JP2017026443A - 二次電池の充電状態推定装置 - Google Patents

二次電池の充電状態推定装置 Download PDF

Info

Publication number
JP2017026443A
JP2017026443A JP2015144666A JP2015144666A JP2017026443A JP 2017026443 A JP2017026443 A JP 2017026443A JP 2015144666 A JP2015144666 A JP 2015144666A JP 2015144666 A JP2015144666 A JP 2015144666A JP 2017026443 A JP2017026443 A JP 2017026443A
Authority
JP
Japan
Prior art keywords
current
voltage
battery
secondary battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015144666A
Other languages
English (en)
Other versions
JP6471636B2 (ja
Inventor
英伸 石田
Hidenobu Ishida
英伸 石田
近藤 直之
Naoyuki Kondo
直之 近藤
佐藤 勝彦
Katsuhiko Sato
勝彦 佐藤
賢弘 鎌田
Takahiro Kamata
賢弘 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2015144666A priority Critical patent/JP6471636B2/ja
Publication of JP2017026443A publication Critical patent/JP2017026443A/ja
Application granted granted Critical
Publication of JP6471636B2 publication Critical patent/JP6471636B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

【課題】カルマンフィルタによる内部状態推定方式を採用し、フィルタの応答特性における遅延を低減して二次電池の充電状態を精度よく推定することのできる二次電池の充電状態推定装置を提供すること。【解決手段】電圧センサ39aと、電流センサ39bと、バッテリ29の等価回路モデルに応じた回路方程式に電圧センサの検出電圧および電流センサの検出電流を適用して当該バッテリの充電残量を推定するハイブリッドコントローラ32と、を有する二次電池の充電状態推定装置であって、ハイブリッドコントローラは、電圧センサによって検出された検出電圧に、ガウス分布で変動する摂動電圧を加え、電流センサによって検出された電流に、正弦波形の摂動電流を加え、これら加算後の検出電圧と検出電流とをカルマンフィルタへ入力して等価回路モデルにおける起電力を推定し、当該起電力に基づいてバッテリの充電残量を推定する。【選択図】図1

