JP2017031048A - Surface treatment device and surface treatment method of plate-shaped glass - Google Patents

Surface treatment device and surface treatment method of plate-shaped glass Download PDF

Info

Publication number
JP2017031048A
JP2017031048A JP2016167620A JP2016167620A JP2017031048A JP 2017031048 A JP2017031048 A JP 2017031048A JP 2016167620 A JP2016167620 A JP 2016167620A JP 2016167620 A JP2016167620 A JP 2016167620A JP 2017031048 A JP2017031048 A JP 2017031048A
Authority
JP
Japan
Prior art keywords
gap
processing gas
surface treatment
glass
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016167620A
Other languages
Japanese (ja)
Other versions
JP6270176B2 (en
Inventor
橋本 隆志
Takashi Hashimoto
隆志 橋本
弘樹 中塚
Hiroki Nakatsuka
弘樹 中塚
祐之 高橋
Sukeyuki Takahashi
祐之 高橋
大野 和宏
Kazuhiro Ono
和宏 大野
誠一 伊澤
Seiichi Izawa
誠一 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2016167620A priority Critical patent/JP6270176B2/en
Publication of JP2017031048A publication Critical patent/JP2017031048A/en
Application granted granted Critical
Publication of JP6270176B2 publication Critical patent/JP6270176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment device of plate-shaped glass, which continuously executes surface treatment with process gas on either one of a top surface and a rear surface of the plate-shaped glass while substantially preventing the surface treatment with the process gas on the other one of the top surface and the rear surface.SOLUTION: Provided is a surface treatment device 10 of a plate-shaped glass P, which includes: a gap 12 through which the plate-shaped glass P can pass; gap forming surfaces 13, 14 for forming the gap 12; a process gas supply part 17 which is formed on the gap forming surface 13 side and capable of supplying, to the gap 12, process gas Ga for executing the surface treatment on one surface Pb out of the top and rear surfaces of the plate-shaped glass P; a process gas exhaust part 18 capable of exhausting the process gas Ga supplied to the gap 12; and an inert gas supply part 23 which has a supply port 23a opened on the remaining gap forming surface 14 and supplies an inert gas Gc toward the gap 12.SELECTED DRAWING: Figure 5

Description

本発明は、板状ガラスの表面処理装置及び表面処理方法に関し、特に、板状ガラスの表裏一方の面に対してのみ処理ガスによる表面処理を施すための装置及び方法に関する。   The present invention relates to a sheet glass surface treatment apparatus and a surface treatment method, and more particularly, to an apparatus and method for performing a surface treatment with a treatment gas only on one surface of a sheet glass.

周知のように、近年における画像表示装置は、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、フィールドエミッションディスプレイ(FED)、有機ELディスプレイ(OLED)などに代表されるフラットパネルディスプレイ(以下、単にFPDという)が主流となっている。これらのFPDについては軽量化が推進されていることから、FPDに使用されるガラス基板についても薄板化に対する要求が高まっている。   As is well known, image display devices in recent years are flat panel displays (hereinafter simply referred to as FPDs) represented by liquid crystal displays (LCDs), plasma displays (PDPs), field emission displays (FEDs), organic EL displays (OLEDs) and the like. Is the mainstream. Since weight reduction is promoted about these FPD, the request | requirement with respect to thickness reduction is also increasing about the glass substrate used for FPD.

上述したガラス基板は、例えば各種ダウンドロー法に代表される板状ガラスの成形方法により帯状に成形した板状ガラス(帯状板ガラス)を所定の寸法に切断し、切断した板状ガラスの幅方向(帯状板ガラスの表裏面に平行で、かつ長手方向に直交する向きをいう。以下、同じ。)両端部分をさらに切断した後、必要に応じて、各切断面に研磨加工を施す等により得られる。   The glass substrate mentioned above cut | disconnects the plate-shaped glass (band-shaped plate glass) shape | molded by the strip shape by the shaping | molding method of the plate-shaped glass represented by various downdraw methods, for example to the predetermined dimension, and the width direction ( This refers to the direction parallel to the front and back surfaces of the belt-shaped plate glass and perpendicular to the longitudinal direction, hereinafter the same.) After further cutting both end portions, it is obtained by subjecting each cut surface to a polishing process, if necessary.

ところで、この種のガラス基板を製造するに際しては、その製造過程における静電気の帯電が問題となることがある。すなわち、絶縁体であるガラスは非常に帯電し易い性質を有しており、ガラス基板の製造工程において、例えば載置台にガラス基板を載置し所定の加工を施す際、ガラス基板と載置台との接触剥離によりガラス基板が帯電することがある(これを、剥離帯電と呼ぶことがある。)。帯電したガラス基板に導電性の物体が近づくと放電が生じ、この放電によって、ガラス基板の表面上に形成された各種素子や電子回路を構成する電極線の破損、あるいはガラス基板自体の破損を招くおそれがある(これらを、絶縁破壊又は静電破壊と呼ぶことがある。)。また、帯電したガラス基板は載置台に貼り付き易く、これを無理やり引き剥がすことでガラス基板の破損を招くおそれもある。これらは当然に表示不良の原因となるため、極力回避すべき事象である。   By the way, when this type of glass substrate is manufactured, electrostatic charging in the manufacturing process may be a problem. That is, the glass as an insulator has a property of being easily charged, and in the glass substrate manufacturing process, for example, when a glass substrate is placed on a mounting table and subjected to predetermined processing, the glass substrate and the mounting table The glass substrate may be charged by contact peeling (this may be referred to as peeling charging). When a conductive object approaches the charged glass substrate, a discharge occurs, and this discharge causes damage to various elements formed on the surface of the glass substrate and electrode wires constituting the electronic circuit, or damage to the glass substrate itself. There are fears (sometimes referred to as dielectric breakdown or electrostatic breakdown). Further, the charged glass substrate is likely to stick to the mounting table, and there is a possibility that the glass substrate may be damaged by forcibly peeling it off. Since these naturally cause display defects, they should be avoided as much as possible.

上記事象を回避するための手段として、例えばガラス基板の裏面(載置台の載置面と接触する側の面)に所定の処理ガスを供給することで裏面に表面処理を施し、これにより裏面を粗面化する方法が考えられる。ガラス基板と載置台との接触面積が大きいほど剥離した際の帯電量が増大する傾向にあることから、載置台の載置面と接触するガラス基板の裏面を粗面化することで、ガラス基板と載置台との接触面積を減少させて、剥離時の帯電抑制を図ることが可能になるものと期待される。また、ガラス基板の接触面(裏面)が平滑であるほど載置面の如き平滑面に貼り付き易い点に鑑み、上述のように、ガラス基板の裏面を粗面化して例えば当該裏面の表面粗さを載置面の表面粗さよりも大きくすることで、ガラス基板を載置面に貼り付き難くすることができ、これにより剥離時のガラス基板の破損防止が可能になるものと期待される。   As a means for avoiding the above-mentioned phenomenon, for example, by supplying a predetermined processing gas to the back surface of the glass substrate (the surface on the side contacting the mounting surface of the mounting table), the back surface is subjected to surface treatment. A roughening method is conceivable. The larger the contact area between the glass substrate and the mounting table, the greater the amount of charge when peeling, so the glass substrate can be roughened by roughening the back surface of the glass substrate in contact with the mounting surface of the mounting table. It is expected that it is possible to reduce charging area at the time of peeling by reducing the contact area between and the mounting table. Further, in view of the fact that the smoother the contact surface (back surface) of the glass substrate is, the easier it is to stick to a smooth surface such as a mounting surface, as described above, the back surface of the glass substrate is roughened, for example, the surface roughness of the back surface. By making the thickness larger than the surface roughness of the mounting surface, it is possible to make it difficult for the glass substrate to stick to the mounting surface, and this is expected to prevent damage to the glass substrate during peeling.

ここで、上記の如き表面処理を可能とする構成として、例えば下記特許文献1には、ローラを備えたガラス基板の搬送手段と、所定の間隔を隔てて対向する一対の電極と、当該電極間に所定のガスを供給可能なガス供給手段とを備え、ガス供給手段により一対の電極間の一端開口側から導入してガスをプラズマ化し、プラズマ化したガスを一対の電極間の他端開口側に搬送されてきたガラス基板の表面に向けて供給可能とする表面処理装置(プラズマ処理装置)が記載されている。   Here, as a configuration that enables the surface treatment as described above, for example, in Patent Document 1 below, a glass substrate transport unit provided with a roller, a pair of electrodes facing each other at a predetermined interval, and a space between the electrodes A gas supply means capable of supplying a predetermined gas to the gas, and the gas supply means introduces the gas from one end opening side between the pair of electrodes into a plasma, and converts the plasma gas into the other end opening side between the pair of electrodes. Describes a surface treatment apparatus (plasma treatment apparatus) that can be supplied toward the surface of the glass substrate that has been transported to the surface.

また、例えば下記特許文献2には、搬送ローラ等の板状ガラスの搬送手段と、一対の電極間に形成される処理空間(放電空間)と、この処理空間の搬送上流側に設けられたガス供給ノズルと、ガス供給ノズルと対向して処理空間の搬送下流側に設けられたガス排気ノズルとを備え、ガス供給ノズルから処理空間に供給された処理ガスがガス排気ノズルに吸引されると共に板状ガラスが搬送手段により処理空間に導入可能とされる表面処理装置(ITOガラス表面の洗浄装置)が記載されている。   Further, for example, in Patent Document 2 below, a sheet glass conveyance means such as a conveyance roller, a processing space (discharge space) formed between a pair of electrodes, and a gas provided on the conveyance upstream side of the processing space A supply nozzle and a gas exhaust nozzle provided on the downstream side of the processing space in the processing space so as to face the gas supply nozzle, and the processing gas supplied from the gas supply nozzle to the processing space is sucked into the gas exhaust nozzle and the plate Describes a surface treatment apparatus (ITO glass surface cleaning apparatus) in which glass-like glass can be introduced into a treatment space by a conveying means.

さらに、例えば下記特許文献3には、真空容器と、真空容器内に反応ガスの供給を行うガス供給装置と、真空容器内を真空排気する排気装置と、真空容器内における底部に配置され、ガラス基板を保持する基板保持台とを具備し、真空容器内を排気装置により真空排気しながら上記反応ガスを導入して、真空容器内を所定の圧力に制御した状態で、真空容器内にプラズマを発生させることで、基板保持台に保持したガラス基板にプラズマ処理を実施可能とする表面処理装置(プラズマ処理装置)が記載されている。   Further, for example, in Patent Document 3 below, a vacuum vessel, a gas supply device that supplies a reaction gas into the vacuum vessel, an exhaust device that evacuates the vacuum vessel, and a bottom portion in the vacuum vessel are arranged, and glass A substrate holding table for holding the substrate, and introducing the reaction gas while evacuating the inside of the vacuum vessel with an exhaust device, and controlling the plasma inside the vacuum vessel while controlling the inside of the vacuum vessel to a predetermined pressure. A surface processing apparatus (plasma processing apparatus) is described that enables plasma processing to be performed on a glass substrate held on a substrate holding table by generating.

特開2004−305918号公報JP 2004-305918 A 特開2004−121939号公報JP 2004-121939 A 特開2005−109104号公報JP 2005-109104 A

上記特許文献1に記載の表面処理装置においては、一対の電極間からガラス基板の表面に供給された処理ガスが当該表面に沿って移動することで、表面処理装置の周囲に拡散する。この際に使用する処理ガスが、上記特許文献1に記載のように、窒素ガスや酸素ガスなどの反応性の低い(実質的に不活性な)ガスである場合には、周囲に拡散しても特に問題はない。しかしながら、上述のように処理ガスによる表面処理によりガラス基板の裏面を粗面化しようとする場合には、ガラスとの反応性の高い(例えば極性の高い)成分を含むガスが必要と考えられる。よって、ガラス基板の粗面化のために、上記特許文献1に記載の構造をなす表面処理装置を使用することは適切でない。   In the surface treatment apparatus described in Patent Document 1, the processing gas supplied to the surface of the glass substrate from between the pair of electrodes moves along the surface and diffuses around the surface treatment apparatus. When the processing gas used at this time is a low-reactivity (substantially inactive) gas such as nitrogen gas or oxygen gas as described in Patent Document 1, it diffuses to the surroundings. There is no particular problem. However, when the back surface of the glass substrate is to be roughened by surface treatment with a processing gas as described above, a gas containing a component having high reactivity with glass (for example, high polarity) is considered necessary. Therefore, it is not appropriate to use the surface treatment apparatus having the structure described in Patent Document 1 for roughening the glass substrate.

一方、上記特許文献2に記載の表面処理装置においては、電極間の処理空間の搬送上流側にガス供給ノズルを設けると共に、処理空間の搬送下流側にガス排気ノズルを設けており、ガス供給ノズルから処理空間に供給された処理ガスがガス排気ノズルに吸引可能な構造となっているため、反応性の高い成分を含むガスを用いた場合であっても、処理ガスの周囲への拡散を防止しつつ板状ガラスに表面処理を施すことが可能なように思われる。   On the other hand, in the surface treatment apparatus described in Patent Document 2, a gas supply nozzle is provided on the upstream side of the processing space between the electrodes, and a gas exhaust nozzle is provided on the downstream side of the processing space. Since the processing gas supplied to the processing space can be sucked into the gas exhaust nozzle, diffusion of the processing gas to the surroundings is prevented even when a gas containing highly reactive components is used. However, it seems that surface treatment can be applied to the sheet glass.

しかしながら、上記特許文献2に記載の表面処理装置は、一対の電極間に処理ガスの処理空間を形成し、この処理空間内に板状ガラスを導入可能とするものであるから、処理空間内では必然的に非処理面となる板状ガラスの裏面とこの裏面に対向する電極との間に形成される空間に処理ガスが回り込み、裏面が処理ガスに曝される。これでは、表面処理を施すべきでない非処理面にまで表面処理を施す結果となり、当該表面の表面性状や表面精度の悪化、あるいは表面品質の均一性を損なう結果を招くおそれが生じる。   However, the surface treatment apparatus described in Patent Document 2 forms a processing space for processing gas between a pair of electrodes, and allows the introduction of plate glass into the processing space. Inevitably, the processing gas flows into the space formed between the back surface of the plate-like glass that becomes the non-processing surface and the electrode facing the back surface, and the back surface is exposed to the processing gas. This results in surface treatment even on a non-treated surface that should not be subjected to surface treatment, which may result in deterioration of the surface properties and surface accuracy of the surface, or a deterioration in surface quality uniformity.

上記特許文献3に記載の表面処理装置によれば、ガラス基板の裏面を基板保持台に保持した状態で、その表面に表面処理(プラズマ処理)が施されるので、例えば非処理面(裏面)を保持台に密着保持させることにより非処理面が処理ガスに曝される事態を防止することができる。しかしながら、この処理装置は、真空容器内の基板保持台にガラス基板をセット(保持)し、周囲を密閉した状態で表面処理を行うものであるから、これを用いた表面処理はバッチ処理となる。これでは、搬送中のガラス基板を連続的に処理することができず、生産性の低下を招く。   According to the surface treatment apparatus described in Patent Document 3, since the surface treatment (plasma treatment) is performed on the surface of the glass substrate while the back surface of the glass substrate is held on the substrate holder, for example, the non-treated surface (back surface) Can be prevented from being exposed to the processing gas by being closely held on the holding table. However, in this processing apparatus, the glass substrate is set (held) on the substrate holding table in the vacuum vessel and the surface treatment is performed in a state where the periphery is sealed, so the surface treatment using this is a batch treatment. . In this case, the glass substrate being conveyed cannot be processed continuously, resulting in a decrease in productivity.

以上の事情に鑑み、板状ガラスの表裏一方の面への処理ガスによる表面処理を、表裏他方の面への処理ガスによる表面処理を実質的に防止しつつ連続的に実施することを、本発明により解決すべき技術的課題とする。   In view of the above circumstances, the surface treatment with the processing gas on one side of the front and back surfaces of the sheet glass is continuously carried out while substantially preventing the surface treatment with the processing gas on the other side of the front and back surfaces. It is a technical problem to be solved by the invention.

前記課題の解決は、本発明の第1の側面に係る板状ガラスの表面処理装置により達成される。すなわち、この表面処理装置は、板状ガラスが通過可能な隙間を形成する一対の隙間形成面と、板状ガラスの表裏一方の面に表面処理を施すための処理ガスを隙間に供給する処理ガス供給部と、隙間に供給された処理ガスを排気する処理ガス排気部とを備えた板状ガラスの表面処理装置において、処理ガス供給部と処理ガス排気部は共に一方の隙間形成面の側に配設されると共に、他方の隙間形成面の側に、隙間の排気を行うことで、隙間に導入された板状ガラスと他方の隙間形成面との間に形成される空間に外気を引込み可能とする外気引込み手段が設けられている点をもって特徴付けられる。なお、本発明の第1の側面に係る板状ガラスの表面処理装置は、本発明の参考例としての発明である。   The solution to the above problem is achieved by the surface treatment apparatus for sheet glass according to the first aspect of the present invention. That is, this surface treatment apparatus is a treatment gas that supplies a treatment gas for performing a surface treatment to a pair of gap forming surfaces that form a gap through which the sheet glass can pass and one of the front and back surfaces of the sheet glass. In a sheet glass surface treatment apparatus including a supply unit and a process gas exhaust unit that exhausts the process gas supplied to the gap, both the process gas supply unit and the process gas exhaust unit are on one gap forming surface side. It is possible to draw outside air into the space formed between the glass sheet introduced into the gap and the other gap forming surface by exhausting the gap to the other gap forming surface side. It is characterized by the point that the outside air drawing-in means is provided. The sheet glass surface treatment apparatus according to the first aspect of the present invention is an invention as a reference example of the present invention.

