JP2017013222A - Processing device and processing method - Google Patents

Processing device and processing method Download PDF

Info

Publication number
JP2017013222A
JP2017013222A JP2016017261A JP2016017261A JP2017013222A JP 2017013222 A JP2017013222 A JP 2017013222A JP 2016017261 A JP2016017261 A JP 2016017261A JP 2016017261 A JP2016017261 A JP 2016017261A JP 2017013222 A JP2017013222 A JP 2017013222A
Authority
JP
Japan
Prior art keywords
workpiece
roll
processing apparatus
shaped member
light scatterer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016017261A
Other languages
Japanese (ja)
Other versions
JP6586023B2 (en
Inventor
良史 鷹巣
Yoshifumi Takasu
良史 鷹巣
横山 信之
Nobuyuki Yokoyama
信之 横山
田代 功
Isao Tashiro
功 田代
上木原 伸幸
Nobuyuki Uekihara
伸幸 上木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to US15/099,590 priority Critical patent/US9865470B2/en
Priority to CN201610308988.7A priority patent/CN106328560B/en
Publication of JP2017013222A publication Critical patent/JP2017013222A/en
Application granted granted Critical
Publication of JP6586023B2 publication Critical patent/JP6586023B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing device that can irradiate ultraviolet rays uniformly onto a surface to be processed of a work-piece to generate a uniform oxides and process the work-piece into a flat and smooth plane.SOLUTION: The processing device comprises: a rotating table that rotates a work-piece around a rotating shaft; a roll-shape member that is rotated with a shaft orthogonal to the rotating shaft of the rotating table; a vertically driving part that drives the roll shape member and the work-piece to contact the member and the work-piece with each other with respect to the rotating shaft of the rotating table; an ultraviolet ray irradiation source which irradiates ultraviolet rays to a space between the roll-shape member and the work-piece; a polishing member which is supplied to the space between the roll-shape member and the work-piece; and a light-scattering body which is supplied to the space between the roll-shape member and the work-piece and scatters the ultraviolet rays irradiated from the ultraviolet ray irradiation source.SELECTED DRAWING: Figure 1

Description

本発明は、ワークを研磨材で加工する加工装置に関する。   The present invention relates to a processing apparatus that processes a workpiece with an abrasive.

近年、半導体ウェハのデバイス形成面を加工するための加工装置として、化学的作用と機械的作用を併せ持つ化学的機械研磨(Chemical Mechanical Polishing:CMP)装置が用いられている。   In recent years, a chemical mechanical polishing (CMP) apparatus having both a chemical action and a mechanical action is used as a processing apparatus for processing a device forming surface of a semiconductor wafer.

一方、近年次世代半導体基板として注目を集めているサファイアやSiC、GaN、ダイヤモンド等の硬脆性材料からなる基板は化学的に安定であり、通常の化学的機械研磨方法を活用しても、化学的作用がSiと比較して非常に小さく、研磨レートが小さくなる。   On the other hand, substrates made of hard and brittle materials such as sapphire, SiC, GaN, and diamond, which have been attracting attention as next-generation semiconductor substrates in recent years, are chemically stable. Even if ordinary chemical mechanical polishing methods are used, The working effect is very small compared to Si, and the polishing rate is small.

そこで、酸素を含む加工雰囲気の圧力を大気圧よりも高く設定し、加工雰囲気の中で、チタニアの粒子を含むスラリーを用いて、紫外線を照射しながら被加工物を研磨する方法(例えば、特許文献1参照。)がある。   Therefore, a method of polishing a workpiece while irradiating ultraviolet rays using a slurry containing titania particles in the processing atmosphere while setting the pressure of the processing atmosphere containing oxygen to be higher than the atmospheric pressure (for example, patents) Reference 1).

また、石英からなると共に表面に格子状の溝を有する研磨定盤を用い、格子状の溝に固体光触媒粒子を埋め込み、基板の被研磨面を研磨定盤の表面に高圧で押し付けると共に、研磨定盤の裏面から研磨定盤を透過して基板の被研磨面に紫外線を照射し、研磨定盤の表面または基板の被研磨面のうち少なくとも一方を赤外光の照射によって加熱しつつ、基板を研磨定盤に対して相対的に遥動させて研磨する方法(例えば、特許文献2参照。)が提案されている。   In addition, a polishing platen made of quartz and having a lattice-like groove on the surface is used, solid photocatalyst particles are embedded in the lattice-like groove, the surface to be polished of the substrate is pressed against the surface of the polishing platen at high pressure, and the polishing plate The surface of the substrate is irradiated with ultraviolet rays through the polishing platen from the back surface of the plate, and at least one of the surface of the polishing platen or the surface to be polished of the substrate is heated by irradiation with infrared light, There has been proposed a method (for example, refer to Patent Document 2) in which the polishing is performed by moving the polishing plate relative to the polishing platen.

国際公開第2007/063873号International Publication No. 2007/063873 国際公開第2007/007683号International Publication No. 2007/007683

しかし、特許文献1に記載の方法では高価な光触媒を使用するため、装置費が高価になる。また、特許文献2に記載の方法では、紫外線を透過する石英を研磨定盤として使用しなければならない。石英は加工が困難、且つ、ワークの被加工面に均一に紫外線を照射することが困難であるという問題点があった。   However, since the method described in Patent Document 1 uses an expensive photocatalyst, the cost of the apparatus becomes expensive. Further, in the method described in Patent Document 2, quartz that transmits ultraviolet light must be used as a polishing platen. Quartz has a problem that it is difficult to process and it is difficult to uniformly irradiate the work surface of the workpiece with ultraviolet rays.

本発明の目的は、紫外線を均一にワークの被加工面へ照射して、均一な酸化物を生成させ、ワークを平滑な平面に加工することができる加工装置を提供することである。   An object of the present invention is to provide a processing apparatus capable of uniformly irradiating a work surface of a workpiece with ultraviolet rays to generate a uniform oxide and processing the workpiece into a smooth plane.

本発明に係る加工装置は、ワークを回転軸について回転させる回転テーブルと、
前記回転テーブルの前記回転軸と直交する軸で回転するロール形状部材と、
前記回転テーブルの回転軸の方向について、前記ロール形状部材と前記ワークとを互いに接するように駆動する垂直駆動部と、
前記ロール形状部材と前記ワークとの間に紫外線を照射する紫外線照射源と、
前記ロール形状部材と前記ワークとの間に供給される研磨材と、
前記ロール形状部材と前記ワークとの間に供給され、前記紫外線照射源からの紫外線を散乱させる光散乱体と、を備える。
A processing apparatus according to the present invention includes a rotary table for rotating a workpiece about a rotation axis;
A roll-shaped member that rotates on an axis orthogonal to the rotation axis of the rotary table;
A vertical drive unit that drives the roll-shaped member and the workpiece so as to contact each other with respect to the direction of the rotation axis of the rotary table;
An ultraviolet irradiation source for irradiating ultraviolet rays between the roll-shaped member and the workpiece;
An abrasive supplied between the roll-shaped member and the workpiece;
A light scatterer that is supplied between the roll-shaped member and the workpiece and scatters ultraviolet rays from the ultraviolet irradiation source.

本発明に係る加工装置によれば、光触媒粒子や石英定盤を使用しなくとも被加工面に酸化物を生成し、紫外線を均一に被加工面へ照射し平面に加工することが出来る。   According to the processing apparatus of the present invention, an oxide can be generated on the processing surface without using photocatalyst particles or a quartz surface plate, and the processing surface can be processed by irradiating the processing surface with ultraviolet rays uniformly.

実施の形態1に係る加工装置の構成を示す概略斜視図である。1 is a schematic perspective view showing a configuration of a processing apparatus according to Embodiment 1. FIG. 図1のロール形状部材の構成を示す部分拡大図である。It is the elements on larger scale which show the structure of the roll-shaped member of FIG. 図1の加工装置において、ロール形状部材とワークとの接触部の状態を示す拡大側面図である。In the processing apparatus of FIG. 1, it is an enlarged side view which shows the state of the contact part of a roll-shaped member and a workpiece | work. (a)は、紫外線照射ユニットから照射される紫外線のz方向についての強度分布を示すグラフであり、(b)は、紫外線を受光する光散乱体のロール形状部材のz方向における配置位置との関係を示す概略図であり、(c)は、(b)の光散乱体で散乱された後、ワークとロール形状部材との接触部に照射される紫外線のz方向についての強度分布を示すグラフである。(A) is a graph which shows the intensity distribution about the z direction of the ultraviolet-ray irradiated from an ultraviolet irradiation unit, (b) is with the arrangement position in the z-direction of the roll-shaped member of the light-scattering body which receives an ultraviolet-ray. It is the schematic which shows a relationship, (c) is a graph which shows intensity distribution about the z direction of the ultraviolet-ray irradiated to the contact part of a workpiece | work and a roll-shaped member after being scattered by the light-scattering body of (b). It is. 図1の加工装置において光散乱体として気泡を用いた際のロール形状とワークの接触部の状態を示す拡大側面図である。It is an enlarged side view which shows the state of the roll shape at the time of using a bubble as a light-scattering body in the processing apparatus of FIG. 1, and the state of the contact part of a workpiece | work.