Description

本発明は、連続的に使用される二次電池の充電状態を精度良く推定する充電状態推定装置に関する。
車両に搭載されているバッテリ(二次電池)は、例えば、内燃機関型のエンジンにおける点火に利用されるだけでなく、空調装置や車載機器の駆動、電気自動車やハイブリッド自動車に搭載されたモータへの電力供給、燃料電池車両の補助バッテリとして電気エネルギの蓄電及び放電などに利用されている。このバッテリは、走行中に回生エネルギを充電することにより繰り返し利用するようになっている。また、このバッテリは、安全かつ高効率に利用するために、充電残量(充電率:State Of Charge)を精度良く検知して把握することが必要である。
このバッテリの充電残量の検知には、例えば、所謂、(1)電流積算方式、(2)満充電初期化方式、(3)OCV(Open Circuit Voltage)安定化方式、(4)内部状態推定方式などが挙げられる。
(1)電流積算方式は、バッテリに出入力される電流値を電流センサにより検出して積算することで、バッテリの充電残量を検知する。しかしながら、電流センサには検出誤差が存在すると共に検出回路にも規格値誤差が存在することから、図12に示すように、計測時間が長時間になるほど、誤差が積算されてしまう。このため、電流積算方式は、長期間にわたるバッテリの高精度な充電残量の検知には不向きである。
(2)満充電初期化方式は、バッテリを満充電状態にするタイミングに正確に充電残量を検出して、電流積算方式により検知した充電残量をリセットすることにより、バッテリの充電残量の検知精度を維持する。しかしながら、例えば、ハイブリッド車のように満充電するタイミングがなく、継続してバッテリが利用される場合には、正確な充電残量にリセットすることができない。このため、満充電初期化方式は、長期間にわたって継続利用されるバッテリの高精度な充電残量の検知には不向きである。
(3)OCV(Open Circuit Voltage)安定化方式は、バッテリの使用を一旦停止して出力端子間を開放状態にすることにより、電圧を安定化させた状態で、その出力端子間の電圧を測定する。そして、その測定電圧からバッテリの充電残量を検知する。しかしながら、走行途中や一時停止中に、電圧が安定するまでバッテリの出力端子間を開放状態にすることは難しい。このため、OCV安定化方式は、使用中におけるバッテリの高精度な充電残量の検知には不向きである。
(4)内部状態推定方式は、バッテリの等価回路モデルにおける各種パラメータ(内部状態)をデジタルフィルタ等の処理に利用して推定する演算処理を実施することにより、最終的にバッテリの充電残量を評価する(特許文献1を参照)。例えば、当初の電流値と電圧値を計測し、カルマンフィルタなどの適応フィルタの計算を行う内部状態推定方式は、走行中に充放電が繰り返される状況でも、バッテリ内部の状態の1つである起電力(=開放端子電圧;OCV)を推定し、この起電力からバッテリの充電残量を精度よく推定することができる。
このことから、使用中に充放電が繰り返されるような状況でも、検出誤差の積み重ねなく、バッテリの充電残量を精度よく把握するには、内部状態推定方式が最適である。
特開2011−215125号公報
しかしながら、このような内部状態推定方式を採用する二次電池の充電状態推定装置にあっては、例えば、カルマンフィルタによる演算処理を実行する場合、バッテリの充電残量の推定精度を向上させ、フィルタの周波数応答性能を向上させることが難しい。このため、従来のカルマンフィルタによる内部状態推定方式では、所望の精度でバッテリの充電残量の推定結果を得ようとすると、フィルタの応答特性における遅延が発生し、必要なタイミングまでにバッテリの充電残量の情報を得ることができない。
また、このような従来のカルマンフィルタによる内部状態推定方式で、例えば、ハイブリッド車のように充放電が繰り返される状況の場合、図13に示すように、バッテリの充電残量においては、積み重ねによる検出誤差の増大は発生し難いが、実際の充電残量に緩慢に追従する推定結果が得られる程度であり、応答性を向上させる必要がある。
さらに、このような従来のカルマンフィルタによる内部状態推定方式で、例えば、電気自動車の走行時のように放電が継続される状況の場合、図14に示すように、バッテリの充電残量においては、放電に偏っていることから、フィルタの応答特性における遅延が発生し、また、推定誤差が増大していく傾向にある。この傾向は、バッテリの充電時も同じである。例えば、補助バッテリの回復処理のように充電が継続される状況の場合、充電に偏っていることから、バッテリの充電残量の推定処理において、フィルタの応答特性における遅延が発生し、また、推定誤差が増大していく傾向にある。
そこで、本発明は、カルマンフィルタによる内部状態推定方式を採用し、フィルタの応答特性における遅延を低減して二次電池の充電状態を精度よく推定することのできる二次電池の充電状態推定装置を提供することを目的としている。
上記課題を解決する二次電池の充電状態推定装置の発明の一態様は、二次電池の電圧を検出する電圧検出部と、前記二次電池の電流を検出する電流検出部と、前記二次電池の内部抵抗を含む等価回路モデルと前記電圧検出部による検出電圧および前記電流検出部による検出電流とに基づいて当該二次電池の充電状態を推定する演算部と、を有する二次電池の充電状態推定装置であって、前記演算部は、前記電圧検出部によって検出された検出電圧に、規則性なく正負に変動する電圧波形の摂動電圧を加え、前記電流検出部によって検出された電流に、単振動する電流波形の摂動電流を加え、前記摂動電圧が加えられた検出電圧と前記摂動電流が加えられた検出電流とをカルマンフィルタへ入力して前記等価回路モデルにおける起電力を推定し、当該起電力に基づいて前記二次電池の充電状態を推定するようになっている。
このように本発明の一態様によれば、カルマンフィルタによる内部状態推定方式を採用し、二次電池の等価回路モデルにおける検出電圧と検出電流からフィルタの応答特性における遅延を低減して、その二次電池の充電状態を精度よく推定することのできる二次電池の充電状態推定装置を提供することができる。