このように、本発明では、隙間を形成する一方の隙間形成面の側に、処理ガス供給部と処理ガス排気部を配設すると共に、他方の隙間形成面の側に、隙間の排気により、隙間に導入した板状ガラスと他方の隙間形成面との間に形成される空間に外気を引込み可能な外気引込み手段を設けた。これにより、板状ガラスが隙間を通過し始めて、当該隙間が板状ガラスでその表裏方向に分割された状態では、表裏一方の面の側の空間と他方の面の側の空間とで異なる気体の流れが形成される。すなわち、一方の隙間形成面と板状ガラスの表裏一方の面との間に形成される空間(第1の分割空間)においては、処理ガス供給部から隙間に向けて供給された処理ガスが第1の分割空間を流通し、処理ガス排気部で排出される。よって、第1の分割空間に面する板状ガラスの表裏一方の面に処理ガスによる表面処理が施される。これに対して、他方の隙間形成面と板状ガラスの表裏他方の面との間に形成される空間(第2の分割空間)においては、導入された板状ガラスが仕切りとして機能することで、処理ガス供給部により隙間に供給された処理ガスの第2の分割空間への侵入が防止される。また、仮に板状ガラスを導入した時点で第2の分割空間に処理ガスが存在していたとしても、当該処理ガスは、他方の隙間形成面の側に設けた外気引込み手段の排気作用により隙間外へ排出される。または、隙間のうち板状ガラスの未導入の領域から第2の分割空間へ流れ込もうとする処理ガスが存在したとしても、当該処理ガスは、外気の引込み作用により当該分割空間の外へ押戻され、あるいは外気と共に隙間外に排出される。以上の作用により、処理面となる板状ガラスの表裏一方の面に表面処理を施しつつも、非処理面とすべき表裏他方の面が、実質的な表面処理となる程度に処理ガスに曝される事態を回避することができる。従って、表裏一方の面を適度に粗面化することで帯電を抑制または防止することができる。また、表裏他方の面においては、表面処理直前(例えば成形時)の面粗さを維持することで高い表面精度及び所要の表面性状を確保することができる。   As described above, in the present invention, the processing gas supply unit and the processing gas exhaust unit are disposed on the side of one gap forming surface that forms the gap, and the exhaust of the gap is provided on the side of the other gap forming surface. An outside air drawing means capable of drawing outside air into a space formed between the glass sheet introduced into the gap and the other gap forming surface was provided. As a result, when the glass sheet begins to pass through the gap, and the gap is divided in the front and back direction by the glass sheet, the gas that is different between the space on the one surface side and the space on the other surface side. Is formed. That is, in a space (first divided space) formed between one gap forming surface and one of the front and back surfaces of the sheet glass, the processing gas supplied from the processing gas supply unit toward the gap is the first. 1 circulates through the divided space and is discharged at the processing gas exhaust section. Therefore, the surface treatment with the processing gas is performed on one surface of the front and back surfaces of the sheet glass facing the first divided space. On the other hand, in the space (second divided space) formed between the other gap forming surface and the other surface of the sheet glass, the introduced sheet glass functions as a partition. The processing gas supplied to the gap by the processing gas supply unit is prevented from entering the second divided space. Further, even if the processing gas exists in the second divided space at the time when the plate glass is introduced, the processing gas is removed by the exhaust action of the outside air drawing means provided on the other gap forming surface side. It is discharged outside. Or, even if there is a processing gas that tries to flow into the second divided space from the region where the glass sheet is not introduced in the gap, the processing gas is pushed out of the divided space by the drawing action of the outside air. Returned or discharged outside the gap together with outside air. As a result of the above action, the front and back surfaces of the plate-like glass to be treated are subjected to surface treatment, while the other surface to be treated as a non-treated surface is exposed to the treatment gas to such an extent that the surface is substantially surface treated. Can be avoided. Therefore, electrification can be suppressed or prevented by appropriately roughening one of the front and back surfaces. In addition, on the other side of the front and back surfaces, high surface accuracy and required surface properties can be ensured by maintaining the surface roughness immediately before the surface treatment (for example, during molding).

また、処理ガス供給部と処理ガス排気部を何れも一方の隙間形成面の側に配設しているので、上述のように板状ガラスが隙間を通過する間においても、処理ガスを隙間内でのみ流通させることができ、これにより隙間外への処理ガスの拡散を防止することができる。よって、搬送中の板状ガラスに対して連続的に上記表面処理を施しつつも、この表面処理工程での清浄性、ひいては安全性を確保することができる。   In addition, since both the processing gas supply unit and the processing gas exhaust unit are disposed on the one gap forming surface side, the processing gas is placed in the gap even while the glass sheet passes through the gap as described above. It is possible to circulate only in this manner, thereby preventing diffusion of the processing gas outside the gap. Therefore, it is possible to ensure the cleanliness and the safety in this surface treatment process while continuously performing the surface treatment on the sheet glass being conveyed.

また、前記課題の解決は、本発明の第2の側面に係る板状ガラスの表面処理装置によっても達成される。すなわち、この表面処理装置は、板状ガラスが通過可能な隙間を形成する一対の隙間形成面と、板状ガラスの表裏一方の面に表面処理を施すための処理ガスを隙間に供給する処理ガス供給部と、隙間に供給された処理ガスを排気する処理ガス排気部とを備えた板状ガラスの表面処理装置において、処理ガス供給部と処理ガス排気部は共に一方の隙間形成面の側に配設されると共に、一方の隙間形成面に、処理ガス供給部の給気口が開口し、他方の隙間形成面に、不活性ガスを隙間に向けて供給する不活性ガス供給部の供給口が開口している点をもって特徴付けられる(請求項1)。   The solution to the above problem can also be achieved by the sheet glass surface treatment apparatus according to the second aspect of the present invention. That is, this surface treatment apparatus is a treatment gas that supplies a treatment gas for performing a surface treatment to a pair of gap forming surfaces that form a gap through which the sheet glass can pass and one of the front and back surfaces of the sheet glass. In a sheet glass surface treatment apparatus including a supply unit and a process gas exhaust unit that exhausts the process gas supplied to the gap, both the process gas supply unit and the process gas exhaust unit are on one gap forming surface side. The supply port of the inert gas supply unit that is disposed and opens the supply port of the processing gas supply unit on one gap formation surface and supplies the inert gas toward the gap on the other clearance formation surface Is characterized by being open (claim 1).

このように、本発明では、隙間を形成する一方の隙間形成面の側に、処理ガス供給部と処理ガス排気部を配設すると共に、一方の隙間形成面に、処理ガス供給部の給気口を開口させ、他方の隙間形成面に、不活性ガスを隙間に向けて供給する不活性ガス供給部の供給口を開口させた構成とした。一方の隙間形成面から隙間に向けて処理ガスを供給すると共に、他方の隙間形成面から隙間に向けて不活性ガスを供給することで、隙間には、処理ガスのガス溜り(処理ガスが不活性ガスに比べて高濃度に存在するガス領域を含む。)と、不活性ガスのガス溜り(不活性ガスが処理ガスに比べて高濃度に存在するガス領域を含む。)とが共存した状態となる。また、処理ガスと不活性ガスは互いに対向する側の隙間形成面に向けて供給されることになるため、処理ガスのガス溜りは隙間のうち一方の隙間形成面の側に、不活性ガスのガス溜りは他方の隙間形成面の側にそれぞれ偏った状態で形成され易い。ここで、板状ガラスが隙間を通過し始めて、当該隙間が板状ガラスでその表裏方向に分割されることで、表裏一方の面の側の空間(第1の分割空間)には主に処理ガスのガス溜りが存在し、表裏他方の面の側の空間(第2の分割空間)には主に不活性ガスのガス溜りが存在した状態となる。また、第1の分割空間には処理ガス供給部の給気口が開口し、第2の分割空間には不活性ガス供給部の供給口が開口した状態となるので、各分割空間に主に存在するガスの割合がさらに高められる。従って、第1の分割空間に面する板状ガラスの表裏一方の面は主に処理ガスに曝される一方、第2の分割空間に面する板状ガラスの表裏他方の面は主に不活性ガスに曝されることになる。以上の作用により、処理面となる板状ガラスの表裏一方の面に表面処理を施しつつも、非処理面となる表裏他方の面が、実質的な表面処理となる程度に処理ガスに曝される事態を回避することができる。従って、表裏一方の面を適度に粗面化することで帯電を抑制または防止することができる。また、表裏他方の面においては、表面処理直前の面粗さを維持することで高い表面精度及び所要の表面性状を確保することができる。   As described above, in the present invention, the processing gas supply unit and the processing gas exhaust unit are disposed on the side of one gap forming surface that forms the gap, and the supply air of the processing gas supply unit is provided on the one gap forming surface. The opening was opened, and the supply port of the inert gas supply unit that supplies the inert gas toward the gap was opened on the other gap forming surface. A process gas is supplied from one gap formation surface toward the gap and an inert gas is supplied from the other gap formation surface toward the gap, so that a process gas reservoir (process gas is not contained in the gap). And a gas reservoir of inert gas (including a gas region where the inert gas exists at a higher concentration than the processing gas) coexisting with the active gas. It becomes. In addition, since the processing gas and the inert gas are supplied toward the gap forming surface on the side facing each other, the gas reservoir of the processing gas is placed on one gap forming surface side of the gap. The gas reservoirs are easily formed in a state of being biased toward the other gap forming surface. Here, the sheet glass starts to pass through the gap, and the gap is divided in the front and back direction by the sheet glass, so that the space on the one surface side (first divided space) is mainly processed. There is a gas reservoir, and the inert gas reservoir is mainly present in the space on the other side of the front and back surfaces (second divided space). In addition, since the supply port of the processing gas supply unit is opened in the first divided space and the supply port of the inert gas supply unit is opened in the second divided space, mainly in each divided space. The proportion of gas present is further increased. Accordingly, one side of the front and back surfaces of the glass sheet facing the first divided space is mainly exposed to the processing gas, while the other surface of the glass sheet facing the second divided space is mainly inert. You will be exposed to gas. With the above action, the front and back surfaces of the plate-like glass serving as the treatment surface are subjected to surface treatment, while the other surface of the front and back surfaces serving as the non-treatment surface is exposed to the treatment gas to such an extent that a substantial surface treatment is achieved. Can be avoided. Therefore, electrification can be suppressed or prevented by appropriately roughening one of the front and back surfaces. In addition, on the other surface of the front and back surfaces, high surface accuracy and required surface properties can be ensured by maintaining the surface roughness immediately before the surface treatment.

また、本発明の第1及び第2の側面に係る表面処理装置は、処理ガス供給部が、一方の隙間形成面のうち板状ガラスの通過方向中央に給気口を有するものであってもよい(請求項2)。   Moreover, the surface treatment apparatus which concerns on the 1st and 2nd side surface of this invention WHEREIN: Even if a process gas supply part has an air supply opening in the passage direction center of plate glass among one clearance gap formation surfaces. Good (claim 2).

上記構成によれば、処理ガスは給気口と対向する他方の隙間形成面の上記方向中央に向けて供給され、板状ガラスが隙間に導入された状態においては、板状ガラスの表裏一方の面の上記方向中央に向けて供給される。これにより、供給された処理ガスは、他方の隙間形成面に沿って又は板状ガラスの表裏一方の面に沿って隙間の両端開口部に向けて分岐するように広がる。よって、処理すべき表裏一方の面に対して偏りなく処理ガスを被曝させることができ、均質な表面処理が可能となる。   According to the above configuration, the processing gas is supplied toward the center in the direction of the other gap forming surface facing the air supply port, and in the state where the plate glass is introduced into the gap, one of the front and back sides of the plate glass is provided. Supplied toward the center of the surface in the above direction. Thereby, the supplied process gas spreads so as to branch toward the opening portions at both ends of the gap along the other gap forming surface or along one surface of the sheet glass. Accordingly, the processing gas can be exposed to the front and back surfaces to be processed without any bias, and a uniform surface treatment becomes possible.

また、本発明の第1及び第2の側面に係る表面処理装置は、処理ガス排気部が、一方の隙間形成面のうち板状ガラスの通過方向両端に排気口を有するものであってもよい(請求項3)。   Further, in the surface treatment apparatus according to the first and second aspects of the present invention, the process gas exhaust part may have exhaust ports at both ends in the sheet glass passing direction on one gap forming surface. (Claim 3).

上記構成によれば、隙間に供給された処理ガスを隙間の通過方向両端で排気できるので、例えばこれら排気口の間に処理ガス供給部の供給口を設けることで、処理ガスの隙間外への拡散を確実に防止しつつも、隙間に導入された板状ガラスの処理面をその全域にわたって漏れなく表面処理を施すことができる。特に、処理ガス供給部の供給口を一方の隙間形成面の板状ガラスの通過方向中央に配置するのと併せて、処理ガス排気部の排気口を上述の位置に配することで、処理ガスの隙間内での流通量を極力均等にすることができ、これによりさらに均質な表面処理を図ることが可能となる。   According to the above configuration, since the processing gas supplied to the gap can be exhausted at both ends in the passage direction of the gap, for example, by providing a supply port of the processing gas supply unit between these exhaust ports, While reliably preventing diffusion, it is possible to perform surface treatment on the entire surface of the glass sheet introduced into the gap without leakage. In particular, by arranging the supply port of the process gas supply unit at the center in the passage direction of the sheet glass on one gap forming surface, the exhaust port of the process gas exhaust unit is arranged at the above-described position. The amount of flow in the gaps can be made as uniform as possible, which makes it possible to achieve a more uniform surface treatment.

また、本発明の第1の側面に係る表面処理装置は、外気引込み手段が、他方の隙間形成面のうち板状ガラスの通過方向中央に排気口を有するものであってもよい。   Further, in the surface treatment apparatus according to the first aspect of the present invention, the outside air drawing means may have an exhaust port at the center of the other gap forming surface in the passage direction of the sheet glass.

一方の隙間形成面の側で処理ガスを適正に流通させることを考えた場合、外気引込み手段による排気力(排気流量、排気圧など)の調整が肝要となる。処理ガス供給部による処理ガスの供給力や処理ガス排気部による排気力に比べて、外気引込み手段の排気力(引込み力)が大き過ぎても、あるいは小さ過ぎても、隙間内における処理ガスの好適な流れを得ることが難しくなるためである。ここで、外気引込み手段の排気口を、他方の隙間形成面の板状ガラスの通過方向中央に設けることで、隙間の両端開口までの距離が等しくなる。これにより、外気の引込みに要する力(排気力)を極端に大きくしなくとも効率良く排気及び外気の引込みを行うことができる。よって、板状ガラスの通過途中や通過完了直前(すなわち、隙間のうち板状ガラスにより分割されていない領域が相当程度存在している期間)においても、隙間における処理ガスの流通状態を所望の状態に維持して、安定かつ均質な表面処理を施すことが可能となる。   When it is considered that the processing gas is properly circulated on the one gap forming surface side, it is important to adjust the exhaust force (exhaust flow rate, exhaust pressure, etc.) by the outside air drawing means. Even if the exhaust force (retraction force) of the outside air drawing means is too large or too small compared to the supply power of the process gas supplied by the process gas supply unit or the exhaust force of the process gas exhaust unit, the process gas in the gap This is because it becomes difficult to obtain a suitable flow. Here, by providing the exhaust port of the outside air drawing means at the center of the other gap forming surface in the sheet glass passing direction, the distances to the openings at both ends of the gap become equal. As a result, exhaust and external air can be efficiently drawn in without having to extremely increase the force (exhaust force) required to draw in external air. Therefore, the flow state of the processing gas in the gap is in a desired state even during the passage of the sheet glass or immediately before the completion of the passage (that is, a period in which there is a considerable portion of the gap that is not divided by the sheet glass). Thus, a stable and homogeneous surface treatment can be performed.

また、本発明の第2の側面に係る表面処理装置は、不活性ガス供給部の供給口が、板状ガラスの通過方向に直交する向きに伸びているものであってもよい(請求項4)。あるいは、他方の隙間形成面が、不活性ガスを流通可能な多数の空孔を有する多孔質体で構成され、他方の隙間形成面に露出した空孔で不活性ガスの供給口が構成されているものであってもよい(請求項5)。   Further, in the surface treatment apparatus according to the second aspect of the present invention, the supply port of the inert gas supply unit may extend in a direction perpendicular to the passing direction of the sheet glass. ). Alternatively, the other gap forming surface is composed of a porous body having a large number of pores through which an inert gas can flow, and the inert gas supply port is composed of the pores exposed on the other gap forming surface. (Claim 5).

このように、不活性ガス供給部の供給口を構成することで、通過方向に直交する方向においても均質な不活性ガスのガス溜りを形成することができる。よって、必要以上に不活性ガスを供給しなくとも効率的に非処理面となる板状ガラスの表裏他方の面を不活性ガスで保護することができる。また、他方の隙間形成面を、不活性ガスの流通可能な多数の空孔を有する多孔質体で構成し、かつ他方の隙間形成面に露出する空孔で不活性ガス供給部の供給口を構成することで、上記供給口をスリットや機械加工穴で構成する場合と比べて、隙間内での気体(処理ガス又は不活性ガス)の流れに与える影響を小さくすることができつつ、均等に不活性ガスを供給できる。従って、板状ガラスの表裏両面側ともに安定したガスの流れを実現することができる。   In this way, by configuring the supply port of the inert gas supply unit, it is possible to form a uniform inert gas reservoir even in the direction orthogonal to the passing direction. Therefore, it is possible to efficiently protect the other side of the front and back surfaces of the plate-like glass, which becomes a non-treated surface, without supplying an inert gas more than necessary with the inert gas. Further, the other gap forming surface is formed of a porous body having a large number of holes through which an inert gas can flow, and the supply port of the inert gas supply unit is formed with the holes exposed on the other gap forming surface. By configuring, compared with the case where the supply port is configured by a slit or a machined hole, the influence on the flow of gas (processing gas or inert gas) in the gap can be reduced, and evenly. An inert gas can be supplied. Therefore, a stable gas flow can be realized on both the front and back sides of the sheet glass.

