JP2017017792A - 分散型電源装置 - Google Patents

分散型電源装置 Download PDF

Info

Publication number
JP2017017792A
JP2017017792A JP2015129615A JP2015129615A JP2017017792A JP 2017017792 A JP2017017792 A JP 2017017792A JP 2015129615 A JP2015129615 A JP 2015129615A JP 2015129615 A JP2015129615 A JP 2015129615A JP 2017017792 A JP2017017792 A JP 2017017792A
Authority
JP
Japan
Prior art keywords
power
value
peak cut
command value
distributed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015129615A
Other languages
English (en)
Other versions
JP6425625B2 (ja
Inventor
啓生 東
Hiroo Azuma
啓生 東
純平 早川
Junpei Hayakawa
純平 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2015129615A priority Critical patent/JP6425625B2/ja
Publication of JP2017017792A publication Critical patent/JP2017017792A/ja
Application granted granted Critical
Publication of JP6425625B2 publication Critical patent/JP6425625B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】複数台のPCSにより並列運転を行う分散型電源装置において、電力系統が不安定になることを防止する。【解決手段】分散型電源装置は、並列接続された複数台のPCS21を備えている。各PCS21は、電力変換部30、演算部40及び制御部50を有している。演算部40は、第1ピークカット電力指令値を演算して各PCS21毎に分担する第2ピークカット電力指令値を求める。制御部50は、求められた第2ピークカット電力指令値と、系統電力値poutと、に基づいて出力電力目標値を求め、各PCS21の出力電力値poと、出力電力目標値と、の誤差が減少するような制御信号s1,s2を生成する。電力変換部30は、制御信号s1,s2に基づいて、直流電力を交流電力に変換する。【選択図】図1