第1の態様に係る加工装置は、ワークを回転軸について回転させる回転テーブルと、
前記回転テーブルの前記回転軸と直交する軸で回転するロール形状部材と、
前記回転テーブルの回転軸の方向について、前記ロール形状部材と前記ワークとを互いに接するように駆動する垂直駆動部と、
前記ロール形状部材と前記ワークとの間に紫外線を照射する紫外線照射源と、
前記ロール形状部材と前記ワークとの間に供給される研磨材と、
前記ロール形状部材と前記ワークとの間に供給され、前記紫外線照射源からの紫外線を散乱させる光散乱体と、を備える。
A processing apparatus according to a first aspect includes a rotary table that rotates a workpiece about a rotation axis;
A roll-shaped member that rotates on an axis orthogonal to the rotation axis of the rotary table;
A vertical drive unit that drives the roll-shaped member and the workpiece so as to contact each other with respect to the direction of the rotation axis of the rotary table;
An ultraviolet irradiation source for irradiating ultraviolet rays between the roll-shaped member and the workpiece;
An abrasive supplied between the roll-shaped member and the workpiece;
A light scatterer that is supplied between the roll-shaped member and the workpiece and scatters ultraviolet rays from the ultraviolet irradiation source.

第2の態様に係る加工装置は、上記第1の態様において、前記研磨材は、前記ワークよりビッカース硬度が高く、前記光散乱体は、前記ワークよりビッカース硬度が低くてもよい。   In the processing apparatus according to a second aspect, in the first aspect, the abrasive may have a Vickers hardness higher than that of the workpiece, and the light scatterer may have a Vickers hardness lower than that of the workpiece.

第3の態様に係る加工装置は、上記第1又は第2の態様において、前記研磨材は、テープに具備され、
前記テープは、前記ロール形状部材とワークとの接触部に供給されてもよい。
In the processing apparatus according to the third aspect, in the first or second aspect, the abrasive is provided on a tape,
The tape may be supplied to a contact portion between the roll-shaped member and the workpiece.

第4の態様に係る加工装置は、上記第1から第3のいずれかの態様において、前記研磨材および前記光散乱体は、共に粒子状であり、
前記研磨材のサイズは、前記光散乱体のサイズよりも小さくてもよい。
In the processing apparatus according to a fourth aspect, in any one of the first to third aspects, the abrasive and the light scatterer are both in the form of particles,
The abrasive may have a size smaller than that of the light scatterer.

第5の態様に係る加工装置は、上記第1から第4のいずれかの態様において、前記光散乱体は、4面体以上の面数を持つ多面体形状、又は、球状であってもよい。   In the processing apparatus according to a fifth aspect, in any one of the first to fourth aspects, the light scatterer may have a polyhedral shape or a spherical shape having a number of faces of four or more.

第6の態様に係る加工装置は、上記第1から第5のいずれかの態様において、前記光散乱体は、150nm以上、400nm以下の少なくとも一つの波長の光について80%以上、100%未満の透過率を示してもよい。   In the processing apparatus according to a sixth aspect, in any one of the first to fifth aspects, the light scatterer is 80% or more and less than 100% with respect to light having at least one wavelength of 150 nm or more and 400 nm or less. The transmittance may be indicated.

第7の態様に係る加工装置は、上記第1から第6のいずれかの態様において、前記回転テーブルの回転軸と前記ロール形状部材の回転軸とのそれぞれと垂直な方向に前記ロール形状部材と前記回転テーブルとを相対移動させる水平駆動部をさらに備えてもよい。   A processing apparatus according to a seventh aspect is the processing apparatus according to any one of the first to sixth aspects, wherein the roll-shaped member is in a direction perpendicular to each of a rotation axis of the rotary table and a rotation axis of the roll-shaped member. You may further provide the horizontal drive part which moves the said rotary table relatively.

第8の態様に係る加工装置は、上記第1から第7のいずれかの態様において、前記光散乱体は、光触媒を含まなくてもよい。   In the processing apparatus according to the eighth aspect, in any one of the first to seventh aspects, the light scatterer may not include a photocatalyst.

第9の態様に係る加工装置は、上記第1の態様において、前記光散乱体は、気泡であってもよい。   In the processing device according to a ninth aspect, in the first aspect, the light scatterer may be a bubble.

第10の態様に係る加工装置は、上記第9の態様において、オゾン水、又は過酸化水素水を供給する供給口を更に備え、
前記気泡は、前記オゾン水、又は前記過酸化水素水に前記紫外線照射源からの紫外線が照射されることで発生させてもよい。
A processing apparatus according to a tenth aspect further includes a supply port for supplying ozone water or hydrogen peroxide water in the ninth aspect,
The bubbles may be generated by irradiating the ozone water or the hydrogen peroxide solution with ultraviolet rays from the ultraviolet irradiation source.

第11の態様に係る加工装置は、上記第10の態様において、前記紫外線照射源は、前記オゾン水、又は前記過酸化水素水に吸収される第1波長と、前記ワークに吸収される第2波長と、を有する紫外線を照射してもよい。   The processing apparatus according to an eleventh aspect is the tenth aspect, wherein the ultraviolet irradiation source is a first wavelength absorbed by the ozone water or the hydrogen peroxide solution, and a second wavelength absorbed by the workpiece. You may irradiate the ultraviolet-ray which has a wavelength.

第12の態様に係る加工装置は、上記第11の態様において、前記第1波長のピーク波長は253nm、前記第2波長のピーク波長は365nmであってもよい。   In the processing apparatus according to a twelfth aspect, in the eleventh aspect, the peak wavelength of the first wavelength may be 253 nm, and the peak wavelength of the second wavelength may be 365 nm.

第13の態様に係る加工装置は、上記第12の態様において、前記紫外線照射源は、100nm以下400nm以上の波長を除去するフィルタを更に具備してもよい。   In the processing apparatus according to a thirteenth aspect, in the twelfth aspect, the ultraviolet irradiation source may further include a filter that removes a wavelength of 100 nm or less and 400 nm or more.

第14の態様に係る加工方法は、上記第1から第13のいずれかの態様の加工装置を用いてワークの加工を行う。   In the machining method according to the fourteenth aspect, the workpiece is machined using the machining apparatus according to any one of the first to thirteenth aspects.

以下、実施の形態に係る加工装置について、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。   Hereinafter, a processing apparatus according to an embodiment will be described with reference to the accompanying drawings. In the drawings, substantially the same members are denoted by the same reference numerals.

(実施の形態1)
図1は、本実施の形態で使用する加工装置101の構成を示す概略斜視図である。図1に記載の加工装置101には、ワーク301を回転軸(Y軸)について回転させる回転テーブル201と、ワーク301をX軸方向に直進駆動させる直進駆動部(水平駆動部)202と、ロール形状部材302と、ロール形状部材302をワーク301へY軸方向に駆動し接触加圧させるためのY軸方向駆動部(垂直駆動部)203と、を有する。更に、加工装置101は、ロール形状部材302をZ軸方向に駆動させるZ軸方向駆動部204を有する。ロール形状部材302は、Y軸方向駆動部203上に固定されているテープ駆動ユニット205により、Y軸方向駆動部203でY軸方向に駆動し、ワーク301と接触した際、加圧力制御ユニット206に設定した加圧力でワーク301と接触する。ロール形状部材302は、その中心軸(Z軸)を基準に回転する。このロール形状部材302の回転軸は、回転テーブル201の回転軸と直交する方向であり、本実施の形態では、ロール形状部材302の回転軸はZ軸と一致する。さらに、この加工装置101は、ロール形状部材302とワーク301との間に紫外線を照射する紫外線照射ユニット(紫外線照射源)207と、ロール形状部材302とワーク301との間に供給される研磨材である砥粒402と、ロール形状部材302とワーク301との間に供給され、紫外線照射ユニット207からの紫外線を散乱させる光散乱体501と、を備える。
(Embodiment 1)
FIG. 1 is a schematic perspective view showing a configuration of a processing apparatus 101 used in the present embodiment. 1 includes a rotary table 201 that rotates a workpiece 301 about a rotation axis (Y axis), a linear drive unit (horizontal drive unit) 202 that linearly drives the workpiece 301 in the X-axis direction, and a roll. It has a shape member 302 and a Y-axis direction drive unit (vertical drive unit) 203 for driving the roll-shaped member 302 to the workpiece 301 in the Y-axis direction so as to contact and pressurize it. Furthermore, the processing apparatus 101 includes a Z-axis direction drive unit 204 that drives the roll-shaped member 302 in the Z-axis direction. The roll-shaped member 302 is driven in the Y-axis direction by the Y-axis direction drive unit 203 by the tape drive unit 205 fixed on the Y-axis direction drive unit 203, and when it comes into contact with the workpiece 301, the pressure control unit 206. The workpiece 301 is brought into contact with the pressing force set to. The roll-shaped member 302 rotates with reference to the central axis (Z axis). The rotation axis of the roll-shaped member 302 is a direction orthogonal to the rotation axis of the turntable 201, and in this embodiment, the rotation axis of the roll-shaped member 302 coincides with the Z axis. Furthermore, this processing apparatus 101 includes an ultraviolet irradiation unit (ultraviolet irradiation source) 207 that irradiates ultraviolet rays between the roll-shaped member 302 and the workpiece 301, and an abrasive supplied between the roll-shaped member 302 and the workpiece 301. And a light scatterer 501 that is supplied between the roll-shaped member 302 and the workpiece 301 and scatters the ultraviolet rays from the ultraviolet irradiation unit 207.