また、前記課題の解決は、本発明の第1の側面に係る板状ガラスの表面処理方法によっても達成される。すなわち、この表面処理方法は、一対の隙間形成面の間に形成され板状ガラスが通過可能な隙間に処理ガスを供給し、処理ガスを隙間から排気することで、隙間を通過する板状ガラスの表裏一方の面に表面処理を施す板状ガラスの表面処理方法において、処理ガスを、一方の隙間形成面の側から隙間に向けて供給しつつ一方の隙間形成面の側で排気し、他方の隙間形成面の側で隙間の排気を行うことで、隙間への板状ガラスの導入に伴い板状ガラスと他方の隙間形成面との間に形成される空間に外気を引込む点をもって特徴付けられる。なお、本発明の第1の側面に係る板状ガラスの表面処理方法は、本発明の参考例としての発明である。   The solution to the above problem can also be achieved by the surface treatment method for sheet glass according to the first aspect of the present invention. That is, in this surface treatment method, a processing gas is supplied to a gap formed between a pair of gap forming surfaces and through which the plate glass can pass, and the processing gas is exhausted from the gap, thereby passing the gap between the plate glasses. In the surface treatment method for a sheet glass in which surface treatment is performed on one surface of the front and back surfaces, a processing gas is exhausted from one gap forming surface side while being exhausted from one gap forming surface side, and the other. By evacuating the gap on the gap forming surface side, it is characterized by the point that outside air is drawn into the space formed between the glass sheet and the other gap forming surface with the introduction of the plate glass into the gap It is done. In addition, the surface treatment method of the sheet glass which concerns on the 1st side surface of this invention is invention as a reference example of this invention.

この表面処理方法によれば、上述した本発明の第1の側面に係る表面処理装置と同様に、板状ガラスが隙間を通過し始めて、当該隙間が板状ガラスでその表裏方向に分割された状態では、他方の隙間形成面と板状ガラスの表裏他方の面との間に形成される空間(第2の分割空間)に存在していた処理ガスは、他方の隙間形成面の側で隙間の排気を行うことにより隙間外へ排出される。また、隙間のうち板状ガラスの未導入の領域から第2の分割空間へ流れ込もうとする処理ガスは、当該分割空間へ外気を引込むことにより当該分割空間の外へ押戻され、あるいは外気と共に隙間外に排出される。以上の作用により、処理面となる板状ガラスの表裏一方の面に表面処理を施しつつも、非処理面とすべき表裏他方の面が、実質的な表面処理となる程度に処理ガスに曝される事態を回避することができる。従って、表裏一方の面を適度に粗面化することで帯電を抑制または防止することができる。また、表裏他方の面においては、表面処理直前(例えば成形時)の面粗さを維持することで高い表面精度及び所要の表面性状を確保することができる。   According to this surface treatment method, as in the above-described surface treatment apparatus according to the first aspect of the present invention, the sheet glass starts to pass through the gap, and the gap is divided in the front and back direction with the sheet glass. In the state, the processing gas existing in the space (second divided space) formed between the other gap forming surface and the other side of the front and back surfaces of the sheet glass is separated on the other gap forming surface side. Is discharged out of the gap. In addition, the processing gas that tries to flow into the second divided space from the area where the glass sheet is not introduced in the gap is pushed back out of the divided space by drawing the outside air into the divided space, or outside air. At the same time, it is discharged out of the gap. As a result of the above action, the front and back surfaces of the plate-like glass to be treated are subjected to surface treatment, while the other surface to be treated as a non-treated surface is exposed to the treatment gas to such an extent that the surface is substantially surface treated. Can be avoided. Therefore, electrification can be suppressed or prevented by appropriately roughening one of the front and back surfaces. In addition, on the other side of the front and back surfaces, high surface accuracy and required surface properties can be ensured by maintaining the surface roughness immediately before the surface treatment (for example, during molding).

また、前記課題の解決は、本発明の第2の側面に係る板状ガラスの表面処理方法によっても達成される。すなわち、この表面処理方法は、一対の隙間形成面の間に形成され板状ガラスが通過可能な隙間に処理ガスを供給し、処理ガスを隙間から排気することで、隙間を通過する板状ガラスの表裏一方の面に表面処理を施す板状ガラスの表面処理方法において、処理ガスを、一方の隙間形成面の側から隙間に向けて供給しつつ一方の隙間形成面の側で排気すると共に、一方の隙間形成面に開口した処理ガスの給気口から隙間に向けて処理ガスを供給し、かつ他方の隙間形成面に開口した不活性ガスの供給口から隙間に向けて不活性ガスを供給した状態で、隙間に板状ガラスを導入する点をもって特徴付けられる(請求項8)。   The solution to the above problem is also achieved by the surface treatment method for sheet glass according to the second aspect of the present invention. That is, in this surface treatment method, a processing gas is supplied to a gap formed between a pair of gap forming surfaces and through which the plate glass can pass, and the processing gas is exhausted from the gap, thereby passing the gap between the plate glasses. In the surface treatment method of the sheet glass that performs the surface treatment on one surface of the front and back, while exhausting on the one gap forming surface side while supplying the processing gas from the one gap forming surface side toward the gap, Process gas is supplied to the gap from the process gas supply port opened on one gap forming surface, and inert gas is supplied to the gap from the inert gas supply port opened on the other gap forming surface In this state, it is characterized by the point of introducing the sheet glass into the gap (claim 8).

この表面処理方法によれば、上述した本発明の第2の側面に係る表面処理装置と同様に、板状ガラスが隙間への導入を開始する時点で、一方の隙間形成面の側には主に処理ガスのガス溜りが形成され、表裏他方の面の側の空間(第2の分割空間)には主に不活性ガスのガス溜りが形成された状態となる。よって、板状ガラスの導入により隙間が分割された状態では、第1の分割空間の側に主に処理ガスのガス溜りが存在し、第2の分割空間の側に主に不活性ガスのガス溜りが存在した状態となる。また、これら分割空間に対応するガスが供給されることで、各分割空間に主成分として存在するガスの濃度がさらに高められる。従って、第1の分割空間に面する板状ガラスの表裏一方の面は主に処理ガスに曝され、第2の分割空間に面する板状ガラスの表裏他方の面は主に不活性ガスに曝される。以上の作用により、処理面となる板状ガラスの表裏一方の面に表面処理を施しつつも、非処理面となる表裏他方の面が、実質的な表面処理となる程度に処理ガスに曝される事態を回避することができる。従って、表裏一方の面を適度に粗面化することで帯電を抑制または防止することができる。また、表裏他方の面においては、表面処理直前の面粗さを維持することで高い表面精度及び所要の表面性状を確保することができる。   According to this surface treatment method, as in the case of the surface treatment apparatus according to the second aspect of the present invention described above, when the sheet glass starts to be introduced into the gap, the one on the gap forming surface side is mainly disposed. A gas reservoir for the processing gas is formed, and a gas reservoir for the inert gas is mainly formed in the space on the other side of the front and back surfaces (second divided space). Therefore, in the state where the gap is divided by the introduction of the sheet glass, a gas reservoir mainly for processing gas exists on the side of the first divided space, and an inert gas gas mainly on the side of the second divided space. There will be a pool. Further, by supplying the gas corresponding to these divided spaces, the concentration of the gas present as the main component in each divided space is further increased. Therefore, one side of the front and back surfaces of the glass sheet facing the first divided space is mainly exposed to the processing gas, and the other surface of the front and back surfaces of the glass sheet facing the second divided space is mainly inert gas. Be exposed. With the above action, the front and back surfaces of the plate-like glass serving as the treatment surface are subjected to surface treatment, while the other surface of the front and back surfaces serving as the non-treatment surface is exposed to the treatment gas to such an extent that a substantial surface treatment is achieved. Can be avoided. Therefore, electrification can be suppressed or prevented by appropriately roughening one of the front and back surfaces. In addition, on the other surface of the front and back surfaces, high surface accuracy and required surface properties can be ensured by maintaining the surface roughness immediately before the surface treatment.

また、前記課題の解決は、本発明の第3の側面に係る板状ガラスの表面処理装置によっても達成される。すなわち、この表面処理装置は、板状ガラスが通過可能な隙間を形成する一対の隙間形成面と、板状ガラスの表裏一方の面に表面処理を施すための処理ガスを隙間に供給する処理ガス供給部と、隙間に供給された処理ガスを排気する処理ガス排気部とを備えた板状ガラスの表面処理装置において、処理ガス供給部と処理ガス排気部は共に一方の隙間形成面の側に設けられると共に、他方の隙間形成面は、板状ガラスの表裏他方の面と当接しかつ板状ガラスと同期してその通過方向に移動する同期移動面で形成されている点をもって特徴付けられる(請求項6)。   The solution to the above problem can also be achieved by the surface treatment apparatus for sheet glass according to the third aspect of the present invention. That is, this surface treatment apparatus is a treatment gas that supplies a treatment gas for performing a surface treatment to a pair of gap forming surfaces that form a gap through which the sheet glass can pass and one of the front and back surfaces of the sheet glass. In a sheet glass surface treatment apparatus including a supply unit and a process gas exhaust unit that exhausts the process gas supplied to the gap, both the process gas supply unit and the process gas exhaust unit are on one gap forming surface side. The other gap forming surface is characterized in that it is formed by a synchronous movement surface that abuts the other surface of the sheet glass and moves in the passing direction in synchronization with the sheet glass ( Claim 6).

このように、本発明では、第1及び第2の側面に係る表面処理装置と同様、処理ガス供給部及び処理ガス排気部を共に一方の隙間形成面の側に設けると共に、他方の隙間形成面を、板状ガラスの表裏他方の面と当接しかつ板状ガラスと同期してその通過方向に移動する同期移動面で形成した。これにより、板状ガラスは、他方の隙間形成面を形成する同期移動面と当接した状態を保って隙間に導入されるので、隙間に導入した状態の板状ガラスの非処理面(表裏他方の面)に処理ガスが入り込む余地(隙間)は生じない。よって、処理面となる板状ガラスの表裏一方の面に表面処理を施しつつも、非処理面となる表裏他方の面が、実質的な表面処理となる程度に処理ガスに曝される事態を確実に防止することができる。また、板状ガラスとの接触面(同期移動面)を板状ガラスと同期して移動可能としたので、板状ガラスの表裏他方の面と同期移動面とが摺動するおそれもない。従って、非処理面となる表裏他方の面の表面精度及び表面性状を確保することができる。   As described above, in the present invention, as in the surface treatment apparatus according to the first and second aspects, the processing gas supply unit and the processing gas exhaust unit are both provided on one gap forming surface side, and the other gap forming surface is provided. Was formed with a synchronous moving surface that was in contact with the other surface of the plate glass and moved in the passing direction in synchronization with the plate glass. As a result, the sheet glass is introduced into the gap while maintaining a state in contact with the synchronous movement surface that forms the other gap forming surface. There is no room for the processing gas to enter (space). Therefore, while surface treatment is performed on one side of the front and back sides of the plate-like glass that is the treated surface, the other surface that is the non-treated surface is exposed to the processing gas to such an extent that it becomes a substantial surface treatment. It can be surely prevented. Further, since the contact surface (synchronous movement surface) with the plate glass can be moved in synchronization with the plate glass, there is no possibility that the other surface of the plate glass and the other surface and the synchronous movement surface slide. Therefore, it is possible to ensure the surface accuracy and surface properties of the other surface, which is the non-treated surface.

また、本発明の第3の側面に係る表面処理装置は、同期移動面が、板状ガラスを搬送可能とするベルトコンベアの搬送面で構成されている点をもって特徴付けられる(請求項7)。   Further, the surface treatment apparatus according to the third aspect of the present invention is characterized in that the synchronous movement surface is constituted by a conveyance surface of a belt conveyor that can convey plate-like glass (Claim 7).

上記構成によれば、板状ガラスの搬送手段と、同期移動面を有する機構とを共通化することができるので、搬送手段に設けた搬送面から同期移動面への乗り移りを省略することができる。また、搬送手段と同期移動面を有する機構とを1つにすることができるので、全体の構成をコンパクトにすることができる。また、駆動機構も1つに集約することができるので、この点においても全体の構成をコンパクトにすることができる。また、コンパクトにした分のコストダウンを図ることもできる。   According to the above configuration, since the sheet glass conveying means and the mechanism having the synchronous movement surface can be shared, the transfer from the conveyance surface provided in the conveyance means to the synchronous movement surface can be omitted. . In addition, since the conveying means and the mechanism having the synchronous movement surface can be made one, the entire configuration can be made compact. In addition, since the drive mechanisms can be integrated into one, the overall configuration can be made compact in this respect as well. In addition, the cost can be reduced by making it compact.

以上に述べたように、本発明によれば、板状ガラスの表裏一方の面への処理ガスによる表面処理を、表裏他方の面への処理ガスによる表面処理を実質的に防止しつつ連続的に実施することが可能となる。   As described above, according to the present invention, the surface treatment with the processing gas on one side of the front and back surfaces of the sheet glass is continuously performed while the surface treatment with the processing gas on the other side is substantially prevented. It becomes possible to carry out.

本発明の第1の側面に係る板状ガラスの表面処理装置の一実施形態を示す一部断面正面図である。It is a partial cross section front view which shows one Embodiment of the surface treatment apparatus of the sheet glass which concerns on the 1st side surface of this invention. 図1に示す表面処理装置のA−A平面図である。It is an AA top view of the surface treatment apparatus shown in FIG. 図1に示す表面処理装置を用いた表面処理の流れを説明するための要部拡大図である。It is a principal part enlarged view for demonstrating the flow of the surface treatment using the surface treatment apparatus shown in FIG. 本発明の第1の側面に係る板状ガラスの表面処理装置の他の実施形態を示す図であって、当該処理装置を用いた表面処理の流れを説明するための要部拡大図である。It is a figure which shows other embodiment of the surface treatment apparatus of the sheet glass which concerns on the 1st side surface of this invention, Comprising: It is a principal part enlarged view for demonstrating the flow of the surface treatment using the said processing apparatus. 本発明の第2の側面に係る板状ガラスの表面処理装置の一実施形態を示す一部断面正面図である。It is a partial cross section front view which shows one Embodiment of the surface treatment apparatus of the sheet glass which concerns on the 2nd side surface of this invention. 図5に示す表面処理装置を用いた表面処理の流れを説明するための要部拡大正面図である。It is a principal part enlarged front view for demonstrating the flow of the surface treatment using the surface treatment apparatus shown in FIG. 本発明の第2の側面に係る表面処理装置の他の実施形態を示す一部断面正面図である。It is a partial cross section front view which shows other embodiment of the surface treatment apparatus which concerns on the 2nd side surface of this invention. 本発明の第3の側面に係る板状ガラスの表面処理装置の一実施形態を示す一部断面正面図である。It is a partial cross section front view which shows one Embodiment of the surface treatment apparatus of the sheet glass which concerns on the 3rd side surface of this invention. 本発明の第3の側面に係る表面処理装置の他の実施形態を示す一部断面正面図である。It is a partial cross section front view which shows other embodiment of the surface treatment apparatus which concerns on the 3rd side surface of this invention. 本発明の第4の側面に係る板状ガラスの表面処理装置の一実施形態を示す図であって、当該処理装置を用いた表面処理の流れを説明するための要部拡大断面図である。It is a figure which shows one Embodiment of the surface treatment apparatus of the sheet glass which concerns on the 4th side surface of this invention, Comprising: It is a principal part expanded sectional view for demonstrating the flow of the surface treatment using the said treatment apparatus. 本発明の第5の側面に係る板状ガラスの表面処理装置の一実施形態を示す一部断面正面図である。It is a partial cross section front view which shows one Embodiment of the surface treatment apparatus of the sheet glass which concerns on the 5th side surface of this invention.

以下、本発明の第1の側面に係る表面処理装置及び表面処理方法の一実施形態を図1〜図3を参照して説明する。なお、本実施形態では、板状ガラスとして、成形した帯状板ガラスから所定の寸法に切り出したガラス基板の裏面に表面処理を施す場合を例にとって説明する。   Hereinafter, an embodiment of a surface treatment apparatus and a surface treatment method according to a first aspect of the present invention will be described with reference to FIGS. In the present embodiment, a case will be described as an example in which surface treatment is performed on the back surface of a glass substrate cut out to a predetermined size from a formed strip-shaped plate glass as the plate-shaped glass.

図1は、本発明の第1の側面に係る板状ガラスの表面処理装置10の一実施形態を示している。この表面処理装置10は、ガラス基板Pを搬送するための搬送手段11と、ガラス基板Pがその搬送方向に沿って通過可能な隙間12と、この隙間12を形成する一対の隙間形成面13,14と、これら隙間形成面13,14をそれぞれ有する一対の隙間形成部材15,16と、ガラス基板Pの裏面Pbに表面処理を施すための処理ガスGa(後述する図3を参照)を隙間12に供給する処理ガス供給部17と、隙間12に供給された処理ガスGaを排気する処理ガス排気部18と、外気引込み手段19とを備える。本実施形態では、一方の隙間形成部材15及び他方の隙間形成部材16がともに、ガラス基板Pの搬送方向に沿って複数箇所に対向して配設されており、かつ、各隙間形成部材15,16の間には、搬送手段11が配設されている。   FIG. 1 shows an embodiment of a sheet glass surface treatment apparatus 10 according to the first aspect of the present invention. The surface treatment apparatus 10 includes a transport unit 11 for transporting the glass substrate P, a gap 12 through which the glass substrate P can pass along the transport direction, and a pair of gap forming surfaces 13 that form the gap 12. 14, a pair of gap forming members 15 and 16 each having the gap forming surfaces 13 and 14, and a processing gas Ga (see FIG. 3 to be described later) for applying a surface treatment to the back surface Pb of the glass substrate P. Is provided with a processing gas supply unit 17 for supplying gas, a processing gas exhaust unit 18 for exhausting the processing gas Ga supplied to the gap 12, and an outside air drawing means 19. In the present embodiment, one gap forming member 15 and the other gap forming member 16 are both disposed at a plurality of locations along the conveyance direction of the glass substrate P, and each gap forming member 15, A conveying means 11 is disposed between 16.