図1は、本発明の第1実施形態に係る二次電池の充電状態推定装置を搭載する車両の一例を示す図であり、その概略全体構成を示す概念ブロック図である。 図2は、エンジンと、2つのモータジェネレータと、駆動軸との関係を示す共線図である。 図3は、エンジンと2つのモータジェネレータとの回転関係を示す図であり、(a)はエンジンの停止時における共線図、(b)は車両の停車時における共線図である。 図4は、エンジンと2つのモータジェネレータとの回転関係を示す図であり、(a)は、EVモードでの走行時における共線図、(b)はHEVモードでの走行時における共線図である。 図5は、目標エンジンパワーと車速との関係から目標エンジン回転速度を算出するためのマップの一例である。 図6は、バッテリの等価回路モデルMを示す回路図である。 図7は、カルマンフィルタに用いる電流波形を説明するグラフである。 図8は、カルマンフィルタに用いる電圧波形を説明するグラフである。 図9は、HEVモードで利用されるバッテリの充電残量の推定処理において、バッテリの等価回路モデルに対するカルマンフィルタへの入力信号の検出電流と検出電圧に摂動信号を付加する場合と付加しない場合との推定結果を、バッテリの充電残量の真値と比較するグラフである。 図10は、EVモードで利用されるバッテリの充電残量の推定処理において、バッテリの等価回路モデルに対するカルマンフィルタへの入力信号の検出電流と検出電圧に摂動信号を付加する場合と付加しない場合との推定結果を、バッテリの充電残量の真値と比較するグラフであり、(a)は摂動信号を付加する場合、(b)は摂動信号を付加しない場合のグラフである。 図11は、他の実施形態を説明する図であり、自動二輪に搭載されるバッテリの充電残量の推定処理において、バッテリの等価回路モデルに対するカルマンフィルタへの入力信号の検出電流と検出電圧に摂動信号を付加してバッテリの充電残量を推定する場合と、電流積算方式によりバッテリの充電残量を推定する場合との推定結果を、バッテリの充電残量の真値と比較するグラフである。 図12は、ハイブリッド車に搭載されるバッテリの充電残量の推定処理において、電流積算方式によりバッテリの充電残量を推定する場合の推定結果を、バッテリの充電残量の真値と比較するグラフである。 図13は、ハイブリッド車に搭載されるバッテリの充電残量の推定処理において、バッテリの等価回路モデルに対するカルマンフィルタへの入力信号として単なる検出電流と検出電圧とを用いてバッテリの充電残量を推定する場合の推定結果を、バッテリの充電残量の真値と比較するグラフである。 図14は、電気自動車に搭載されるバッテリの充電残量の推定処理において、バッテリの等価回路モデルに対するカルマンフィルタへの入力信号として単なる検出電流と検出電圧とを用いてバッテリの充電残量を推定する場合の推定結果を、バッテリの充電残量の真値と比較するグラフである。
以下、図面を参照して、本発明の実施形態について詳細に説明する。図1〜図10は本発明の第1実施形態に係る二次電池の充電状態推定装置を搭載するハイブリッド車両の一例を説明する図である。
(第1実施形態)
図1において、車両100は、駆動源として、内燃機関型のエンジン11と、電動機として回転駆動して駆動力を出力する第1モータジェネレータ(MG1)21および第2モータジェネレータ(MG2)22と、を搭載している。この車両100は、エンジン11や第1、第2モータジェネレータ21、22の出力する駆動力が動力伝達機構12により合成された後に変速機16を介して駆動軸17に伝達(出力)され、その駆動軸17が所望の駆動トルクを負荷されつつ回転することによって両端側に固定されている駆動輪18が回転されて走行する。ここで、第1、第2モータジェネレータ21、22は、エンジン11や駆動輪18により回転動作される際に駆動軸17に回生トルクを負荷しつつ回転することによって発電機として機能する。
動力伝達機構12は、第1遊星歯車機構13と第2遊星歯車機構14とを備えて、エンジン11の出力軸(回転軸)11aと変速機16の入力軸16aとの間に介在するようにそれぞれ連結されている。この動力伝達機構12は、第1遊星歯車機構13に第1モータジェネレータ21のロータ軸(回転軸)21aが連結されており、第2遊星歯車機構14に第2モータジェネレータ22のロータ軸(回転軸)22aが連結されている。すなわち、車両100は、エンジン11や第1、第2モータジェネレータ21、22と、駆動軸17と、の間でやり取りする動力を伝達する、4軸の動力伝達機構12を搭載している。
エンジン11は、CPU(Central Processing Unit)や各種メモリなどにより構成されるエンジンコントローラ(ECU:Engine Control Unit)31が接続されている。エンジンコントローラ31は、メモリ内に格納されている制御プログラムに従ってエンジン11(出力軸11a)の回転駆動を制御する。
エンジンコントローラ31は、後述のハイブリッドコントローラ(HCU:Hybrid Control Unit)32から受け取るトルク指令値に従って、不図示のインジェクタやスロットルバルブなどを制御することにより、エンジン11の気筒11c内への燃料噴射量や吸入空気量を調整してエンジン11の出力軸11aを回転させる出力トルクを制御するようになっている。
第1、第2モータジェネレータ21、22は、インバータ25を介してバッテリ29に接続されている。これら第1、第2モータジェネレータ21、22は、バッテリ29内の直流電力がインバータ25により交流電力に変換されて供給されることにより、ロータ軸21a、22aを回転させる電動機として機能する。また、第1、第2モータジェネレータ21、22のロータ軸21a、22aが回転されて発電機として機能する際に発電した交流電力は、インバータ25により直流電力に変換されてバッテリ29に入力されて充電される。
インバータ25は、CPUや各種メモリなどにより構成されるモータコントローラ(MCU:Motor Control Unit)26と、第1モータジェネレータ21に接続する第1インバータ(INV1)27と、第2モータジェネレータ22に接続する第2インバータ(INV2)28と、を備えている。第1、第2インバータ27、28は、第1、第2モータジェネレータ21、22とバッテリ29との間で通電する電力の直流/交流変換をする。モータコントローラ26は、メモリ内に格納されている制御プログラムに従って、第1、第2インバータ27、28を制御することにより第1、第2モータジェネレータ21、22の駆動を制御する。
モータコントローラ26は、後述のハイブリッドコントローラ32から受け取るトルク指令値に従って、バッテリ29から第1、第2インバータ27、28を介して第1、第2モータジェネレータ21、22に供給する駆動電力を調整することにより、駆動軸17に負荷する駆動トルクを制御する。また、モータコントローラ26は、ハイブリッドコントローラ32から受け取るトルク指令値に従って、第1、第2モータジェネレータ21、22が駆動軸17に負荷する回生トルクを第1、第2インバータ27、28を介して制御することにより、バッテリ29に充電する発電電力を調整する。
エンジンコントローラ31やモータコントローラ26は、CPUや各種メモリなどにより構成されるハイブリッドコントローラ32に各種情報をやり取り可能に接続されている。このハイブリッドコントローラ32は、メモリ内に格納されている制御プログラムに従ってエンジンコントローラ31やモータコントローラ26を含む車両100全体を統括制御するようになっている。