Description

本発明は、電力変換装置であるパワーコンディショナ(以下「PCS」という。)が複数台並列に接続されて並列運転を行う分散型電源装置に関するものである。
従来のPCSは、特許文献1〜5等に記載されているように、受電点の系統電力のピークカット制御を実現するため、系統電力センサ及びPCSと、設定値としてのピークカット電力指令値等と、で構成されている。
具体的には、系統電力センサで測定(検出)される系統電力値をPCSに入力し、ピークカット電力指令値との比較を行い、系統電力値がピークカット電力指令値を超えないように、PCSが不足分の電力を負荷へ供給する。これにより、系統電力の最大値(上限値)が抑えられ、電力系統の平準化を行うことができる。
このような従来の方式で、複数台のPCSによる分散型電源装置を構成した場合、例えば、図2のような回路構成になる。
図2は、従来の分散型電源装置を示す概略の構成図である。
この分散型電源装置は、複数の直流電源1(=1−1〜1−n)にそれぞれ接続された複数台のPCS10(=10−1〜10−n)を備えている。各PCS10は、各直流電源1から供給される直流電力を交流電力にそれぞれ変換する装置であり、電力系統17から系統電力を受電する受電点16と、負荷14と、の間の配線13に並列に接続されている。受電点16には、系統電力値poutを検出する系統電力センサ15が設けられている。系統電力値poutは、各PCS10へ与えられる。
各PCS10は、各直流電源1から供給される直流電力を交流電力に変換する装置であり、電力変換部11及び制御部12を有している。電力変換部11は、制御部12から与えられる制御信号に基づいて、直流電源1から供給される直流電力を交流電力に変換するものである。制御部12は、系統電力値poutと、系統電力の上限のピークカット電力指令値pcut1と、に基づいて、出力電力目標値を求め、各PCS10の出力電力から検出された出力電力値と、出力電力目標値と、の誤差が減少するような制御信号を生成して電力変換部11へ与えるものである。
この種の分散型電源装置では、電力系統17から負荷14へ供給される負荷電力Pzが、その電力系統17から受電する系統電力の上限のピークカット電力指令値pcut1(例えば、50kW)を超えたとき、複数台のPCS10から負荷14へ出力電力Pc(=Pc1〜Pcn)を供給する。これにより、系統電力の上限値が抑えられ、電力系統17の平準化(即ち、安定化)を図ることができる。
特開平8−223816号公報 特開2005−295707号公報 特開2008−43184号公報 特開2010−55974号公報 特開2012−33547号公報
しかしながら、従来の分散型電源装置では、次のような課題があった。
従来の分散型電源装置では、電力系統17の受電点16に設けた系統電力センサ15により、系統電力値poutを検出し、この系統電力値poutを複数台のPCS10へ与えている。各PCS10では、1つの系統電力値poutを共用し、同一のピークカット電力指令値pcut1に系統電力値poutを制御しようとするため、個々のPCS10が持つ検出誤差や制御応答の差により、系統電力の振動といった制御不能に陥ったり、負荷分担の管理ができなくなったりする。
本発明の分散型電源装置は、電力系統から系統電力を受電する受電点と負荷との間の配線に並列に接続され、直流電力を交流電力にそれぞれ変換する複数台のPCSを備え、前記電力系統から前記負荷へ供給される負荷電力が、前記電力系統から受電する前記系統電力の上限の第1ピークカット電力指令値を超えたとき、前記複数台のPCSから前記負荷へ電力を供給する装置である。
前記各PCSは、前記第1ピークカット電力指令値を演算して前記各PCS毎に分担する第2ピークカット電力指令値を求める演算部と、前記演算部で求められた前記第2ピークカット電力指令値と、前記系統電力から検出された系統電力値と、に基づいて出力電力目標値を求め、前記各PCSの出力電力から検出された出力電力値と、前記出力電力目標値と、の誤差が減少するような制御信号を生成する制御部と、前記制御信号に基づいて、前記直流電力を前記交流電力に変換する電力変換部と、を有している。
前記演算部は、前記負荷へ供給する前記電力における負荷分担の順位を設定する順位設定値と、前記複数台のPCSを全て駆動させるために前記負荷分担の順位を変更する順位変更要素と、所定の負荷分担電力と、に基づいて調整値を求め、前記第1ピークカット電力指令値から、前記調整値を減算して、前記第2ピークカット電力指令値を算出することを特徴とする。
本発明の分散型電源装置によれば、各PCSに演算部を設け、この演算部により、順位設定値、順位変更要素、及び負荷分担電力に基づいて調整値を求め、第1ピークカット電力指令値からその調整値を減算して、第2ピークカット電力指令値を算出しているので、各PCSの制御目標値である第2ピークカット電力指令値に差が生まれる。この差により、個々のPCSが持つ検出誤差や制御応答のばらつきの影響を受けなくなるため、系統電力の上限値が的確に抑えられ、電力系統の平準化(即ち、安定化)を図ることができる。
図1は本発明の実施例1における分散型電源装置を示す概略の構成図である。 図2は従来の分散型電源装置を示す概略の構成図である。 図3は図1中のPCS21の構成を示す概略の機能ブロック図である。 図4は図1の動作を示す説明図である。