<作用・効果>
本実施の形態1に係る加工装置101では、紫外線をワーク301に照射して強酸化剤であるラジカルをワーク301表面に反応させ、ワーク301表面上にワーク301よりも柔らかい酸化物を形成し、除去するという加工メカニズムを用いている。この加工装置101では、上記加工メカニズムを実現するために、紫外線照射ユニット207を設けている。しかし、紫外線照射ユニット207から照射される紫外線は、例えば、図4(a)に示すように中心で強く周辺で弱い強度分布を有する。このため、そのままワーク301とロール形状部材302が接する境界線に沿って照射しても、境界線の中で紫外線の強度バラツキが発生し、これに対応して紫外線照射によって発生する強酸化剤であるラジカルの発生量にもバラツキを生じる。ラジカルの発生量と酸化物の発生量には相関があるために、結果としてワーク301とロール形状部材302とが接する境界部で酸化物が不均一に形成される。そして、結果的に加工除去量が均一にならず、平滑な面が得られないという問題があることを発明者は見出した。
<Action and effect>
In the processing apparatus 101 according to the first embodiment, the workpiece 301 is irradiated with ultraviolet rays to cause radicals that are strong oxidizers to react with the surface of the workpiece 301 to form an oxide softer than the workpiece 301 on the workpiece 301 surface. The removal mechanism is used. In the processing apparatus 101, an ultraviolet irradiation unit 207 is provided in order to realize the processing mechanism. However, the ultraviolet rays irradiated from the ultraviolet irradiation unit 207 have a strong intensity distribution at the center and a weak intensity at the periphery as shown in FIG. 4A, for example. For this reason, even if it irradiates along the boundary line which the workpiece | work 301 and the roll-shaped member 302 contact | connect as it is, the intensity | strength variation of an ultraviolet-ray will generate | occur | produce in a boundary line, and it is the strong oxidizing agent which generate | occur | produces by ultraviolet irradiation corresponding to this. Variations occur in the amount of radicals generated. Since there is a correlation between the amount of radicals generated and the amount of oxides generated, as a result, oxides are unevenly formed at the boundary between the workpiece 301 and the roll-shaped member 302. As a result, the inventor has found that there is a problem that the processed removal amount is not uniform and a smooth surface cannot be obtained.

これに対し、発明者は、ワーク301とロール形状部材302とが接する接触部と紫外線照射ユニット207との間の接触部に光散乱体501を塗布すると、紫外線が散乱光となり、図4(c)に示すように、ワーク301とロール形状部材302との接触部に平均化された強度で紫外線を照射することができる。これによって、ワーク301上に酸化物を均一に形成することができる。その結果、この均一に分布する酸化物をワーク301上から均一に加工除去することによって、表面の凹凸がRa1nm以下の鏡面状態を形成できることを見出し、本発明に係る加工装置101の構成に至った。   In contrast, when the inventor applies the light scatterer 501 to the contact portion between the contact portion where the workpiece 301 and the roll-shaped member 302 are in contact with the ultraviolet irradiation unit 207, the ultraviolet light becomes scattered light, and FIG. ), The contact portion between the workpiece 301 and the roll-shaped member 302 can be irradiated with ultraviolet rays with an averaged intensity. Thereby, an oxide can be uniformly formed on the workpiece 301. As a result, it has been found that by uniformly processing and removing the uniformly distributed oxide from the workpiece 301, a mirror surface state with surface irregularities of Ra 1 nm or less can be formed, and the processing apparatus 101 according to the present invention has been configured. .

この加工装置101によれば、紫外線照射ユニット207から紫外線がロール形状部材302とワーク301との間の接触部に照射され、光散乱体501によって紫外線が散乱される。これによって、ロール形状部材302とワーク301との接触部に沿って紫外線の強度が均一化される。その結果、ワーク301の表面への均一な紫外線照射によって均一な酸化物の層(膜)が形成される。形成された均一な酸化膜を研磨することでワーク301の表面を従来よりも均一に加工できる。   According to this processing apparatus 101, ultraviolet rays are irradiated from the ultraviolet irradiation unit 207 to the contact portion between the roll-shaped member 302 and the work 301, and the ultraviolet rays are scattered by the light scatterer 501. Thereby, the intensity of ultraviolet rays is made uniform along the contact portion between the roll-shaped member 302 and the work 301. As a result, a uniform oxide layer (film) is formed by uniform UV irradiation on the surface of the work 301. By polishing the formed uniform oxide film, the surface of the workpiece 301 can be processed more uniformly than before.

以下に、この加工装置101を構成する各部材について説明する。   Below, each member which comprises this processing apparatus 101 is demonstrated.

<ロール形状部材>
ロール形状部材302は、Y軸方向駆動部(垂直駆動部)203に接続されている。このロール形状部材302は、Y軸方向駆動部203によってY軸方向に移動し、ワーク301の被加工面と接触すると、その接触部は線接触となる。ワーク301とロール形状部材302とを線接触させることにより、面接触の場合では困難であったワーク301とロール形状部材302との接触部への均一な紫外線照射が容易になる。なお、ワーク301をX軸方向に直進駆動させる直進駆動部(水平駆動部)202と、ワーク301をY軸について回転させる回転テーブル201とのそれぞれを制御することにより、ワーク301の全面を加工できる。
<Roll shape member>
The roll-shaped member 302 is connected to a Y-axis direction drive unit (vertical drive unit) 203. When the roll-shaped member 302 is moved in the Y-axis direction by the Y-axis direction drive unit 203 and comes into contact with the surface to be processed of the workpiece 301, the contact part is in line contact. By bringing the workpiece 301 and the roll-shaped member 302 into line contact, uniform ultraviolet irradiation to the contact portion between the workpiece 301 and the roll-shaped member 302, which is difficult in the case of surface contact, is facilitated. The entire surface of the workpiece 301 can be machined by controlling each of a rectilinear drive unit (horizontal drive unit) 202 that linearly drives the workpiece 301 in the X-axis direction and a rotary table 201 that rotates the workpiece 301 about the Y-axis. .

上記のように図1のワーク301とロール形状部材302との接触部は、直線状になる。この直線状の接触部の内部でのワーク301とロール形状部材302との相対速度のバラツキを、例えば10%以下になるように、加工装置101の回転テーブル201で発生する相対速度差よりも直進駆動部202の駆動で発生する相対速度差が大きくなるように加工装置101の駆動部201、202を駆動させる。例えば、直線状の接触部の両端での相対速度差を10%以下にする。例えば、回転テーブル201による回転によって、回転中心からみて両端での速度ベクトルが反対方向となり、相対速度差が大きくなる。そこで、回転テーブル201による回転を抑えて、両端の相対速度差を抑制する。その一方、例えば、図3の矢印に示すように、直進駆動部202によるX軸方向の駆動を行うことによって、両端の相対速度差を10%以下にできる。また、直進駆動部202によってワーク301をX軸方向に移動させることによって、光散乱体501をロール形状部材302とワーク301との接触部に集めることができる。なお、直線状とは、長手方向とそれに直交する短手方向とを有する平面形状を示す。   As described above, the contact portion between the workpiece 301 and the roll-shaped member 302 in FIG. 1 is linear. The variation in the relative speed between the workpiece 301 and the roll-shaped member 302 in the linear contact portion is, for example, 10% or less, which is straight ahead than the relative speed difference generated in the rotary table 201 of the processing apparatus 101. The drive units 201 and 202 of the processing apparatus 101 are driven so that the relative speed difference generated by the drive of the drive unit 202 becomes large. For example, the relative speed difference between both ends of the linear contact portion is set to 10% or less. For example, the rotation by the rotary table 201 causes the velocity vectors at both ends to be in opposite directions when viewed from the rotation center, and the relative velocity difference increases. Therefore, the rotation by the rotary table 201 is suppressed, and the relative speed difference between both ends is suppressed. On the other hand, for example, as shown by the arrow in FIG. 3, the relative speed difference between both ends can be reduced to 10% or less by driving in the X-axis direction by the linear drive unit 202. Further, by moving the workpiece 301 in the X-axis direction by the linear drive unit 202, the light scatterer 501 can be collected at the contact portion between the roll-shaped member 302 and the workpiece 301. In addition, a linear form shows the planar shape which has a longitudinal direction and the transversal direction orthogonal to it.

