JP2017016766A - Method of manufacturing positive electrode composite particle - Google Patents

Method of manufacturing positive electrode composite particle Download PDF

Info

Publication number
JP2017016766A
JP2017016766A JP2015129617A JP2015129617A JP2017016766A JP 2017016766 A JP2017016766 A JP 2017016766A JP 2015129617 A JP2015129617 A JP 2015129617A JP 2015129617 A JP2015129617 A JP 2015129617A JP 2017016766 A JP2017016766 A JP 2017016766A
Authority
JP
Japan
Prior art keywords
positive electrode
solid electrolyte
active material
electrode active
oxide solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015129617A
Other languages
Japanese (ja)
Inventor
古賀 英行
Hideyuki Koga
英行 古賀
内藤 牧男
Makio Naito
牧男 内藤
近藤 光
Hikari Kondo
光 近藤
小澤 隆弘
Takahiro Ozawa
隆弘 小澤
光昭 松岡
Mitsuaki Matsuoka
光昭 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015129617A priority Critical patent/JP2017016766A/en
Publication of JP2017016766A publication Critical patent/JP2017016766A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a positive electrode composite particle in which an oxide solid electrolyte and a positive electrode active material can be joined to each other without a calcination step at a high temperature.SOLUTION: A method of manufacturing a positive electrode composite particle includes a step in which an oxide solid electrolyte and a positive electrode active material particle are mechanically mixed with each other by mechanochemical treatment.SELECTED DRAWING: None

Description

本発明は、正極活物質と酸化物固体電解質とを接合させた正極複合粒子の製造方法に関する。   The present invention relates to a method for producing positive electrode composite particles in which a positive electrode active material and an oxide solid electrolyte are joined.

特許文献1には、硫化物固体電解質を用いたリチウム電池において、正極活物質と硫化物固体電解質との界面抵抗を低減するために、所定のリン酸化合物(酸化物固体電解質)を含有する被覆材で正極活物質粒子の表面を被覆することが開示されている。また、特許文献2には、固体電解質としてNASICON型のリン酸化合物(酸化物固体電解質)を用いた電池用焼結体が開示されている。さらに、特許文献3には、硫化物系正極活物質の合成時にメカノケミカル処理を行う点が開示されている。   Patent Document 1 discloses a coating containing a predetermined phosphoric acid compound (oxide solid electrolyte) in a lithium battery using a sulfide solid electrolyte in order to reduce the interface resistance between the positive electrode active material and the sulfide solid electrolyte. It is disclosed that the surface of positive electrode active material particles is coated with a material. Patent Document 2 discloses a sintered body for a battery using a NASICON type phosphoric acid compound (oxide solid electrolyte) as a solid electrolyte. Furthermore, Patent Document 3 discloses that mechanochemical treatment is performed during the synthesis of the sulfide-based positive electrode active material.

特開2015−072772号公報Japanese Patent Laying-Open No. 2015-072772 国際公開2012/043566号パンフレットInternational Publication 2012/043566 Pamphlet 特開2014−056755号公報JP 2014-056755 A

特許文献1、2に開示されているように、一般的に、酸化物固体電解質と正極活物質とを接合して良好な界面を形成させるには高温(例えば500℃以上)での焼成が必要となる。すなわち、熱処理プロセスが必要となりコスト面で不利である。そこで、本発明は、高温での焼成工程を行わずとも酸化物固体電解質と正極活物質とを接合可能な、正極複合粒子の製造方法を提供することを課題とする。   As disclosed in Patent Documents 1 and 2, generally, firing at a high temperature (eg, 500 ° C. or higher) is required to join a solid oxide electrolyte and a positive electrode active material to form a good interface. It becomes. That is, a heat treatment process is required, which is disadvantageous in terms of cost. Then, this invention makes it a subject to provide the manufacturing method of positive electrode composite particle which can join oxide solid electrolyte and positive electrode active material, without performing the baking process at high temperature.