本発明を実施するための形態は、以下の好ましい実施例の説明を添付図面と照らし合わせて読むと、明らかになるであろう。但し、図面はもっぱら解説のためのものであって、本発明の範囲を限定するものではない。
従来の図2に示すように、複数台のPCS10(=10−1〜10−n)を同一の電力系統17に並列に接続して並列運転を行う場合、系統電力の受電点16に設けた系統電力センサ15により系統電力値poutを検出し、この系統電力値poutを基に制御を行うため、検出誤差によって負荷分担がまちまちになって管理不能に陥ってしまう。この状況を改善するため、本実施例1の分散型電源装置では、以下のような構成になっている。
(実施例1の構成)
図1は、本発明の実施例1における分散型電源装置を示す概略の構成図である。
この分散型電源装置は、複数の直流電源20(=20−1〜20−n、例えば、n=5)にそれぞれ接続された複数台のPCS21(=21−1〜21−n、例えば、n=5)を備えている。各直流電源20は、蓄電池、太陽電池、燃料電池等の分散型直流電源である。複数台のPCS21は、各直流電源20から供給される直流電力を交流電力にそれぞれ変換する装置であり、電力系統58から系統電力を受電する受電点57と、負荷55と、の間の配線54に並列に接続されている。受電点57には、系統電力値poutを検出する系統電力センサ56が設けられている。
系統電力センサ56は、電力計により構成、或いは、電流計及び電圧計により構成されている。この系統電力センサ56で検出された系統電力値poutは、第1PCS21−1へ送られ、この第1PCS21−1から次の第2PCS21−2、第3PCS21−3、・・・へ順次分配される。
各PCS21は、電力変換部30と、電力センサ36と、演算部40と、制御部50と、を有している。
電力変換部30は、制御部50から与えられる複数の制御信号s1,s2に基づいて、直流電源20から供給される直流電力を交流電力に変換するものである。電力センサ36は、電力変換部30の出力電力Pc(=Pc1〜Pcn)を検出し、この出力電力値poを制御部50に与えるものであり、電力計により構成、或いは、電流計及び電圧計により構成されている。
演算部40は、外部から与えられる第1ピークカット電力指令値pcut1(例えば、50kW)を演算して各PCS21毎に分担する第2ピークカット電力指令値pcut2を求め、この第2ピークカット電力指令値pcut2を制御部50へ与える機能を有している。制御部50は、演算部40から与えられる第2ピークカット電力指令値pcut2と、系統電力から検出された系統電力値poutと、に基づいて複数の制御信号s1,s2を生成し、電力変換部30へ与える機能を有している。
なお、図1中のPzは、負荷55へ供給される系統負荷電力である。
図3は、図1中のPCS21の構成を示す概略の機能ブロック図である。
各PCS21において、電力変換部30は、例えば、入力用のスイッチング回路31、変圧器(以下「トランス」という。)、整流回路33、フィルタ回路34、及び出力用のスイッチング回路35を有している。
入力用のスイッチング回路31は、直流電源20から出力される直流電力を入力し、入力された直流電力をスイッチングして高周波の交流電力に変換し、この交流電力をトランス32へ出力する回路であり、複数の制御信号s1によりオン/オフ動作する複数のスイッチング素子により構成されている。トランス32は、電力変換部30の入力側と出力側とを絶縁するものであり、このトランス32の出力側に、整流回路33が接続されている。
整流回路33は、トランス32から出力される交流電力を直流電力に変換する回路であり、ダイオードブリッジ回路等により構成され、この出力側に、フィルタ回路34が接続されている。フィルタ回路34は、整流回路33の出力電圧に含まれる高周波成分の除去と平滑を行う回路であり、LC回路等により構成され、この出力側に、出力用のスイッチング回路35が接続されている。
スイッチング回路35は、フィルタ回路34から出力される直流電力を、電力系統58と同一の周波数を有する低周波の交流電力に変換する回路であり、複数の制御信号s2によりオン/オフ動作する複数のスイッチング素子により構成され、この出力側が、配線54に接続されている。配線54には、電力センサ36が設けられている。
演算部40は、負荷55へ供給する電力における負荷分担の順位を設定する順位設定値と、複数台のPCS21を全て駆動させるために負荷分担の順位を変更する順位変更要素と、所定の負荷分担電力dと、に基づいて調整値AVを求め、第1ピークカット電力指令値pcut1から、調整値AVを減算して、第2ピークカット電力指令値pcut2を算出する機能を有している。
演算部40において、前記順位設定値は、複数台のPCS21にそれぞれ対応する号機番号aと、複数台のPCS21の運転台数bと、に基づいて設定される値である。前記順位変更要素は、系統電力検出時の年、月、日、時、分、秒のいずれか1つ、又は、それらの複数の組み合わせからなる時計情報cである。更に、前記所定の負荷分担電力dは、各PCS21が持つ検出誤差を吸収して第1ピークカット電力指令値pcut1に差を設けるための電力値である。
前記調整値AVは、例えば、次式(1)に従って求められる。