ハイブリッドコントローラ32は、アクセル開度センサ35、車速センサ36、回転速度センサ(群)37およびバッテリ残量センサ39を含む各種センサが接続されており、検出されるセンサ情報に基づいて各種制御処理を実行することによって、車両100の効率の良い走行などを実現するようになっている。
例えば、ハイブリッドコントローラ32は、アクセル開度センサ35が検出するドライバによる図示しないアクセルペダルの踏み込み量や、車速センサ36が検出する車両100の車速(駆動軸17の回転速度)などに基づいて車両100の加速走行制御あるいは定速走行制御などを実行する。また、ハイブリッドコントローラ32は、回転速度センサ37が検出するエンジン11や第1、第2モータジェネレータ21、22の回転速度に基づいて車両100の効率のよい走行制御を実現する。また、ハイブリッドコントローラ32は、バッテリ残量センサ39の電圧センサ(電圧検出部)39aが検出するバッテリ29の接続端子29a、29b(図6を参照)間の検出電圧や電流センサ(電流検出部)39bが検出するバッテリ29の接続端子29a、29b間に入出力される検出電流に基づいて充電残量を推定し、その充電残量に応じて駆動輪18の回転(回生トルク)やエンジン11の駆動により第1、第2モータジェネレータ21、22を発電機として機能させる充電制御を実行する。
このハイブリッドコントローラ32は、図2に示す共線図に基づいて、エンジン11、第1、第2モータジェネレータ21、22(MG1、MG2)の回転速度のバランスを保ちながら、目標駆動トルクを駆動軸17に負荷する各種制御処理を実行する。なお、図2の共線図においては、MG1回転速度、エンジン回転速度、駆動軸回転速度およびMG2回転速度のうち、2つの回転速度が決まれば、他の1つの回転速度が決まる関係にあり、第1モータジェネレータ21、エンジン11、駆動軸17、第2モータジェネレータ22の4軸のうち2軸の回転速度を調整することで、他の2軸の回転速度を制御することができる。
ここで、図2の共線図において、各縦軸は、図中、左から第1モータジェネレータ21(MG1)のロータ軸21aの回転速度、エンジン11(E/G)の出力軸11aの回転速度すなわちエンジン回転速度、駆動軸17(OUT)の回転速度、および第2モータジェネレータ22(MG2)のロータ軸22aの回転速度をそれぞれ表している。なお、共線図上では、第1、第2モータジェネレータ21、22と駆動軸17の回転速度は、エンジン11の回転方向と同じ向きの回転を正としている。
また、図2の共線図において、横軸における各縦軸間の距離比は、第1、第2遊星歯車機構13、14の各ギヤの歯数の比により定まる。図2におけるk1、k2は、共線図のレバー比であり、k1は、第1遊星歯車機構13内で動力を受け渡すギヤの歯数比で、k2は、第2遊星歯車機構14内で動力を受け渡すギヤの歯数比である。
ところで、車両100の停車状態における共線図としては、図3(a)に示す停止状態からエンジン11を始動させると、図3(b)に示すように、駆動軸17を回転させることなく(走行を停止する状態のまま)、エンジン11と第1、第2モータジェネレータ21、22が回転を開始する。
また、車両100の走行状態における共線図として、第1、第2モータジェネレータ21、22のみで走行するEV(Electric Vehicle)モードの場合には、図4(a)に示すように、エンジン11を回転させることなく、駆動軸17を回転させる。また、エンジン11と第1、第2モータジェネレータ21、22とで走行するHEV(Hybrid Electric Vehicle)モードの場合には、図4(b)に示すように、それぞれの駆動トルクを負荷して駆動軸17を回転させる状態に変移する。
そして、ハイブリッドコントローラ32は、走行を開始する際、制御プログラムに従って、予めメモリ内に格納されている図5に示すようなマップを参照することによりエンジン11を効率よく駆動させるようになっており、所望のエンジントルクを得るために必要なエンジン回転速度(回転数)を導出し、燃料噴射や吸気等の制御処理を実行する。例えば、図5のマップに示すように、ハイブリッドコントローラ32は、アクセル開度センサ35からドライバによるアクセルペダルの踏込量を受け取って目標エンジンパワー(等パワーライン)を決定し、車速センサ36から受け取る車両100の走行速度に対応する目標動作ラインとの交点に位置するエンジン回転速度とエンジントルクに応じた燃料噴射や吸気等の駆動制御処理を実行する。
このハイブリッドコントローラ32は、エンジン11のエンジントルクやエンジン回転速度に応じた駆動条件が等効率ラインにおいて低効率領域に位置する場合などに、インバータ25(モータコントローラ26)と連携して第1、第2モータジェネレータ21、22を駆動させるなどの制御処理を実行することによりHEVモードまたはEVモードによる高効率運転を実現するようになっている。
このとき、ハイブリッドコントローラ32は、バッテリ29の充電残量を高精度に検知して第1、第2モータジェネレータ21、22を電動機あるいは発電機として適宜機能させるようになっている。このハイブリッドコントローラ32は、バッテリ残量センサ39が検出するバッテリ29の充電残量に応じた接続端子29a、29b間の検出電圧や検出電流に基づいて、バッテリ29の図6に示す等価回路モデルMに対するカルマンフィルタによる内部状態推定方式のデジタルフィルタ演算処理を実行し、バッテリ29の充電残量を高精度に算出して推定するようになっている。すなわち、ハイブリッドコントローラ32が演算部を構成している。
バッテリ29は、例えば、図6に示すように、電荷の移動に伴う反応抵抗成分Raを備える電源要素の起電力成分Vと、電気2重層のコンデンサCとを並列接続する回路に、電解液抵抗成分やオーム抵抗成分等を含む直流抵抗成分Rsを直列接続する、等価回路モデルMとすることができる。
ハイブリッドコントローラ32は、バッテリ29の充電残量を利用する制御処理を実行する際、バッテリ29の図6に示す等価回路モデルMに対するカルマンフィルタによる演算処理において、そのバッテリ29の接続端子29a、29b間の検出電圧や検出電流に、摂動電圧や摂動電流をそれぞれ付加するようになっている。
このハイブリッドコントローラ32は、カルマンフィルタの演算処理に使用する摂動電圧として、規則性なく正負に変動する電圧波形、例えば、ガウス分布ノイズから乱数に従って選択する変動電圧をバッテリ残量センサ39(電圧センサ39a)による検出電圧に加えてカルマンフィルタによる演算処理を実行する。また、摂動電流としては、単振動する電流波形、例えば、所定の振幅および周波数の正弦波形(余弦波形でも良い)の変動電流をバッテリ残量センサ39(電流センサ39b)による検出電流に加えてカルマンフィルタによる演算処理を実行する。