上記課題を解決するために、本発明は以下の構成を採る。すなわち、
本発明は、酸化物固体電解質と正極活物質粒子とをメカノケミカル処理により機械的に混合する工程を備える、正極複合粒子の製造方法である。
In order to solve the above problems, the present invention adopts the following configuration. That is,
The present invention is a method for producing positive electrode composite particles comprising a step of mechanically mixing oxide solid electrolyte and positive electrode active material particles by mechanochemical treatment.

本発明によれば、高温での焼成工程を行わずとも酸化物固体電解質と正極活物質とを接合して正極複合粒子を製造することができる。   According to the present invention, positive electrode composite particles can be produced by joining an oxide solid electrolyte and a positive electrode active material without performing a firing step at a high temperature.

実施例にて使用した摩砕ミル装置を説明するための概略図である。It is the schematic for demonstrating the grinding mill apparatus used in the Example. 実施例に係る正極複合粒子(正極活物質/酸化物固体電解質コンポジット粒子)の断面SEM‐EDX写真図である。It is a cross-sectional SEM-EDX photograph figure of the positive electrode composite particle (positive electrode active material / oxide solid electrolyte composite particle) which concerns on an Example. 実施例・比較例に係る正極合剤を用いて作製された圧粉セル(全固体電池)の充放電試験の結果を示すデータである。It is data which shows the result of the charging / discharging test of the compacting cell (all-solid-state battery) produced using the positive mix which concerns on an Example and a comparative example.

本発明に係る正極複合粒子の製造方法は、酸化物固体電解質と正極活物質粒子とをメカノケミカル処理により機械的に混合する工程を備えることを特徴とする。   The manufacturing method of the positive electrode composite particles according to the present invention includes a step of mechanically mixing the oxide solid electrolyte and the positive electrode active material particles by mechanochemical treatment.

1.酸化物固体電解質
本発明において用いられる酸化物固体電解質は、全固体電池の正極において用いられている公知の酸化物固体電解質をいずれも採用可能である。特に、硫化物系のリチウム全固体電池に適用可能なものが好ましい。例えば、Al、Sc、Ti、V、Y、Zr、Nb、Ca、Sr、Ba、Hf、Ta、Cr、Mo、Wのうちいずれか一種以上の元素と、Liとを含有するリン酸化合物や、一般式LiAO(Aは、B、C、Al、Si、P、S、Ti、Zr、Nb、Mo、Ta、La、Zr又はWであり、x及びyは正の数である。)で表される複合酸化物等を挙げることができる。中でもリン酸化合物が好ましく、特にNASICON型のLi1+xAlTi2−x12(0≦x≦1、好ましくはx=0.3)が好ましい。酸化物固体電解質の形状は特に限定されるものではないが、粒子状(粉体状)が好ましく、その一次粒子径が1nm以上100μm以下であることが好ましい。上限がより好ましくは30μm以下、さらに好ましくは3μm以下である。
1. Oxide Solid Electrolyte Any known oxide solid electrolyte used in the positive electrode of an all-solid battery can be used as the oxide solid electrolyte used in the present invention. In particular, those applicable to sulfide-based lithium all solid state batteries are preferable. For example, a phosphoric acid compound containing at least one element selected from Al, Sc, Ti, V, Y, Zr, Nb, Ca, Sr, Ba, Hf, Ta, Cr, Mo, and W and Li , General formula Li x AO y (A is B, C, Al, Si, P, S, Ti, Zr, Nb, Mo, Ta, La, Zr or W, and x and y are positive numbers. )) And the like. Among them, a phosphoric acid compound is preferable, and NASICON type Li 1 + x Al x Ti 2−x P 3 O 12 (0 ≦ x ≦ 1, preferably x = 0.3) is preferable. The shape of the oxide solid electrolyte is not particularly limited, but is preferably particulate (powdered), and the primary particle diameter is preferably 1 nm or more and 100 μm or less. The upper limit is more preferably 30 μm or less, and further preferably 3 μm or less.