<研磨材>
研磨材には、例えば、大きさが10μm以下の砥粒402を採用する。砥粒402が大きくなると、テープ401上の近接する砥粒402がワーク301に接触した際、近接した砥粒402のワーク301に接触する部分と接触していない部分との間隔が大きくなる。そのため砥粒402が大きくなればなるほど、砥粒402がワーク301に接触していない領域が広くなる。また、同じ加圧力で加工する場合、砥粒が大きいと砥粒402がワーク301を除去する除去量が大きくなり、かつ加工されない領域が広くなるため、ワーク301の表面の凹凸が大きくなる。そのため砥粒402の大きさは少なくとも10μm以下にする必要がある。砥粒402の大きさが10μmよりも大きいと均一な平面を加工することが非常に困難になるからである。
研磨材である砥粒402には、ワーク301と同じかそれ以上の硬さを有するものを用いる。例えば、炭化珪素(SiC)、GaN、サファイア、ダイヤモンド等を用いることができる。
<Abrasive>
As the abrasive, for example, abrasive grains 402 having a size of 10 μm or less are employed. When the abrasive grains 402 become large, when the adjacent abrasive grains 402 on the tape 401 come into contact with the workpiece 301, the distance between the portion of the adjacent abrasive grains 402 that contacts the workpiece 301 and the portion that does not contact the workpiece 301 becomes large. Therefore, the larger the abrasive grains 402, the wider the area where the abrasive grains 402 are not in contact with the workpiece 301. Further, when machining with the same pressure, if the abrasive grains are large, the removal amount of the abrasive grains 402 to remove the workpiece 301 becomes large, and the unprocessed area becomes wide, so that the unevenness of the surface of the workpiece 301 becomes large. Therefore, the size of the abrasive grains 402 needs to be at least 10 μm or less. This is because if the size of the abrasive grains 402 is larger than 10 μm, it is very difficult to process a uniform plane.
Abrasive grains 402 that are abrasives have the same or higher hardness as the workpiece 301. For example, silicon carbide (SiC), GaN, sapphire, diamond, or the like can be used.

<テープ>
図2は、図1のロール形状部材302の構成を示す部分拡大図である。テープ401上には研磨材である砥粒402を接着材で固定し、ロール形状部材302とテープ401とが互いに接触するように配置する。この構成により、常に新しいテープ401をワーク301とロール形状部材302との間に供給することができ、加工を進める中での砥粒402の目つぶれによる加工能率の低下を防ぐことが出来る。テープ401は、図3の矢印に示すように移動する。ロール形状部材302は、テープ401の移動量分だけ回転する。テープ401の巻き取りは、図1のテープ駆動ユニット205により行われる。なお、図1において、テープ401の図示は省略している。
<Tape>
FIG. 2 is a partially enlarged view showing the configuration of the roll-shaped member 302 of FIG. Abrasive grains 402 that are abrasives are fixed on the tape 401 with an adhesive, and the roll-shaped member 302 and the tape 401 are arranged so as to contact each other. With this configuration, a new tape 401 can always be supplied between the workpiece 301 and the roll-shaped member 302, and a reduction in processing efficiency due to crushing of the abrasive grains 402 during processing can be prevented. The tape 401 moves as indicated by the arrow in FIG. The roll-shaped member 302 rotates by the amount of movement of the tape 401. The winding of the tape 401 is performed by the tape drive unit 205 of FIG. In FIG. 1, illustration of the tape 401 is omitted.

図3は、図1の加工装置101において、ロール形状部材302とワーク301との接触部の状態を示す拡大側面図である。塗布された光散乱体501は、各駆動部201、202、203により、テープ401とワーク301との接触部に集まる。紫外線照射ユニット207から出る光は、ロール形状部材302とワーク301との接触する面上へ照射される。ここでワーク301の硬さをAとし、砥粒402の硬さをB、光散乱体501の硬さをCとしたときに、下記の関係式が成り立つように砥粒402及び光散乱体501の材料を選定する。つまり、砥粒402の硬さBは、ワーク301の硬さA以上であり、且つ、光散乱体501の硬さCは、ワーク301の硬さAより小さい。
B≧A>C
FIG. 3 is an enlarged side view showing a state of a contact portion between the roll-shaped member 302 and the work 301 in the processing apparatus 101 of FIG. The applied light scatterer 501 gathers at the contact portion between the tape 401 and the workpiece 301 by the driving units 201, 202, and 203. The light emitted from the ultraviolet irradiation unit 207 is irradiated onto the surface where the roll-shaped member 302 and the workpiece 301 come into contact. Here, when the hardness of the workpiece 301 is A, the hardness of the abrasive grain 402 is B, and the hardness of the light scatterer 501 is C, the abrasive grains 402 and the light scatterer 501 are set so that the following relational expression is satisfied. Select materials. That is, the hardness B of the abrasive grains 402 is equal to or higher than the hardness A of the workpiece 301, and the hardness C of the light scatterer 501 is smaller than the hardness A of the workpiece 301.
B ≧ A> C

ワーク301の硬さAよりも光散乱体501の硬さCが大きい場合には、加工する際に光散乱体501によりワーク301が加工されてしまい、平滑な加工面を実現できない場合がある。光散乱体501がワーク301を加工してしまう状態としては、ワーク301とテープ401の間に光散乱体501が複数個集まり凝集した状態でワーク301を加工する状態をいう。この状態になると加工される場所を制御できず、また、ワーク301への圧力を安定させることが困難であるために、深い加工痕が出来る場所とそうでない場所が発生する。結果としてワーク301の表面に凹凸が発生してしまう。ワーク301を半導体デバイスに適用する場合、求められる表面粗さRaは1nm以下の鏡面状態であるが、その状態にすることが出来なくなる。   When the hardness C of the light scatterer 501 is greater than the hardness A of the workpiece 301, the workpiece 301 may be processed by the light scatterer 501 during processing, and a smooth processed surface may not be realized. The state in which the light scatterer 501 processes the workpiece 301 refers to a state in which the workpiece 301 is processed in a state where a plurality of light scatterers 501 gather and aggregate between the workpiece 301 and the tape 401. In this state, the place to be machined cannot be controlled, and it is difficult to stabilize the pressure on the workpiece 301, so that a place where a deep machining mark is made and a place where it is not. As a result, irregularities occur on the surface of the work 301. When the workpiece 301 is applied to a semiconductor device, the required surface roughness Ra is a mirror surface state of 1 nm or less, but this state cannot be achieved.

一方、砥粒402の硬さBがワーク301の硬さAよりも小さい場合、ワーク301を砥粒402でメカニカルな物理現象で除去することが出来ない。また、この状態で加圧力を大きくしワーク301を加工しようとしても、砥粒402がワーク301の表面の酸化物をメカニカルな物理現象で除去できないために、ワーク301への加圧力のみが大きくなり、Y軸マイナス方向への力が大きくなり、ワーク301が加重に耐えられなくなる。その結果、割れが発生するなどの不具合が生じてしまい、製品として成り立たなくなる。   On the other hand, when the hardness B of the abrasive grains 402 is smaller than the hardness A of the work 301, the work 301 cannot be removed by the mechanical physical phenomenon with the abrasive grains 402. Further, even if an attempt is made to process the workpiece 301 by increasing the applied pressure in this state, since the abrasive grains 402 cannot remove the oxide on the surface of the workpiece 301 by a mechanical physical phenomenon, only the applied pressure to the workpiece 301 is increased. The force in the negative direction of the Y axis increases and the workpiece 301 cannot withstand the load. As a result, defects such as cracks occur, and the product cannot be realized.

<紫外線照射ユニット>
紫外線照射ユニット207は、ロール形状部材302との相対距離を常に一定に保つために、Z軸方向駆動部204に固定される。紫外線照射ユニット207から照射する紫外線の波長は、例えば365nmを採用できるが、これに限られず、ワーク301のバンドギャップ、プランク定数、光速から計算される吸収端波長よりも短い波長であればよい。なお、吸収端波長λ[μm]=h・c/E=1.24/Eの関係がある。ここで、h:プランク定数、c:光速、E:バンドギャップである。また、紫外線照射ユニット207から照射する紫外線は、例えば図4(a)に示すように、上記波長を含む一定の波長範囲にわたる強度分布を有していてもよい。
<Ultraviolet irradiation unit>
The ultraviolet irradiation unit 207 is fixed to the Z-axis direction driving unit 204 in order to always keep a relative distance from the roll-shaped member 302 constant. The wavelength of the ultraviolet light emitted from the ultraviolet irradiation unit 207 can be, for example, 365 nm, but is not limited thereto, and may be any wavelength shorter than the absorption edge wavelength calculated from the band gap, the Planck constant, and the speed of light of the work 301. The absorption edge wavelength λ [μm] = h · c / E = 1.24 / E. Here, h: Planck's constant, c: speed of light, E: band gap. Moreover, the ultraviolet rays irradiated from the ultraviolet irradiation unit 207 may have an intensity distribution over a certain wavelength range including the above-mentioned wavelengths, for example, as shown in FIG.

<光散乱体塗布ユニット>
紫外線照射ユニット207とロール形状部材302との間には、光散乱体501を塗布する光散乱体塗布ユニット208を備えている。この光散乱体塗布ユニット208によって、ワーク301上に光散乱体501を塗布することができる。光散乱体501は、例えば、図3及び図4(b)に示すように、ロール形状部材302とワークとの接触部のz軸に沿って塗布すればよい。
<Light scatterer coating unit>
Between the ultraviolet irradiation unit 207 and the roll-shaped member 302, a light scatterer coating unit 208 for coating the light scatterer 501 is provided. The light scatterer 501 can be applied onto the workpiece 301 by the light scatterer application unit 208. For example, as shown in FIGS. 3 and 4B, the light scatterer 501 may be applied along the z-axis of the contact portion between the roll-shaped member 302 and the workpiece.