このカルマンフィルタの演算処理では、使用する検出電圧や検出電流に、短時間に振動する摂動電圧や摂動電流をそれぞれ付加することにより、十分な情報を短期間に収集して、バッテリの充電残量などの充電状態を遅延なく精度よく推定することができる。
ところで、バッテリ29の図6に示す等価回路モデルMは、電気2重層のコンデンサC、電荷移動の反応抵抗成分Ra、電源要素の起電力成分V、電解液などの直流抵抗成分Rsと共に、バッテリ29の接続端子29a、29b間の起電力(検出電圧)Eと検出電流Iを用いて、次式のような回路方程式(1)で表すことができる。
E+R×C×(dE/dt)
=(R+R)×I+R×R×C×(dI/dt)−V ・・・(1)
この回路方程式(1)を見ると、電流の1階微分の項に付加されている係数は2つの抵抗Ra、RsとコンデンサCの積であることから、係数値の絶対レベルは小さく、通常、単セル電池の内部抵抗としては数mΩ〜数十mΩのレベル程度である。このため、回路方程式(1)の検出電流Iや起電力Eに摂動電圧や摂動電流を付加した際の影響は、電流より電圧の方が敏感に反応することになる。すなわち、入力信号(検出電圧や検出電圧)に摂動信号を加えると推定遅延が解消するという効果は、カルマンフィルタと組み合わせるシステムモデルに依存している。
このことから、本実施形態の図6に示すバッテリ29の等価回路モデルMを表す回路方程式(1)においては、バッテリ29の起電力(検出電圧)Eにガウス分布ノイズの摂動電圧を加え、バッテリ29の検出電流Iに正弦波形の摂動電流を加えるのが最も効果的である。
よって、ハイブリッドコントローラ32は、メモリ内に予め格納されている回路方程式(1)に対応するカルマンフィルタによる演算処理によって、バッテリ29の接続端子29a、29b間の起電力Eを精度よく推定することができる。そして、上述したOCV安定化方式と同様に、予めメモリ内に格納しているバッテリ29の充電残量と接続端子29a、29b間の端子間電圧との関係(マップや関係方程式)からその推定起電力Eに対応する充電残量を高精度に取得することができる。
なお、回路方程式(1)において、起電力Eへの摂動電圧の付加なしや正弦波形の摂動電圧の付加と、検出電流Iへの摂動電流の付加なしやガウス分布ノイズの摂動電流の付加とをそれぞれ組み合わせる場合と比較しても、本実施形態の組み合わせが最も効果的である。また、バッテリ29の等価回路モデルMのパラメータとして時定数(応答が安定するまでの時間)が長い成分と短い成分とを組み合わせる場合、バッテリ29の充電残量の推定精度を向上させることには有効であるが、フィルタの応答特性における遅延を解消することはできず、また、ノイズが増えてしまう場合もある。そのため、本実施形態のように摂動信号を付加するのが有効である。
具体的に、ハイブリッドコントローラ32は、例えば、バッテリ29の接続端子29a、29b間における入出力電流波形が±10Aの振幅で20秒周期に繰り返される場合、予めメモリ内に格納されている、下記の信号波形式(2)で表される摂動電圧Pe(t)をバッテリ29の起電力Eに付加し、また、下記の信号波形式(3)で表される摂動電流Pi(t)をバッテリ29の検出電流Iに付加して、回路方程式(1)に対するカルマンフィルタの演算処理を開始してから経過時間tの0.2秒周期で実行する。
(t)
=σ×(−2ln(RND))1/2×sin(2π×RND) ・・・(2)
ガウス分布幅σ=3〜15mV、RND:0〜1の乱数
(t)=d×sin((2π/T)×t) ・・・(3)
正弦波振幅d=1〜20A、正弦波周期T=0.8秒〜10秒
例えば、この回路方程式(1)に対するカルマンフィルタの演算処理は、ハイブリッドコントローラ32が実行するメモリ内の制御プログラムに組み込んでソフトウェアによる制御処理によって実行する。なお、このカルマンフィルタの演算処理は、検出電圧(起電力)Eや検出電流Iに摂動電圧Pe(t)や摂動電流Pi(t)が重畳される回路をバッテリ29の接続端子29a、29bに接続することにより、ハードウェアによる制御処理によって実行するようにしてもよい。本実施形態のように、ソフトウェア的にガウス分布の摂動電圧Pe(t)を重畳する方法としては、所謂、ボックスミュラー法が一般的であり、そのプログラムの構築も簡単である。既に検出電圧Eにガウス分布とみることのできるノイズが含まれている場合にはさらに摂動電圧Pe(t)を入力する必要はない。
このとき、バッテリ29の等価回路モデルMに対応する回路方程式(1)のパラメータである検出電流Iに摂動電流Pi(t)が重畳されると、図7に示すように、短周期の摂動電流Pi(t)の中心が長周期の検出電流Iに一致して重畳されている合成電流波形となる。また、回路方程式(1)のパラメータである検出電圧Eに摂動電圧Pe(t)が重畳されると、図8に示すように、不規則なノイズである摂動電圧Pe(t)が検出電圧Eに重畳されている合成電圧波形となる。この検出電流Iには、バッテリ29に出入力されている電流波形に相応するレベルの正弦波である摂動電流Pi(t)が重畳されているのに対して、検出電圧Eには、ノイズレベルの不規則な摂動電圧Pe(t)が重畳されている。
このように、バッテリ29の等価回路モデルMに対応する回路方程式(1)の検出電流Iや検出電圧Eに摂動電流Pi(t)や摂動電流Pi(t)を重畳するカルマンフィルタの演算処理の実行により、バッテリ29の充電残量の推定精度が向上されている。
例えば、ハイブリッド車の走行時のように充放電が繰り返される状況の場合、図9に示すように、実線で図示するバッテリ29の実際の充電残量(充電率:SOC%)Re0に対して、単にカルマンフィルタの演算処理を実行するだけの推定値Re2では、一点鎖線で図示するように、時間経過するほど遅延量が増大しているとともに、推定誤差の積み重ねが大きくなっている。
これに対して、本実施形態によるによる推定値Re1は、点線で図示するように、回路方程式(1)のパラメータの検出電流Iや検出電圧Eに摂動電流Pi(t)や摂動電圧Pe(t)が重畳されることにより、実際の充電残量Rs0に重なって推定精度が格段に向上されていることが分かる。なお、推定開始当初の範囲内では、カルマンフィルタの収束が不十分であるために発生するバラツキがあることから、この初期範囲では、後述の第2実施形態で説明するように、電流積算方式によりバッテリ29の充電残量を推定しても良い。