調整値AV={(号機番号a+時計情報c)%運転台数b}×負荷分担電力d
但し、「%」は、剰余を求めることを意味する。
・・・(1)
このように、本実施例1では、設定値として号機番号a、運転台数b、及び負荷分担電力dを設け、時計情報cである現在時刻を利用し、前記(1)式で、各PCS21の第2ピークカット電力指令値pcut2に差を設ける。つまり、前記(1)式の計算により、各PCS21毎の第2ピークカット電力指令値pcut2は、負荷分担電力dの差を持ち、全てが異なる値となる。
本実施例1の演算部40は、例えば、時計41、剰余算出手段42、乗算手段43、及び減算手段44により構成されている。
時計41は、時計情報cを計測するものであり、この出力側に、剰余算出手段42が接続されている。剰余算出手段42は、号機番号aと時計情報cとを加算し、該加算値に対して運転台数bを除算して除算結果の剰余を算出するものであり、この出力側に、乗算手段43が接続されている。乗算手段43は、剰余算出手段42で算出された剰余と、負荷分担電力dと、を乗算して調整値AVを算出するものであり、この出力側に、減算手段44が接続されている。減算手段44は、第1ピークカット電力指令値pcut1から調整値AVを減算して第2ピークカット電力指令値pcut2を算出するものであり、この出力側に、制御部50が接続されている。
制御部50は、目標値算出手段51、誤差演算手段52、及び制御信号生成手段53により構成されている。
目標値算出手段51は、第2ピークカット電力指令値pcut2から系統電力値poutを減算して出力電力目標値eを算出するものであり、この出力側に、誤差演算手段52が接続されている。誤差演算手段52は、演算により、出力電力値poと出力電力目標値eとの誤差fを算出するものであり、この出力側に、制御信号生成手段53が接続されている。制御信号生成手段53は、誤差fが減少するようなデューティ比の複数の制御信号s1,s2を生成し、これらの複数の制御信号s1,s2を電力変換部30内のスイッチング回路31、35へ与えるものであり、例えば、パルス幅変調手段(PWM手段)及び駆動手段等により構成されている。
これらの演算部40及び制御部50は、プロセッサ又は個別回路等により構成されている。
(実施例1の全体の動作)
図1及び図3に示す分散型電源装置において、外部から系統電力の上限の第1ピークカット電力指令値pcut1が供給されると、この第1ピークカット電力指令値pcut1が、各PCS21内の演算部40へ与えられる。電力系統58の系統電力は、受電点57及び配線54を経由して負荷55へ供給される。
系統電力センサ56で検出された系統電力値poutは、各PCS21へ与えられる。図1の例では、第1PCS21−1を経由して順に第2PCS21−2、第3PCS21−3、第4PCS21−4、及び第5PCS21−5へ同一値として分配される。
負荷55へ供給される系統負荷電力Pzの変動により、系統電力センサ56で検出された系統電力値poutが増加し、この系統電力値poutが第1ピークカット電力指令値pcut1を超えようとすると、複数台のPCS21が、以下のように動作する。
各PCS21内の演算部40において、剰余算出手段42は、号機番号aと時計情報cとを加算し、該加算値に対して運転台数bを除算して除算結果の剰余を算出し、この算出結果を乗算手段43へ与える。乗算手段43は、剰余算出手段42で算出された剰余と、負荷分担電力dと、を乗算して前記(1)式の調整値AVを求め、減算手段44へ与える。減算手段44は、第1ピークカット電力指令値pcut1から調整値AVを減算して第2ピークカット電力指令値pcut2を算出し、各制御部50内の目標値算出手段51へ与える。
各制御部50内の目標値算出手段51は、演算部40から与えられた第2ピークカット電力指令値pcut2から、系統電力センサ56で検出された系統電力値poutを減算して、出力電力目標値eを算出し、誤差演算手段52へ与える。誤差演算手段52は、電力センサ36で検出された出力電力値poと、出力電力目標値eと、の誤差fを算出し、制御信号生成手段53へ与える。これにより、制御信号生成手段53は、誤差fが減少するようなデューティ比の複数の制御信号s1,s2を生成し、電力変換部30へ与える。
各電力変換部30において、入力用のスイッチング回路31は、制御部50から与えられた複数の制御信号s1に基づき、直流電源20から出力された直流電力をスイッチングして高周波の交流電力に変換する。変換された交流電力は、トランス32を介して、整流回路33で直流電力に変換され、フィルタ回路34にて、高周波成分の除去と平滑が行われ、出力用のスイッチング回路35へ送られる。
スイッチング回路35は、制御部50から与えられた複数の制御信号s2に基づき、フィルタ回路34から出力された直流電力を、電力系統58と同一の周波数を有する低周波の交流電力に変換する。変換された出力電力Pcは、電力センサ36で検出され、この出力電力値poが制御部50へ与えられる。
制御部50において、系統電力センサ56で検出された系統電力値poutが第2ピークカット電力指令値pcut2を超えないように制御され、この制御信号s1,s2に基づき、複数台のPCS21が動作して不足分の電力が負荷55へ供給される。これにより、系統電力の上限値が抑えられ、電力系統58が平準化される。