2.正極活物質粒子
本発明において用いられる正極活物質粒子は、全固体電池の正極活物質粒子として用いられている公知の粒子をいずれも採用可能である。特に、硫化物系のリチウム全固体電池に適用可能なものが好ましい。例えば、LiCoO、LiNiCo1−x(0<x<1)、LiNi1/3Co1/3Mn1/3、LiMnO、異種元素置換Li−Mnスピネル(LiMn1.5Ni0.5、LiMn1.5Al0.5、LiMn1.5Mg0.5、LiMn1.5Co0.5、LiMn1.5Fe0.5、LiMn1.5Zn0.5)、チタン酸リチウム(例えばLiTi12)、リン酸金属リチウム(LiFePO、LiMnPO、LiCoPO、LiNiPO)等を挙げることができる。正極活物質粒子は、その一次粒子径が1nm以上100μm以下であることが好ましい。下限がより好ましくは10nm以上、さらに好ましくは100nm以上、特に好ましくは500nm以上であり、上限がより好ましくは30μm以下、さらに好ましくは3μm以下である。
2. Cathode Active Material Particles As the cathode active material particles used in the present invention, any known particles used as cathode active material particles for all solid state batteries can be adopted. In particular, those applicable to sulfide-based lithium all solid state batteries are preferable. For example, LiCoO 2 , LiNi x Co 1-x O 2 (0 <x <1), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMnO 2 , heteroelement-substituted Li—Mn spinel (LiMn 1. 5 Ni 0.5 O 4 , LiMn 1.5 Al 0.5 O 4 , LiMn 1.5 Mg 0.5 O 4 , LiMn 1.5 Co 0.5 O 4 , LiMn 1.5 Fe 0.5 O 4 , LiMn 1.5 Zn 0.5 O 4 ), lithium titanate (for example, Li 4 Ti 5 O 12 ), lithium metal phosphate (LiFePO 4 , LiMnPO 4 , LiCoPO 4 , LiNiPO 4 ) and the like. . The positive electrode active material particles preferably have a primary particle diameter of 1 nm to 100 μm. The lower limit is more preferably 10 nm or more, further preferably 100 nm or more, particularly preferably 500 nm or more, and the upper limit is more preferably 30 μm or less, and even more preferably 3 μm or less.

3.メカノケミカル処理
本発明者らは鋭意研究により、メカノケミカル処理による機械的な混合だけで、酸化物固体電解質と正極活物質粒子とを適切に接合することができることを知見した。本発明において適用されるメカノケミカル処理は、酸化物固体電解質及び正極活物質粒子に対してせん断力、圧縮力、衝突力或いは遠心力といった機械的エネルギーを付与しつつ機械的に混合する形態であればよい。公知のミル装置(ボールミル、ビーズミル、振動ミル、摩砕ミル等)を用いることにより、酸化物固体電解質と正極活物質粒子とをメカノケミカル処理によって機械的に混合することができる。混合は乾式混合であっても湿式混合であってもよい。メカノケミカル処理において加熱手段による加熱は不要である。混合時間等については、特に限定されるものではなく、酸化物固体電解質や正極活物質粒子の形態に合わせて適宜調整すればよい。
3. Mechanochemical treatment The present inventors have intensively studied and found that the oxide solid electrolyte and the positive electrode active material particles can be appropriately joined only by mechanical mixing by mechanochemical treatment. The mechanochemical treatment applied in the present invention is a form in which mechanical mixing such as shearing force, compressive force, impact force or centrifugal force is applied to the oxide solid electrolyte and the positive electrode active material particles while mechanically mixing them. That's fine. By using a known mill device (ball mill, bead mill, vibration mill, grinding mill, etc.), the oxide solid electrolyte and the positive electrode active material particles can be mechanically mixed by mechanochemical treatment. Mixing may be dry mixing or wet mixing. In the mechanochemical treatment, heating by heating means is unnecessary. About mixing time etc., it does not specifically limit, What is necessary is just to adjust suitably according to the form of oxide solid electrolyte or positive electrode active material particle.