<光散乱体>
光散乱体501は、ワーク301とロール形状部材302との接触部に供給される。光散乱体501は、強度分布を有する紫外線を受光し、散乱させて、ワーク301に紫外線を均一に照射する。この光散乱体501の構成及び作用について説明する。
光散乱体501の大きさは、10mm以下とする。紫外線の散乱効果はできるだけ加工点近くで発生させないと、紫外線効果が減少してしまう。光散乱体の大きさが10mmよりも大きいと加工点に届く光が著しく減少する。
また、光散乱体501は、研磨材である砥粒402よりもサイズの大きいものを選定する。光散乱体501が砥粒402よりも小さいと、ワーク301とテープ401との接触部に光散乱体501が入り込む可能性があり、これを防止するためである。ワーク301とテープ401との接触部に光散乱体501が入り込むとワーク301の表面に凹凸形状が形成される場合がある。
<Light scatterer>
The light scatterer 501 is supplied to the contact portion between the workpiece 301 and the roll-shaped member 302. The light scatterer 501 receives ultraviolet rays having an intensity distribution, scatters them, and uniformly irradiates the work 301 with the ultraviolet rays. The configuration and operation of the light scatterer 501 will be described.
The size of the light scatterer 501 is 10 mm or less. If the ultraviolet scattering effect is not generated as close as possible to the processing point, the ultraviolet effect is reduced. When the size of the light scatterer is larger than 10 mm, the light reaching the processing point is remarkably reduced.
Further, the light scatterer 501 is selected to have a size larger than that of the abrasive grains 402 that are abrasives. This is because if the light scatterer 501 is smaller than the abrasive grains 402, the light scatterer 501 may enter the contact portion between the workpiece 301 and the tape 401, and this is prevented. When the light scatterer 501 enters the contact portion between the work 301 and the tape 401, an uneven shape may be formed on the surface of the work 301.

なお、光散乱体501の粒子形状は、4面体以上の面数を有する多面体形状か、または球状とする。光散乱体501の粒子形状が3面体以下であるとワーク301を加工する際に、ワーク301とテープ401の速度差で光散乱体501を転がす際に、光散乱体501が不規則な転がり方をしてしまい、ワーク301とテープ401の間に複数個の光散乱体501が凝集する。凝集した光散乱体501はテープ401表面の接着層に入り込み、砥粒402のテープ接着層からの突き出し量よりも光散乱体501の突き出し量が大きくなる状態が発生する。そして、テープ401を送った際に、ワーク301とテープ401の間に光散乱体501が運ばれる。光散乱体501がテープ401とワーク301の間に入り込んだ際は、その部分は加工が行われないため、ワーク301上に未加工の領域が出来る。そのため、加工される領域とされない領域が発生し、結果として表面に凹凸が発生してしまう。また光散乱体501は、紫外線を透過する材料で光散乱体501の内部を透過した際に紫外線の進む方向をランダムに分散させることが必要であるため、面数は多い方が好ましく、最も好ましい形としては球形状である。   The particle shape of the light scatterer 501 is a polyhedron shape having a number of faces of tetrahedron or more, or a spherical shape. When the light scatterer 501 has a particle shape of 3 or less, when the work 301 is processed, the light scatterer 501 rolls irregularly when the light scatterer 501 is rolled by the speed difference between the work 301 and the tape 401. As a result, a plurality of light scatterers 501 aggregate between the workpiece 301 and the tape 401. The agglomerated light scatterer 501 enters the adhesive layer on the surface of the tape 401, and a state occurs in which the protruding amount of the light scatterer 501 is larger than the protruding amount of the abrasive grains 402 from the tape adhesive layer. When the tape 401 is sent, the light scatterer 501 is carried between the work 301 and the tape 401. When the light scatterer 501 enters between the tape 401 and the workpiece 301, the portion is not processed, and an unprocessed area is formed on the workpiece 301. Therefore, a region that is not a processed region is generated, and as a result, irregularities are generated on the surface. In addition, since the light scatterer 501 is a material that transmits ultraviolet rays, and it is necessary to randomly disperse the direction in which the ultraviolet rays travel when passing through the light scatterer 501, it is preferable that the number of faces be larger. The shape is spherical.

また、光散乱体501は、波長400nm以下の波長に対して少なくとも1つの波長の光で透過率80%以上を有する材料を用いる。波長400nm以下の光の透過率が80%未満の光散乱体501を用いると、ワーク301へ届く紫外光が20%以上光散乱体に吸収されてしまい、紫外線照射ユニット207の照射位置を照射したいワーク301と砥粒402の境界部分に近づけるか、紫外線照射パワーを上げる必要がある。紫外線照射ユニット207の照射位置を近づける、または紫外線照射パワーを上げるとテープ401が熱を発生してしまい、熱による変形が起こる。熱による変形を避けるためにテープ401の巻き取り速度を上げる必要があるが、巻き取り速度を上げると1回の加工に使用するテープ401の量が増えると共に、巻き取りのモーターを大きくする必要があり、装置構成が複雑になる。
光散乱体501は、波長150nm以上での透過率の最大値が150nmより短い波長での透過率の最大値よりも大きい材料を用いる。150nm以下の波長で透過率が最大になる材料を用いると、波長が150nmよりも長い紫外光を吸収する量が大きくなる。そのため、材料の劣化が早くなると共に、ワーク301と砥粒402の境界部分に近づけるか、紫外線照射パワーを上げる必要があり、この場合も熱による影響を回避するために装置構成が複雑になる。
The light scatterer 501 uses a material having a transmittance of 80% or more with light of at least one wavelength with respect to a wavelength of 400 nm or less. If the light scatterer 501 having a light transmittance of less than 80% is used, the ultraviolet light reaching the workpiece 301 is absorbed by the light scatterer by 20% or more, and the irradiation position of the ultraviolet irradiation unit 207 is desired to be irradiated. It is necessary to approach the boundary between the workpiece 301 and the abrasive grains 402 or increase the ultraviolet irradiation power. When the irradiation position of the ultraviolet irradiation unit 207 is moved closer or the ultraviolet irradiation power is increased, the tape 401 generates heat and deformation due to heat occurs. In order to avoid deformation due to heat, it is necessary to increase the winding speed of the tape 401. However, if the winding speed is increased, the amount of the tape 401 used for one processing increases, and it is necessary to increase the winding motor. Yes, the device configuration becomes complicated.
For the light scatterer 501, a material having a maximum transmittance at a wavelength of 150 nm or more is larger than a maximum transmittance at a wavelength shorter than 150 nm. When a material having a maximum transmittance at a wavelength of 150 nm or less is used, an amount of absorbing ultraviolet light having a wavelength longer than 150 nm is increased. For this reason, material deterioration is accelerated, and it is necessary to approach the boundary between the workpiece 301 and the abrasive grains 402 or to increase the ultraviolet irradiation power. In this case as well, the apparatus configuration is complicated in order to avoid the influence of heat.

光散乱体501は、例えば、粒子状の固形物として加工液中に分散させて供給してもよい。あるいは、光散乱体501を加工液と別に供給してもよい。例えば、後述するように光散乱体501をテープ等に固定して供給してもよい。また、光散乱体501は、加工時の切り屑排出の機能を果たしてもよい。加工液も光散乱体塗布ユニット208から供給してもよい。光散乱体501は気泡であってもよい。光散乱体501に気泡を用いることで、石英やアクリル等の固体を使用する場合に比べて、加工装置101やワーク301に光散乱体501が付着する等の影響を与えないで加工を実施できる効果がある。一方で、光散乱体501に石英やアクリル等の固体を使用することで、ワーク301の駆動時に光散乱体501が存在するために加工液が乱流となり加工時の切り屑排出機能をより発揮することが可能となる、という効果を奏することが可能である。   For example, the light scatterer 501 may be supplied as a particulate solid dispersed in the processing liquid. Alternatively, the light scatterer 501 may be supplied separately from the processing liquid. For example, as will be described later, the light scatterer 501 may be supplied fixed to a tape or the like. Moreover, the light scatterer 501 may fulfill the function of discharging chips during processing. The processing liquid may also be supplied from the light scatterer coating unit 208. The light scatterer 501 may be a bubble. By using bubbles for the light scatterer 501, processing can be performed without affecting the processing device 101 and the work 301, such as the light scatterer 501 being attached, as compared to using a solid such as quartz or acrylic. effective. On the other hand, by using a solid such as quartz or acrylic for the light scatterer 501, since the light scatterer 501 is present when the workpiece 301 is driven, the machining fluid becomes turbulent, and the chip discharge function during machining is further exhibited. It is possible to achieve the effect that it is possible to do.