(実施例1のPCSの負荷分担動作)
図4(a)〜(c)は、図1の分散型電源装置における動作を示す説明図である。
図4(a)〜(c)において、同図(a)は、並列運転機能無しの従来のPCS10の負荷分担特性図、同図(b)は、並列運転機能有りの本実施例1のPCS21の負荷分担特性図、及び、同図(c)は、並列運転機能有りの本実施例1のPCS21毎の第2ピークカット電力指令値pcut2の算出例を示す図である。
図4(a)に示す従来のように、各PCS10(=10−1〜10−5)の出力電力Pc(=Pc1〜Pc5)が同一の目標値になるよう個別に電力制御を行うと、検出誤差のばらつきにより、何れかのPCS10が負荷電力Pzを全て背負い込む動作を行う。誤差ではなく、的確に負荷分担を管理するため、本実施例1では、各PCS21における号機番号a、運転台数b及び負荷分担電力dと、現在時刻と、による制御を行っている。
本実施例1において、ピークカット供給運転時の動作イメージが、図4(b)に示されている。例えば、複数台のPCS21(=21−1〜21−5)において、これらの複数の出力電力Pc(=Pc1〜Pc5)により、系統負荷電力Pzが順に分担される。
図4(b)の動作を実現するため、前記(1)式に基づき、各PCS21毎の第2ピークカット電力指令値pcut2が演算部40で求められる。この結果、各PCS21の第2ピークカット電力指令値pcut2が差を持つため、負荷分担が順に制御されることになる。
図4(c)には、例えば、第1ピークカット電力指令値pcut1を50kW、運転台数bを5台、負荷分担電力dを0.3kW、現在時刻として日を採用した場合の計算例が示されている。
図4(c)において、○月4日の場合、系統電力の負荷55が増大して系統入力電力である系統電力値poutが48.8kWを超えると、PCS21−5が出力を開始する。PCS定格の10kWを超える場合、PCS21−5だけでは制御しきれなくなり、系統電力値poutが48.8kWを超える。その後、49.1kWに到達してPCS21−4が出力を行う。以降同様に、PCS21−3,21−2,21−1が順に出力を行う。
なお、計算式に日付があるため、翌5日には、PCS21−4の計算結果が最も低い48.8kWになり、最初に負荷電力Pzを受け持つ。以降同様に、PCS21−3,21−2,21−1,21−5が順に負荷電力Pzを受け持つことになる。
このような動作により、負荷分担が管理される。
一方で、各直流電源20に蓄電池や太陽電池の他、風力発電や水力発電を起源とした電力を組み合わせた場合においても、本方式により系統電力の制御が可能である。図4(c)の○月4日の場合において、直流電源20−1と直流電源20−2、20−3に蓄電池、直流電源20−4と直流電源20−5に太陽電池を接続した場合、系統電力の負荷55が増大して系統電力値poutが48.8kWを超えると、PCS21−5が出力を開始しようとするが、天候不良等の要因により太陽電池の発電電力が不足すると、十分な電力が供給できずに系統電力値poutが48.8kWを超える。その後、49.1kWに到達してPCS21−4が出力を行うが、同様の理由により太陽電池の供給電力が不足して系統電力値poutが49.4kWを超えるとPCS21−3が出力を開始し、系統電力値poutの制御が行われる。
(実施例1の効果)
本実施例1の分散型電源装置によれば、各PCS21に演算部40を設け、この演算部40により、号機番号a及び運転台数bからなる負荷分担の順位設定値と、時計情報cからなる負荷分担の順位変更要素と、負荷分担電力dと、に基づいて調整値AVを求め、第1ピークカット電力指令値pcut1からその調整値AVを減算して、第2ピークカット電力指令値pcut2を算出しているので、各PCS21の制御目標値である第2ピークカット電力指令値pcut2に差が生まれる。この差により、個々のPCS21が持つ検出誤差や制御応答のばらつきの影響を受けなくなるため、系統電力が、この上限である第1ピークカット電力指令値pcut1以下に的確に抑えられ、電力系統58の平準化を図ることができる。
(変形例)
本発明は、上記実施例1に限定されず、種々の利用形態や変形が可能である。この利用形態や変形例としては、例えば、次の(I)、(II)のようなものがある。
(I) 図3に示すPCS21は、図示の構成に限定されない。例えば、演算部40は、前記(1)式以外の他の数式により、調整値AVを求めても良い。演算部40は、制御部50内に設けても良い。又、各演算部40内に設けられた時計41に代えて、複数の演算部40に共用できる1つの時計を設け、この時計の時計情報cを各演算部40へ与える構成にしても良く、これにより、構成を簡素化できる。
(II) 図1及び図3に示す分散型電源装置は、図示の構成に限定されない。例えば、電力変換部30は、図示以外の他の回路で構成しても良い。
20,20−1〜20−n 直流電源
21,21−1〜21−n PCS(電力変換装置)
30 電力変換部
36 電力センサ
40 演算部
41 時計
42 剰余算出手段
43 乗算手段
44 減算手段
50 制御部
51 目標値算出手段
52 誤差演算手段
53 制御信号生成手段
55 負荷
56 系統電力センサ
57 系統電力の受電点
58 電力系統