4.正極複合粒子
本発明においては、上述の酸化物固体電解質と正極活物質粒子とをメカノケミカル処理によって機械的に混合することにより、高温焼成を行わずとも、酸化物固体電解質の構成元素と正極活物質粒子の構成元素とが互いに高分散化した正極複合粒子を製造することができる。正極複合粒子においては、酸化物固体電解質と正極活物質とが良好な界面を形成しており、例えば硫化物全固体電池の正極に適用した場合においても適切に充放電が可能となる。正極複合粒子における酸化物固体電解質と正極活物質との比率(質量比や体積比)については適宜調整可能である。固体電池の正極とした場合において、当該正極の性能を一層向上させる観点からは、例えば、正極複合粒子全体を基準(100質量%)として、正極活物質が50質量%以上95質量%以下、酸化物固体電解質が5質量%以上50質量%以下とすることが好ましい。
4). Positive electrode composite particles In the present invention, the above-described oxide solid electrolyte and positive electrode active material particles are mechanically mixed by mechanochemical treatment, so that the constituent elements of the oxide solid electrolyte and the positive electrode active material can be obtained without performing high-temperature firing. Positive electrode composite particles in which the constituent elements of the substance particles are highly dispersed can be produced. In the positive electrode composite particles, the oxide solid electrolyte and the positive electrode active material form a good interface, and for example, when applied to the positive electrode of a sulfide all solid state battery, charging and discharging can be appropriately performed. The ratio (mass ratio or volume ratio) between the oxide solid electrolyte and the positive electrode active material in the positive electrode composite particles can be appropriately adjusted. When the positive electrode of the solid battery is used, from the viewpoint of further improving the performance of the positive electrode, for example, the positive electrode active material is 50% by mass or more and 95% by mass or less, based on the total positive electrode composite particles (100% by mass), oxidation. The solid electrolyte is preferably 5% by mass or more and 50% by mass or less.

5.正極複合粒子の用途
本発明により製造される正極複合粒子は、さらに硫化物固体電解質や任意に導電助剤やバインダーと混合して正極合剤とすることができる。正極合剤とするにあたっては、正極合剤を構成する成分のうち正極活物質粒子及び酸化物固体電解質のみをメカノケミカル処理により機械的に混合して複合化したうえで、その後、それ以外の合剤成分である硫化物固体電解質等を混合することが重要である。このようにして得られる正極合剤は、硫化物全固体電池(特に硫化物系のリチウム全固体電池)の正極を構成する正極合剤として好適に利用可能である。硫化物固体電解質、導電助剤及びバインダーについては、公知のものをいずれも採用可能であり、ここでは説明を省略する。
5. Use of positive electrode composite particles The positive electrode composite particles produced according to the present invention can be further mixed with a sulfide solid electrolyte or optionally a conductive additive or binder to form a positive electrode mixture. In preparing the positive electrode mixture, only the positive electrode active material particles and the oxide solid electrolyte among the components constituting the positive electrode mixture are mechanically mixed and mechanized by mechanochemical treatment, and then the other compounds are mixed. It is important to mix a sulfide solid electrolyte or the like which is an agent component. The positive electrode mixture thus obtained can be suitably used as a positive electrode mixture constituting a positive electrode of a sulfide all solid battery (particularly a sulfide-based lithium all solid battery). As the sulfide solid electrolyte, the conductive auxiliary agent, and the binder, all known ones can be adopted, and description thereof is omitted here.