光散乱体501に気泡を用いる場合は、光散乱体塗布ユニット208(供給口)からオゾン水、または過酸化水素水303を供給し、紫外線照射ユニット207から照射される紫外線により気泡の光散乱体501を発生させる。オゾン水又は過酸化水素水303に吸収される第1波長とワーク301に吸収される第2波長を有する紫外線を紫外線照射ユニット207から照射する。第1波長のピークはおよそ253nm、第2波長のピークはおよそ365nmが好ましい。このように紫外線照射ユニット207から照射される紫外線の波長を選択することにより、第1波長がオゾン水又は過酸化水素水303に吸収され、オゾンの分解又は過酸化水素の分解により酸素や空気の気泡を発生することができる。第1波長の吸収で気泡が出来、第2波長は気泡によって散乱光となりワーク301に届く。   When bubbles are used for the light scatterer 501, ozone water or hydrogen peroxide solution 303 is supplied from the light scatterer coating unit 208 (supply port), and the bubble light scatterer is irradiated by ultraviolet rays irradiated from the ultraviolet irradiation unit 207. 501 is generated. An ultraviolet ray having a first wavelength absorbed by ozone water or hydrogen peroxide solution 303 and a second wavelength absorbed by the workpiece 301 is irradiated from the ultraviolet irradiation unit 207. The peak of the first wavelength is preferably about 253 nm, and the peak of the second wavelength is preferably about 365 nm. As described above, by selecting the wavelength of the ultraviolet ray irradiated from the ultraviolet irradiation unit 207, the first wavelength is absorbed by the ozone water or the hydrogen peroxide solution 303, and oxygen or air is decomposed by the decomposition of ozone or the decomposition of hydrogen peroxide. Bubbles can be generated. Bubbles are formed by absorption of the first wavelength, and the second wavelength becomes scattered light by the bubbles and reaches the work 301.

この際、紫外線照射ユニット207には400nm以上の波長と100nm以下の波長を除去するフィルタを通して紫外線照射ユニット207から紫外線を照射してもよい。400nm以上の波長を除去することによって400nm以上の波長の吸収によるロール形状部材302からの発熱を低減することができる。また、100nm以下の超短波長成分の波長を除去することで100nm以下の波長の吸収によって発生するロール形状部材302の劣化を低減できる。そして、フィルタを透過した紫外線をオゾン水又は過酸化水素水303への吸収とワーク301への吸収とに使用することができる。この結果として、気泡を光散乱体501として活用し、ワーク301へ均一な光を照射すると共に、ロール形状部材302の熱影響や部材劣化の影響を低減した加工を実施することが出来る。   At this time, the ultraviolet irradiation unit 207 may be irradiated with ultraviolet rays from the ultraviolet irradiation unit 207 through a filter that removes wavelengths of 400 nm or more and wavelengths of 100 nm or less. By removing the wavelength of 400 nm or more, heat generation from the roll-shaped member 302 due to absorption of the wavelength of 400 nm or more can be reduced. Further, by removing the wavelength of the ultrashort wavelength component of 100 nm or less, it is possible to reduce the deterioration of the roll-shaped member 302 that occurs due to absorption of the wavelength of 100 nm or less. The ultraviolet light transmitted through the filter can be used for absorption into ozone water or hydrogen peroxide solution 303 and absorption into the work 301. As a result, the bubbles can be used as the light scatterer 501 to irradiate the workpiece 301 with uniform light, and to perform processing that reduces the influence of heat and member deterioration of the roll-shaped member 302.

図5にオゾン水又は過酸化水素水303を供給した状態図を示す。光散乱体塗布ユニット208から滴下されたオゾン水又は過酸化水素水303は、基板301上へ広がり加工部へ供給される。紫外線照射ユニット207から照射される紫外線光によって気泡である光散乱体501を発生させながら加工を実施する。   FIG. 5 shows a state diagram in which ozone water or hydrogen peroxide solution 303 is supplied. Ozone water or hydrogen peroxide solution 303 dropped from the light scatterer coating unit 208 spreads on the substrate 301 and is supplied to the processing section. Processing is performed while generating a light scatterer 501 that is a bubble by ultraviolet light irradiated from the ultraviolet irradiation unit 207.

光散乱体501の大きさは砥粒402よりも大きい方がよい。砥粒402よりも小さいとワーク301とテープ401の間に光散乱体501が入り込んでしまい、液体が無いために加工時の切り屑排出がうまく出来ず、切り屑によって加工面を再加工してしまうことがあるからである。光散乱体501の特定方法としてはマイクロスコープを用いて光散乱体501を観察し、画像データとして画像処理をすることで測定を行う。より詳細には、画像データ中に含まれる気泡(光散乱体501)と同面積の円の径を気泡の相当径として算出し、同一画像データ中に含まれる複数の気泡の相当径の平均値を気泡の大きさとして測定する。砥粒の大きさについては、ISO8486−1、又はISO8486−2に規定される方法で測定する。光散乱体501は、加工時の切り屑排出の機能を果たしてもよい。加工液も光散乱体塗布ユニット208から供給してもよい。   The size of the light scatterer 501 is preferably larger than the abrasive grains 402. If it is smaller than the abrasive grains 402, the light scatterer 501 enters between the work 301 and the tape 401, and since there is no liquid, the chips cannot be discharged during processing, and the processing surface is reprocessed by the chips. It is because it may end up. As a method for specifying the light scatterer 501, measurement is performed by observing the light scatterer 501 using a microscope and performing image processing as image data. More specifically, the diameter of a circle having the same area as the bubble (light scatterer 501) included in the image data is calculated as the equivalent diameter of the bubble, and the average value of the equivalent diameters of the plurality of bubbles included in the same image data Is measured as the bubble size. About the magnitude | size of an abrasive grain, it measures by the method prescribed | regulated to ISO8486-1 or ISO8486-2. The light scatterer 501 may fulfill the function of discharging chips during processing. The processing liquid may also be supplied from the light scatterer coating unit 208.

光散乱体501としては、例えば、石英、合成石英、又は紫外線透過アクリルを使用できる。このように、光散乱体501として上記の構造体、又は気泡を用いることで、酸化チタンなどの光触媒のような高価な部材を使用しなくとも、高精度な加工を実現できる。なお、光散乱体501は、チタンなどの光触媒を含まない。   As the light scatterer 501, for example, quartz, synthetic quartz, or ultraviolet transmissive acrylic can be used. As described above, by using the structure or the bubbles as the light scatterer 501, high-precision processing can be realized without using an expensive member such as a photocatalyst such as titanium oxide. Note that the light scatterer 501 does not include a photocatalyst such as titanium.

以上のように、本実施の形態1に係る加工装置101によって、次世代半導体材料であるGaN基板に対して高速な加工速度で均一な表面に研磨することができる。なお、ワーク301は、GaNに限定されず、例えば、サファイア、SiC、ダイヤモンド、Gaを用いてもよい。つまり、本加工装置101は、炭化珪素(SiC)やGaN、サファイア、ダイヤモンド等の硬脆性材料を加工するのに有用である。 As described above, the processing apparatus 101 according to the first embodiment can polish a GaN substrate, which is a next-generation semiconductor material, to a uniform surface at a high processing speed. The workpiece 301 is not limited to GaN, and for example, sapphire, SiC, diamond, or Ga 2 O 3 may be used. That is, the present processing apparatus 101 is useful for processing hard and brittle materials such as silicon carbide (SiC), GaN, sapphire, and diamond.

また、ロール形状部材302とワーク301との配置は、相対的に移動させればよい。
なお、本実施の形態1では、研磨材である砥粒402をテープ401に固定したが、これに限られず、テープ401を用いることなくロール形状部材302の表面に砥粒402を直接固定してもよい。
なお、上記の加工装置101の各構成の動作は、プロセッサを含むコントローラにプログラムされた所定のプログラムが実行されることで、制御される。所定のプログラムは、コントローラに備わるメモリに記憶される。
Moreover, what is necessary is just to move the arrangement | positioning of the roll-shaped member 302 and the workpiece | work 301 relatively.
In the first embodiment, the abrasive grains 402 that are abrasives are fixed to the tape 401. However, the present invention is not limited to this, and the abrasive grains 402 are directly fixed to the surface of the roll-shaped member 302 without using the tape 401. Also good.
The operation of each component of the machining apparatus 101 is controlled by executing a predetermined program programmed in a controller including a processor. The predetermined program is stored in a memory provided in the controller.