Claims (9)

  1. 電力系統から系統電力を受電する受電点と負荷との間の配線に並列に接続され、直流電力を交流電力にそれぞれ変換する複数台の電力変換装置を備え、
    前記電力系統から前記負荷へ供給される負荷電力が、前記電力系統から受電する前記系統電力の上限の第1ピークカット電力指令値を超えたとき、前記複数台の電力変換装置から前記負荷へ電力を供給する分散型電源装置であって、
    前記各電力変換装置は、
    前記第1ピークカット電力指令値を演算して前記各電力変換装置毎に分担する第2ピークカット電力指令値を求める演算部と、
    前記演算部で求められた前記第2ピークカット電力指令値と、前記系統電力から検出された系統電力値と、に基づいて出力電力目標値を求め、前記各電力変換装置の出力電力から検出された出力電力値と、前記出力電力目標値と、の誤差が減少するような制御信号を生成する制御部と、
    前記制御信号に基づいて、前記直流電力を前記交流電力に変換する電力変換部と、
    を有し、
    前記演算部は、
    前記負荷へ供給する前記電力における負荷分担の順位を設定する順位設定値と、前記複数台の電力変換装置を全て駆動させるために前記負荷分担の順位を変更する順位変更要素と、所定の負荷分担電力と、に基づいて調整値を求め、前記第1ピークカット電力指令値から、前記調整値を減算して、前記第2ピークカット電力指令値を算出することを特徴とする分散型電源装置。
  2. 前記順位設定値は、前記複数台の電力変換装置にそれぞれ対応する号機番号と、前記複数台の電力変換装置の運転台数と、に基づき設定される値であり、
    前記順位変更要素は、系統電力検出時の年、月、日、時、分、秒のいずれか1つ、又は、それらの複数の組み合わせからなる時計情報であり、
    前記所定の負荷分担電力は、前記各電力変換装置が持つ検出誤差を吸収して前記第1ピークカット電力指令値に差を設けるための電力値である、
    ことを特徴とする請求項1記載の分散型電源装置。
  3. 前記調整値は、
    下記の式に従って求めることを特徴とする請求項2記載の分散型電源装置。
    調整値={(号機番号+時計情報)%運転台数}×負荷分担電力
    但し、「%」は、剰余を求めることを意味する。
  4. 前記演算部は、
    前記号機番号と前記時計情報とを加算し、該加算値に対して前記運転台数を除算して除算結果の剰余を算出する剰余算出手段と、
    前記剰余算出手段で算出された前記剰余と、前記負荷分担電力と、を乗算して前記調整値を算出する乗算手段と、
    前記第1ピークカット電力指令値から前記調整値を減算して前記第2ピークカット電力指令値を算出する減算手段と、
    を有することを特徴とする請求項3記載の分散型電源装置。
  5. 前記系統電力値及び前記出力電力値は、2つの電力センサによりそれぞれ検出されることを特徴とする請求項1〜4のいずれか1項記載の分散型電源装置。
  6. 前記時計情報は、時計により計測されることを特徴とする請求項2〜5のいずれか1項記載の分散型電源装置。
  7. 前記制御部は、
    前記第2ピークカット電力指令値から前記系統電力値を減算して前記出力電力目標値を算出する目標値算出手段と、
    前記出力電力値と前記出力電力目標値との誤差を演算により算出する誤差演算手段と、
    前記誤差が減少するようなデューティ比の前記制御信号を生成する制御信号生成手段と、
    を有することを特徴とする請求項1〜6のいずれか1項記載の分散型電源装置。
  8. 前記演算部及び前記制御部は、プロセッサ又は個別回路により構成されていることを特徴とする請求項1〜7のいずれか1項記載の分散型電源装置。
  9. 前記各電力変換装置に入力される前記直流電力は、
    蓄電池、太陽電池及び燃料電池を含む分散型直流電源から供給されることを特徴とする請求項1〜8のいずれか1項記載の分散型電源装置。
JP2015129615A 2015-06-29 2015-06-29 分散型電源装置 Active JP6425625B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015129615A JP6425625B2 (ja) 2015-06-29 2015-06-29 分散型電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129615A JP6425625B2 (ja) 2015-06-29 2015-06-29 分散型電源装置