また、例えば、電気自動車の走行時のように放電が継続される状況の場合、図10(b)に示すように、実線で図示するバッテリ29の実際の充電残量(充電率:SOC%)Re0に対して、単にカルマンフィルタの演算処理を実行するだけの推定値Re2では、一点鎖線で図示するように、遅延しているとともに、推定誤差が繰り返されている。
これに対して、本実施形態による推定値Re1は、図10(a)に点線で図示するように、回路方程式(1)のパラメータの検出電流Iや検出電圧Eに摂動電流Pi(t)や摂動電圧Pe(t)が重畳されることにより、実際の充電残量Rs0に重なって推定精度が格段に向上されていることが分かる。なお、図10は、図14に図示するバッテリ29の充電残量の減少傾向を図示するグラフの一部の範囲を拡大したものである。
さらに、バッテリ29の等価回路モデルMに対応する回路方程式(1)の検出電流Iや検出電圧Eに摂動電流Pi(t)や摂動電流Pi(t)を重畳することにより、推定精度を向上させる場合のカルマンフィルタの演算処理負担が計算量の抑制により軽減されている。
詳細には、二次電池の充電残量の推定精度を向上させるには、例えば、バッテリ29の等価回路モデルMにコンデンサ成分や抵抗成分を追加してCRの段数(次数)を増やすことにより、そのモデル精度を高くすることが考えられる。しかしながら、このようなモデル精度の次数を増やすと未知のパラメータが増加してしまい、本実施形態のように電流と電圧の他のパラメータを検出していない場合には、電圧や電流の変化速度(1階微分)や変化加速度(2階微分)を採用することになって、入力精度が悪化してしまう。これに対して、本実施形態では、パラメータの検出電流Iや検出電圧Eに摂動電流や摂動電圧を重畳するだけで、推定処理の精度を向上させるとともに、遅延なく迅速に完了することができる。
このように、本実施形態のハイブリッドコントローラ32は、バッテリ29の図6に示す等価回路モデルMに対応する回路方程式(1)のパラメータの検出電圧Eや検出電流Iに、ガウス分布ノイズの摂動電圧や正弦波形の摂動電流をそれぞれ付加してカルマンフィルタによる演算処理を実行することにより、バッテリ29の起電力Eを推定し充電残量を取得する。
このため、バッテリ29がハイブリッド車に搭載されて充放電が繰り返される場合や、電気自動車に搭載されて放電が継続される場合などでも、その充放電パターンに応じた変動周期に依存することなく、カルマンフィルタの演算処理で使用するパラメータに摂動電圧や摂動電流を付加するだけで、フィルタの応答特性における遅延を低減し、かつ、バッテリ29の接続端子29a、29b間の起電力Eを高精度に推定することができる。そして、その起電力Eから対応する充電残量(充電状態)を精度よく取得することができる。
また、本実施形態の他の態様としては、本実施形態ではハイブリッド車や電気自動車に搭載するバッテリ29の充電残量の推定処理に適用する場合を一例に説明するが、これに限るものではない。
例えば、自動二輪に搭載されているリチウムイオンバッテリの充電残量の推定処理にも採用することができ、フィルタの応答特性における遅延を低減して、カルマンフィルタの演算処理により充電残量を高精度に推定することができる。この自動二輪をWMTCモードで走行させる場合、図11に示すように、実線で図示するバッテリの実際の充電残量(充電率:SOC%)Re0に対して、電流センサによる検出電流値を積算する電流積算方式の場合の実測値Re4では、一点鎖線で図示するように、センサの検出誤差や検出回路の規格値誤差の分だけ乖離する結果となっている。これに対して、この他の形態による推定値Re1は、図中に点線で図示するように、実際の充電残量Rs0に大きくても0.5%以内の誤差範囲に収めることができ、推定精度が格段に向上していることが分かる。ここで、WMTCモードは、発進・加速・停止などの多種の走行パターンを含めて、定値燃費値よりも実際の走行時に近い値とするテストモードである。
(第2実施形態)
次に、本発明の第2実施形態に係る二次電池の充電状態推定装置を搭載するハイブリッド車両の一例を第1実施形態の説明で使用した図面を流用して説明する。
図1において、車両100のハイブリッドコントローラ32は、バッテリ29の充電残量の推定処理を開始する当初、例えば、推定処理開始からの経過時間tが100秒程度までの場合には、バッテリ残量センサ39の電流センサ39bが検出するバッテリ29への入出力電流値を積算する電流積算方式による実測値を採用する。このハイブリッドコントローラ32は、カルマンフィルタによる演算処理で十分な推定精度が得られる程度に収束した後に、上述実施形態で説明する推定処理を実行するようになっている。なお、カルマンフィルタの演算処理の収束とは、演算処理に使用するパラメータが初期値から逐次変動してバッテリ29の等価回路モデルMに適合する値に変化して安定することをいい、その収束までにはある程度の時間が必要になる。
具体的には、ハイブリッドコントローラ32は、バッテリ29の等価回路モデルMに対応する回路方程式(1)の検出電流Iや検出電圧Eに摂動電流Pi(t)や摂動電流Pi(t)を付加するカルマンフィルタの演算処理により得られる、バッテリ29の充電残量の推定値Re1と、バッテリ残量センサ39の電流センサ39bによる実測値の積算検出電流値Re4と、重み付け係数mとを用いる次式(4)を使用して、バッテリ29の充電残量(SOC)を算出するようになっている。
SOC=Re1×(m)+Re4×(1−m) ・・・(4)
t<100秒:m=0
100秒≦t≦150秒:m=(t−100)/(150−100)
150秒<t :m=1
ここで、本実施形態では、バッテリ29の充電残量の推定処理の開始からの経過時間tが100秒程度までにカルマンフィルタによる演算処理が収束する場合を一例として説明するが、これに限る訳ではなく、例えば、その収束に掛かる経過時間tを200秒に設定しても良い。
このように、本実施形態のハイブリッドコントローラ32は、カルマンフィルタの演算処理では所望の推定精度が得られない制御処理の開始当初には、バッテリ残量センサ39の電流センサ39bが検出するバッテリ29で出入力される電流値を積算してバッテリ29の充電残量とすることができ、その推定精度が十分得られるタイミングが経過した後に、高精度な推定結果をバッテリ29の充電残量とすることができる。
本発明の実施形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。
11 エンジン
12 動力伝達機構
16 変速機
17 駆動軸
21 第1モータジェネレータ
22 第2モータジェネレータ
26 モータコントローラ
27 第1インバータ
28 第2インバータ
29 バッテリ
31 エンジンコントローラ
32 ハイブリッドコントローラ(演算部)
39 バッテリ残量センサ
39a 電圧センサ
39b 電流センサ
100 車両