搬送手段11は、例えば図2に示すように複数のローラ20を有するローラコンベアで、各ローラ20の外周面でガラス基板Pの裏面Pbが支持されている。そして、各ローラ20を回転駆動することで、各ローラ20の上方に載置(支持)されたガラス基板Pが所定の方向(図1や図2では左側)に搬送される。   The transport means 11 is a roller conveyor having a plurality of rollers 20 as shown in FIG. 2, for example, and the back surface Pb of the glass substrate P is supported on the outer peripheral surface of each roller 20. Then, by rotating each roller 20, the glass substrate P placed (supported) above each roller 20 is conveyed in a predetermined direction (left side in FIGS. 1 and 2).

隙間12を形成する一対の隙間形成面13,14は何れもガラス基板Pの表面Pa及び裏面Pbに平行となるように配設されている(図1)。本実施形態では、一方の隙間形成面13はガラス基板Pの下方に位置し、他方の隙間形成面14はガラス基板Pの上方に位置する。また、隙間12を通過する際のガラス基板Pの裏面Pbと一方の隙間形成面13との対向間隔が、ガラス基板Pの表面Paと他方の隙間形成面14との対向間隔よりも小さくなるよう、各々の隙間形成面13,14の隙間幅方向位置(図1でいえば上下方向位置)が設定されている。   The pair of gap forming surfaces 13 and 14 that form the gap 12 are both arranged parallel to the front surface Pa and the back surface Pb of the glass substrate P (FIG. 1). In the present embodiment, one gap forming surface 13 is located below the glass substrate P, and the other gap forming surface 14 is located above the glass substrate P. Further, the facing distance between the back surface Pb of the glass substrate P and the one gap forming surface 13 when passing through the gap 12 is smaller than the facing distance between the surface Pa of the glass substrate P and the other gap forming surface 14. The gap width direction positions (vertical direction positions in FIG. 1) of the gap forming surfaces 13 and 14 are set.

処理ガス供給部17と処理ガス排気部18は、本実施形態では、図1に示すように、一方の隙間形成面13を有する一方の隙間形成部材15の内部に配設されている。また、処理ガス供給部17の給気口17aは一方の隙間形成面13のうちガラス基板Pの搬送方向中央に開口して形成されると共に、処理ガス排気部18の排気口18aは一方の隙間形成面13のうちガラス基板Pの搬送方向両端の近傍に開口して形成される。双方の排気口18aは給気口17aと等距離だけ搬送方向に離れた位置に配設されている。ここで、図2に示すように、処理ガス供給部17の給気口17aはスリット形状をなし、ガラス基板Pが隙間12を通過した際、ガラス基板Pの幅方向(ガラス基板Pの搬送方向に直交する向きをいう。以下、同じ。)両端付近に達する位置まで伸びている。また、処理ガス排気部18の2つの排気口18aは何れもスリット形状をなし、給気口17aと同様、ガラス基板Pの幅方向両端付近に達する位置まで伸びている。この図示例では、給気口17aよりも一方の隙間形成面13の幅方向両端に近い位置まで伸びており、かつ、隙間12に導入された状態でガラス基板Pの幅方向両端を超える位置まで伸びている。   In this embodiment, the processing gas supply unit 17 and the processing gas exhaust unit 18 are disposed inside one gap forming member 15 having one gap forming surface 13 as shown in FIG. Further, the air supply port 17a of the processing gas supply unit 17 is formed so as to open in the center of the conveyance direction of the glass substrate P in one gap forming surface 13, and the exhaust port 18a of the processing gas exhaust unit 18 is formed in one gap. In the forming surface 13, an opening is formed in the vicinity of both ends of the glass substrate P in the transport direction. Both the exhaust ports 18a are disposed at positions that are equidistant from the air supply port 17a in the transport direction. Here, as shown in FIG. 2, the air supply port 17 a of the processing gas supply unit 17 has a slit shape, and when the glass substrate P passes through the gap 12, the width direction of the glass substrate P (the conveyance direction of the glass substrate P). (The same applies hereinafter.) It extends to a position reaching both ends. In addition, the two exhaust ports 18a of the processing gas exhaust unit 18 both have a slit shape, and extend to positions near the both ends in the width direction of the glass substrate P, similarly to the air supply port 17a. In this illustrated example, it extends to a position closer to both ends in the width direction of one gap forming surface 13 than the air supply port 17a, and to a position exceeding both ends in the width direction of the glass substrate P in a state of being introduced into the gap 12. It is growing.

また、処理ガス供給部17から隙間12に供給可能な処理ガスとしては、酸性、アルカリ性の別なく適当な種類のガスを使用でき、例えばより短時間でのガラス基板P表面(ここでは裏面Pb)の粗面化を図る場合には、HF(フッ化水素)など、ガラスに対する反応性に優れた酸性物質を含むガスを使用することが可能である。   Further, as the processing gas that can be supplied from the processing gas supply unit 17 to the gap 12, an appropriate type of gas can be used regardless of whether it is acidic or alkaline. For example, the surface of the glass substrate P in a shorter time (here, the back surface Pb). In order to roughen the surface, it is possible to use a gas containing an acidic substance having excellent reactivity with respect to glass, such as HF (hydrogen fluoride).

外気引込み手段19は例えば排気ポンプで構成され、他方の隙間形成部材16の内部に配設されると共に、その排気口19aを他方の隙間形成面14のうちガラス基板Pの搬送方向中央に開口形成してなる。このように構成することで、隙間12内部の排気、及び後述する外気の取込みを可能としている。本実施形態では、外気引込み手段19の排気口19aはスリット形状をなし、図示は省略するが、隙間12内に導入されたガラス基板Pの幅方向両端付近に達する位置まで伸びている。また、外気引込み手段19による排気力(例えば排気流量)は、処理ガス供給部17の給気力(例えば給気流量)、処理ガス排気部18の排気力、隙間12にガラス基板Pを導入した際に隙間12を分割することでガラス基板Pの表裏方向にそれぞれ形成される第1及び第2の分割空間21,22の隙間幅寸法(第1の分割空間21でいえば、一方の隙間形成面13とガラス基板Pの裏面Pbとの対向間隔)などを考慮して設定される。すなわち、外気引込み手段19の排気力によっては上方の分割空間(第2の分割空間22)が負圧状態となることも考えられる。隙間12を通過する領域においてガラス基板Pは双方の隙間形成面13,14と原則非接触の状態にあるため、負圧発生により容易に排気口19aの側(他方の隙間形成面14の側)に引き付けられ、そり等の変形を生じるおそれがある。以上より、ガラス基板Pに不要な変形を与えることなく、かつ外気を適当に取り込み可能な程度に外気引込み手段19の排気力、処理ガス供給部17の給気力、処理ガス排気部18の排気力、及び各分割空間21,22の隙間幅方向寸法を適切に設定することが肝要となる。本実施形態では、外気引込み手段19の排気流量は、例えば処理ガス供給部17の給気流量及び処理ガス排気部18の排気流量と同等もしくはそれ以下となるように調整される。   The outside air drawing means 19 is composed of, for example, an exhaust pump, and is disposed inside the other gap forming member 16, and the exhaust port 19 a is formed at the center of the other gap forming surface 14 in the conveyance direction of the glass substrate P. Do it. With this configuration, exhaust inside the gap 12 and intake of outside air described later are possible. In the present embodiment, the exhaust port 19a of the outside air drawing means 19 has a slit shape and is not shown, but extends to a position reaching the both ends in the width direction of the glass substrate P introduced into the gap 12. Further, the exhaust force (for example, exhaust flow rate) by the outside air drawing means 19 is the supply force (for example, supply flow rate) of the processing gas supply unit 17, the exhaust force of the processing gas exhaust unit 18, and when the glass substrate P is introduced into the gap 12. The gap width dimension of the first and second divided spaces 21 and 22 formed respectively in the front and back direction of the glass substrate P by dividing the gap 12 into two (in the first divided space 21, one gap forming surface) 13 and the back surface Pb of the glass substrate P). That is, depending on the exhaust force of the outside air drawing means 19, the upper divided space (second divided space 22) may be in a negative pressure state. Since the glass substrate P is in principle not in contact with both of the gap forming surfaces 13 and 14 in the region passing through the gap 12, it is easily brought into the exhaust port 19a side (the other gap forming surface 14 side) by negative pressure generation. There is a risk of deformation such as warping. As described above, the exhaust force of the outside air drawing means 19, the supply force of the process gas supply unit 17, and the exhaust force of the process gas exhaust unit 18 to such an extent that the outside air can be appropriately taken in without causing unnecessary deformation to the glass substrate P. It is important to set the dimension in the gap width direction of each of the divided spaces 21 and 22 appropriately. In the present embodiment, the exhaust flow rate of the outside air drawing means 19 is adjusted to be equal to or less than, for example, the supply flow rate of the processing gas supply unit 17 and the exhaust flow rate of the processing gas exhaust unit 18.

ここで、表面処理の対象となるガラス基板Pには、例えばオーバーフローダウンドロー法に代表されるダウンドロー法や、フロート法などの公知の手段により帯状に成形することができ、帯状に成形した板状ガラス(帯状板ガラス)を所定の長手方向寸法に切断した後、必要に応じて二辺もしくは四辺の研磨加工を施したものが用いられる。   Here, the glass substrate P to be subjected to the surface treatment can be formed into a band shape by a known means such as a down draw method typified by an overflow down draw method or a float method. After the glass sheet (band-shaped plate glass) is cut into a predetermined longitudinal dimension, two or four sides are polished as necessary.

以下、上記構成の表面処理装置10を用いたガラス基板Pの表面処理の流れを図3に基づき説明する。   Hereinafter, the flow of the surface treatment of the glass substrate P using the surface treatment apparatus 10 having the above configuration will be described with reference to FIG.

まず、図3(a)に示すように、ガラス基板Pが隙間12の外にある(すなわち隙間12よりも搬送方向後方側に位置する)状態において、処理ガス供給部17により給気口17aから隙間12に処理ガスGaを供給する。また、処理ガス排気部18により排気口18aから隙間12に供給された処理ガスGaの排気を行う。これにより、隙間12内が処理ガスGaで満たされると共に、隙間12外への処理ガスGaの漏れ出しが防止される。もちろん、この時点(ガラス基板Pの導入前の段階)で外気引込み手段19による排気を開始しても構わない。   First, as shown in FIG. 3A, in a state where the glass substrate P is outside the gap 12 (that is, located on the rear side in the transport direction with respect to the gap 12), the processing gas supply unit 17 causes the supply port 17a to A processing gas Ga is supplied to the gap 12. Further, the process gas exhaust unit 18 exhausts the process gas Ga supplied to the gap 12 from the exhaust port 18a. Thus, the gap 12 is filled with the processing gas Ga, and the processing gas Ga is prevented from leaking out of the gap 12. Of course, exhausting by the outside air drawing means 19 may be started at this point (stage before introduction of the glass substrate P).

そして、この状態から、図3(b)に示すように、ガラス基板Pを隙間12の一端側(図3でいえば右側)から導入する。これにより、隙間12がガラス基板Pの導入領域においてその表裏方向に分割される。このうち、ガラス基板Pの裏面Pbとこの裏面Pbに対向する一方の隙間形成面13との間に形成される第1の分割空間21には引き続き処理ガスGaが充満している。そのため、ガラス基板Pの裏面Pbが隙間12内への導入に伴って順次処理ガスGaに曝され、処理ガスGaによる裏面Pbの表面処理が施される。   Then, from this state, as shown in FIG. 3B, the glass substrate P is introduced from one end side of the gap 12 (the right side in FIG. 3). Thereby, the gap 12 is divided in the front and back direction in the introduction region of the glass substrate P. Of these, the first divided space 21 formed between the back surface Pb of the glass substrate P and one gap forming surface 13 facing the back surface Pb is continuously filled with the processing gas Ga. Therefore, the back surface Pb of the glass substrate P is sequentially exposed to the processing gas Ga as it is introduced into the gap 12, and the surface treatment of the back surface Pb with the processing gas Ga is performed.

一方、ガラス基板Pの隙間12内への導入を開始するのに伴って、外気引込み手段19により隙間12内の排気を行うことで、ガラス基板Pの表面Paとこの表面Paに対向する他方の隙間形成面14との間に形成される第2の分割空間22に外気Gbを引込む(図3(b))。このように、隙間12内の排気を行うことで、その時点で既に第2の分割空間22に充満していた処理ガスGaが排気口19aを通じて排気されると共に、処理ガスGaを排気した空間(第2の分割空間22)が外気Gbで満たされる(図3(b))。これにより、ガラス基板Pの表面Paと接触する気体は、処理ガスGaを全く含まないか、含んだとしても非常に処理ガスGaの濃度の低いもの(相対的に外気Gbの濃度が高いもの)となる。よって、隙間12に導入された領域においては、裏面Pbのみに処理ガスGaによる表面処理が施される一方、表面Paへの処理ガスGaによる表面処理は実質的に回避される。   On the other hand, as the introduction of the glass substrate P into the gap 12 starts, the outside air drawing means 19 evacuates the gap 12 so that the surface Pa of the glass substrate P and the other surface facing the surface Pa. Outside air Gb is drawn into the second divided space 22 formed between the gap forming surface 14 (FIG. 3B). Thus, by exhausting the gap 12, the processing gas Ga that has already filled the second divided space 22 at that time is exhausted through the exhaust port 19 a and the space in which the processing gas Ga is exhausted ( The second divided space 22) is filled with the outside air Gb (FIG. 3B). Thereby, the gas in contact with the surface Pa of the glass substrate P does not contain the processing gas Ga at all or has a very low concentration of the processing gas Ga even if it is included (those with a relatively high concentration of the outside air Gb). It becomes. Therefore, in the region introduced into the gap 12, only the back surface Pb is subjected to the surface treatment with the processing gas Ga, while the surface treatment with the processing gas Ga on the surface Pa is substantially avoided.

このようにして隙間12内(正確には第2の分割空間22内)への外気Gbの引込みを伴ってガラス基板Pを隙間12内に導入していき、ガラス基板Pの導入前方側端部が隙間12を通過した時点においては、図3(c)に示すように、隙間12全域がガラス基板Pを介して第1の分割空間21と第2の分割空間22とに分割される。また、この際、第1の分割空間21は処理ガスGaで満たされると共に、第2の分割空間22は両端開口側から引き込まれた外気Gbで満たされる。これにより、裏面Pbに対する処理ガスGaによる表面処理が継続される一方、外気Gbによる表面Paの保護状態が維持あるいは強化される。   In this way, the glass substrate P is introduced into the gap 12 with the drawing of the outside air Gb into the gap 12 (more precisely, in the second divided space 22), and the introduction front side end of the glass substrate P is introduced. 3 passes through the gap 12, the entire gap 12 is divided into the first divided space 21 and the second divided space 22 through the glass substrate P, as shown in FIG. At this time, the first divided space 21 is filled with the processing gas Ga, and the second divided space 22 is filled with the outside air Gb drawn from both ends of the opening. Thereby, the surface treatment with the processing gas Ga for the back surface Pb is continued, while the protection state of the surface Pa with the outside air Gb is maintained or strengthened.

このようにして、各対の隙間形成面13,14間(すなわち各隙間12)にガラス基板Pが導入されていき、最も導入方向前方側に位置する隙間12(図1でいえば最も左側の隙間12)をガラス基板Pが通過し終えることで、裏面Pbへの処理ガスGaによる表面処理が完了する。そして、この処理により裏面Pbの粗面化が図られる一方、表面Paの表面性状及び表面精度は処理前後で維持される。一例として、上記粗面化を表面粗さRaの変化で説明すると、上記表面処理の前後で、裏面Pbの表面粗さRa[nm]が0.1nm以上でかつ1.8nm以下の範囲で向上(ここでは粗面化)するように、より好ましくは0.1nm以上でかつ0.8nm以下の範囲で向上するように、処理ガスGaによる裏面Pbへの表面処理条件が設定されるのがよい。上記範囲で、裏面Pbの表面粗さRaが向上することで、表面処理以後の製造工程において、ガラス基板Pが実質的に問題となるレベルの帯電を生じる事態を回避することが可能となる。ここで、裏面Pbに対する表面処理条件は、上述した処理ガスGaの濃度や、処理ガス排気部18と外気引込み手段19との排気力(排気流量、排気圧)のバランスを調整する他、処理ガスGaの供給時温度や雰囲気温度(隙間12内の温度)、あるいはガラス基板Pの搬送速度を調整することによって適宜設定される。なお、ここでいう表面粗さRa[nm]は、JIS R 1683:2007を準用する方法で測定することで得られた値をいう。   In this way, the glass substrate P is introduced between each pair of the gap forming surfaces 13 and 14 (that is, each gap 12), and the gap 12 located on the most front side in the introduction direction (the leftmost side in FIG. 1). When the glass substrate P finishes passing through the gap 12), the surface treatment with the processing gas Ga on the back surface Pb is completed. And while this process roughens the back surface Pb, the surface property and surface accuracy of the surface Pa are maintained before and after the process. As an example, when the roughening is explained by the change of the surface roughness Ra, the surface roughness Ra [nm] of the back surface Pb is improved in the range of 0.1 nm or more and 1.8 nm or less before and after the surface treatment. The surface treatment conditions for the back surface Pb by the treatment gas Ga should be set so that the surface gas is roughened (more preferably in the range of 0.1 nm or more and 0.8 nm or less). . When the surface roughness Ra of the back surface Pb is improved within the above range, it is possible to avoid a situation in which the glass substrate P generates a substantially problematic level of charging in the manufacturing process after the surface treatment. Here, the surface treatment conditions for the back surface Pb include the processing gas Ga concentration and the balance of the exhaust power (exhaust flow rate, exhaust pressure) between the processing gas exhaust unit 18 and the outside air drawing means 19. It is appropriately set by adjusting the temperature at the time of supplying Ga, the ambient temperature (temperature in the gap 12), or the conveyance speed of the glass substrate P. In addition, surface roughness Ra [nm] here says the value obtained by measuring by the method of applying JISR1683: 2007 mutatis mutandis.