Publications (2)

Publication Number Publication Date
JP2017017792A true JP2017017792A (ja) 2017-01-19
JP6425625B2 JP6425625B2 (ja) 2018-11-21

Family

ID=57831193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129615A Active JP6425625B2 (ja) 2015-06-29 2015-06-29 分散型電源装置

Country Status (1)

Country Link
JP (1) JP6425625B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058428A1 (ja) * 2017-09-19 2019-03-28 東芝三菱電機産業システム株式会社 太陽光発電システムおよび太陽光発電方法
CN110417004A (zh) * 2019-07-12 2019-11-05 国网甘肃省电力公司经济技术研究院 一种特高压交直流送端电网多源协调调峰潜力计算模型
JP2021141794A (ja) * 2020-03-04 2021-09-16 台達電子工業股▲ふん▼有限公司Delta Electronics, Inc. スマートグリッドシステム及びその電力管理方法
JP7404751B2 (ja) 2019-10-08 2023-12-26 株式会社Gsユアサ エネルギー管理装置、エネルギー管理方法
US11929621B2 (en) 2019-04-26 2024-03-12 Gs Yuasa International Ltd. Power control apparatus, control method for power control apparatus, and distributed power generating system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218654A (ja) * 2001-01-24 2002-08-02 Furukawa Electric Co Ltd:The 太陽光発電システム
JP2013247795A (ja) * 2012-05-28 2013-12-09 Shimizu Corp 分散型電源の自立運転システム
US20140088778A1 (en) * 2012-09-27 2014-03-27 Lsis Co., Ltd. Control device for distributed generators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218654A (ja) * 2001-01-24 2002-08-02 Furukawa Electric Co Ltd:The 太陽光発電システム
JP2013247795A (ja) * 2012-05-28 2013-12-09 Shimizu Corp 分散型電源の自立運転システム
US20140088778A1 (en) * 2012-09-27 2014-03-27 Lsis Co., Ltd. Control device for distributed generators

