is to realize an improvement in productivity by shaping the final product by realizing higher dimensional accuracy than before in the stage of discharging from the mold in the manufacture of the die-cast product. Another object of the present invention is to provide a method for producing a high dimensional accuracy die casting.

前記の目的を達成するため、本発明によれば、溶湯を金型に注湯し、注湯された素材を金型取り出すことで鋳造材をダイカスト製品として取り出す高寸法精度ダイカストの製造方法であって、目標製品形状を選定する目標形状選定工程と、前記目標製品形状と同様の形状の金型形状を有する試作金型を用いて試作鋳造品を造形する試作鋳造品造形工程と、前記試作金型全体の3次元形状モデルと、前記試作鋳造品全体の3次元形状モデルと、を作成する3次元形状モデル作成工程と、前記3次元形状モデル作成工程で作成された2つの3次元形状モデルを比較し、前記試作金型と前記試作鋳造品との間の伸尺関係を算出する算出工程と、前記算出工程で算出された伸尺関係に基づき前記試作金型から前記試作鋳造品が造形される際の伸縮量ベクトルの逆ベクトルを策定し、前記目標製品形状に当該逆ベクトルを折り込むことで得られる補正後形状を有する補正後金型を設計及び製作する補正後金型製作工程と、を備え、溶湯を前記補正後金型に注湯し、当該補正後金型で鋳造を行って目標製品形状を有するダイカスト製品を製造することを特徴とする、高寸法精度ダイカストの製造方法が提供される。   In order to achieve the above object, according to the present invention, there is provided a method for producing a high dimensional accuracy die casting in which a molten metal is poured into a mold and a cast material is taken out as a die cast product by taking out the poured material. A target shape selecting step for selecting a target product shape, a prototype cast product forming step for forming a prototype cast product using a prototype mold having a mold shape similar to the target product shape, and the prototype mold A three-dimensional shape model creating step for creating a three-dimensional shape model of the entire mold, a three-dimensional shape model of the entire prototype casting, and two three-dimensional shape models created in the three-dimensional shape model creating step. In comparison, a calculation step for calculating an elongation relationship between the prototype mold and the prototype casting product, and the prototype casting product is formed from the prototype mold based on the elongation relationship calculated in the calculation step. Expansion and contraction amount And a corrected mold manufacturing step for designing and manufacturing a corrected mold having a corrected shape obtained by folding the reverse vector into the target product shape. There is provided a method for producing a high dimensional accuracy die casting, which comprises pouring molten metal into a corrected die and casting with the corrected die to produce a die cast product having a target product shape.

前記3次元形状モデル作成工程において、目標製品形状に関する補正量の補間は、ラプラシアン平滑化を用いて行われても良い。   In the three-dimensional shape model creation step, interpolation of the correction amount related to the target product shape may be performed using Laplacian smoothing.

前記3次元形状モデル作成工程において、目標製品形状の特定の形状のみに補正を行う場合、補正部に隣接する非補正部を接続部として定め、当該接続部における補正量をラプラシアン平滑化を用いて補間しても良い。   In the three-dimensional shape model creation step, when correcting only a specific shape of the target product shape, a non-correction portion adjacent to the correction portion is defined as a connection portion, and a correction amount in the connection portion is determined using Laplacian smoothing. Interpolation may be performed.

前記補正後金型製作工程において、抜き勾配に対し逆向きの勾配を有した逆反り形状が生じた場合、当該逆反り形状が生じた箇所からの距離に応じた重み付きのスムージングを当該逆反り形状が無くなるまで繰り返し行っても良い。   In the post-correction mold manufacturing process, when a reverse warp shape having a gradient opposite to the draft is generated, weighted smoothing according to the distance from the location where the reverse warp shape is generated is applied to the reverse warp. It may be repeated until the shape disappears.

前記補正後金型の設計及び製作においては、ポリゴンCAMを用いて当該補正後金型の加工CAMデータの作成が行われても良い。   In the design and manufacture of the corrected mold, processing CAM data of the corrected mold may be created using a polygon CAM.

本発明によれば、ダイカスト製品の製造において、金型から排出される段階において従来に比べて高い寸法精度を実現させて最終製品を造形することで、生産性の向上が実現される。   According to the present invention, in the manufacture of a die-cast product, the productivity is improved by shaping the final product by realizing higher dimensional accuracy than in the past at the stage of being discharged from the mold.

従来のダイカスト製品の製造方法に関する概略説明図である。It is a schematic explanatory drawing regarding the manufacturing method of the conventional die-cast product. 凝固収縮に関する概略説明図である。It is a schematic explanatory drawing regarding coagulation shrinkage | contraction. 本発明の実施の形態に係るダイカストの製造方法を示す概略説明図である。It is a schematic explanatory drawing which shows the manufacturing method of the die casting which concerns on embodiment of this invention. ラプラシアン平滑化による補正量の補間についての概略説明図である。It is a schematic explanatory drawing about the interpolation of the correction amount by Laplacian smoothing. 実施例の目標製品形状モデルの概略図である。It is the schematic of the target product shape model of an Example. 本発明技術を適用してダイカスト製品の製造を行った際の鋳造物(実施例)に関する説明図である。It is explanatory drawing regarding the casting (Example) at the time of manufacturing a die-cast product using the technique of this invention. 本発明技術に係る補正方法を適用せず、従来の製造方法を用いてダイカスト製品の製造を行った際の鋳造物(比較例)に関する説明図である。It is explanatory drawing regarding the casting (comparative example) at the time of manufacturing a die-cast product using the conventional manufacturing method, without applying the correction method which concerns on this invention technique.