このように、本発明の第1の側面に係る表面処理装置においては、隙間12を形成する一方の隙間形成面13の側に、処理ガス供給部17と処理ガス排気部18を配設すると共に、他方の隙間形成面14の側に、隙間12の排気により、隙間12に導入したガラス基板Pと他方の隙間形成面14との間に形成される空間(第2の分割空間22)に外気Gbを引込み可能な外気引込み手段19を設けた。このように構成した表面処理装置を用いることにより、ガラス基板Pが隙間12を通過し始めて、隙間12の過半がガラス基板Pでその表裏方向に分割された状態では、表面Paの側の空間と裏面Pbの側の空間とで異なる気体の流れが形成される。具体的に言うと、一方の隙間形成面13と板状ガラスの裏面Pbとの間に形成される第1の分割空間21においては、処理ガス供給部17から隙間12に向けて供給された処理ガスGaが第1の分割空間21を流通し、処理ガス排気部18で排出される気体の流れが形成される。これに対して、他方の隙間形成面14とガラス基板Pの表面Paとの間に形成される第2の分割空間22においては、ガラス基板Pが仕切りとなって第1の分割空間21から第2の分割空間22への処理ガスGaの侵入が阻止される。以上の作用により、処理面となるガラス基板Pの裏面Pbに表面処理を施しつつも、当該表面処理の開始時から終了時までの間、非処理面とすべき表面Paが、実質的な表面処理となる程度に処理ガスGaに曝される事態を回避することができる。従って、裏面Pbを適度に粗面化することで帯電を抑制または防止することができる。また、表面Paにおいては、表面処理直前(例えば成形時)の面粗さを維持することで高い表面精度及び所要の表面性状を確保することができる。   Thus, in the surface treatment apparatus according to the first aspect of the present invention, the processing gas supply unit 17 and the processing gas exhaust unit 18 are disposed on the side of the one gap forming surface 13 that forms the gap 12. On the other side of the gap forming surface 14, outside air is discharged into the space (second divided space 22) formed between the glass substrate P introduced into the gap 12 and the other gap forming surface 14 by exhausting the gap 12. Outside air drawing means 19 capable of drawing Gb was provided. By using the surface treatment apparatus configured as described above, when the glass substrate P starts to pass through the gap 12 and the majority of the gap 12 is divided in the front and back direction by the glass substrate P, the space on the surface Pa side and Different gas flows are formed in the space on the back surface Pb side. Specifically, in the first divided space 21 formed between the one gap forming surface 13 and the back surface Pb of the sheet glass, the process supplied from the process gas supply unit 17 toward the gap 12. The gas Ga flows through the first divided space 21, and a gas flow discharged by the processing gas exhaust unit 18 is formed. On the other hand, in the second divided space 22 formed between the other gap forming surface 14 and the surface Pa of the glass substrate P, the glass substrate P serves as a partition and is separated from the first divided space 21. Intrusion of the processing gas Ga into the two divided spaces 22 is prevented. While the surface treatment is performed on the back surface Pb of the glass substrate P serving as the treatment surface by the above-described operation, the surface Pa to be a non-treatment surface is substantially the surface from the start to the end of the surface treatment. It is possible to avoid a situation where the gas is exposed to the processing gas Ga to the extent that the processing is performed. Therefore, electrification can be suppressed or prevented by appropriately roughening the back surface Pb. In addition, on the surface Pa, high surface accuracy and required surface properties can be ensured by maintaining the surface roughness immediately before the surface treatment (for example, at the time of molding).

また、上記構成によれば、本実施形態のように、ガラス基板Pの通過に伴い隙間12に形成された第2の分割空間22に処理ガスGaが残っているような場合であっても、他方の隙間形成面14の側で隙間12の排気を行うことにより、上記処理ガスGaは隙間12外に排出することができる。また、隙間12のうちガラス基板Pの未導入の領域から第2の分割空間22へ流れ込もうとする処理ガスGaが存在していたとしても、外気引込み手段19により外気Gaを第2の分割空間22に引込むことにより当該分割空間22の外に押戻すことができ、あるいは外気Gaと共に隙間12外に排出することができる。以上の作用は、表面Paの処理ガスGaによる実質的な被曝の防止又は抑制に寄与し得る。   In addition, according to the above configuration, even when the processing gas Ga remains in the second divided space 22 formed in the gap 12 as the glass substrate P passes as in the present embodiment, By exhausting the gap 12 on the other gap forming surface 14 side, the processing gas Ga can be discharged outside the gap 12. In addition, even if there is processing gas Ga that is about to flow into the second divided space 22 from the region where the glass substrate P is not introduced in the gap 12, the outside air drawing means 19 divides the outside air Ga into the second division. By being drawn into the space 22, it can be pushed back out of the divided space 22, or can be discharged out of the gap 12 together with the outside air Ga. The above effects can contribute to the prevention or suppression of substantial exposure by the processing gas Ga on the surface Pa.

また、本実施形態では、一対の隙間形成部材15,16をガラス基板Pの搬送方向(すなわち隙間12の通過方向)の複数箇所にわたって配設するようにしたので、隙間12(一対の隙間形成面13,14)の搬送方向寸法を小さくすることで、各隙間12をガラス基板Pが通過する前後における処理ガスGaの濃度(割合)のばらつきを小さく抑えることができる。従って、裏面Pbに対する表面処理をより安定的に実施することが可能となり、裏面Pbを漏れなく均等に粗面化することが可能となる。   Further, in the present embodiment, the pair of gap forming members 15 and 16 are disposed over a plurality of locations in the transport direction of the glass substrate P (that is, the passage direction of the gap 12), so the gap 12 (a pair of gap forming surfaces). 13 and 14), the variation in the concentration (ratio) of the processing gas Ga before and after the glass substrate P passes through each gap 12 can be reduced. Therefore, the surface treatment for the back surface Pb can be more stably performed, and the back surface Pb can be uniformly roughened without omission.

以上、本発明の第1の側面に係る表面処理装置及び表面処理方法の一実施形態を説明したが、本側面に係る表面処理装置又は表面処理方法は、当然に本側面の範囲内において任意の形態を採ることができる。   The embodiment of the surface treatment apparatus and the surface treatment method according to the first aspect of the present invention has been described above, but the surface treatment apparatus or the surface treatment method according to the present aspect is naturally within the scope of the present aspect. Can take form.

例えば、上記実施形態では、外気引込み手段19による排気力(例えば排気流量)を、処理ガス供給部17の供給流量と同等またはそれ以下とした場合に起こり得る隙間12内の各種ガスの流れについて説明したが、もちろん、上記排気流量を上記供給流量より大きく設定することも可能である。以下、その場合の隙間12内における各種ガスの流れを主に図4に基づき説明する。なお、図4では、外気Gbについて、その流れが比較的大きい領域のみを散点模様で表示している。   For example, in the above embodiment, the flow of various gases in the gap 12 that may occur when the exhaust force (for example, the exhaust flow rate) by the outside air drawing means 19 is equal to or less than the supply flow rate of the processing gas supply unit 17 will be described. However, of course, the exhaust flow rate can be set larger than the supply flow rate. Hereinafter, the flow of various gases in the gap 12 in that case will be described mainly with reference to FIG. In FIG. 4, only a region where the flow of the outside air Gb is relatively large is displayed in a dotted pattern.

図4は、本発明の第1の側面に係る板状ガラスの表面処理装置10の他の実施形態を示している。この表面処理装置10は、図1に示す表面処理装置10と同様に、搬送手段11と、隙間12と、一対の隙間形成面13,14と、一対の隙間形成部材15,16と、処理ガスGaを供給する処理ガス供給部17と、処理ガスGaを排気する処理ガス排気部18と、外気引込み手段19とを備える。ここで、外気引込み手段19は、処理ガス供給部17から供給される処理ガスGaを全て排気することが可能なように、その排気流量を調整している。具体的には、外気引込み手段19の排気流量が、処理ガス供給部17の給気流量同等もしくはそれ以上となるように調整されている。   FIG. 4 shows another embodiment of the sheet glass surface treatment apparatus 10 according to the first aspect of the present invention. As with the surface treatment apparatus 10 shown in FIG. 1, the surface treatment apparatus 10 includes a transport unit 11, a gap 12, a pair of gap formation surfaces 13 and 14, a pair of gap formation members 15 and 16, and a processing gas. A processing gas supply unit 17 that supplies Ga, a processing gas exhaust unit 18 that exhausts the processing gas Ga, and an outside air drawing means 19 are provided. Here, the outside air drawing means 19 adjusts the exhaust flow rate so that all the processing gas Ga supplied from the processing gas supply unit 17 can be exhausted. Specifically, the exhaust flow rate of the outside air drawing means 19 is adjusted to be equal to or higher than the supply air flow rate of the processing gas supply unit 17.

以下、他の実施形態に係る上記構成の表面処理装置10を用いたガラス基板Pの表面処理の流れを図4に基づき説明する。   Hereinafter, the flow of the surface treatment of the glass substrate P using the surface treatment apparatus 10 having the above-described configuration according to another embodiment will be described with reference to FIG.

まず、図4(a)に示すように、ガラス基板Pが隙間12よりも搬送方向後方側に位置する状態において、処理ガス供給部17により給気口17aから隙間12に処理ガスGaを供給すると共に、処理ガス排気部18により排気口18aから隙間12に供給された処理ガスGaの排気を行う。また、同時に、外気取込み手段19により排気口19aから隙間12に供給された処理ガスGaを隙間12外に排出する。ここで、外気引込み手段19は、処理ガス供給部17から供給される処理ガスGaを全て排気することが可能なように、その排気流量を調整しているので、処理ガス供給部17により隙間12に供給された処理ガスGaの全てが、外気取込み手段19により排出される。従って、この時点では、隙間12内に、処理ガス供給部17の給気口17aから外気取込み手段19の排気口19aへ向かう処理ガスGaの流れのみが形成される。当該流れが形成されない隙間12内の他の領域には、実質的に外気Gbのみが存在しており、当該領域には処理ガスGa溜りは生じない。なお、本実施形態のように、全ての処理ガスGaが実質的に外気取込み手段19により排気される場合、後述する図4(c)の段階に至るまでの間、処理ガス排気部18を駆動させないでおくことも可能である。   First, as shown in FIG. 4A, in a state where the glass substrate P is located behind the gap 12 in the transport direction, the processing gas Ga is supplied from the supply port 17a to the gap 12 by the processing gas supply unit 17. At the same time, the processing gas exhaust unit 18 exhausts the processing gas Ga supplied to the gap 12 from the exhaust port 18a. At the same time, the processing gas Ga supplied from the exhaust port 19 a to the gap 12 by the outside air intake means 19 is discharged out of the gap 12. Here, the outside air drawing means 19 adjusts the exhaust flow rate so that all the processing gas Ga supplied from the processing gas supply unit 17 can be exhausted. All of the processing gas Ga supplied to is discharged by the outside air intake means 19. Therefore, at this time, only the flow of the processing gas Ga from the air supply port 17 a of the processing gas supply unit 17 toward the exhaust port 19 a of the outside air intake unit 19 is formed in the gap 12. In the other area in the gap 12 where the flow is not formed, only the outside air Gb is substantially present, and no process gas Ga pool is generated in the area. When all the processing gas Ga is exhausted by the outside air intake means 19 as in this embodiment, the processing gas exhaust unit 18 is driven until the stage shown in FIG. It is also possible to leave it out.

そして、この状態から、ガラス基板Pの隙間12への導入を開始する。導入開始後、ガラス基板Pの導入前方側端部が未だ処理ガス供給部17の給気口17aの上方(本実施形態では、処理ガス供給部17の給気口17aと、これに隙間12を介して対向する外気取込み手段19の排気口19aとの間)に到達していない状態では、引き続き、処理ガス供給部17の給気口17aから外気取込み手段19の排気口19aへ向かう処理ガスGaの流れのみが隙間12内に形成される。当該流れが形成されない隙間12内の他の領域には、実質的に外気Gbのみが存在しており、当該領域には処理ガスGa溜りは生じない。従って、図4(b)に示すように、ある程度ガラス基板Pの導入が進んだ段階においても、ガラス基板Pの表面Paが処理ガスGaに曝されることはない。   Then, from this state, introduction into the gap 12 of the glass substrate P is started. After the start of introduction, the introduction front side end portion of the glass substrate P is still above the air supply port 17a of the processing gas supply unit 17 (in this embodiment, the air supply port 17a of the processing gas supply unit 17 and the gap 12 are formed in this. In the state where the air does not reach the exhaust port 19a of the external air intake means 19 facing each other, the process gas Ga that continues from the air supply port 17a of the process gas supply unit 17 toward the exhaust port 19a of the external air intake means 19 continues. Only the flow is formed in the gap 12. In the other area in the gap 12 where the flow is not formed, only the outside air Gb is substantially present, and no process gas Ga pool is generated in the area. Therefore, as shown in FIG. 4B, the surface Pa of the glass substrate P is not exposed to the processing gas Ga even when the introduction of the glass substrate P has progressed to some extent.

そして、ガラス基板Pの導入前方側端部が給気口17aの上方(給気口17aと排気口19aとの間)を通過すると、隙間12がガラス基板Pの導入領域においてその表裏方向に分割されることによる気体の流れの変化が生じる。すなわち、処理ガス供給部17により供給される処理ガスGaの流れは、給気口17aの上方を通過中のガラス基板Pによって遮られるので、ガラス基板Pの導入に伴いその裏面Pbと一方の隙間形成面13との間に形成される第1の分割空間21には、処理ガスGaの隙間長手方向(図4(c)中左右方向)に向かう流れが生じると共に、当該処理ガスGaは、第1の分割空間21に開口した処理ガス排気部18の排気口18aを介して隙間12外に排出される。そのため、ガラス基板Pの裏面Pbが隙間12内への導入に伴って順次処理ガスGaに曝され、処理ガスGaによる裏面Pbの表面処理が施される。   Then, when the introduction front side end of the glass substrate P passes above the air supply port 17a (between the air supply port 17a and the exhaust port 19a), the gap 12 is divided in the front and back direction in the introduction region of the glass substrate P. As a result, the gas flow changes. That is, the flow of the processing gas Ga supplied by the processing gas supply unit 17 is blocked by the glass substrate P passing through the upper side of the air supply port 17a. In the first divided space 21 formed between the formation surface 13 and the process gas Ga, a flow in the gap longitudinal direction (left and right direction in FIG. 4C) is generated, and the process gas Ga The gas is discharged out of the gap 12 through the exhaust port 18 a of the processing gas exhaust unit 18 opened in one divided space 21. Therefore, the back surface Pb of the glass substrate P is sequentially exposed to the processing gas Ga as it is introduced into the gap 12, and the surface treatment of the back surface Pb with the processing gas Ga is performed.

一方、ガラス基板Pの導入に伴いその表面Paと他方の隙間形成面14との間に形成される第2の分割空間22には、ガラス基板Pが妨げとなって、処理ガス供給部17により隙間12内に供給された処理ガスGaが流入する事態が可及的に回避される。また、同時に、外気取込み手段19により、第2の分割空間22の一端部となる隙間12のガラス基板導入後方側端部(図4(c)中右側の端部)から外気Gbが引き込まれることで、第2の分割空間22が外気Gbで満たされる。これにより、ガラス基板Pの表面Paは、依然として、処理ガスGaを実質的に含まない気体、すなわち外気Gbと接触した状態となる。よって、隙間12に導入された領域においては、裏面Pbのみに処理ガスGaによる表面処理が施される一方、表面Paへの処理ガスGaによる表面処理は実質的に回避される。   On the other hand, in the second divided space 22 formed between the surface Pa and the other gap forming surface 14 with the introduction of the glass substrate P, the glass substrate P hinders the processing gas supply unit 17. A situation in which the processing gas Ga supplied into the gap 12 flows in is avoided as much as possible. At the same time, the outside air taking-in means 19 draws the outside air Gb from the glass substrate introduction rear side end portion (the right end portion in FIG. 4C) of the gap 12 serving as one end portion of the second divided space 22. Thus, the second divided space 22 is filled with the outside air Gb. As a result, the surface Pa of the glass substrate P is still in contact with the gas that does not substantially contain the processing gas Ga, that is, the outside air Gb. Therefore, in the region introduced into the gap 12, only the back surface Pb is subjected to the surface treatment with the processing gas Ga, while the surface treatment with the processing gas Ga on the surface Pa is substantially avoided.

このようにして隙間12内(正確には第2の分割空間22内)への外気Gbの引込みを伴ってガラス基板Pを隙間12内に導入していくことで、図3(c)に示す状態と同様に、隙間12全域がガラス基板Pを介して第1の分割空間21と第2の分割空間22とに分割される。また、この際、第1の分割空間21は処理ガスGaで満たされると共に、第2の分割空間22は両端開口側から引き込まれた外気Gbで満たされる。これにより、裏面Pbに対する処理ガスGaによる表面処理が継続される一方、外気Gbによる表面Paの保護状態が維持あるいは強化される。   In this way, by introducing the glass substrate P into the gap 12 with the drawing of the outside air Gb into the gap 12 (more precisely, in the second divided space 22), it is shown in FIG. Similar to the state, the entire gap 12 is divided into the first divided space 21 and the second divided space 22 through the glass substrate P. At this time, the first divided space 21 is filled with the processing gas Ga, and the second divided space 22 is filled with the outside air Gb drawn from both ends of the opening. Thereby, the surface treatment with the processing gas Ga for the back surface Pb is continued, while the protection state of the surface Pa with the outside air Gb is maintained or strengthened.