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058428A1 (ja) * 2017-09-19 2019-03-28 東芝三菱電機産業システム株式会社 太陽光発電システムおよび太陽光発電方法
JPWO2019058428A1 (ja) * 2017-09-19 2020-10-15 東芝三菱電機産業システム株式会社 太陽光発電システムおよび太陽光発電方法
US11495970B2 (en) * 2017-09-19 2022-11-08 Toshiba Mitsubishi-Electric Industrial Systems Corporation Photovoltaic power generation system and photovoltaic power generation method
US11929621B2 (en) 2019-04-26 2024-03-12 Gs Yuasa International Ltd. Power control apparatus, control method for power control apparatus, and distributed power generating system
CN110417004A (zh) * 2019-07-12 2019-11-05 国网甘肃省电力公司经济技术研究院 一种特高压交直流送端电网多源协调调峰潜力计算模型
CN110417004B (zh) * 2019-07-12 2022-08-05 国网甘肃省电力公司经济技术研究院 一种特高压交直流送端电网多源协调调峰潜力计算模型
JP7404751B2 (ja) 2019-10-08 2023-12-26 株式会社Gsユアサ エネルギー管理装置、エネルギー管理方法
JP2021141794A (ja) * 2020-03-04 2021-09-16 台達電子工業股▲ふん▼有限公司Delta Electronics, Inc. スマートグリッドシステム及びその電力管理方法
JP7014362B2 (ja) 2020-03-04 2022-02-01 台達電子工業股▲ふん▼有限公司 スマートグリッドシステム及びその電力管理方法

Also Published As

Publication number Publication date
JP6425625B2 (ja) 2018-11-21

Similar Documents

Publication Publication Date Title
JP6425625B2 (ja) 分散型電源装置
US7476987B2 (en) Stand-alone wind turbine system, apparatus, and method suitable for operating the same
US9257863B2 (en) Charge and discharge control device and charge and discharge control method
US20110242857A1 (en) Maximum power point tracker, power conversion controller, power conversion device having insulating structure, and method for tracking maximum power point thereof
CN111095008A (zh) 用于电化学阻抗谱的电气架构
KR102308628B1 (ko) 하이브리드 전력변환 시스템 및 이를 이용하는 최대 효율 결정 방법
JP5887260B2 (ja) 蓄電池の残量管理装置
US20230261510A1 (en) Method and apparatus for controlling busbar voltage of photovoltaic system
JP6419809B2 (ja) 蓄電システム及び特性パラメータの推定方法
JP6701922B2 (ja) 蓄電制御装置
JP2017189005A (ja) 蓄電装置
JP5644965B2 (ja) 蓄電池システム
JP2003116225A (ja) 分散電源システム
JP5085260B2 (ja) Pwm信号生成回路、このpwm信号生成回路を備えた系統連系インバータシステム、及びこのpwm信号生成回路を実現するためのプログラム
JP5573258B2 (ja) 電力制御装置、電力制御システム、蓄電池制御方法、及びプログラム
JP2019041449A (ja) Dc/dcコンバータの制御装置
KR102211363B1 (ko) 에너지 저장 시스템과 그의 구동방법
JP2010081711A (ja) 充電回路、充電回路制御方法および充電回路制御プログラム
JP5530009B1 (ja) 電源装置
JP2021168555A (ja) 電力変換装置
JP6851030B2 (ja) コントローラ、蓄電システムおよびプログラム
KR20130055578A (ko) 전환식 파워 서플라이
JP2015008561A (ja) 低損失電力変換装置及びその制御方法
JP2015186390A (ja) マルチソースpcs群の制御装置およびその方法
KR20180049511A (ko) 하이브리드 발전 설비의 충전 효율 향상을 위한 모니터링 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181023

R150 Certificate of patent or registration of utility model

Ref document number: 6425625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150