以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、以下では、ダイカスト製品の形状を例示して説明する場合があるが、本発明の適用範囲は特定の製品形状に限定されるものではなく、種々の形状のダイカスト製品について適用可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted. In the following, the shape of the die-cast product may be described as an example, but the scope of the present invention is not limited to a specific product shape, and can be applied to die-cast products of various shapes.

(従来のダイカスト製造技術)
先ず、従来のダイカスト製造技術について説明する。図1は従来のダイカスト製品の製造方法に関する概略説明図である。図1(a)は目標製品形状の選定工程、(b)は金型の設計及び製作工程、(c)は鋳造工程、(d)は加工工程を示している。
従来のダイカスト製造技術においては、図1(a)に示すように、最初に目標とする製品形状の選定工程が行われる。ここで、目標とする製品形状を目標製品形状Aとする。
(Conventional die casting manufacturing technology)
First, a conventional die casting manufacturing technique will be described. FIG. 1 is a schematic explanatory diagram relating to a conventional method for producing a die-cast product. 1A shows a target product shape selection process, FIG. 1B shows a mold design and manufacturing process, FIG. 1C shows a casting process, and FIG. 1D shows a machining process.
In the conventional die casting manufacturing technique, as shown in FIG. 1A, a target product shape selection step is first performed. Here, the target product shape is defined as a target product shape A.

次に、図1(b)に示すように、目標製品形状Aに基づき、鋳造のための金型K1の設計及び製作が行われる。このときに設計・製作される金型K1の寸法は、上記目標製品形状Aとは異なる寸法であり、経験則的な伸尺といわれる一律倍率を目標製品形状Aに乗じた寸法で設計・製作される。この伸尺は、経験則から、鋳造後に目標製品形状Aが得られるような金型形状Bを設計することで実現される。一般的には、金型形状Bは目標製品形状Aと比較して、相似形且つ所定量だけ寸法が大きいような形状とされる。   Next, as shown in FIG. 1B, the mold K1 for casting is designed and manufactured based on the target product shape A. The dimension of the mold K1 designed and manufactured at this time is different from the target product shape A, and is designed and manufactured by multiplying the target product shape A by a uniform magnification called empirical scale. Is done. This stretching is realized by designing a mold shape B that allows the target product shape A to be obtained after casting from a rule of thumb. In general, the mold shape B is similar to the target product shape A and has a shape that is larger in size by a predetermined amount.

そして、金型形状Bを有する金型K1を用いて鋳造が行われる。ここで、当該金型K1から排出された製品は、金型形状Bと同じ形状を有する製品となるはずである。しかしながら、この金型形状Bを有する金型K1を用いて鋳造された鋳造後の製品寸法は、基本的には金型形状Bと同じ形状とはならず、形状Cとなる。以下、その理由を説明する。   Then, casting is performed using a mold K1 having a mold shape B. Here, the product discharged from the mold K1 should be a product having the same shape as the mold shape B. However, the dimension of the product after casting using the mold K1 having the mold shape B is not the same shape as the mold shape B but is the shape C. The reason will be described below.

ダイカスト製造技術において金型K1に注湯される溶湯は例えば約700℃程度の高温であり、注湯された溶湯と接触した金型K1の内壁表層は高温となり膨張する。一方、金型K1において溶湯と直接接触しない部分(金型裏部等)は表層と比較して相対的に低温となり、膨張しない。その結果、金型K1は熱間金型変形を起こす。この熱間金型変形によってうねりを伴う変形が金型K1に生じ、金型K1を用いて鋳造された鋳造後の製品寸法は、当初設計された金型形状Bと同じ形状とはならない。
加えて、金型K1に生じた熱間金型変形は1つの製品の鋳造が終わった後もその影響が残存し、金型K1に変形が残存した状態となる。その結果、連続的に同一の金型K1を用いて鋳造を行ったとしても、鋳造後の製品寸法は一定とならない恐れがある。
In the die casting manufacturing technique, the molten metal poured into the mold K1 is at a high temperature of about 700 ° C., for example, and the inner wall surface layer of the mold K1 in contact with the poured molten metal becomes hot and expands. On the other hand, a portion of the mold K1 that is not in direct contact with the molten metal (such as the mold back) is relatively low in temperature compared to the surface layer and does not expand. As a result, the mold K1 undergoes hot mold deformation. Due to this hot mold deformation, deformation accompanied by undulation occurs in the mold K1, and the size of the product after casting cast using the mold K1 is not the same as the mold shape B originally designed.
In addition, the hot mold deformation that has occurred in the mold K1 remains after the casting of one product is finished, and the deformation remains in the mold K1. As a result, even if casting is continuously performed using the same mold K1, the product dimensions after casting may not be constant.