以上の流れに沿って、各対の隙間形成面13,14間(すなわち各隙間12)にガラス基板Pが導入されていき、最も導入方向前方側に位置する隙間12(図1でいえば最も左側の隙間12)をガラス基板Pが通過し終えることで、裏面Pbへの処理ガスGaによる表面処理が完了する。そして、この処理により裏面Pbの粗面化が図られる一方、表面Paの表面性状及び表面精度は処理前後で維持される。この際の上記粗面化の程度は、既述の通りである。   Along the above flow, the glass substrate P is introduced between each pair of the gap forming surfaces 13 and 14 (that is, each gap 12), and the gap 12 positioned most forward in the introduction direction (most in FIG. 1). When the glass substrate P has passed through the left gap 12), the surface treatment with the processing gas Ga on the back surface Pb is completed. And while this process roughens the back surface Pb, the surface property and surface accuracy of the surface Pa are maintained before and after the process. The degree of roughening at this time is as described above.

このように、本実施形態に係る表面処理装置10によれば、処理ガス供給部17から供給される処理ガスGaを全て排気することが可能なように、外気取込み手段19の排気流量を調整するようにしたので、ガラス基板Pの過半が隙間12に導入されるまでの段階においては、処理ガス供給部17より隙間12内に供給された処理ガスGaを実質的に全て外気取込み手段19により隙間12外に排出することができる。これにより、ガラス基板Pが隙間12に導入され始めた時点(図4(b))においても、ガラス基板Pの表面Paが処理ガスGaに曝される事態をより確実に回避することができる。これにより、ガラス基板Pの隙間12内への導入開始時(通過開始時)から通過終了時までの間、表面Paが処理ガスGaに曝される事態を確実に回避すると共に、裏面Pbに対しては処理ガスGaによる十分かつ所望の表面処理を施すことができる。従って、ガラス基板Pの表面Pa、裏面Pbともに所望の表面精度及び表面性状にすることが可能となる。   Thus, according to the surface treatment apparatus 10 according to the present embodiment, the exhaust gas flow rate of the outside air intake means 19 is adjusted so that all the processing gas Ga supplied from the processing gas supply unit 17 can be exhausted. Thus, in the stage until the majority of the glass substrate P is introduced into the gap 12, substantially all of the processing gas Ga supplied into the gap 12 from the processing gas supply unit 17 is removed by the outside air intake means 19. 12 can be discharged outside. Thereby, even when the glass substrate P starts to be introduced into the gap 12 (FIG. 4B), it is possible to more reliably avoid the situation where the surface Pa of the glass substrate P is exposed to the processing gas Ga. This reliably avoids the situation where the front surface Pa is exposed to the processing gas Ga from the start of introduction into the gap 12 of the glass substrate P (at the start of passage) to the end of passage, and against the back surface Pb. In this case, sufficient and desired surface treatment can be performed with the processing gas Ga. Therefore, the surface Pa and the back surface Pb of the glass substrate P can be made to have desired surface accuracy and surface properties.

特に、本実施形態では、処理ガス供給部17の給気口17aと隙間12を介して対向する位置に、外気取込み手段19の排気口19aを設けるようにしたので、それほど大幅な排気力(排気流量)の増加を伴わずとも処理ガス供給部17から供給される全ての処理ガスGaを排気することが可能となる。   In particular, in the present embodiment, the exhaust port 19a of the outside air intake means 19 is provided at a position facing the supply port 17a of the processing gas supply unit 17 with the gap 12 therebetween. It is possible to exhaust all the processing gas Ga supplied from the processing gas supply unit 17 without increasing the flow rate).

また、以上説明した2つの実施形態においては、外気引込み手段19の排気口19aは、隙間12のガラス基板P通過方向の中央位置に1つだけ配置する場合を例示したが、もちろんこの例に限らず、上記通過方向の複数箇所にわたって設けることも可能である。処理ガスGaならばその成分濃度の均質化を狙って1つだけにするのがよいが、表面処理を目的とせず外気Gbを流通させる領域(第2の分割空間22)においては、濃度の大小は問題とならないためである。また、排気口19aの形状についても同様の理由で特に制限されることはなく、例示したスリット形状の他、例えば図示は省略するが、排気口19aとしての複数の排気穴をガラス基板Pの幅方向に沿って配列したものが考えられる。   In the two embodiments described above, the case where only one exhaust port 19a of the outside air drawing means 19 is disposed at the center position in the direction of passage of the glass substrate P of the gap 12 is illustrated. It is also possible to provide over a plurality of locations in the passing direction. In the case of the processing gas Ga, it is preferable to use only one component for the purpose of homogenizing the component concentration. However, in the region where the outside air Gb is circulated without aiming at the surface treatment (second divided space 22), the concentration is small or large. Is not a problem. Further, the shape of the exhaust port 19a is not particularly limited for the same reason. In addition to the illustrated slit shape, for example, although not illustrated, a plurality of exhaust holes as the exhaust port 19a are provided in the width of the glass substrate P. An arrangement along the direction is conceivable.

もちろん、外気引込み手段19は、他方の隙間形成面14の側に配設されていればよいので、例えば他方の隙間形成部材16の両側(通過方向、幅方向)に隣接する位置に外気引込み手段19を配して、その排気口19a(排気ノズルなど)を隙間12に向けて配置する構成などが採用可能である。   Of course, the outside air drawing means 19 only needs to be disposed on the side of the other gap forming surface 14, so that the outside air drawing means 19 is located at a position adjacent to both sides (passing direction, width direction) of the other gap forming member 16, for example. The structure etc. which arrange | position 19 and arrange | position the exhaust port 19a (exhaust nozzle etc.) toward the clearance gap 12 can be employ | adopted.

以下、本発明の第2の側面に係る板状ガラスの表面処理装置及び表面処理方法の一実施形態を図5及び図6を参照して説明する。   Hereinafter, an embodiment of a surface treatment apparatus and a surface treatment method for sheet glass according to a second aspect of the present invention will be described with reference to FIGS. 5 and 6.

本実施形態に係る表面処理装置10は、主に外気引込み手段19に代えて、他方の隙間形成面14の側に、不活性ガスGcを隙間12に向けて供給する不活性ガス供給部23を設けた点において、本発明の第1の側面に係る表面処理装置(図1や図4に示す表面処理装置10)とその構成を異にする。以下、本発明の第1の側面に係る実施形態との相違点を中心に詳述し、同等の構成については本発明の第1の側面に係る実施形態の場合と同じ符号を付して説明を省略する。   The surface treatment apparatus 10 according to the present embodiment mainly includes an inert gas supply unit 23 that supplies the inert gas Gc toward the gap 12 on the other gap forming surface 14 side, instead of the outside air drawing means 19. The configuration is different from the surface treatment apparatus according to the first aspect of the present invention (the surface treatment apparatus 10 shown in FIGS. 1 and 4) in the point provided. Hereinafter, the difference from the embodiment according to the first aspect of the present invention will be described in detail, and the equivalent configuration will be described with the same reference numerals as those of the embodiment according to the first aspect of the present invention. Is omitted.

不活性ガス供給部23は、例えば給気ポンプで構成され、他方の隙間形成部材16の内部に配設されると共に、その供給口23aを他方の隙間形成面14に開口形成してなる。本実施形態では、不活性ガス供給部23の供給口23aは、一方の隙間形成面13に開口した処理ガス供給部17の給気口17aと隙間12を挟んで対向する位置(この図示例では、いずれも他方の隙間形成面14のうちガラス基板Pの搬送方向中央)に開口形成されている。このように構成することで、隙間12内部に不活性ガスGcを供給可能としている。また、図示は省略するが、不活性ガス供給部23の供給口23aはスリット形状をなし、隙間12内に導入されたガラス基板Pの幅方向両端付近に達する位置まで伸びている。   The inert gas supply unit 23 is configured by, for example, an air supply pump, and is disposed inside the other gap forming member 16 and has the supply port 23 a formed in the other gap forming surface 14. In the present embodiment, the supply port 23a of the inert gas supply unit 23 is opposed to the supply port 17a of the processing gas supply unit 17 opened on one gap forming surface 13 with the gap 12 therebetween (in this illustrated example). In both cases, an opening is formed in the other gap forming surface 14 in the center of the conveyance direction of the glass substrate P. With this configuration, the inert gas Gc can be supplied into the gap 12. Although not shown, the supply port 23a of the inert gas supply unit 23 has a slit shape and extends to a position reaching the both ends in the width direction of the glass substrate P introduced into the gap 12.

ここで、不活性ガスとして使用できるガスの種類は特に制限されず、窒素やアルゴンなどの一般的な気体の他、外気(空気)のような混合気体を使用することも可能である。   Here, the kind of gas that can be used as the inert gas is not particularly limited, and a mixed gas such as outside air (air) can be used in addition to a general gas such as nitrogen or argon.

また、不活性ガス供給部23による不活性ガスGcの給気流量と給気圧の少なくとも一方は、対向する側に給気口17aから供給される処理ガスGaの給気流量や給気圧とのバランスを考慮して設定されるのが望ましい。すなわち、後述する処理ガスGaのガス溜りと不活性ガスGcのガス溜りとがそれぞれ、ガラス基板Pの導入に伴い隙間12内に形成される各分割空間21,22の主成分を占めることになるよう(後述する図6の状態となるよう)、上記バランスを調整することが肝要となる。言い換えると、隙間12の一方の隙間形成面13の側に処理ガスGaのガス溜りが層状に形成され、かつ他方の隙間形成面14の側に不活性ガスGcのガス溜りが同じく層状に形成されるよう、処理ガスGaと不活性ガスGcの供給力をそれぞれ調整することが肝要となる。さらに言えば、図6に示すように、それぞれ層状に形成された処理ガスGaのガス溜りと不活性ガスGcのガス溜りとをガラス基板Pが区画するように、両ガスGa,Gcの供給力又はガラス基板Pの導入位置(鉛直方向位置)を設定するのがよい。   Further, at least one of the supply flow rate and supply pressure of the inert gas Gc by the inert gas supply unit 23 is balanced with the supply flow rate and supply pressure of the processing gas Ga supplied from the supply port 17a to the opposite side. It is desirable to set in consideration of That is, the gas reservoir for the processing gas Ga and the gas reservoir for the inert gas Gc, which will be described later, respectively occupy the main components of the divided spaces 21 and 22 formed in the gap 12 as the glass substrate P is introduced. It is important to adjust the balance as described above (so as to be in the state of FIG. 6 described later). In other words, a gas reservoir of the processing gas Ga is formed in a layered manner on the side of one gap forming surface 13 of the gap 12, and a gas reservoir of the inert gas Gc is also formed in a layered manner on the other gap forming surface 14 side. Thus, it is important to adjust the supply power of the processing gas Ga and the inert gas Gc, respectively. Furthermore, as shown in FIG. 6, the supply power of both gases Ga and Gc so that the glass substrate P separates the gas reservoir of the processing gas Ga and the gas reservoir of the inert gas Gc formed in layers, respectively. Alternatively, the introduction position (vertical position) of the glass substrate P is preferably set.

以下、上記構成の表面処理装置10を用いたガラス基板Pの表面処理方法について説明する。   Hereinafter, the surface treatment method of the glass substrate P using the surface treatment apparatus 10 having the above configuration will be described.

まず、図6(a)に示すように、ガラス基板Pが隙間12よりも搬送方向後方側に位置する状態において、処理ガス供給部17により一方の隙間形成面13の側に設けた給気口17aから隙間12に処理ガスGaを供給する。また、不活性ガス供給部23により他方の隙間形成面14の側に設けた供給口23aから隙間12に向けて不活性ガスGcを供給する。これにより、隙間12のうち主に一方の隙間形成面13の側には、処理ガスGaのガス溜りが形成されると共に、他方の隙間形成面14の側には、不活性ガスGcのガス溜りが形成される。   First, as shown in FIG. 6A, in the state where the glass substrate P is located on the rear side in the transport direction with respect to the gap 12, the air supply port provided on the one gap forming surface 13 side by the processing gas supply unit 17. The processing gas Ga is supplied to the gap 12 from 17a. Further, the inert gas Gc is supplied toward the gap 12 from the supply port 23 a provided on the other gap forming surface 14 side by the inert gas supply unit 23. As a result, a gas reservoir of the processing gas Ga is formed mainly on the side of the gap forming surface 13 in the gap 12, and a gas reservoir of the inert gas Gc is formed on the other gap forming surface 14 side. Is formed.

そして、この状態から、図6(b)に示すように、ガラス基板Pを隙間12の一端側(図6(b)でいえば右側)から導入する。これにより、隙間12がガラス基板Pの導入領域においてその表裏方向に分割されると共に、隙間12内に分在する処理ガスGaのガス溜りと不活性ガスGcのガス溜りとが分割され、一方の隙間形成面13の側に処理ガスGaの豊富な第1の分割空間21が形成され、他方の隙間形成面14の側に不活性ガスGcの豊富な第2の分割空間22が形成される。そのため、ガラス基板Pの裏面Pbが隙間12内への導入に伴って順次処理ガスGaに曝され、処理ガスGaによる裏面Pbの表面処理が施される。特に、ガラス基板Pにより分割された領域のうち処理ガス供給部17の給気口17aが開口する側に位置する第1の分割空間21においては、分割が成された後も、継続して処理ガスGaが供給されるので、時間の経過と共に、同分割空間21における処理ガスGaの割合はさらに高まる。   Then, from this state, as shown in FIG. 6B, the glass substrate P is introduced from one end side of the gap 12 (the right side in FIG. 6B). Thereby, the gap 12 is divided in the front and back direction in the introduction region of the glass substrate P, and the gas reservoir of the processing gas Ga and the gas reservoir of the inert gas Gc divided in the gap 12 are divided. A first divided space 21 rich in the processing gas Ga is formed on the gap forming surface 13 side, and a second divided space 22 rich in the inert gas Gc is formed on the other gap forming surface 14 side. Therefore, the back surface Pb of the glass substrate P is sequentially exposed to the processing gas Ga as it is introduced into the gap 12, and the surface treatment of the back surface Pb with the processing gas Ga is performed. In particular, in the first divided space 21 located on the side where the air supply port 17a of the processing gas supply unit 17 is opened in the region divided by the glass substrate P, the processing continues even after the division is made. Since the gas Ga is supplied, the ratio of the processing gas Ga in the divided space 21 further increases with time.

一方、第2の分割空間22は上述のようにして主に不活性ガスGcで満たされるので、ガラス基板Pの表面Paと接触する気体は、処理ガスGaをほとんど含まず、含んだとしても実質的に影響のないレベル(濃度)に抑えられる。また、不活性ガス供給部23の供給口23aが開口する側に位置する第2の分割空間(第2の分割空間22)においては、分割が成された後も、継続して不活性ガスGcが供給されるので、時間の経過と共に、同分割空間22における不活性ガスGcの割合はさらに高まる。よって、隙間12に導入された領域においては、ガラス基板Pの表面Paへの処理ガスGaによる表面処理は実質的に回避される。   On the other hand, since the second divided space 22 is mainly filled with the inert gas Gc as described above, the gas in contact with the surface Pa of the glass substrate P does not substantially contain the processing gas Ga, even if it is included. Can be suppressed to a level (concentration) that has no effect. Moreover, in the 2nd division space (2nd division space 22) located in the side which the supply port 23a of the inert gas supply part 23 opens, after division | segmentation is made, the inert gas Gc is continued. Therefore, the proportion of the inert gas Gc in the divided space 22 further increases with the passage of time. Therefore, in the region introduced into the gap 12, the surface treatment with the processing gas Ga on the surface Pa of the glass substrate P is substantially avoided.

このようにしてガラス基板Pを隙間12内に導入していき、ガラス基板Pの導入前方側端部が隙間12を通過した時点においては、図6(c)に示すように、隙間12全域がガラス基板Pを介して第1の分割空間21と第2の分割空間22とに分割される。また、この際、第1の分割空間21と第2の分割空間22との間での気体の流動はガラス基板Pによって完全に遮断される。これにより、裏面Pbに対する処理ガスGaによる表面処理が継続される一方、外気Gbによる表面Paの保護状態が確保される。   In this way, when the glass substrate P is introduced into the gap 12 and the end portion on the front side of the glass substrate P passes through the gap 12, as shown in FIG. It is divided into a first divided space 21 and a second divided space 22 through the glass substrate P. At this time, the gas flow between the first divided space 21 and the second divided space 22 is completely blocked by the glass substrate P. Thereby, while the surface treatment with the processing gas Ga for the back surface Pb is continued, the protection state of the surface Pa by the outside air Gb is ensured.

このようにして、各対の隙間形成面13,14間(すなわち各隙間12)にガラス基板Pが導入されていき、最も導入方向前方側に位置する隙間12(図5でいえば最も左側の隙間12)をガラス基板Pが通過し終えることで、裏面Pbへの処理ガスGaによる表面処理が完了する。そして、この処理により裏面Pbの粗面化が図られる一方、表面Paの表面性状及び表面精度は処理前後で維持される。この場合も、上記粗面化を表面粗さRaの変化で説明した場合、上記表面処理の前後で、裏面Pbの表面粗さRa[nm]が0.1nm以上でかつ1.8nm以下の範囲で向上(ここでは粗面化)するように、より好ましくは0.1nm以上でかつ0.8nm以下の範囲で向上するように、処理ガスGaによる裏面Pbへの表面処理条件が設定されるのがよい。上記範囲で、裏面Pbの表面粗さRa向上することで、表面処理以後の製造工程において、ガラス基板Pが実質的に問題となるレベルの帯電を生じる事態を回避することが可能となる。ここで、裏面Pbに対する表面処理条件は、上述した処理ガスGaの濃度や、処理ガス供給部17と不活性ガス供給部23との給気力(給気流量、給気圧)のバランスを調整する他、処理ガスGaの供給時温度や雰囲気温度(隙間12内の温度)、あるいはガラス基板Pの搬送速度を調整することによって適宜設定される。   In this way, the glass substrate P is introduced between each pair of the gap forming surfaces 13 and 14 (that is, each gap 12), and the gap 12 located on the most front side in the introduction direction (the leftmost in FIG. 5). When the glass substrate P finishes passing through the gap 12), the surface treatment with the processing gas Ga on the back surface Pb is completed. And while this process roughens the back surface Pb, the surface property and surface accuracy of the surface Pa are maintained before and after the process. Also in this case, when the roughening is explained by the change of the surface roughness Ra, the surface roughness Ra [nm] of the back surface Pb is in the range of 0.1 nm or more and 1.8 nm or less before and after the surface treatment. The surface treatment conditions for the back surface Pb by the processing gas Ga are set so as to improve (roughened here), more preferably in the range of 0.1 nm or more and 0.8 nm or less. Is good. By improving the surface roughness Ra of the back surface Pb within the above range, it is possible to avoid a situation in which the glass substrate P generates a substantially problematic level of charging in the manufacturing process after the surface treatment. Here, the surface treatment conditions for the back surface Pb include the adjustment of the above-described concentration of the processing gas Ga and the balance of the supply power (supply flow rate, supply pressure) between the process gas supply unit 17 and the inert gas supply unit 23. The temperature is appropriately set by adjusting the temperature at which the processing gas Ga is supplied, the atmospheric temperature (temperature in the gap 12), or the conveyance speed of the glass substrate P.