Claims (3)

  1. 二次電池の電圧を検出する電圧検出部と、
    前記二次電池の電流を検出する電流検出部と、
    前記二次電池の内部抵抗を含む等価回路モデルと前記電圧検出部によって検出された検出電圧および前記電流検出部によって検出された検出電流とに基づいて当該二次電池の充電状態を推定する演算部と、を有する二次電池の充電状態推定装置であって、
    前記演算部は、
    前記電圧検出部によって検出された検出電圧に、規則性なく正負に変動する電圧波形の摂動電圧を加え、
    前記電流検出部によって検出された検出電流に、単振動する電流波形の摂動電流を加え、
    前記摂動電圧が加えられた検出電圧と前記摂動電流が加えられた検出電流とをカルマンフィルタへ入力して前記等価回路モデルにおける起電力を推定し、当該起電力に基づいて前記二次電池の充電状態を推定する、二次電池の充電状態推定装置。
  2. 前記摂動電圧は、ガウス分布ノイズとし、
    前記摂動電流は、所定の振幅および周波数の正弦波である、請求項1に記載の二次電池の充電状態推定装置。
  3. 前記演算部は、
    前記二次電池の充電状態の推定処理の開始当初には、電流積算方式により該二次電池の充電状態を推定し、
    当該二次電池の充電状態の推定処理開始から予め設定されているタイミングの経過後に、前記カルマンフィルタによる前記二次電池の充電状態の推定処理を実行する、請求項1または請求項2に記載の二次電池の充電状態推定装置。
JP2015144666A 2015-07-22 2015-07-22 二次電池の充電状態推定装置 Active JP6471636B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015144666A JP6471636B2 (ja) 2015-07-22 2015-07-22 二次電池の充電状態推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015144666A JP6471636B2 (ja) 2015-07-22 2015-07-22 二次電池の充電状態推定装置