また、一般的な鋳造においては、素材が溶湯状態(液相)から凝固状態(固相)に変態する過程で収縮を起こすことが知られており、更には、当該収縮のベクトル方向は、鋳造製品の形状内において凝固する順番に依存することが知られている。このため、鋳造製品が複雑な形状である場合には、凝固の順番も複雑となり、多軸多方向のベクトルに応じた収縮が起こることになる。即ち、図2に示すように、複雑な形状の鋳造製品については定縮尺での凝固収縮とはならず、凝固に際して製品形状が変形してしまう恐れがある。凝固の順番は冷却されやすい形状部分から冷却されにくい形状部分になるにつれて遅くなる傾向にあり、図2に示す形状においては、部品先端の細い形状から凝固が開始され、胴体部分の凝固が後に開始されるといった順序になる。   In general casting, it is known that the material undergoes shrinkage in the process of transformation from a molten metal state (liquid phase) to a solidified state (solid phase). It is known to depend on the order of solidification within the shape of the product. For this reason, when the cast product has a complicated shape, the order of solidification becomes complicated, and shrinkage occurs according to multi-axis multi-directional vectors. That is, as shown in FIG. 2, a cast product having a complicated shape does not undergo solidification shrinkage at a fixed scale, and the product shape may be deformed during solidification. The order of solidification tends to become slower as the shape portion that is easily cooled becomes a shape portion that is difficult to cool. In the shape shown in FIG. 2, solidification starts from a thin shape at the tip of the part, and solidification of the body portion starts later. It becomes the order that is done.

このような事情に関し、鋳造中の素材及び金型K1は非常に高温であるために、微小な金型の寸法変化や凝固収縮による形状変化を正確に測定することは困難であり、上述したように、経験則に基づく伸尺(一律倍率)を目標製品形状Aに乗じた寸法で金型K1を設計・製作している。   Regarding such circumstances, since the material being cast and the mold K1 are very high temperature, it is difficult to accurately measure a dimensional change of a minute mold and a shape change due to solidification shrinkage, as described above. In addition, the mold K1 is designed and manufactured with a dimension obtained by multiplying the target product shape A by a scale based on an empirical rule (a uniform magnification).

以上説明した理由により、従来のダイカスト製造技術においては、図1(d)に示すように、金型K1での鋳造後の製品に対して加工を行い、上記熱間金型変形や素材の凝固収縮に伴う製品形状の変形を矯正し、最終製品を造形していた。   For the reasons described above, in the conventional die casting manufacturing technology, as shown in FIG. 1 (d), the product after casting in the mold K1 is processed, and the hot mold deformation and the solidification of the material are performed. The product was deformed due to shrinkage and the final product was shaped.

また、従来のダイカスト製造技術において、金型K1の形状を補正する技術も創案されている。例えば、寸法形状が目標製品形状Aとならなかった鋳造製品の外面を3次元寸法測定器を用いてプローブによって点測定し、更に、寸法形状が目標製品形状Aとならなかった場合の金型K1の内面を同様の3次元寸法測定器を用いて点測定し、2つの測定結果から目標製品形状Aが得られるような金型形状を得るといった方法も創案されている。
しかしながら、上述したように、金型K1の熱間金型変形や素材の凝固収縮に伴う鋳造製品の変形は、うねりを伴う面変形であり、3次元寸法測定器を用いた点測定では、うねりを伴う面変形といった複雑な変形を十分に補足することができず、十分な補正を行い寸法精度の高い鋳造製品を造形することは困難である。
Further, a technique for correcting the shape of the mold K1 has been devised in the conventional die casting manufacturing technique. For example, the outer surface of the cast product whose dimension shape does not become the target product shape A is point-measured by a probe using a three-dimensional dimension measuring instrument, and the die K1 when the dimension shape does not become the target product shape A A method has also been devised in which a point is measured using the same three-dimensional dimension measuring device and a mold shape is obtained so that a target product shape A can be obtained from two measurement results.
However, as described above, the hot mold deformation of the mold K1 and the deformation of the cast product accompanying the solidification shrinkage of the material are surface deformation accompanied by waviness, and in the point measurement using the three-dimensional dimension measuring device, waviness is obtained. It is difficult to sufficiently complicate complicated deformations such as surface deformations accompanied by, and it is difficult to form a cast product with high dimensional accuracy by performing sufficient correction.

このように、従来のダイカスト製造技術では、最終製品の造形に際し鋳造後の製品に対し加工(矯正)を行うことが必要であり、また、金型K1や素材の変形に関する十分な補正方法等が確立されていないのが実情である。   As described above, in the conventional die casting manufacturing technique, it is necessary to process (correct) the product after casting when forming the final product, and there is a sufficient correction method for the deformation of the mold K1 and the material. The fact is that it has not been established.

(本実施の形態に係るダイカスト製造技術)
このような事情に鑑み、本発明者らは鋭意検討を行い、ダイカスト製造技術において、鋳造後の製品の寸法が目標製品形状Aとほぼ同じ形状となるように金型を設計・製作し、上述したような鋳造後の製品に対する加工(矯正)工程を排除し、所望の寸法形状を有する最終製品を従来に比べ生産性良く製造する方法を創案した。以下、創案された本実施の形態に係るダイカストの製造方法について図面等を参照して説明する。
(Die-casting manufacturing technology according to this embodiment)
In view of such circumstances, the present inventors have intensively studied, and in the die casting manufacturing technology, the mold is designed and manufactured so that the dimension of the product after casting is substantially the same as the target product shape A. The present inventors have devised a method for producing a final product having a desired dimensional shape with higher productivity than conventional methods by eliminating the processing (correction) process for the product after casting. Hereinafter, a method for manufacturing a die cast according to the present embodiment will be described with reference to the drawings.