このように、本発明の第2の側面に係る表面処理装置では、隙間12を形成する一方の隙間形成面13の側に、処理ガス供給部17と処理ガス排気部18を配設すると共に、一方の隙間形成面13に、処理ガス供給部17の給気口17aを開口させ、他方の隙間形成面14に、不活性ガスGcを隙間12に向けて供給する不活性ガス供給部23の供給口23aを開口させた構成とした。一方の隙間形成面13から隙間12に向けて処理ガスGaを供給すると共に、他方の隙間形成面14から隙間12に向けて不活性ガスGcを供給することで、隙間12には、処理ガスGaのガス溜りと不活性ガスGcのガス溜りとが共存した状態となる。また、処理ガスGaと不活性ガスGcは互いに対向する側の隙間形成面13,14に向けて供給されることになるため、処理ガスGaのガス溜りは隙間12のうち一方の隙間形成面13の側に、不活性ガスGcのガス溜りは他方の隙間形成面14の側にそれぞれ偏った状態で形成される。ここで、ガラス基板Pが隙間12を通過し始めて、隙間12がガラス基板Pでその表裏方向に分割されることで、裏面Pbの側の分割空間(第1の分割空間21)には主に処理ガスGaのガス溜りが存在し、表面Paの側の分割空間(第2の分割空間22)には主に不活性ガスGcのガス溜りが存在した状態となる。また、第1の分割空間21には処理ガス供給部17の給気口17aが開口し、第2の分割空間22には不活性ガス供給部23の供給口23aが開口した状態となるので、各分割空間21,22に主に存在するガスGa,Gcの割合がさらに高められる。従って、第1の分割空間21に面するガラス基板Pの裏面Pbは主に処理ガスGaに曝される一方、第2の分割空間22に面するガラス基板Pの表面Paは主に不活性ガスGcに曝されることになる。以上の作用により、処理面となるガラス基板Pの裏面Pbに表面処理を施しつつも、非処理面となる表面Paが実質的な表面処理となる程度に処理ガスGaに曝される事態を回避することができる。従って、裏面Pbを適度に粗面化することで帯電を抑制または防止することができる。また、表面Paにおいては、表面処理直前の面粗さを維持することで高い表面精度及び所要の表面性状を確保することができる。   Thus, in the surface treatment apparatus according to the second aspect of the present invention, the process gas supply unit 17 and the process gas exhaust unit 18 are disposed on the side of the one gap forming surface 13 that forms the gap 12, and Supply of the inert gas supply unit 23 that opens the air supply port 17a of the processing gas supply unit 17 on one gap forming surface 13 and supplies the inert gas Gc toward the gap 12 on the other gap forming surface 14 It was set as the structure which opened the opening 23a. By supplying the processing gas Ga from one gap forming surface 13 toward the gap 12 and supplying the inert gas Gc from the other gap forming surface 14 toward the gap 12, the processing gas Ga is supplied to the gap 12. The gas reservoir and the inert gas Gc reservoir coexist. Further, since the processing gas Ga and the inert gas Gc are supplied toward the gap forming surfaces 13 and 14 on the opposite sides, the gas reservoir of the processing gas Ga is one gap forming surface 13 of the gaps 12. On the other side, the gas reservoir of the inert gas Gc is formed in a state of being biased toward the other gap forming surface 14 side. Here, since the glass substrate P starts to pass through the gap 12 and the gap 12 is divided by the glass substrate P in the front and back direction, the divided space (first divided space 21) on the back surface Pb side is mainly used. There is a gas reservoir of the processing gas Ga, and the inert gas Gc reservoir is mainly present in the divided space (second divided space 22) on the surface Pa side. Further, since the supply port 17a of the processing gas supply unit 17 is opened in the first divided space 21, and the supply port 23a of the inert gas supply unit 23 is opened in the second divided space 22, The ratio of the gases Ga and Gc mainly existing in the divided spaces 21 and 22 is further increased. Therefore, the back surface Pb of the glass substrate P facing the first divided space 21 is mainly exposed to the processing gas Ga, while the surface Pa of the glass substrate P facing the second divided space 22 is mainly inert gas. You will be exposed to Gc. By the above operation, while the surface treatment is performed on the back surface Pb of the glass substrate P serving as the processing surface, the situation where the surface Pa serving as the non-processing surface is exposed to the processing gas Ga to the extent that the surface treatment is substantially performed is avoided. can do. Therefore, electrification can be suppressed or prevented by appropriately roughening the back surface Pb. Further, on the surface Pa, high surface accuracy and required surface properties can be ensured by maintaining the surface roughness immediately before the surface treatment.

特に、本実施形態では、不活性ガス供給部23の供給口23aを、処理ガス供給部17の給気口17aと隙間12を挟んで対向する位置に配設したので、隙間12に供給された不活性ガスGcと処理ガスGaとが正面で衝突する。これにより、各々のガスGa,Gcが衝突部を境にして分岐することになるので、図6(a)に示す状態、すなわち、ガラス基板Pの導入位置を境界として、一方の隙間形成面13の側に処理ガスGaのガス溜り、他方の隙間形成面14の側に不活性ガスGcのガス溜りが分在した状態を比較的容易にかつ安定的に作り出すことができる。   In particular, in the present embodiment, the supply port 23a of the inert gas supply unit 23 is disposed at a position facing the supply port 17a of the processing gas supply unit 17 with the gap 12 therebetween, so that the supply port 23a is supplied to the gap 12. The inert gas Gc and the processing gas Ga collide in front. As a result, each gas Ga, Gc branches off at the collision portion, and therefore, the gap forming surface 13 is formed with the state shown in FIG. 6A, that is, the introduction position of the glass substrate P as a boundary. It is possible to relatively easily and stably create a state where the gas reservoir of the processing gas Ga is present on the side of the gas gap and the gas reservoir of the inert gas Gc is distributed on the side of the other gap forming surface 14.

以上、本発明の第2の側面に係る表面処理装置及び表面処理方法の一実施形態を説明したが、本側面に係る表面処理装置又は表面処理方法は、当然に本側面の範囲内において任意の形態を採ることができる。   As mentioned above, although one embodiment of the surface treatment apparatus and the surface treatment method according to the second aspect of the present invention has been described, the surface treatment apparatus or the surface treatment method according to the present aspect is naturally within the scope of the present aspect. Can take form.

例えば上記実施形態では、不活性ガス供給部23の供給口23aをスリット形状とし、他方の隙間形成面14に開口させた場合を例示したが、もちろんこれ以外の構成を採ることも可能である。図7はその一例を示すもので、同図に係る表面処理装置10は、他方の隙間形成面14の一部又は全面が、不活性ガスGcを流通可能な多数の空孔25を有する多孔質体で構成され、他方の隙間形成面14に露出した空孔25で不活性ガスGcの供給口(拡大表示は省略)が構成されている点で図4に示す表面処理装置10とその構成を異にする。   For example, in the above embodiment, the case where the supply port 23a of the inert gas supply unit 23 is formed in a slit shape and opened on the other gap forming surface 14 is exemplified, but it is of course possible to adopt other configurations. FIG. 7 shows an example, and the surface treatment apparatus 10 according to FIG. 7 has a porous structure in which a part or the entire surface of the other gap forming surface 14 has a large number of pores 25 through which an inert gas Gc can flow. The surface treatment apparatus 10 shown in FIG. 4 and the configuration thereof are configured in that a supply port for the inert gas Gc (a magnified display is omitted) is formed by the holes 25 that are formed of a body and exposed to the other gap forming surface 14. Make it different.

このように、他方の隙間形成面14を、不活性ガスGcの流通可能な多数の空孔25を有する多孔質体で構成し、かつ他方の隙間形成面14に露出した空孔25で不活性ガスGcの供給口を構成することで、不活性ガスGcの供給口が、他方の隙間形成面14の全域又は非常に広範囲にわたって設けられた状態となる。ここで、空孔25個々の大きさは非常に小さいので、不活性ガスGcの供給口をスリット(図5)や加工穴で構成する場合と比べて、隙間12内における気体(処理ガスGa又は不活性ガスGc)の流れに与える影響を小さくすることができる。従って、ガラス基板Pの表裏両面Pa,Pb側ともに安定したガスGa,Gcの流れを実現することができる。   In this way, the other gap forming surface 14 is formed of a porous body having a large number of holes 25 through which the inert gas Gc can flow, and the holes 25 exposed on the other gap forming surface 14 are inactive. By configuring the supply port for the gas Gc, the supply port for the inert gas Gc is provided over the entire or very wide range of the other gap forming surface 14. Here, since the size of each hole 25 is very small, the gas (processing gas Ga or gas) in the gap 12 is compared with the case where the supply port of the inert gas Gc is formed of a slit (FIG. 5) or a processing hole. The influence on the flow of the inert gas Gc) can be reduced. Accordingly, it is possible to realize a stable flow of gases Ga and Gc on both the front and back surfaces Pa and Pb of the glass substrate P.

以下、本発明の第3の側面に係る表面処理装置及び表面処理方法の一実施形態を図8及び図9に基づき説明する。   Hereinafter, an embodiment of a surface treatment apparatus and a surface treatment method according to a third aspect of the present invention will be described with reference to FIGS. 8 and 9.

本実施形態に係る表面処理装置10は、図8に示すように、主に他方の隙間形成面14を、ガラス基板Pの裏面Pbと当接するベルトコンベア26の搬送面(ベルト外表面)で構成した点において、第1及び第2実施形態とその構成を異にする。詳述すると、このベルトコンベア26は、ガラス基板Pの裏面Pbと当接しかつガラス基板Pと同期してその通過方向に移動する同期移動面27を有するもので、この場合、裏面Pbと当接するベルトコンベア26の搬送面が同期移動面27となる。すなわち、同期移動面27が他方の隙間形成面14として対向する一方の隙間形成面13との間に隙間12を形成する。本実施形態では、同期移動面27は、一方の隙間形成面13よりもガラス基板Pの通過方向に長く設定されており、これにより一方の隙間形成面13と対向する領域を越えて隙間12の両端側に延長配置されている。   As shown in FIG. 8, the surface treatment apparatus 10 according to the present embodiment mainly includes the other gap forming surface 14 as a conveyance surface (belt outer surface) of the belt conveyor 26 that contacts the back surface Pb of the glass substrate P. In that respect, the configuration differs from the first and second embodiments. More specifically, the belt conveyor 26 has a synchronous moving surface 27 that contacts the back surface Pb of the glass substrate P and moves in the passing direction in synchronization with the glass substrate P. In this case, the belt conveyor 26 contacts the back surface Pb. The conveyance surface of the belt conveyor 26 becomes the synchronous movement surface 27. That is, the gap 12 is formed between the synchronous movement surface 27 and the one gap forming surface 13 facing as the other gap forming surface 14. In the present embodiment, the synchronous movement surface 27 is set to be longer in the passing direction of the glass substrate P than the one gap forming surface 13, and thereby, the gap 12 exceeds the region facing the one gap forming surface 13. It is extended to both ends.

また、本実施形態では、ベルトコンベア26がガラス基板Pを下方から支持しているため、このベルトコンベア26が搬送手段11を兼ねている。   Moreover, in this embodiment, since the belt conveyor 26 is supporting the glass substrate P from the downward direction, this belt conveyor 26 serves as the conveyance means 11 as well.

このように構成することで、ガラス基板Pは、他方の隙間形成面14を形成する同期移動面27と当接した状態を保って隙間12に導入されるので、隙間12に導入した状態のガラス基板Pの非処理面(裏面Pb)に処理ガスGaが入り込む余地(隙間)は生じない。よって、処理面となるガラス基板Pの表面Paに表面処理を施しつつも、非処理面となる裏面Pbが実質的な表面処理となる程度に処理ガスGaに曝される事態を確実に防止することができる。また、ガラス基板Pとの接触面をガラス基板Pと同期して移動可能としたので、ガラス基板Pの裏面Pbとその接触面(同期移動面27)とが摺動するおそれもない。従って、非処理面となる裏面Pbの表面精度及び表面性状を確保することができる。また、この構成によれば、外気引込み手段19や不活性ガス供給部23も不要となるので、表面処理装置10を簡素化して、コストダウンにつなげることもできる。   By configuring in this way, the glass substrate P is introduced into the gap 12 while maintaining a state in contact with the synchronous movement surface 27 that forms the other gap forming surface 14. There is no room (gap) for the processing gas Ga to enter the non-processing surface (back surface Pb) of the substrate P. Therefore, while the surface treatment is performed on the surface Pa of the glass substrate P serving as the processing surface, the situation where the back surface Pb serving as the non-processing surface is exposed to the processing gas Ga to the extent that the surface treatment is substantially performed is reliably prevented. be able to. Further, since the contact surface with the glass substrate P can be moved in synchronization with the glass substrate P, there is no possibility that the back surface Pb of the glass substrate P and the contact surface (synchronous movement surface 27) slide. Accordingly, it is possible to ensure the surface accuracy and surface properties of the back surface Pb that is the non-processed surface. Further, according to this configuration, the outside air drawing means 19 and the inert gas supply unit 23 are not required, so that the surface treatment apparatus 10 can be simplified and the cost can be reduced.

特に、本実施形態のように、同期移動面27を、一方の隙間形成面13と対向する領域を越えて隙間12の両端側に延長配置することで、隙間12の導入開始時及び通過完了時においてもガラス基板Pの裏面Pbと同期移動面27との当接状態が維持される。よって、裏面Pbと処理ガスGaとが接触する事態を確実に防止して、当該表面処理直前の面粗さを維持することができ、裏面Pbの表面性状及び表面精度を確保することができる。   In particular, as in the present embodiment, the synchronous movement surface 27 is extended and disposed on both end sides of the gap 12 beyond the region facing the one gap forming surface 13, so that the introduction of the gap 12 and the completion of the passage are completed. The contact state between the back surface Pb of the glass substrate P and the synchronous movement surface 27 is also maintained. Therefore, it is possible to reliably prevent the contact between the back surface Pb and the processing gas Ga, maintain the surface roughness immediately before the surface treatment, and ensure the surface properties and surface accuracy of the back surface Pb.

なお、ベルトコンベア26は必ずしも搬送手段11を兼ねる必要はなく、例えば図9に示すように、ガラス基板Pの裏面Pbをローラコンベア等の搬送手段11で支持及び搬送し、搬送状態にあるガラス基板Pの表面Paとベルトコンベア26の同期移動面27(搬送面)とを当接可能とし、かつガラス基板Pと同期してその通過方向に移動可能に構成してもよい。この場合、同期移動面27は、図8の場合と同様、他方の隙間形成面14を構成する。この構成によれば、ガラス基板Pの裏面Pbが処理ガスGaによる表面処理を受けて粗面化される一方で、表面Paの処理ガスGaによる実質的な被曝は回避される。なお、図8と図9何れの場合にしても、処理ガスGaは一方の隙間形成面13に開口形成された排気口18aを通じて隙間12外に排出されるように構成されているので、ガラス基板Pの表面Paのうちベルトコンベア26の搬送面と接触していない領域が生じたとしても問題ない。   Note that the belt conveyor 26 does not necessarily have to serve also as the transport means 11, and for example, as shown in FIG. 9, the back surface Pb of the glass substrate P is supported and transported by the transport means 11 such as a roller conveyor, and the glass substrate is in a transported state. The surface Pa of P and the synchronous movement surface 27 (conveyance surface) of the belt conveyor 26 may be brought into contact with each other, and may be configured to be movable in the passing direction in synchronization with the glass substrate P. In this case, the synchronous movement surface 27 constitutes the other gap forming surface 14 as in the case of FIG. According to this configuration, the back surface Pb of the glass substrate P is subjected to surface treatment with the processing gas Ga to be roughened, while substantial exposure of the front surface Pa with the processing gas Ga is avoided. In either case of FIGS. 8 and 9, the processing gas Ga is configured to be discharged out of the gap 12 through the exhaust port 18a formed in one of the gap forming surfaces 13, so that the glass substrate There is no problem even if a region of the surface Pa of P that is not in contact with the conveying surface of the belt conveyor 26 is generated.

以下、本発明の第4の側面に係る表面処理装置及び表面処理方法の一実施形態を図10に基づき説明する。   Hereinafter, an embodiment of a surface treatment apparatus and a surface treatment method according to a fourth aspect of the present invention will be described with reference to FIG.

本側面に係る表面処理装置10は、主に他方の隙間形成部材16を一方の隙間形成部材15に対して近接自在に移動可能とすることで、隙間12の隙間幅方向寸法を調整するための隙間幅調整部28を有する点で、上述した本発明の第1〜第3の側面に係る表面処理装置10とその構成を異にする。   The surface treatment apparatus 10 according to this aspect mainly adjusts the gap width direction dimension of the gap 12 by allowing the other gap forming member 16 to move freely relative to the one gap forming member 15. The configuration of the surface treatment apparatus 10 according to the first to third aspects of the present invention described above is different in that the gap width adjustment unit 28 is provided.