通常、硫化物固体電解質と正極活物質とが直接接触した場合、互いに反応して界面抵抗が上昇することから、これを防ぐべく、正極活物質の表面にLiNbO等の均一コートが必要となる。一方、本発明では、正極活物質が酸化物固体電解質とともに予め複合化されているため、ここに硫化物固体電解質を混合したとしても、硫化物固体電解質と正極活物質との直接接触が抑えられる。すなわち、LiNbO等のコートをせずとも、電池の作動が可能である。 Usually, when the sulfide solid electrolyte and the positive electrode active material are in direct contact, they react with each other to increase the interface resistance. Therefore, in order to prevent this, a uniform coating of LiNbO 3 or the like is required on the surface of the positive electrode active material. . On the other hand, in the present invention, since the positive electrode active material is previously combined with the oxide solid electrolyte, even if the sulfide solid electrolyte is mixed here, direct contact between the sulfide solid electrolyte and the positive electrode active material can be suppressed. . That is, the battery can be operated without coating with LiNbO 3 or the like.

以上のように、本発明によれば、メカノケミカル処理による機械的な混合によって、酸化物固体電解質と正極活物質とを適切に接合して正極複合粒子を製造可能である。本発明に係る製造方法は、高温での焼成が不要であり非常に生産性が高い。   As described above, according to the present invention, positive electrode composite particles can be produced by appropriately joining an oxide solid electrolyte and a positive electrode active material by mechanical mixing by mechanochemical treatment. The production method according to the present invention does not require firing at a high temperature and is very productive.

<比較例>
(正極活物質粒子の作製)
原料として、酸化リチウム(LiO)及び酸化コバルト(Co)をLi:Co=1:1のモル比となるように秤量した。これらの原料を、図1に示した摩砕ミルの容器内に投入した。尚、容器及びローターは、ともにSUS304製とした。摩砕ミルを作動させて、メカノケミカル処理による機械的混合を行った。
<Comparative example>
(Preparation of positive electrode active material particles)
As raw materials, lithium oxide (Li 2 O) and cobalt oxide (Co 3 O 4 ) were weighed so as to have a molar ratio of Li: Co = 1: 1. These raw materials were put into the container of the grinding mill shown in FIG. Both the container and the rotor were made of SUS304. The grinding mill was activated and mechanical mixing was performed by mechanochemical treatment.

(評価用電池の作製)
得られた正極活物質粒子と、硫化物固体電解質(LiS−P)と、アセチレンブラック(電気化学工業社製HS−100)とを体積比で100:80:1となるようにして混合し、正極合剤を得た。得られた正極合剤をプレスして正極層とし、硫化物固体電解質(LiS−P)及びグラファイト負極を組み合わせて比較例に係る圧粉セルを作製した。
(Production of evaluation battery)
The obtained positive electrode active material particles, sulfide solid electrolyte (Li 2 S—P 2 S 5 ), and acetylene black (HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.) are in a volume ratio of 100: 80: 1. To obtain a positive electrode mixture. The obtained positive electrode mixture was pressed into a positive electrode layer, and a sulfide solid electrolyte (Li 2 S—P 2 S 5 ) and a graphite negative electrode were combined to produce a dust cell according to a comparative example.

<実施例>
(正極複合粒子の作製)
比較例1と同様にして正極活物質粒子を作製した。酸化物固体電解質としてLATP(Li1.3Al0.3Ti1.7(PO)を、体積比で正極活物質粒子:酸化物固体電解質=75:25となるように加え、図1に示した摩砕ミルの容器内に投入した。摩砕ミルを作動させて、メカノケミカル処理による機械的混合を行い、正極複合粒子を得た。
<Example>
(Preparation of positive electrode composite particles)
In the same manner as in Comparative Example 1, positive electrode active material particles were produced. LATP (Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 ) was added as an oxide solid electrolyte so that the positive electrode active material particles: oxide solid electrolyte = 75: 25 by volume ratio. It was put into the container of the grinding mill shown in 1. The grinding mill was operated to perform mechanical mixing by mechanochemical treatment to obtain positive electrode composite particles.