図3は本発明の実施の形態に係るダイカストの製造方法を示す概略説明図である。図3(a)は目標製品形状の選定工程、(b)は金型の設計及び製作工程、(c)は鋳造工程を示す。
先ず、図3(a)に示すように、最初に目標とする製品形状の選定工程が行われる。ここで、目標とする製品形状は、上記従来の場合と同じく目標製品形状Aとする。
FIG. 3 is a schematic explanatory view showing a die casting manufacturing method according to the embodiment of the present invention. 3A shows a target product shape selection process, FIG. 3B shows a mold design and manufacturing process, and FIG. 3C shows a casting process.
First, as shown in FIG. 3A, a target product shape selection step is first performed. Here, the target product shape is the target product shape A as in the conventional case.

次に、図3(b)に示すように、目標製品形状Aに基づき、試作金型K2の設計及び製作と、最終製品を鋳造するための補正後金型K3の設計及び製作が行われる。補正後金型K3の設計及び製作は以下のような方法で行われる。
1)目標製品形状Aと同じ形状の鋳型を備えた試作金型K2を製作する。(目標形状選定工程)
2)試作金型K2を用いて試作鋳造品10を造形・鋳造する。(試作鋳造品造形工程)
3)試作金型K2の金型形状について、非接触3次元測定器を用いて金型全体の測定点群として測定する。そして、測定された試作金型K2全体の3次元形状モデル12を作成する。(3次元形状モデル作成工程)
4)試作鋳造品10の全体形状を、非接触3次元測定器を用いて測定点群として測定する。そして、測定された試作鋳造品10全体の3次元形状モデル13を作成する。(3次元形状モデル作成工程)
5)試作金型K2の3次元形状モデル12と試作鋳造品10の3次元形状モデル13を比較(位置合わせ比較)し、金型形状と鋳造形状との間の伸縮量をコンピューター解析により算出する。このとき、全方位3軸での伸縮量が算出され、試作金型K2の形状と、当該試作金型K2で鋳造される試作鋳造品10の形状との伸尺関係が算出される。伸尺関係は3次元全方位の全形状ポイントで算出される。(算出工程)
6)上記5)で算出された伸尺関係に基づき、伸縮量ベクトルの逆ベクトルを策定し、目標製品形状Aに当該逆ベクトルを折り込むことで補正後形状Dを有する補正後金型K3を設計・製作する。(補正後金型製作工程)
Next, as shown in FIG. 3B, based on the target product shape A, the prototype mold K2 is designed and manufactured, and the corrected mold K3 for casting the final product is designed and manufactured. The corrected mold K3 is designed and manufactured by the following method.
1) Prototype mold K2 including a mold having the same shape as target product shape A is manufactured. (Target shape selection process)
2) The prototype casting 10 is shaped and cast using the prototype mold K2. (Prototype casting production process)
3) The shape of the prototype mold K2 is measured as a measurement point group of the entire mold using a non-contact three-dimensional measuring device. Then, a three-dimensional shape model 12 of the measured prototype mold K2 is created. (3D shape model creation process)
4) The entire shape of the prototype casting 10 is measured as a measurement point group using a non-contact three-dimensional measuring device. Then, a three-dimensional shape model 13 of the measured prototype casting 10 is created. (3D shape model creation process)
5) The three-dimensional shape model 12 of the prototype mold K2 and the three-dimensional shape model 13 of the prototype casting 10 are compared (alignment comparison), and the amount of expansion / contraction between the mold shape and the cast shape is calculated by computer analysis. . At this time, the amount of expansion / contraction in all three directions is calculated, and the stretch relationship between the shape of the prototype mold K2 and the shape of the prototype cast product 10 cast by the prototype mold K2 is calculated. The stretch relation is calculated by all shape points in all three-dimensional directions. (Calculation process)
6) Based on the stretch relationship calculated in 5) above, the inverse vector of the expansion / contraction amount vector is formulated, and the corrected mold K3 having the corrected shape D is designed by folding the reverse vector into the target product shape A. ·To manufacture. (After mold correction process)

なお、上記非接触3次元測定器とは、3Dスキャンを行うことが可能な装置であれば良く、光学式のスキャナやX線CT等が例示される。   The non-contact three-dimensional measuring device may be any device that can perform 3D scanning, and examples thereof include an optical scanner and an X-ray CT.

最終的に設計・製作された補正後形状Dを有する補正後金型K3を用いて鋳造を行うことで、図3(c)に示すように、その後の加工工程等を行うことなく目標形状である形状Aのダイカスト製品が鋳造される。   By performing casting using the corrected mold K3 having the corrected shape D finally designed and manufactured, as shown in FIG. 3C, the target shape can be obtained without performing subsequent processing steps. A die cast product of a certain shape A is cast.

ここで、上記5)、6)に記載した補正後金型K3の設計に関し、目標製品形状Aの具体的形状によっては、試作金型K2の3次元形状モデル12と試作鋳造品10の3次元形状モデル13との比較において測定によって得られた結果に補正を行う必要がある。以下、補正量の推定や補間について説明する。   Here, regarding the design of the corrected mold K3 described in 5) and 6) above, depending on the specific shape of the target product shape A, the three-dimensional shape model 12 of the prototype mold K2 and the three-dimensional of the prototype casting 10 are shown. It is necessary to correct the result obtained by measurement in comparison with the shape model 13. The correction amount estimation and interpolation will be described below.