詳述すると、隙間幅調整部28は、図10(a)に示すように、各他方の隙間形成部材16と、その上方に配され、各他方の隙間形成部材16を懸架支持する懸架部29との間に配設されている。そして、他方の隙間形成部材16を昇降させることで、所定の高さ位置において搬送されるガラス基板Pの表面Paと他方の隙間形成面14との対向間隔を調整可能としている。すなわち、この対向間隔は、ガラス基板Pの隙間12への導入に伴い形成される第2の分割空間22の隙間幅方向寸法に等しい(図10(b))。   More specifically, as shown in FIG. 10A, the gap width adjusting portion 28 is arranged on each other gap forming member 16 and a suspension portion 29 that is disposed above and supports the other gap forming member 16. Between the two. And the opposing space | interval of the surface Pa of the glass substrate P conveyed in a predetermined | prescribed height position and the other clearance gap formation surface 14 can be adjusted by raising / lowering the other clearance gap formation member 16. FIG. In other words, the facing distance is equal to the dimension in the gap width direction of the second divided space 22 formed with the introduction of the glass substrate P into the gap 12 (FIG. 10B).

そして、この隙間幅調整部28は、図10(b)に示すように、隙間12へのガラス基板Pの導入に伴い、ガラス基板Pの表面Paに引っ張られて第2の分割空間22に流れ込む外気Gbの流れが生じるように、第2の分割空間22の隙間幅方向寸法wが調整される。一例として、隙間幅方向寸法wを2mm以下とすることで、上記外気Gbの流れ込み作用を得ることが可能となる。   Then, as shown in FIG. 10B, the gap width adjusting unit 28 is pulled by the surface Pa of the glass substrate P and flows into the second divided space 22 with the introduction of the glass substrate P into the gap 12. The gap width direction dimension w of the second divided space 22 is adjusted so that the flow of the outside air Gb occurs. As an example, when the dimension w in the gap width direction is 2 mm or less, it is possible to obtain the effect of flowing in the outside air Gb.

このように構成すれば、ガラス基板Pの厚みや搬送速度が変更された場合であっても、設備に大幅な改良、変更を施すことなく容易に表面Paと処理ガスGaとの接触を回避することができる。また、懸架部29と他方の隙間形成部材16との間に隙間幅調整部28を設けるだけで足りるので、本発明の上記第1〜第3実施形態と比べて設備の簡素化を図ることができる。   If comprised in this way, even if it is a case where the thickness and conveyance speed of the glass substrate P are changed, contact with the surface Pa and the process gas Ga is easily avoided, without giving a significant improvement and change to an installation. be able to. Moreover, since it is sufficient to provide the gap width adjusting portion 28 between the suspension portion 29 and the other gap forming member 16, it is possible to simplify the equipment as compared with the first to third embodiments of the present invention. it can.

以下、本発明の第5の側面に係る表面処理装置及び表面処理方法の一実施形態を図11に基づき説明する。   Hereinafter, one embodiment of a surface treatment apparatus and a surface treatment method according to the fifth aspect of the present invention will be described with reference to FIG.

本側面に係る表面処理装置10は、主に搬送手段11により搬送される複数のガラス基板Pの間に閉塞板30を介在させた点で、上述した本発明の第1〜第4の側面に係る表面処理装置とその構成を異にする。   The surface treatment apparatus 10 according to the present aspect is based on the first to fourth aspects of the present invention described above in that the closing plate 30 is interposed between the plurality of glass substrates P mainly conveyed by the conveying means 11. The surface treatment apparatus and the configuration thereof are different.

本実施形態では、さらに、閉塞板30の端面とガラス基板Pの端面とを当接させ、かつ当接させた状態で両部材30,Pを固定している。これにより、互いに隣接するガラス基板P同士はその間に介在させた閉塞板30と一体的に搬送される。なお、当接によるガラス基板Pの破損を防止する目的で、閉塞板30のガラス基板Pとの当接部を緩衝材などで構成したものを使用してもよい。   In the present embodiment, the end surfaces of the closing plate 30 and the end surface of the glass substrate P are brought into contact with each other, and both the members 30 and P are fixed in a state where they are in contact with each other. As a result, the glass substrates P adjacent to each other are transported integrally with the closing plate 30 interposed therebetween. In addition, in order to prevent the glass substrate P from being damaged by the contact, a member in which the contact portion of the closing plate 30 with the glass substrate P is made of a buffer material or the like may be used.

この構成によれば、搬送方向で互いに隣接するガラス基板Pの間が閉塞板30で閉塞された状態となるので、この状態を保ってガラス基板Pを隙間12に導入することで、ガラス基板Pの裏面Pbのみが処理ガスGaに曝される一方、処理ガスGaの表面Pa側への回り込みは防止される。よって、裏面Pbの粗面化を図りつつも、表面Paの表面性状及び表面精度を確保することができる。また、この構成によれば、ガラス基板Pの搬送準備段階における調整のみで実施することができるので、設備自体の変更は一切不要となる。   According to this configuration, since the space between the glass substrates P adjacent to each other in the transport direction is closed by the blocking plate 30, the glass substrate P is introduced into the gap 12 while maintaining this state. While only the back surface Pb of the gas is exposed to the processing gas Ga, the wrapping of the processing gas Ga to the front surface Pa side is prevented. Therefore, the surface property and surface accuracy of the front surface Pa can be ensured while roughening the back surface Pb. Moreover, according to this structure, since it can implement only by the adjustment in the conveyance preparation stage of the glass substrate P, the change of installation itself becomes completely unnecessary.

なお、裏面Pbが実質的な表面処理となる程度に処理ガスGaに曝される事態を回避できれば足りることを考慮すれば、必ずしも、上述の如き構成である必要はない。例えば、端面間に若干の隙間を持たせてガラス基板Pと閉塞板30とを固定してもよい。あるいは、固定することなくガラス基板Pの間に閉塞板30を配置するだけであってもよい。   In view of the fact that it is sufficient to avoid a situation in which the back surface Pb is exposed to the processing gas Ga to such an extent that the substantial surface treatment is performed, the above-described configuration is not necessarily required. For example, the glass substrate P and the closing plate 30 may be fixed with a slight gap between the end faces. Alternatively, the closing plate 30 may be simply disposed between the glass substrates P without being fixed.

また、以上の説明では、帯状板ガラスから切り出したガラス基板Pの表面Pa又は裏面Pbに対して所定の表面処理を施す場合を説明したが、もちろん帯状板ガラスの表面又は裏面に上記第1〜第5の側面に係る本発明を適用することも可能である。すなわち、図示は省略するが、帯状に成形して幅方向に切断した後、その長手方向一端又は両端を巻き取ったガラスフィルム表裏一方の面のみに表面処理を実施する場合にも上記第1〜第5の側面に係る本発明を適用することが可能である。   Moreover, although the above description demonstrated the case where predetermined | prescribed surface treatment was given with respect to the surface Pa or back surface Pb of the glass substrate P cut out from the strip | belt-shaped plate glass, of course, said 1st-5th is carried out to the surface or back surface of strip | belt-shaped plate glass. It is also possible to apply the present invention according to this aspect. That is, although not shown in the drawings, the above first to first methods are also performed when the surface treatment is performed only on one surface of the front and back surfaces of the glass film that is wound in the longitudinal direction after being formed into a strip shape and cut in the width direction. The present invention according to the fifth aspect can be applied.

Ga 処理ガス
Gb 外気
Gc 不活性ガス
P ガラス基板
Pa 表面
Pb 裏面
w 隙間幅方向寸法
10 表面処理装置
11 搬送手段
12 隙間
13,14 隙間形成面
15,16 隙間形成部材
17 処理ガス供給部
17a 給気口
18 処理ガス排気部
18a 排気口
19 外気取込み手段
19a 排気口
20 ローラ
21,22 分割空間
23 不活性ガス供給部
23a 供給口
25 内部空孔
26 ベルトコンベア
27 同期移動面
28 隙間幅調整部
29 懸架部
30 閉塞板
Ga Processing gas Gb Outside air Gc Inert gas P Glass substrate Pa Front surface Pb Back surface w Gap width direction dimension 10 Surface treatment device 11 Conveying means 12 Gap 13, 14 Gap formation surface 15, 16 Gap formation member 17 Processing gas supply part 17a Supply air Port 18 Process gas exhaust 18a Exhaust port 19 Outside air intake means 19a Exhaust port 20 Rollers 21, 22 Divided space 23 Inert gas supply unit 23a Supply port 25 Internal hole 26 Belt conveyor 27 Synchronous moving surface 28 Gap width adjustment unit 29 Suspension Part 30 Blocking plate

Claims (8)

板状ガラスが通過可能な隙間を形成する一対の隙間形成面と、前記板状ガラスの表裏一方の面に表面処理を施すための処理ガスを前記隙間に供給する処理ガス供給部と、前記隙間に供給された前記処理ガスを排気する処理ガス排気部とを備えた板状ガラスの表面処理装置において、
前記処理ガス供給部と前記処理ガス排気部は共に一方の隙間形成面の側に配設されると共に、
前記一方の隙間形成面に、前記処理ガス供給部の給気口が開口し、前記他方の隙間形成面に、不活性ガスを前記隙間に向けて供給する不活性ガス供給部の供給口が開口していることを特徴とする板状ガラスの表面処理装置。
A pair of gap forming surfaces that form a gap through which the sheet glass can pass; a processing gas supply unit that supplies a processing gas for performing a surface treatment to one of the front and back surfaces of the sheet glass; and the gap In the sheet glass surface treatment apparatus comprising a treatment gas exhaust unit for exhausting the treatment gas supplied to
The processing gas supply unit and the processing gas exhaust unit are both disposed on one gap forming surface side,
An air supply port of the processing gas supply unit opens on the one gap forming surface, and a supply port of an inert gas supply unit that supplies an inert gas toward the gap opens on the other gap forming surface. A surface treatment apparatus for sheet glass, characterized in that:
前記処理ガス供給部は、前記一方の隙間形成面のうち前記板状ガラスの通過方向中央に給気口を有する請求項1に記載の板状ガラスの表面処理装置。   The said processing gas supply part is a surface treatment apparatus of the sheet glass of Claim 1 which has an air supply opening in the passage direction center of the said sheet glass among said one clearance gap formation surface. 前記処理ガス排気部は、前記一方の隙間形成面のうち前記板状ガラスの通過方向両端に排気口を有する請求項1又は2に記載の板状ガラスの表面処理装置。   3. The sheet glass surface treatment apparatus according to claim 1, wherein the processing gas exhaust unit has exhaust ports at both ends in the passage direction of the sheet glass in the one gap forming surface. 前記不活性ガスの供給口は、前記板状ガラスの通過方向に直交する向きに伸びている請求項1〜3の何れかに記載の板状ガラスの表面処理装置。   The surface treatment apparatus for sheet glass according to any one of claims 1 to 3, wherein the inert gas supply port extends in a direction orthogonal to a passing direction of the sheet glass. 前記他方の隙間形成面は、前記不活性ガスを流通可能な多数の空孔を有する多孔質体で構成され、前記他方の隙間形成面に露出した前記空孔で前記不活性ガスの供給口が構成されている請求項1〜3の何れかに記載の板状ガラスの表面処理装置。   The other gap forming surface is composed of a porous body having a large number of pores through which the inert gas can flow, and the inert gas supply port is formed by the holes exposed on the other gap forming surface. The surface treatment apparatus for plate glass according to any one of claims 1 to 3. 板状ガラスが通過可能な隙間を形成する一対の隙間形成面と、前記板状ガラスの表裏一方の面に表面処理を施すための処理ガスを前記隙間に供給する処理ガス供給部と、前記隙間に供給された前記処理ガスを排気する処理ガス排気部とを備えた板状ガラスの表面処理装置において、
前記処理ガス供給部と前記処理ガス排気部は共に一方の隙間形成面の側に設けられると共に、
前記他方の隙間形成面は、前記板状ガラスの表裏他方の面と当接しかつ前記板状ガラスと同期してその通過方向に移動する同期移動面で形成されていることを特徴とする板状ガラスの表面処理装置。
A pair of gap forming surfaces that form a gap through which the sheet glass can pass; a processing gas supply unit that supplies a processing gas for performing a surface treatment to one of the front and back surfaces of the sheet glass; and the gap In the sheet glass surface treatment apparatus comprising a treatment gas exhaust unit for exhausting the treatment gas supplied to
The processing gas supply unit and the processing gas exhaust unit are both provided on one gap forming surface side,
The other gap forming surface is a plate-like shape that is in contact with the other surface of the plate-like glass and is a synchronous moving surface that moves in the passing direction in synchronization with the plate-like glass. Glass surface treatment equipment.
前記同期移動面は、前記板状ガラスを搬送可能とするベルトコンベアの搬送面で構成されている請求項6に記載の板状ガラスの表面処理装置。   The plate-like glass surface treatment apparatus according to claim 6, wherein the synchronous movement surface is configured by a conveyance surface of a belt conveyor that can convey the plate-like glass. 一対の隙間形成面の間に形成され板状ガラスが通過可能な隙間に処理ガスを供給し、該処理ガスを前記隙間から排気することで、前記隙間を通過する前記板状ガラスの表裏一方の面に表面処理を施す板状ガラスの表面処理方法において、
前記処理ガスを、前記一方の隙間形成面の側から前記隙間に向けて供給しつつ前記一方の隙間形成面の側で排気すると共に、
前記一方の隙間形成面に開口した前記処理ガスの給気口から前記隙間に前記処理ガスを供給し、かつ
前記他方の隙間形成面に開口した不活性ガスの供給口から前記隙間に前記不活性ガスを供給した状態で、前記隙間に前記板状ガラスを導入することを特徴とする板状ガラスの表面処理方法。
A processing gas is supplied to a gap formed between a pair of gap forming surfaces and through which the sheet glass can pass, and the processing gas is exhausted from the gap so that one of the front and back sides of the sheet glass passing through the gap In the surface treatment method of sheet glass that performs surface treatment on the surface,
While exhausting the processing gas from the one gap forming surface side toward the gap while exhausting on the one gap forming surface side,
The processing gas is supplied to the gap from the processing gas supply port opened in the one gap forming surface, and the inert gas is supplied from the inert gas supply port opened in the other gap forming surface to the gap. A plate-like glass surface treatment method, wherein the plate-like glass is introduced into the gap while gas is supplied.
JP2016167620A 2016-08-30 2016-08-30 Sheet glass surface treatment apparatus and surface treatment method Active JP6270176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016167620A JP6270176B2 (en) 2016-08-30 2016-08-30 Sheet glass surface treatment apparatus and surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167620A JP6270176B2 (en) 2016-08-30 2016-08-30 Sheet glass surface treatment apparatus and surface treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012285405A Division JP6048817B2 (en) 2012-12-27 2012-12-27 Sheet glass surface treatment apparatus and surface treatment method

Publications (2)

Publication Number Publication Date
JP2017031048A true JP2017031048A (en) 2017-02-09
JP6270176B2 JP6270176B2 (en) 2018-01-31

Family

ID=57985999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167620A Active JP6270176B2 (en) 2016-08-30 2016-08-30 Sheet glass surface treatment apparatus and surface treatment method

Country Status (1)

Country Link
JP (1) JP6270176B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307335A (en) * 1994-02-22 1995-11-21 Siemens Ag Preparation of high dense integrated circuit on semiconductor substrate
JP2005046832A (en) * 2003-07-16 2005-02-24 Sekisui Chem Co Ltd Surface treatment apparatus
JP2009129997A (en) * 2007-11-20 2009-06-11 Sekisui Chem Co Ltd Surface treatment apparatus
JP2012191001A (en) * 2011-03-10 2012-10-04 Sekisui Chem Co Ltd Surface treatment method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307335A (en) * 1994-02-22 1995-11-21 Siemens Ag Preparation of high dense integrated circuit on semiconductor substrate
JP2005046832A (en) * 2003-07-16 2005-02-24 Sekisui Chem Co Ltd Surface treatment apparatus
JP2009129997A (en) * 2007-11-20 2009-06-11 Sekisui Chem Co Ltd Surface treatment apparatus
JP2012191001A (en) * 2011-03-10 2012-10-04 Sekisui Chem Co Ltd Surface treatment method and device

Also Published As

Publication number Publication date
JP6270176B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6048817B2 (en) Sheet glass surface treatment apparatus and surface treatment method
JP4233348B2 (en) Plasma process equipment
JP6560198B2 (en) Laser annealing apparatus, continuous conveyance path for laser annealing treatment, and laser annealing treatment method
KR20080044179A (en) Reduced-pressure drying device
KR102368126B1 (en) Etching apparatus, etching method, substrate manufacturing method, and substrate
TW201139961A (en) Vacuum drying apparatus
TW200929356A (en) Processing device
KR101558596B1 (en) Reduced-pressure drying device and reduced-pressure drying method
JP6270176B2 (en) Sheet glass surface treatment apparatus and surface treatment method
KR101891349B1 (en) Coating treatment apparatus
KR102312556B1 (en) Glass substrate manufacturing apparatus and manufacturing method
KR20110066864A (en) Substrate processing apparatus, substrate processing method and recording medium storing program for executing the substrate processing method
TWI714836B (en) Deposition apparatus and deposition method
JP2013157418A (en) Etching device
TWI463560B (en) Wet etching method and substrate carrier
JP2011086807A (en) Vacuum drying apparatus
JP2013212965A (en) Apparatus and method for treating surface of sheet glass
JP4612520B2 (en) Atmospheric pressure plasma processing equipment
KR20150133076A (en) Thin film deposition in-line system
KR102609772B1 (en) glass substrate
JPWO2008105365A1 (en) Film forming apparatus and film forming method
JP2005026062A (en) Plasma process device
KR101425432B1 (en) Apparatus for processing substrate
KR20140045147A (en) Plasma etching apparatus and baffle
JP2010135452A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171221

R150 Certificate of patent or registration of utility model

Ref document number: 6270176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150