Publications (2)

Publication Number Publication Date
JP2017026443A true JP2017026443A (ja) 2017-02-02
JP6471636B2 JP6471636B2 (ja) 2019-02-20

Family

ID=57949577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015144666A Active JP6471636B2 (ja) 2015-07-22 2015-07-22 二次電池の充電状態推定装置

Country Status (1)

Country Link
JP (1) JP6471636B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173067A (ja) * 2017-03-31 2018-11-08 ダイハツ工業株式会社 内燃機関の制御装置
KR20190123172A (ko) * 2018-04-23 2019-10-31 삼성에스디아이 주식회사 배터리 상태 추정 방법
CN113504473A (zh) * 2021-09-10 2021-10-15 四川大学 一种适用动力锂电池非线性衰退过程的rul预测方法
WO2022055080A1 (ko) * 2020-09-11 2022-03-17 삼성에스디아이주식회사 배터리의 충전상태를 추정하는 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105823A (ja) * 2004-10-06 2006-04-20 Toyota Motor Corp 二次電池の内部状態推定装置およびその方法
JP2010197354A (ja) * 2009-02-27 2010-09-09 Nissan Motor Co Ltd 二次電池の容量推定装置
JP2011215125A (ja) * 2010-03-15 2011-10-27 Calsonic Kansei Corp 電池容量算出装置および電池容量算出方法
US20130141109A1 (en) * 2011-12-05 2013-06-06 Corey T. Love Battery Health Monitoring System and Method
JP2014106038A (ja) * 2012-11-26 2014-06-09 Yokogawa Electric Corp 電池インピーダンス測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105823A (ja) * 2004-10-06 2006-04-20 Toyota Motor Corp 二次電池の内部状態推定装置およびその方法
JP2010197354A (ja) * 2009-02-27 2010-09-09 Nissan Motor Co Ltd 二次電池の容量推定装置
JP2011215125A (ja) * 2010-03-15 2011-10-27 Calsonic Kansei Corp 電池容量算出装置および電池容量算出方法
US20130141109A1 (en) * 2011-12-05 2013-06-06 Corey T. Love Battery Health Monitoring System and Method
JP2014106038A (ja) * 2012-11-26 2014-06-09 Yokogawa Electric Corp 電池インピーダンス測定装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173067A (ja) * 2017-03-31 2018-11-08 ダイハツ工業株式会社 内燃機関の制御装置
KR20190123172A (ko) * 2018-04-23 2019-10-31 삼성에스디아이 주식회사 배터리 상태 추정 방법
KR102650965B1 (ko) * 2018-04-23 2024-03-25 삼성에스디아이 주식회사 배터리 상태 추정 방법
WO2022055080A1 (ko) * 2020-09-11 2022-03-17 삼성에스디아이주식회사 배터리의 충전상태를 추정하는 방법
CN113504473A (zh) * 2021-09-10 2021-10-15 四川大学 一种适用动力锂电池非线性衰退过程的rul预测方法

Also Published As

Publication number Publication date
JP6471636B2 (ja) 2019-02-20

Similar Documents

Publication Publication Date Title
JP4771176B2 (ja) バッテリの充放電制御装置
US10775444B2 (en) Secondary battery system and deterioration state estimation method for secondary battery
US11299140B2 (en) Vehicle provided with generator
JP6471636B2 (ja) 二次電池の充電状態推定装置
JP6933109B2 (ja) 二次電池の劣化状態推定方法および二次電池システム
CN101438046A (zh) 内燃机装置和内燃机的失火判定方法
KR20080078687A (ko) 내연기관의 실화판정장치, 그것을 탑재한 차량 및실화판정방법
JP4501812B2 (ja) 最大出力設定装置およびこれを備える駆動装置並びにこれを備える動力出力装置、これを搭載する自動車、最大出力設定方法
US20090319158A1 (en) Power output apparatus, control method thereof, and vehicle
JP2006211789A (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
WO2009139252A1 (ja) 二次電池の放電制御装置
JP6958392B2 (ja) 二次電池システムおよび二次電池の劣化状態推定方法
JP6268118B2 (ja) ハイブリッド自動車の制御装置
JP2016181384A (ja) 電動車両
JP6665586B2 (ja) ハイブリッド車両の制御装置
JP2013056569A (ja) ハイブリッド車両のタイヤ動半径学習方法
JP2006105821A (ja) 二次電池の充電容量推定装置およびその方法
JP6927000B2 (ja) 二次電池の劣化状態推定方法
JP6740944B2 (ja) ハイブリッド車両の制御装置
JP2010089747A (ja) ハイブリッド車およびその制御方法
JP4215052B2 (ja) 動力出力装置およびその制御方法並びに自動車
JP2014050170A (ja) 駆動装置
JP6679989B2 (ja) ハイブリッド車両の制御装置
JP6751500B2 (ja) 車両
JP2020145866A (ja) 二次電池の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R151 Written notification of patent or utility model registration

Ref document number: 6471636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151