例えば、目標製品形状Aにおいて窪み箇所や欠落箇所があり、3次元形状モデル12、13の作成において、当該箇所についての測定データが抜け落ちている場合がある。そのような場合には、抜け落ち箇所において補正量の推定や補間を行う必要がある。データ抜け落ち箇所に関しては、データ上において対応点がエッジに移ることになる。即ち、データ上において対応点にエッジが存在する場合には、補正量の推定・補間が必要であると判断する。補正量の補間には、ラプラシアン平滑化を用いることが好ましい。図4はラプラシアン平滑化による補正量の補間についての概略説明図である。図4に示すように、抜け落ち箇所以外の補正量を固定し、平滑化を行うことで補正量の補間が行われる。   For example, the target product shape A may have a hollow portion or a missing portion, and in the creation of the three-dimensional shape models 12 and 13, measurement data for the portion may be missing. In such a case, it is necessary to estimate or interpolate the correction amount at the missing part. With respect to data omission points, corresponding points move to edges on the data. That is, when an edge exists at the corresponding point on the data, it is determined that the correction amount needs to be estimated / interpolated. Laplacian smoothing is preferably used for interpolation of the correction amount. FIG. 4 is a schematic explanatory diagram of interpolation of correction amounts by Laplacian smoothing. As shown in FIG. 4, the correction amount is interpolated by fixing the correction amount other than the missing portion and performing smoothing.

また、例えば目標製品形状Aにおいて、特定の形状に対してのみ補正を行う場合、補正部と非補正部では形状が不連続となってしまう。このような状況に関しては、補正部に隣接する非補正部を接続部として定め、当該接続部における補正量を補間することが好ましい。即ち、非補正部の補正量を0として補正部と非補正部の補正量を固定し、接続部の補正量に対しラプラシアン平滑化を行うことで、不連続な形状が生じるのを防止することができる。   Further, for example, when the target product shape A is corrected only for a specific shape, the shapes of the correction unit and the non-correction unit are discontinuous. Regarding such a situation, it is preferable to define a non-correction part adjacent to the correction part as a connection part and interpolate a correction amount in the connection part. That is, the correction amount of the non-correction portion is set to 0, the correction amounts of the correction portion and the non-correction portion are fixed, and Laplacian smoothing is performed on the correction amount of the connection portion, thereby preventing a discontinuous shape from occurring. Can do.

また、補正後金型K3を設計・製作するに際し、いわゆる逆反り形状が生じてしまう場合がある。ダイカスト製品の製造においては、金型から製品を取り外す際に、金型の口に近い部分が深部よりも小さい場合には、製品の取り外し(離型)ができない。あるいは、離型の際に製品と金型がこすれてしまい傷が生じてしまう恐れがある。そのため、ダイカスト製品を鋳造する金型には、離型のための勾配が付けられるが、補正後金型K3の設計に際しては、途中の補正によって抜き勾配に対し逆向きの勾配を有した形状(いわゆる逆反り形状)が生じてしまう場合がある。   In addition, when designing the corrected mold K3, a so-called reverse warp shape may occur. In the manufacture of a die-cast product, when the product is removed from the mold, if the portion near the mouth of the mold is smaller than the deep part, the product cannot be removed (released). Alternatively, the product and the mold may be rubbed at the time of mold release to cause scratches. Therefore, the mold for casting the die-cast product is provided with a gradient for mold release. However, when the corrected mold K3 is designed, a shape having a gradient opposite to the draft due to the correction in the middle ( A so-called reverse warping shape may occur.

このような逆反り形状については、再補正を行うことが好ましい。逆反り形状においては、型形状の外向き法線ベクトルと抜き方向とのなす角度が90°より大きくなっている箇所が逆反り箇所と定義され、再補正はこのような逆反り箇所がなくなるまで実施される。再補正においては補正量のスムージング処理が行われる。具体的には、例えば逆反り箇所からの距離に応じた重み付きのスムージングが行われる。
スムージング処理の際には、逆反り箇所に加えて当該箇所の周辺領域についてもスムージング処理が行われ、逆反り箇所からの距離が大きくなるにつれてスムージング強度を下げて適用が行われる。このようなスムージング処理はいわゆる重み付きスムージングと呼ばれる。
このような再補正により、逆反り箇所の周辺の頂点は抜き勾配の形状に引かれ、正常な(正方向の)勾配へと近づく。このようなスムージングを逆反り形状が無くなるまで繰り返し行うことで、補正後の形状(即ち、補正後金型K3の形状)が決定される。
Such a reverse warp shape is preferably recorrected. In the reverse warp shape, a portion where the angle between the outward normal vector of the mold shape and the extraction direction is larger than 90 ° is defined as a reverse warp portion, and re-correction is performed until such a reverse warp portion disappears. To be implemented. In the re-correction, a correction amount smoothing process is performed. Specifically, for example, weighted smoothing according to the distance from the reverse warp point is performed.
In the smoothing process, the smoothing process is performed not only on the reverse warp part but also on the peripheral area of the part, and the smoothing intensity is lowered and applied as the distance from the reverse warp part increases. Such smoothing processing is called so-called weighted smoothing.
By such re-correction, the vertices around the reverse warp point are drawn to the shape of the draft, and approach the normal (positive direction) slope. By repeating such smoothing until the reverse warp shape disappears, the corrected shape (that is, the shape of the corrected mold K3) is determined.