(評価用電池の作製)
得られた正極複合粒子と、硫化物固体電解質(LiS−P)と、アセチレンブラック(電気化学工業社製HS−100)とを体積比で100:80:1となるようにして混合し、正極合剤を得た。得られた正極合剤をプレスして正極層とし、硫化物固体電解質(LiS−P)及びグラファイト負極を組み合わせて実施例に係る圧粉セルを作製した。
(Production of evaluation battery)
The obtained positive electrode composite particles, sulfide solid electrolyte (Li 2 S—P 2 S 5 ), and acetylene black (HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.) were adjusted to a volume ratio of 100: 80: 1. And mixed to obtain a positive electrode mixture. The obtained positive electrode mixture was pressed into a positive electrode layer, and a powder solid cell according to the example was manufactured by combining a sulfide solid electrolyte (Li 2 S—P 2 S 5 ) and a graphite negative electrode.

<充放電試験>
比較例・実施例に係る評価用電池それぞれについて充放電試験を行った。充電は、0.1Cで4.1Vまで定電流充電した後、0.01Cまで定電圧充電を行うものとした。放電は、0.1Cで3.0Vまで行うものとした。
<Charge / discharge test>
A charge / discharge test was performed for each of the evaluation batteries according to the comparative example and the example. The charging was performed by constant current charging to 4.1 V at 0.1 C and then constant voltage charging to 0.01 C. The discharge was performed up to 3.0 V at 0.1 C.

<評価結果>
図2に、実施例にて得られた正極複合材料の断面SEM−EDX像を示す。図2から、酸化物固体電解質の構成元素であるTi及びPと、正極活物質の構成元素であるCoとが、粒子内で高分散化していることが分かる。すなわち、メカノケミカル処理による機械的混合によって、酸化物固体電解質と正極活物質とが高分散化したコンポジット粒子(複合粒子)が製造できることが分かった。
<Evaluation results>
In FIG. 2, the cross-sectional SEM-EDX image of the positive electrode composite material obtained in the Example is shown. From FIG. 2, it can be seen that Ti and P, which are constituent elements of the oxide solid electrolyte, and Co, which is a constituent element of the positive electrode active material, are highly dispersed in the particles. That is, it was found that composite particles (composite particles) in which the oxide solid electrolyte and the positive electrode active material are highly dispersed can be manufactured by mechanical mixing by mechanochemical treatment.

図3に、比較例・実施例に係る電池特性評価結果を示す。図3から、比較例では、正極合剤において酸化物固体電解質が含まれておらず、正極活物質と硫化物固体電解質とが直接接触するため、界面抵抗が上昇し、ほとんど放電を行うことができなかった。一方、正極合剤において正極複合粒子を用いた場合は、比較例に比べて放電容量が大きく向上した。メカノケミカル処理により、酸化物固体電解質と正極活物質との間で良好な界面が形成され、Liイオンパスが形成されたことで、充放電が可能となったと考えられる。また、硫化物固体電解質を用いる場合は、通常、正極活物質にLiNbO-等のコートが必要であるが、今回の実施例のように正極活物質と酸化物固体電解質とを予めコンポジット化しておくことで、正極合剤において硫化物固体電解質と正極活物質との直接接触を抑制することができ、コートなしでも電池として作動することが分かった。 In FIG. 3, the battery characteristic evaluation result which concerns on a comparative example and an Example is shown. From FIG. 3, in the comparative example, the positive electrode mixture does not contain an oxide solid electrolyte, and the positive electrode active material and the sulfide solid electrolyte are in direct contact with each other, so that the interface resistance is increased and almost discharge is performed. could not. On the other hand, when the positive electrode composite particles were used in the positive electrode mixture, the discharge capacity was greatly improved as compared with the comparative example. It is considered that charge / discharge is possible because a good interface is formed between the oxide solid electrolyte and the positive electrode active material and the Li ion path is formed by the mechanochemical treatment. In addition, when a sulfide solid electrolyte is used, a coating of LiNbO- 3 or the like is usually required for the positive electrode active material, but the positive electrode active material and the oxide solid electrolyte are previously composited as in this example. Thus, it was found that direct contact between the sulfide solid electrolyte and the positive electrode active material can be suppressed in the positive electrode mixture, and the battery operates without a coat.