<実施例1>
本実施の形態に係る実施例1では、図1のワーク301として、2インチGaNウェハをSUS機材に熱溶融性ワックスで固定したものを使用した。SUS機材は、回転テーブル201上にピン押さえで固定し、回転テーブル201の回転中心と2インチGaNウェハの回転中心との位置ずれが2μm以下となるようにピン押さえの位置を調整した。テープ駆動ユニット205としてテープの巻き取り速度を0.1mm/分から5mm/分まで設定できるユニットを使用した。
また、テープ401は、PET製のテープ下地剤の上に砥粒として粒子径0.5μm〜2μmのダイヤモンドの砥粒402を接着層の上に分散したものを使用した。加圧力制御ユニット206は空気圧で加圧力を制御するエアーシリンダーを用いた。設定空気圧としては0.1MPaから0.6MPaまで設定した。
また、紫外線照射ユニット207には、水銀光源で365nmの紫外線を出力するようにフィルターを選択し、ファイバー先端から約10mmの距離で2000mW/平方cmの光量が出るように調整した。紫外線照射ユニット207とGaNウェハとテープの接触点までの距離は20mmになるように紫外線照射ユニット207の先端部を固定した。
光散乱体501として、30%濃度の過酸化水素水に粒径5μmの合成石英粒子を100mlあたり10gの割合で配合したものを使用した。
ここで砥粒402、ワーク301、光散乱体501の各ビッカース硬度は、砥粒402として使用したダイヤモンドが約70GPa、ワーク301のGaN材料が20GPa、光散乱体501の合成石英が9.7GPaであった。つまり、硬さとして砥粒>ワーク>光散乱体の関係を満たすように各材料を選定した。
<Example 1>
In Example 1 according to the present embodiment, a work 301 shown in FIG. 1 was obtained by fixing a 2-inch GaN wafer to a SUS equipment with hot melt wax. The SUS equipment was fixed on the rotary table 201 with a pin press, and the position of the pin press was adjusted so that the positional deviation between the rotation center of the rotary table 201 and the rotation center of the 2-inch GaN wafer was 2 μm or less. A unit capable of setting the tape winding speed from 0.1 mm / min to 5 mm / min was used as the tape drive unit 205.
Further, the tape 401 was obtained by dispersing diamond abrasive grains 402 having a particle diameter of 0.5 μm to 2 μm as abrasive grains on a PET tape base material on an adhesive layer. The pressure control unit 206 used was an air cylinder that controls the pressure with air pressure. The set air pressure was set from 0.1 MPa to 0.6 MPa.
For the ultraviolet irradiation unit 207, a filter was selected to output 365 nm ultraviolet light from a mercury light source, and adjustment was made so that a light amount of 2000 mW / square cm was emitted at a distance of about 10 mm from the fiber tip. The tip of the ultraviolet irradiation unit 207 was fixed so that the distance between the ultraviolet irradiation unit 207 and the contact point between the GaN wafer and the tape was 20 mm.
As the light scatterer 501, a mixture of 30% concentrated hydrogen peroxide water with synthetic quartz particles having a particle diameter of 5 μm at a rate of 10 g per 100 ml was used.
Here, the Vickers hardness of the abrasive grains 402, the work 301, and the light scatterer 501 is about 70 GPa for diamond used as the abrasive grains 402, 20 GPa for the GaN material of the work 301, and 9.7 GPa for synthetic quartz of the light scatterer 501. there were. That is, each material was selected so as to satisfy the relationship of abrasive grains>workpiece> light scatterer as hardness.

GaNウェハであるワーク301の表面は、粒度#1000のダイヤモンド砥粒にて事前に加工しており、表面粗さRa5nmになるようにした。ロール形状部材302には反発硬さであるショア硬さ95のウレタンゴムを用い、ロール形状部材302は、ロール長手方向2インチ、ロール外形1インチの形状のものを使用した。
また、加工にあたり加圧力制御ユニット206の加圧力は0.4MPaに設定し、ワーク301とダイヤモンド砥粒を具備するテープ401とが接触した位置をゼロ点として、Y軸方向駆動部203をゼロ点からY軸マイナス方向に100μm移動させた位置で加工を行った。
合成石英の粒子である光散乱体501は、4面体以上の面数になるように、合成石英を粉砕した後、両面研磨盤にて約20分研磨を行って作製したものを採用した。合成石英である光散乱体501は、光散乱体塗布ユニット208から毎分10ccの量をワーク301上へ滴下した。
直進駆動部202の駆動領域として、回転テーブル201の回転中心をX=0の位置としてプラス側2.5mm、マイナス側2.5mmの範囲を1分間に1000回往復するように駆動条件を設定し、回転テーブル201は2.5回転/分の速度で回転するように駆動条件を設定した。この条件では、直進駆動部202による相対速度は、5000mm/分であった。回転テーブル201による相対速度は、2インチのGaNを用いたため、回転中心をゼロとして最大で392.5mm/分の差となった。直進駆動部202と回転テーブル201との合算相対速度で9.2%の速度差であった。
この条件で加工し、紫外線照射有りと紫外線照射無しとのそれぞれで目標とする表面粗さRa1nm以下までにかかる時間を測定した。表1に測定した結果を示す。
The surface of the work 301, which is a GaN wafer, was processed in advance with diamond abrasive grains having a particle size of # 1000 so that the surface roughness Ra was 5 nm. The roll-shaped member 302 is made of urethane rubber with a Shore hardness of 95, which is a rebound hardness, and the roll-shaped member 302 has a shape with a roll length of 2 inches and a roll outer shape of 1 inch.
In addition, the pressing force of the pressing force control unit 206 is set to 0.4 MPa during processing, and the position where the workpiece 301 and the tape 401 having diamond abrasive grains are in contact with each other is set to the zero point, and the Y-axis direction driving unit 203 is set to the zero point. Was processed at a position moved by 100 μm in the negative direction of the Y axis.
As the light scatterer 501 which is a particle of synthetic quartz, a light scattering body 501 was used which was prepared by grinding synthetic quartz for about 20 minutes after grinding the synthetic quartz so as to have a tetrahedral or higher number of faces. The light scatterer 501, which is synthetic quartz, was dropped onto the work 301 in an amount of 10 cc per minute from the light scatterer coating unit 208.
As a drive area of the rectilinear drive unit 202, a drive condition is set so that the rotation center of the rotary table 201 is X = 0, and the range of 2.5 mm on the plus side and 2.5 mm on the minus side is reciprocated 1000 times per minute. The driving conditions were set so that the rotary table 201 rotates at a speed of 2.5 rotations / minute. Under this condition, the relative speed by the linear drive unit 202 was 5000 mm / min. Since the relative speed by the rotary table 201 was 2 inches of GaN, the maximum difference was 392.5 mm / min with the rotation center as zero. The total relative speed between the linear drive unit 202 and the rotary table 201 was a speed difference of 9.2%.
Processing was performed under these conditions, and the time taken to reach the target surface roughness Ra of 1 nm or less was measured with and without ultraviolet irradiation. Table 1 shows the measurement results.

Figure 2017013222
Figure 2017013222

表1において、横軸は加工時間であり、縦軸の上段は紫外線照射無しの場合であり、下段は紫外線照射有りの場合である。表面粗さ(Ra)は、白色干渉計によって測定した。紫外線照射をしない場合にはRa1nm以下になるまでにおよそ60分必要とした。一方、紫外線照射を行った場合には10分後にはRa1nm以下になっていた。したがって、紫外線照射を行ったほうが、紫外線照射を行わなかった場合よりも少なくとも6倍以上の加工速度向上を図れた。   In Table 1, the horizontal axis represents the processing time, the upper part of the vertical axis represents the case without ultraviolet irradiation, and the lower part represents the case with ultraviolet irradiation. The surface roughness (Ra) was measured with a white interferometer. When UV irradiation was not performed, it took about 60 minutes to reach Ra 1 nm or less. On the other hand, when ultraviolet irradiation was performed, Ra was 1 nm or less after 10 minutes. Therefore, it was possible to improve the processing speed by at least 6 times higher when the ultraviolet irradiation was performed than when the ultraviolet irradiation was not performed.

次に、光散乱体501の効果を検証するために、図1の回転テーブル201を駆動させずに、直進駆動軸202のみを駆動させ光散乱体を塗布する場合と塗布しない場合で加工を行った。回転テーブル201の駆動以外の条件は同一条件で実施した。紫外光はロール形状部材302の長手方向の中心をゼロ点としてゼロ点に紫外光の広がりの中心がくるように照射した。表2に測定した結果を示す。   Next, in order to verify the effect of the light scatterer 501, processing is performed with or without applying the light scatterer by driving only the rectilinear drive shaft 202 without driving the rotary table 201 of FIG. It was. Conditions other than driving of the rotary table 201 were the same. The ultraviolet light was irradiated so that the center of the spread of the ultraviolet light comes to the zero point with the center in the longitudinal direction of the roll-shaped member 302 as the zero point. Table 2 shows the measurement results.

Figure 2017013222
Figure 2017013222

表2の結果から、光散乱体が無い場合はゼロ点からロール形状部材302の長手方向に距離が離れると加工面の表面粗さが悪くなり、加工レートに差が出た。一方、光散乱体501を塗布した場合には場所による表面粗さの差が出ず、均一な加工レートで加工できていた。   From the results shown in Table 2, when there was no light scatterer, the surface roughness of the processed surface deteriorated when the distance from the zero point in the longitudinal direction of the roll-shaped member 302 increased, resulting in a difference in the processing rate. On the other hand, when the light scatterer 501 was applied, there was no difference in surface roughness depending on the location, and processing was possible at a uniform processing rate.

本発明に係る加工装置は、炭化珪素(SiC)やGaN、サファイア、ダイヤモンド等の硬脆性材料の加工に適用できる。   The processing apparatus according to the present invention can be applied to processing hard brittle materials such as silicon carbide (SiC), GaN, sapphire, and diamond.