以上説明したように設計・製作される補正後金型K3によれば、鋳造後の全方位3軸での伸縮量が考慮され、当該伸縮量ベクトルの逆ベクトルを策定し、目標製品形状Aに当該逆ベクトルを折り込んだ状態での補正後金型K3が得られることになる。即ち、この補正後金型K3を用いてダイカスト製品の鋳造を行うことで、目標製品形状Aと同じ形状の最終ダイカスト製品が造形される。   According to the corrected mold K3 designed and manufactured as described above, the amount of expansion / contraction in all three axes after casting is taken into consideration, and the inverse vector of the expansion / contraction amount vector is formulated to obtain the target product shape A. The corrected mold K3 in a state where the inverse vector is folded is obtained. That is, the final die-cast product having the same shape as the target product shape A is formed by casting the die-cast product using the corrected mold K3.

ここで補正後金型K3の設計・製作においては、ポリゴンCAMを用いて加工データ(3次元形状モデル)の作成が行われる。従来はCAD−CAMを用いて加工データの作成が行われていたが、CAD−CAMでは基本的に滑らかな形状については表現されるものの、ダイカスト製品の実物上のうねりといった細かい形状変化は十分に補足されないことが知られている。即ち、CAD−CAMでは加工データへの変換において誤差が生じる恐れがあるのに対し、ポリゴンCAMを用いることで、そのような誤差を生じさせることなく加工データの作成が実現される。   Here, in the design and production of the corrected mold K3, machining data (three-dimensional shape model) is created using the polygon CAM. In the past, machining data was created using CAD-CAM, but although CAD-CAM basically expresses a smooth shape, it is sufficient for small shape changes such as undulations on the actual die-cast product. It is known not to be supplemented. That is, while CAD-CAM may cause an error in conversion to machining data, using polygon CAM makes it possible to create machining data without causing such an error.

補正後金型K3を用いて鋳造を行うと、目標製品形状Aと同じ形状の最終ダイカスト製品が造形される。即ち、鋳造後製品に対して更なる加工工程を実施することなく目標形状のダイカスト製品が得られる。これにより、コスト削減、納期短縮、加工面品質不良の防止、エネルギー消費及びCO排出量の削減、リバースエンジニアリングによる技術流出の防止といった種々の作用効果が得られ、生産性の向上が実現される。 When casting is performed using the corrected mold K3, a final die-cast product having the same shape as the target product shape A is formed. That is, a die-cast product having a target shape can be obtained without performing further processing steps on the product after casting. As a result, various effects such as cost reduction, shortening of delivery time, prevention of machining surface quality defects, reduction of energy consumption and CO 2 emissions, and prevention of technical outflow due to reverse engineering can be obtained, and productivity can be improved. .

以上、本発明の実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not limited to the form of illustration. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

例えば、上記実施の形態においては、金型を用いてアルミダイカスト製品を製造する場合を図示して説明したが、本発明の適用範囲はこれに限られるものではない。即ち、目標とする製品寸法と製造後の製品寸法に誤差が起こり得る種々の3次元的立体造形物の製造技術について適用することができる。具体的には、金型・木型・砂型等の型を用いて金属・樹脂・砂等を鋳造もしくは射出成形して製品を製造する方法に適用できる。また、3Dプリンターによる樹脂・石膏・金属造形物を製造する技術にも適用できる。   For example, in the above embodiment, the case where an aluminum die-cast product is manufactured using a mold has been illustrated and described, but the scope of application of the present invention is not limited to this. That is, the present invention can be applied to manufacturing techniques for various three-dimensional three-dimensional objects that may cause an error between a target product dimension and a manufactured product dimension. Specifically, the present invention can be applied to a method of manufacturing a product by casting or injection molding metal, resin, sand or the like using a mold such as a mold, a wooden mold, or a sand mold. Moreover, it is applicable also to the technique which manufactures resin, gypsum, and a metal molded object by 3D printer.

本発明に係る実施例として、以下に説明するようなダイカスト製品の製造実験を行った。即ち、所定の形状を目標製品形状としたアルミダイカスト製品の製造について、本発明技術を適用した場合(実施例)と、従来の製造方法を用いた場合(比較例)とで、それぞれの実際の鋳造物について寸法精度の測定を行った。   As an example according to the present invention, a die casting product manufacturing experiment as described below was conducted. That is, with respect to the manufacture of an aluminum die cast product having a predetermined shape as a target product shape, each of the actual case of applying the technology of the present invention (Example) and the case of using a conventional manufacturing method (Comparative Example). The dimensional accuracy of the casting was measured.

図5は本実施例の目標製品形状モデルの概略図である。また、図6は、本発明技術を適用してダイカスト製品の製造を行った際の鋳造物(実施例)に関する説明図であり、(a)は鋳造物の概略上面図であり、(b)は、(a)中の鋳造物のA−A断面位置における目標製品形状との寸法精度誤差を示すグラフ(b)である。
一方、図7は、本発明技術に係る補正方法を適用せず、従来の製造方法を用いてダイカスト製品の製造を行った際の鋳造物(比較例)に関する説明図であり、(a)は鋳造物の概略上面図であり、(b)は、(a)中の鋳造物のA−A断面位置における目標製品形状との寸法精度誤差を示すグラフ(b)である。
なお、図6(b)及び図7(b)に示すグラフでは、0点が目標製品形状とされる位置である。
FIG. 5 is a schematic diagram of the target product shape model of the present embodiment. Moreover, FIG. 6 is explanatory drawing regarding the casting (Example) at the time of manufacturing a die-cast product using the technique of this invention, (a) is a schematic top view of a casting, (b) These are graphs (b) which show the dimensional accuracy error with the target product shape in the AA cross-section position of the casting in (a).
On the other hand, FIG. 7 is explanatory drawing regarding the casting (comparative example) at the time of manufacturing a die-cast product using the conventional manufacturing method, without applying the correction method which concerns on this invention technique, (a) It is a schematic top view of a casting, (b) is a graph (b) which shows the dimensional accuracy error with the target product shape in the AA cross-section position of the casting in (a).
In the graphs shown in FIG. 6B and FIG. 7B, the 0 point is a position where the target product shape is set.

図6と図7を比較すると、図6に示す実施例では、目標製品形状と鋳造品との寸法精度誤差がA−A断面いずれの位置においても極めて小さく抑えられていることが分かる。一方で、図7に示す比較例では、目標製品形状と鋳造品との寸法精度誤差がA−A断面のいずれの位置においても大きい。
このように、図6に示す実施例では、金型から排出された段階の鋳造品において十分な寸法精度が実現されており、更なる加工等を必要とせずに目標製品形状とすることが可能となる。
一方で、図7に示すように、比較例に係る製造技術では鋳造後の段階では十分に目標製品形状に近づいておらず、鋳造品を目標製品形状に近づけるためには更なる加工を行う必要があった。
即ち、本発明技術によれば、鋳造製品段階で十分な寸法精度が実現され、更なる加工工程等が不要となるため、生産性の向上が図られることが分かった。
Comparing FIG. 6 and FIG. 7, it can be seen that in the embodiment shown in FIG. 6, the dimensional accuracy error between the target product shape and the cast product is suppressed to be extremely small at any position on the AA cross section. On the other hand, in the comparative example shown in FIG. 7, the dimensional accuracy error between the target product shape and the cast product is large at any position on the AA cross section.
Thus, in the embodiment shown in FIG. 6, sufficient dimensional accuracy is realized in the cast product at the stage of being discharged from the mold, and it is possible to obtain the target product shape without further processing or the like. It becomes.
On the other hand, as shown in FIG. 7, the manufacturing technology according to the comparative example does not sufficiently approach the target product shape at the stage after casting, and further processing is necessary to bring the cast product closer to the target product shape. was there.
That is, according to the technology of the present invention, it has been found that sufficient dimensional accuracy is realized at the casting product stage, and further processing steps are not required, so that productivity can be improved.

本発明は、例えばアルミ等からなる高寸法精度ダイカストの製造方法に適用できる。   The present invention can be applied to a method for manufacturing a high dimensional accuracy die casting made of, for example, aluminum.

10…試作鋳造品
12…試作金型全体の3次元形状モデル
13…試作鋳造品の3次元形状モデル
K1…従来技術における金型
K2…試作金型
K3…補正後金型
DESCRIPTION OF SYMBOLS 10 ... Prototype casting 12 ... Three-dimensional shape model of whole trial mold 13 ... Three-dimensional shape model of trial casting K1 ... Mold in conventional technology K2 ... Trial die K3 ... Die after correction

Claims (5)

溶湯を金型に注湯し、注湯された素材を金型取り出すことで鋳造材をダイカスト製品として取り出す高寸法精度ダイカストの製造方法であって、
目標製品形状を選定する目標形状選定工程と、
前記目標製品形状と同様の形状の金型形状を有する試作金型を用いて試作鋳造品を造形する試作鋳造品造形工程と、
前記試作金型全体の3次元形状モデルと、前記試作鋳造品全体の3次元形状モデルと、を作成する3次元形状モデル作成工程と、
前記3次元形状モデル作成工程で作成された2つの3次元形状モデルを比較し、前記試作金型と前記試作鋳造品との間の伸尺関係を算出する算出工程と、
前記算出工程で算出された伸尺関係に基づき前記試作金型から前記試作鋳造品が造形される際の伸縮量ベクトルの逆ベクトルを策定し、前記目標製品形状に当該逆ベクトルを折り込むことで得られる補正後形状を有する補正後金型を設計及び製作する補正後金型製作工程と、を備え、
溶湯を前記補正後金型に注湯し、当該補正後金型で鋳造を行って目標製品形状を有するダイカスト製品を製造することを特徴とする、高寸法精度ダイカストの製造方法。
A method for producing a high dimensional accuracy die casting, in which molten metal is poured into a mold, and the cast material is taken out as a die cast product by taking out the poured material.
A target shape selection process for selecting a target product shape;
Prototype casting product forming step of forming a prototype cast product using a prototype die having a mold shape similar to the target product shape,
A three-dimensional shape model creating step for creating a three-dimensional shape model of the entire prototype mold and a three-dimensional shape model of the entire prototype casting;
A calculation step of comparing the two three-dimensional shape models created in the three-dimensional shape model creation step, and calculating an elongation relationship between the prototype mold and the prototype casting;
It is obtained by formulating an inverse vector of the expansion / contraction amount vector when the prototype casting is formed from the prototype mold based on the stretch relationship calculated in the calculation step, and folding the inverse vector into the target product shape. A corrected mold manufacturing process for designing and manufacturing a corrected mold having a corrected shape,
A method for producing a high dimensional accuracy die casting, comprising pouring molten metal into the corrected mold and casting with the corrected mold to produce a die cast product having a target product shape.
前記3次元形状モデル作成工程において、目標製品形状に関する補正量の補間は、ラプラシアン平滑化を用いて行われることを特徴とする、請求項1に記載の高寸法精度ダイカストの製造方法。 The method for producing a high dimensional accuracy die casting according to claim 1, wherein in the three-dimensional shape model creation step, interpolation of a correction amount related to a target product shape is performed using Laplacian smoothing. 前記3次元形状モデル作成工程において、目標製品形状の特定の形状のみに補正を行う場合、補正部に隣接する非補正部を接続部として定め、当該接続部における補正量をラプラシアン平滑化を用いて補間することを特徴とする、請求項1に記載の高寸法精度ダイカストの製造方法。 In the three-dimensional shape model creation step, when correcting only a specific shape of the target product shape, a non-correction portion adjacent to the correction portion is defined as a connection portion, and a correction amount in the connection portion is determined using Laplacian smoothing. The method for producing a high dimensional accuracy die casting according to claim 1, wherein interpolation is performed. 前記補正後金型製作工程において、抜き勾配に対し逆向きの勾配を有した逆反り形状が生じた場合、当該逆反り形状が生じた箇所からの距離に応じた重み付きのスムージングを当該逆反り形状が無くなるまで繰り返し行うことを特徴とする、請求項1〜3のいずれか一項に記載の高寸法精度ダイカストの製造方法。 In the post-correction mold manufacturing process, when a reverse warp shape having a gradient opposite to the draft is generated, weighted smoothing according to the distance from the location where the reverse warp shape is generated is applied to the reverse warp. The method for producing a high dimensional accuracy die casting according to any one of claims 1 to 3, wherein the process is repeated until the shape disappears. 前記補正後金型の設計及び製作においては、ポリゴンCAMを用いて当該補正後金型の加工CAMデータの作成が行われることを特徴とする、請求項1〜4のいずれか一項に記載の高寸法精度ダイカストの製造方法。 5. The CAM data of the corrected die is created using a polygon CAM in the design and manufacture of the corrected die, according to claim 1. Manufacturing method of high dimensional accuracy die casting.
JP2016020769A 2016-02-05 2016-02-05 Method for manufacturing high dimensional accuracy die casting Pending JP2017136632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016020769A JP2017136632A (en) 2016-02-05 2016-02-05 Method for manufacturing high dimensional accuracy die casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016020769A JP2017136632A (en) 2016-02-05 2016-02-05 Method for manufacturing high dimensional accuracy die casting

Publications (1)

Publication Number Publication Date
JP2017136632A true JP2017136632A (en) 2017-08-10

Family

ID=59564555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016020769A Pending JP2017136632A (en) 2016-02-05 2016-02-05 Method for manufacturing high dimensional accuracy die casting

Country Status (1)

Country Link
JP (1) JP2017136632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117920967A (en) * 2024-01-25 2024-04-26 东莞市德辉玻璃有限公司 Die casting production process of intelligent lock

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117920967A (en) * 2024-01-25 2024-04-26 东莞市德辉玻璃有限公司 Die casting production process of intelligent lock

Similar Documents

Publication Publication Date Title
US11155034B2 (en) System and method for distortion mitigation and compensation in additive manufacturing processes through B-spline hyperpatch field
US12045549B2 (en) Hybrid measurement and simulation based distortion compensation system for additive manufacturing processes
JP2016175404A (en) Lamination shaping method using lamination shaping device
Dong et al. Determination of wax pattern die profile for investment casting of turbine blades
JP5361483B2 (en) Manufacturing method of tire mold
JP2007286841A (en) Apparatus and method for producing probable model of mold
CN111274625A (en) Ridge line position deformation compensation method for roof ridge characteristic composite material thin-wall part
CN110773699B (en) Method for controlling extrusion forming residual stress of forged blade
JP5548582B2 (en) Mold design apparatus, mold design method, mold design system, and mold design program
JP2017136632A (en) Method for manufacturing high dimensional accuracy die casting
JP2016200446A (en) Method for measuring distortion of mold inside
JP6949415B2 (en) Mold CAD model data creation device and mold CAD model data creation method
JP2007229784A (en) Method for preparing correction shape data of press die
CN110756714B (en) High-speed extrusion forming die for blades
CN116127638A (en) Method for generating three-dimensional solid grids of investment casting shell based on curvature method
CN114036788B (en) Design method, system and medium for generating free hollow casting mold based on image
JP6618069B2 (en) Composite molded product design support device, composite molded product manufacturing method, computer software, storage medium
JP2013193089A (en) Method of manufacturing die for die-casting, and die for die-casting
JP2008287468A (en) Design method for molding die and device and program to be used for the same
Chen et al. Iterative reverse deformation optimization design of castings based on numerical simulation of solidification thermal stress
JP2004174512A (en) Casting method
JP5594122B2 (en) Mold, casting method using mold, and mold design method
Hock et al. Experimental studies on the accuracy of wax patterns used in investment casting
JP4541675B2 (en) Method for manufacturing diffractive optical element
CN110695118A (en) Method for reducing residual stress of high-speed extrusion forming blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707