本発明により製造される正極複合粒子は、さらに硫化物固体電解質等と混合することで、硫化物全固体電池の正極合剤として利用することが可能である。   The positive electrode composite particles produced according to the present invention can be used as a positive electrode mixture of a sulfide all solid state battery by further mixing with a sulfide solid electrolyte or the like.

Claims (1)

酸化物固体電解質と正極活物質粒子とをメカノケミカル処理により機械的に混合する工程を備える、正極複合粒子の製造方法。 A method for producing positive electrode composite particles, comprising a step of mechanically mixing oxide solid electrolyte and positive electrode active material particles by mechanochemical treatment.
JP2015129617A 2015-06-29 2015-06-29 Method of manufacturing positive electrode composite particle Pending JP2017016766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015129617A JP2017016766A (en) 2015-06-29 2015-06-29 Method of manufacturing positive electrode composite particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129617A JP2017016766A (en) 2015-06-29 2015-06-29 Method of manufacturing positive electrode composite particle

Publications (1)

Publication Number Publication Date
JP2017016766A true JP2017016766A (en) 2017-01-19

Family

ID=57830856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129617A Pending JP2017016766A (en) 2015-06-29 2015-06-29 Method of manufacturing positive electrode composite particle

Country Status (1)

Country Link
JP (1) JP2017016766A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6431236B1 (en) * 2017-05-29 2018-11-28 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof
CN113875039A (en) * 2019-09-10 2021-12-31 株式会社Lg新能源 Method for preparing positive electrode mixture for all-solid battery and positive electrode mixture for all-solid battery prepared using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6431236B1 (en) * 2017-05-29 2018-11-28 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof
JP2019175830A (en) * 2017-05-29 2019-10-10 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery including the same, and method of manufacturing the same
CN113875039A (en) * 2019-09-10 2021-12-31 株式会社Lg新能源 Method for preparing positive electrode mixture for all-solid battery and positive electrode mixture for all-solid battery prepared using the same

Similar Documents

Publication Publication Date Title
JP5594379B2 (en) Secondary battery positive electrode, secondary battery positive electrode manufacturing method, and all-solid secondary battery
US11276846B2 (en) Method for manufacturing electrode for secondary battery and electrode manufactured thereby
JP6936959B2 (en) Method for manufacturing positive electrode mixture, positive electrode active material layer, all-solid-state battery and positive electrode active material layer
JP6756279B2 (en) Manufacturing method of positive electrode active material
WO2015125800A1 (en) Solid electrolyte composition, production method for same, electrode sheet for battery using same, and all-solid secondary cell
JP2022502830A (en) Positive electrode additive and its manufacturing method, positive electrode and its manufacturing method, and lithium ion battery
JP6524610B2 (en) Positive electrode active material for non-aqueous secondary battery and method for producing the same
CN108604682A (en) Anode for nonaqueous electrolyte secondary battery active material
JP7273268B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN103988346A (en) All-solid-state battery
JP2012227107A (en) Electrode body for nonaqueous electrolyte battery and nonaqueous electrolyte battery
KR102261501B1 (en) Method for Electrode Mixture and Electrode Mixture
JP7105055B2 (en) Anode materials, anodes and batteries
JP2019125510A (en) Positive electrode mixture for all-solid battery, positive electrode for all-solid battery, all-solid battery and manufacturing methods thereof
JP7318569B2 (en) Sulfide solid electrolyte, precursor of sulfide solid electrolyte, all-solid battery, and method for producing sulfide solid electrolyte
JP6901310B2 (en) Composite particles
JP7059951B2 (en) Negative electrode layer and all-solid-state battery
JP7143855B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, evaluation method for lithium metal composite oxide powder
JP2020009756A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP4817505B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery using the positive electrode
JP2017016766A (en) Method of manufacturing positive electrode composite particle
JP5544981B2 (en) Method for producing electrode active material
JP2016186918A (en) Method of manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7259766B2 (en) Positive electrode for lithium ion secondary battery, electrode paste for lithium ion secondary battery, lithium ion secondary battery