101 加工装置
201 回転テーブル
202 直進駆動部(水平駆動部)
203 Y軸方向駆動部(垂直駆動部)
204 Z軸方向駆動部
205 テープ駆動ユニット
206 加圧力制御ユニット
207 紫外線照射ユニット(紫外線照射源)
208 光散乱体塗布ユニット
301 ワーク
302 ロール形状部材
303 オゾン水又は過酸化水素水
401 テープ
402 砥粒
501 光散乱体
101 Processing Device 201 Rotary Table 202 Linear Drive Unit (Horizontal Drive Unit)
203 Y-axis direction drive unit (vertical drive unit)
204 Z-axis direction drive unit 205 Tape drive unit 206 Pressure control unit 207 Ultraviolet irradiation unit (ultraviolet irradiation source)
208 Light scatterer coating unit 301 Work 302 Roll-shaped member 303 Ozone water or hydrogen peroxide solution 401 Tape 402 Abrasive grain 501 Light scatterer

Claims (14)

ワークを回転軸について回転させる回転テーブルと、
前記回転テーブルの前記回転軸と直交する軸で回転するロール形状部材と、
前記回転テーブルの回転軸の方向について、前記ロール形状部材と前記ワークとを互いに接するように駆動する垂直駆動部と、
前記ロール形状部材と前記ワークとの間に紫外線を照射する紫外線照射源と、
前記ロール形状部材と前記ワークとの間に供給される研磨材と、
前記ロール形状部材と前記ワークとの間に供給され、前記紫外線照射源からの紫外線を散乱させる光散乱体と、を備える加工装置。
A rotary table that rotates the workpiece about the rotation axis;
A roll-shaped member that rotates on an axis orthogonal to the rotation axis of the rotary table;
A vertical drive unit that drives the roll-shaped member and the workpiece so as to contact each other with respect to the direction of the rotation axis of the rotary table;
An ultraviolet irradiation source for irradiating ultraviolet rays between the roll-shaped member and the workpiece;
An abrasive supplied between the roll-shaped member and the workpiece;
A processing apparatus comprising: a light scatterer that is supplied between the roll-shaped member and the workpiece and scatters ultraviolet rays from the ultraviolet irradiation source.
前記研磨材は、前記ワークよりビッカース硬度が高く、前記光散乱体は、前記ワークよりビッカース硬度が低い、請求項1に記載の加工装置。   The processing apparatus according to claim 1, wherein the abrasive has a Vickers hardness higher than that of the workpiece, and the light scatterer has a Vickers hardness lower than that of the workpiece. 前記研磨材は、テープに具備され、
前記テープは、前記ロール形状部材とワークとの接触部に供給される、請求項1又は2に記載の加工装置。
The abrasive is provided on a tape,
The said tape is a processing apparatus of Claim 1 or 2 supplied to the contact part of the said roll-shaped member and a workpiece | work.
前記研磨材および前記光散乱体は、共に粒子状であり、
前記研磨材のサイズは、前記光散乱体のサイズよりも小さい、請求項1から3のいずれか一項に記載の加工装置。
The abrasive and the light scatterer are both particulate,
The processing apparatus according to claim 1, wherein a size of the abrasive is smaller than a size of the light scatterer.
前記光散乱体は、4面体以上の面数を持つ多面体形状、又は、球状である、請求項1から4のいずれか一項に記載の加工装置。   The said light-scattering body is a processing apparatus as described in any one of Claim 1 to 4 which is a polyhedron shape with the number of faces of a tetrahedron or more, or spherical shape. 前記光散乱体は、150nm以上、400nm以下の少なくとも一つの波長の光について80%以上、100%未満の透過率を示す、請求項1から5のいずれか一項に記載の加工装置。   The said light scatterer is a processing apparatus as described in any one of Claim 1 to 5 which shows the transmittance | permeability of 80% or more and less than 100% about the light of at least 1 wavelength of 150 nm or more and 400 nm or less. 前記回転テーブルの回転軸と前記ロール形状部材の回転軸とのそれぞれと垂直な方向に前記ロール形状部材と前記回転テーブルとを相対移動させる水平駆動部をさらに備える、請求項1から6のいずれか一項に記載の加工装置。   The horizontal drive part which relatively moves the said roll-shaped member and the said rotary table in the direction perpendicular | vertical to each of the rotating shaft of the said rotary table and the rotating shaft of the said roll-shaped member, It is any one of Claim 1 to 6 The processing apparatus according to one item. 前記光散乱体は、光触媒を含まない、請求項1から7のいずれか一項に記載の加工装置。   The processing apparatus according to claim 1, wherein the light scatterer does not include a photocatalyst. 前記散乱体は、気泡である、請求項1に記載の加工装置。   The processing apparatus according to claim 1, wherein the scatterer is a bubble. オゾン水、又は過酸化水素水を供給する供給口を更に備え、
前記気泡は、前記オゾン水、又は前記過酸化水素水に前記紫外線照射源からの紫外線が照射されることで発生する、請求項9に記載の加工装置。
It further includes a supply port for supplying ozone water or hydrogen peroxide water,
The processing apparatus according to claim 9, wherein the bubbles are generated when the ozone water or the hydrogen peroxide solution is irradiated with ultraviolet rays from the ultraviolet irradiation source.
前記紫外線照射源は、前記オゾン水、又は前記過酸化水素水に吸収される第1波長と、前記ワークに吸収される第2波長と、を有する紫外線を照射する、請求項10に記載の加工装置。   The said ultraviolet irradiation source irradiates the ultraviolet-ray which has the 1st wavelength absorbed by the said ozone water or the said hydrogen peroxide solution, and the 2nd wavelength absorbed by the said workpiece | work. apparatus. 前記第1波長のピーク波長は253nm、前記第2波長のピーク波長は365nmである、請求項11に記載の加工装置。   The processing apparatus according to claim 11, wherein a peak wavelength of the first wavelength is 253 nm and a peak wavelength of the second wavelength is 365 nm. 前記紫外線照射源は、100nm以下400nm以上の波長を除去するフィルタを更に具備する、請求項12に記載の加工装置。   The processing apparatus according to claim 12, wherein the ultraviolet irradiation source further includes a filter that removes a wavelength of 100 nm or less and 400 nm or more. 請求項1から13のいずれか一項に記載の加工装置を用いてワークの加工を行う加工方法。   The processing method which processes a workpiece | work using the processing apparatus as described in any one of Claims 1-13.
JP2016017261A 2015-06-29 2016-02-01 Processing apparatus and processing method Expired - Fee Related JP6586023B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/099,590 US9865470B2 (en) 2015-06-29 2016-04-15 Processing apparatus and processing method
CN201610308988.7A CN106328560B (en) 2015-06-29 2016-05-11 Machining device and machining method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015130235 2015-06-29
JP2015130235 2015-06-29

Publications (2)

Publication Number Publication Date
JP2017013222A true JP2017013222A (en) 2017-01-19
JP6586023B2 JP6586023B2 (en) 2019-10-02

Family

ID=57827591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017261A Expired - Fee Related JP6586023B2 (en) 2015-06-29 2016-02-01 Processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP6586023B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227363A (en) * 1983-06-08 1984-12-20 Ricoh Co Ltd Polishing apparatus
JP2003080451A (en) * 2001-09-07 2003-03-18 Tokyo Seimitsu Co Ltd Polishing device and polishing method
JP2004511109A (en) * 2000-10-06 2004-04-08 ラム リサーチ コーポレーション CMP system using active slurry and method of mounting CMP system
US20070259608A1 (en) * 2006-05-03 2007-11-08 Bechtold Michael J Method and apparatus for precision polishing of optical components
JP2010251699A (en) * 2009-03-27 2010-11-04 Osaka Univ Polishing method and polishing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227363A (en) * 1983-06-08 1984-12-20 Ricoh Co Ltd Polishing apparatus
JP2004511109A (en) * 2000-10-06 2004-04-08 ラム リサーチ コーポレーション CMP system using active slurry and method of mounting CMP system
JP2003080451A (en) * 2001-09-07 2003-03-18 Tokyo Seimitsu Co Ltd Polishing device and polishing method
US20070259608A1 (en) * 2006-05-03 2007-11-08 Bechtold Michael J Method and apparatus for precision polishing of optical components
JP2010251699A (en) * 2009-03-27 2010-11-04 Osaka Univ Polishing method and polishing apparatus

Also Published As

Publication number Publication date
JP6586023B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
CN106328560B (en) Machining device and machining method
US10953516B2 (en) Grinding apparatus
JP6523716B2 (en) Work grinding method and work grinding apparatus
CN1803399A (en) Surface polishing method and apparatus thereof
JP5916513B2 (en) Processing method of plate
TWI460777B (en) Verfahren zum schleifen einer halbleiterscheibe
JP5963537B2 (en) Processing method of silicon wafer
KR102164558B1 (en) Method for surface treatment of workpiece made from hard-brittle material
JP6300763B2 (en) Workpiece processing method
JP2009208214A (en) Polishing apparatus
JP6192778B2 (en) Silicon wafer processing equipment
TW201922424A (en) Apparatus of chemical mechanical polishing and operating method thereof
WO2020032106A1 (en) Local polishing method, local polishing device, and corrective polishing apparatus using said local polishing device
JP6586023B2 (en) Processing apparatus and processing method
JP5357561B2 (en) Manufacturing method of semiconductor wafer with uniform surface polishing
JP6814574B2 (en) How to attach the tape
JP2006224252A (en) Polishing apparatus
JP2007015046A (en) Grinding device and grinding method
JP5172457B2 (en) Grinding apparatus and grinding method
JP2006210488A (en) Method and device for mechanochemical polishing
JP5699597B2 (en) Double-side polishing equipment
JP6493740B2 (en) Polishing tool for loose abrasive machining, method for producing the same, and loose abrasive polishing apparatus
JP6710463B2 (en) Wafer processing method
JPH1126404A (en) Polishing apparatus
WO2000024548A1 (en) Polishing apparatus and a semiconductor manufacturing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190906

R151 Written notification of patent or utility model registration

Ref document number: 6586023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees