JP2017010798A - 非水電解液蓄電素子 - Google Patents

非水電解液蓄電素子 Download PDF

Info

Publication number
JP2017010798A
JP2017010798A JP2015125550A JP2015125550A JP2017010798A JP 2017010798 A JP2017010798 A JP 2017010798A JP 2015125550 A JP2015125550 A JP 2015125550A JP 2015125550 A JP2015125550 A JP 2015125550A JP 2017010798 A JP2017010798 A JP 2017010798A
Authority
JP
Japan
Prior art keywords
positive electrode
storage element
active material
electrolyte storage
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015125550A
Other languages
English (en)
Inventor
宗平 武下
Sohei Takeshita
宗平 武下
奈緒人 阿部
Naoto Abe
奈緒人 阿部
良夫 伊藤
Yoshio Ito
良夫 伊藤
達也 壇
Tatsuya Dan
達也 壇
由佳 荒木
Yuka Araki
由佳 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2015125550A priority Critical patent/JP2017010798A/ja
Publication of JP2017010798A publication Critical patent/JP2017010798A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】充放電を繰り返した場合でも高容量を維持することができ、かつ、充放電に伴う正極の体積変化が抑制された非水電解液蓄電素子の提供。【解決手段】(1)アニオンを挿入及び脱離可能な正極活物質を含む正極と、負極と、非水電解液とを有し、前記正極活物質として、結晶性を有しBET比表面積が23〜100m2/gの賦活処理された炭素質材料を用いた非水電解液蓄電素子。(2)前記負極が、カチオンを挿入及び脱離可能な負極活物質を含む(1)に記載の非水電解液蓄電素子。【選択図】なし

Description

本発明は、正極にアニオンを、負極にカチオンを挿入したり脱離させたりする非水電解液蓄電素子に関する。
近年、携帯機器の小型化、高性能化に伴い高いエネルギー密度を持つ非水電解液蓄電素子の特性が向上し、普及しており、より大容量で安全性に優れた非水電解液蓄電素子の開発も進められ、電気自動車等への搭載も始まっている。このような非水電解液蓄電素子としてはリチウムイオン二次電池が多く使用されている。
一方、ハイブリット自動車等の蓄電素子としては、化学反応を必要とせず高速で充放電可能な電気二重層キャパシタが使用されている。しかし、リチウムイオン蓄電素子と比べると、エネルギー密度は数10分の1であって、十分な容量を確保するためには重い蓄電素子が必要となり、自動車に積載した場合には燃費向上を妨げていた。
エネルギー密度が高く、高速充放電に適した蓄電素子として、導電性高分子材料、炭素材料等を正極に用い、炭素等の負極及び非水溶媒にリチウム塩を溶解した非水電解液からなる、いわゆるデュアルインターカレーションタイプの非水電解液蓄電素子について種々の提案がなされている(例えば、特許文献1、2参照)。
リチウム塩としてLiPFを使用した場合には、下記反応式に示すように、非水電解液中から正極にPF が挿入され、負極にLiが挿入されることにより充電が行われ、正極からPF 、負極からLiが非水電解液へ脱離することにより放電が行われる。
Figure 2017010798
また、アニオンを吸蔵・放出する活物質として黒鉛が知られており、正極活物質として黒鉛を用い、充電終止電圧をリチウム参照極に対して5.3〜5.6V(対Li電位)とすることにより、高い容量が得られる二次電池が提案されている(特許文献3参照)。
しかしながら、前記デュアルカーボン蓄電素子は、最高電圧がリチウムイオン二次電池の4.2Vよりも1V以上高い電圧領域で使用しており、これは一般的な非水電解液の分解電位よりも高い電圧領域である。その結果、非水電解液の分解による蓄電素子内部でのガスの発生や負極表面へのフッ化物の過剰な堆積等が生じるため、充放電を繰り返し行った際のイオンの可逆的な吸蔵乃至放出可能容量が大幅に低減して、蓄電素子の低寿命化を招く恐れがある。
また、アニオンインターカレーション系の電池は、充放電により電極が大きく膨張又は収縮して電極膜の厚みが変化するため、電極膜の厚みの変化量に応じて電池内で圧縮応力や引張応力が生じる。その結果、サイクルの経過に伴う電極材のひび割れ、集電体からの電極材の剥離、電極材とセパレータの潰れ、正極又は負極とセパレータ間の隙間の発生による電解液の液枯れなどが生じて電池反応を阻害する。即ち、電極膜の体積変化率は電池寿命に影響を及ぼす。
本発明は、前記従来の諸問題を解決し、充放電を繰り返した場合でも高容量を維持することができ、かつ、充放電に伴う正極の体積変化が抑制された非水電解液蓄電素子の提供を目的とする。
上記課題は、次の1)の発明によって解決される。
1) アニオンを挿入及び脱離可能な正極活物質を含む正極と、負極と、非水電解液とを有し、前記正極活物質として、結晶性を有しBET比表面積が23〜100m/gの賦活処理された炭素質材料を用いた非水電解液蓄電素子。
本発明によれば、充放電を繰り返した場合でも高容量を維持することができ、かつ、充放電に伴う正極の体積変化が抑制された非水電解液蓄電素子を提供できる。
比較例1及び実施例1〜2の1サイクル目の充放電曲線。 非水電解液蓄電素子の一例を示す概略図。
以下、上記本発明1)について詳しく説明するが、その実施の形態には次の2)〜7)も含まれるので、これらについても併せて説明する。
2) 前記負極が、カチオンを挿入及び脱離可能な負極活物質を含む1)に記載の非水電解液蓄電素子。
3) 前記炭素質材料が、そのX線回折スペクトルにおいて、炭素質材料の層間距離に相当する面間距離d(002)由来のピークが、ブラッグ角度2θの20.0〜26.0度の間に位置する1)又は2)に記載の非水電解液蓄電素子。
4) 前記炭素質材料が易黒鉛化性炭素である1)〜3)のいずれかに記載の非水電解液蓄電素子。
5) 前記炭素質材料が天然黒鉛又は人造黒鉛である1)〜3)のいずれかに記載の非水電解液蓄電素子。
6) 前記賦活処理がアルカリ賦活処理である1)〜5)のいずれかに記載の非水電解液蓄電素子。
7) 前記非水電解液が、電解質塩としてLiPFを含む1)〜6)のいずれかに記載の非水電解液蓄電素子。
<<非水電解液蓄電素子>>
本発明の非水電解液蓄電素子は、正極と負極と非水電解液とを有し、更に必要に応じてその他の部材を有する。
図2に非水電解液蓄電素子の一例を示す。この非水電解液蓄電素子10は、正極1、負極2、及び前記非水電解液を含むセパレータ3を外装缶4内に収容し、これに負極引き出し線5及び正極引き出し線6を設けたものである。
前記非水電解液蓄電素子としては、例えば、非水電解液二次電池、非水電解液キャパシタ、などが挙げられる。
本発明者らは正極にアニオンを蓄えるタイプの電極を用いた非水電解液蓄電素子において、正極に用いる炭素活物質の炭素種や構造について鋭意検討した結果、賦活処理された結晶性を有する炭素質材料を使用すると、炭素表面に形成された細孔の存在によりイオンのインターカレーションが容易となるため、5V(対Li電位)以下の電圧範囲においても比較的高い容量が得られることを見出した。
また、アルカリ賦活処理により形成された細孔が粒子自身の体積膨張を緩和するため、充放電に伴う電極の体積変化を抑制することが出来る。
本発明の非水電解液蓄電素子の構成部材及びその製造方法について説明する。
1.正極
正極は、アニオンを挿入及び脱離可能な正極活物質を含んでいれば、特に制限はなく、目的に応じて適宜選択することができ、例えば正極集電体上に正極活物質を有する正極材を備えた正極などが挙げられる。
正極の形状には特に制限はなく、目的に応じて適宜選択することができ、例えば平板状、などが挙げられる。
1−1.正極材
正極材には特に制限はなく、目的に応じて適宜選択することができ、例えば正極活物質を少なくとも含み、更に必要に応じてバインダ、増粘剤、導電助剤、などを含む。
(1)正極活物質
正極活物質としては、炭素質材料を賦活処理したものを用いる。
前記炭素質材料としては、例えば、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)、易黒鉛化性炭素、様々な熱分解条件での有機物の熱分解物、などが挙げられる。
前記易黒鉛化性炭素としては、例えば、石油系ピッチ、石炭系ピッチ、メソフェーズ系ピッチなどのピッチ類;石油系ニードルコーコス、石炭系ニードルコークス、アントラセン、ボリ塩化ビニル、ポリアクリロニトリル等から得られる易黒鉛化性コークス類などの熱分解物等が挙げられる。
前記賦活処理としては、例えば、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、水酸化リチウム(LiOH)、水酸化セシウム(CsOH)、水酸化ルビジウム(RbOH)、りん酸ナトリウム(NaPO)、塩化カルシウム(CaCl)、硫化カリウム(KS)、炭酸カリウム(KCO)、炭酸ナトリウム(NaCO)、硫酸ナトリウム(NaSO)、硫酸カリウム(KSO)、炭酸カルシウム(CaCO)等を賦活剤として用いるアルカリ賦活処理;二酸化炭素(CO)、空気等を賦活剤として用いるガス賦活処理;水蒸気(HO)を賦活剤として用いる水蒸気賦活処理などが挙げられる。
これらの中でもアルカリ賦活処理が好ましく、水酸化カリウム(KOH)を用いるアルカリ賦活処理がより好ましい。
賦活処理は次のようにして行う。
例えばKOHで賦活する場合を例にとると、KOHを炭素質材料に均等に含浸させた後、アルゴン、窒素等の不活性ガス雰囲気下で、例えば700℃〜1000℃で焼成する。次いで、水又は塩酸、硫酸等の酸で洗浄して薬品を除去し乾燥させれば、賦活された炭素質材料(賦活炭)が得られる。使用するKOHの量は、例えば炭素質材料1質量部に対して、1〜5質量部である。
賦活炭としてはBET比表面積が23〜100m/gのものを用いる。23m/g未満では、細孔の発達が不十分となり高容量が得られない。また、100m/gを超えると、活物質と電解液との反応面積が広くなるため、電解液の分解反応が促進され、サイクル特性の低下を引き起こすことがある。
また、前記賦活炭は、そのX線回折スペクトルにおいて、ブラッグ角度2θが20.0〜26.0度の間にピークを有することが好ましい。20.0度よりも低角側にピークがあると、黒鉛結晶を構成する六角網平面間の平均距離が4Åを超えるため六角網平面間のファン・デル・ワールス力が弱くなり、アニオンの挿入・脱離を繰り返した際にへき開が発生し、結晶構造が崩れてサイクル特性の低下を引き起こす恐れがある。また、26度よりも高角側にピークがあると、六角網平面間の平均距離が3.4Åよりも狭くなり、挿入するアニオンのサイズに対して極端に狭くなるため、アニオンの挿入が抑制されて高容量を得られない恐れがある。
(2)バインダ及び増粘剤
バインダ及び増粘剤としては、電極製造時に使用する溶媒や電解液及び印加される電位に対して安定な材料であれば特に制限はなく、目的に応じて適宜選択することができる。その例としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダ、エチレン−プロピレン−ブタジエンゴム(EPBR)、スチレン−ブタジエンゴム(SBR)、イソプレンゴム、アクリレート系ラテックス、カルボキシメチルセルロース(CMC)、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリアクリル酸、ポリビニルアルコール、アルギン酸、酸化スターチ、リン酸スターチ、カゼイン、などが挙げられる。これらは、1種を単独で使用しても2種以上を併用してもよい。これらの中でも、PVDF、PTFE等のフッ素系バインダ、アクリレート系ラテックス、CMCが好ましい。
(3)導電助剤
導電助剤としては、例えば、銅、アルミニウム等の金属材料、カーボンブラック、アセチレンブラック、カーボンナノチューブ等の炭素質材料、などが挙げられる。これらは、1種を単独で使用しても2種以上を併用してもよい。
1−2.正極集電体
正極集電体の材質は、導電性材料で形成され印加される電位に対して安定であれば特に制限はなく、目的に応じて適宜選択することができ、例えばステンレススチール、ニッケル、アルミニウム、チタン、タンタル、などが挙げられる。これらの中でも、ステンレススチール、アルミニウムが特に好ましい。
正極集電体の形状や構造には特に制限はなく目的に応じて適宜選択することができる。
正極集電体の大きさは、非水電解液蓄電素子に使用可能な大きさであれば特に制限はなく、目的に応じて適宜選択することができる。
1−3.正極の作製方法
正極は、正極活物質に、必要に応じてバインダ、増粘剤、導電剤、溶媒等を加えてスラリー状とした正極材を正極集電体上に塗布し乾燥することにより作製することができる。前記溶媒には特に制限はなく、目的に応じて適宜選択することができ、例えば、水系溶媒、有機系溶媒などが挙げられる。前記水系溶媒としては、例えば水、アルコール、などが挙げられる。前記有機系溶媒としては、例えばN−メチル−2−ピロリドン(NMP)、トルエン、などが挙げられる。
なお、正極活物質をそのままロール成形してシート電極としたり、圧縮成形によりペレット電極とすることもできる。
2.負極
負極は、負極活物質を含んでいれば特に制限はなく、目的に応じて適宜選択することができ、例えば、負極集電体上に負極活物質を有する負極材を備えた負極、などが挙げられる。
負極の形状には特に制限はなく、目的に応じて適宜選択することができ、例えば平板状などが挙げられる。
2−1.負極材
負極材は、少なくとも負極蓄電物質(負極活物質等)を含み、必要に応じてバインダ、増粘剤、導電助剤、などを含む。
(1)負極活物質
負極活物質は、非水溶媒系でカチオンを挿入及び脱離可能な物質であれば特に制限はない。カチオンとしてはリチウムイオンが汎用されている。これに対応する負極活物質としては、炭素質材料、酸化アンチモン錫、一酸化珪素等のリチウムを吸蔵、放出可能な金属酸化物、アルミニウム、錫、珪素、亜鉛等のリチウムと合金化可能な金属又は金属合金、リチウムと合金化可能な金属と該金属を含む合金とリチウムとの複合合金化合物、チッ化コバルトリチウム等のチッ化金属リチウムなどが挙げられる。これらは、1種を単独で使用しても2種以上を併用してもよい。これらの中でも、安全性とコストの点から炭素質材料が特に好ましい。
前記炭素質材料としては、例えば、コークス、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)、様々な熱分解条件での有機物の熱分解物、などが挙げられる。これらの中でも、人造黒鉛、天然黒鉛が特に好ましい。
(2)バインダ及び増粘剤
バインダ及び増粘剤としては、電極製造時に使用する溶媒や電解液及び印加される電位に対して安定な材料であれば特に制限はなく、目的に応じて適宜選択することができる。その例としては前述した正極の場合と同様のものが挙げられ、これらの中から1種を単独で使用しても2種以上を併用してもよい。中でも、PVDF、PTFE等のフッ素系バインダ、SBR、CMCが好ましい。
(3)導電助剤
導電助剤の例としては、前述した正極の場合と同様のものが挙げられ、これらの中から1種を単独で使用しても2種以上を併用してもよい。
2−2.負極集電体
負極集電体の材質は、導電性材料で形成され印加される電位に対して安定であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、ステンレススチール、ニッケル、アルミニウム、銅、などが挙げられる。これらの中でもステンレススチール、銅、アルミニウムが特に好ましい。
負極集電体の形状や構造には特に制限はなく目的に応じて適宜選択することができる。
負極集電体の大きさは、非水電解液蓄電素子に使用可能な大きさであれば特に制限はなく、目的に応じて適宜選択することができる。
2−3.負極の作製方法
負極は、負極活物質に、必要に応じてバインダ、増粘剤、導電剤、溶媒等を加えてスラリー状とした負極材を負極集電体上に塗布し乾燥することにより作製することができる。前記溶媒としては、前記正極の作製方法の場合と同様のものを用いることができる。
また、負極活物質にバインダ、増粘剤、導電剤等を加えたものをそのままロール成形してシート電極としたり、圧縮成形によりペレット電極としたり、蒸着、スパッタ、メッキ等の手法で負極集電体上に負極活物質の薄膜を形成することもできる。
3.非水電解液
非水電解液は、非水溶媒に電解質塩を溶解させた電解液である。
3−1.非水溶媒
非水溶媒には特に制限はなく、目的に応じて適宜選択することができるが、非プロトン性有機溶媒が好適である。
前記非プロトン性有機溶媒としては、鎖状カーボネート、環状カーボネート等のカーボネート系有機溶媒が挙げられるが、低粘度のものが好ましい。これらの中でも、電解質塩の溶解力が高い点から、鎖状カーボネートが特に好ましい。
前記鎖状カーボネートとしては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)などが挙げられる。これらの中でも、DMCが好ましい。
前記DMCの含有量には特に制限はなく、目的に応じて適宜選択することができるが、非水溶媒に対して70質量%以上が好ましく、83質量%以上がより好ましい。含有量が70質量%以上であれば、残りの溶媒が誘電率の高い環状物質(環状カーボネートや環状エステル等)などであっても、3M以上の高濃度の非水電解液を作製したときに粘度が高くなりすぎたり、非水電解液の電極への染み込みや、イオン拡散の点で不具合を生じたりすることはない。
前記環状カーボネートとしては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)などが挙げられる。
また、前記環状カーボネートのECと、前記鎖状カーボネートのDMCを組み合わせた混合溶媒を用いる場合、ECとDMCの混合割合には特に制限はなく、目的に応じて適宜選択することができる。
なお、前記非水溶媒としては、必要に応じて、環状エステル、鎖状エステル等のエステル系有機溶媒、環状エーテル、鎖状エーテル等のエーテル系有機溶媒、などを用いることができる。
前記環状エステルとしては、例えば、γ−ブチロラクトン(γBL)、2−メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン、などが挙げられる。
前記鎖状エステルとしては、例えば、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル〔酢酸メチル(MA)、酢酸エチル等〕、ギ酸アルキルエステル〔ギ酸メチル(MF)、ギ酸エチル等〕、などが挙げられる。
前記環状エーテルとしては、例えば、テトラヒドロフラン、アルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソラン、などが挙げられる。
前記鎖状エーテルとしては、例えば、1,2−ジメトシキエタン(DME)、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル、などが挙げられる。
3−2.電解質塩
電解質塩としてはリチウム塩が好ましく、非水溶媒に溶解し、高いイオン伝導度を示すリチウム塩であれば、特に制限はない。その例としては、ヘキサフルオロリン酸リチウム(LiPF)、過塩素酸リチウム(LiClO)、塩化リチウム(LiCl)、ホウ弗化リチウム(LiBF)、六弗化砒素リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、リチウムビストリフルオロメチルスルホニルイミド〔LiN(CFSO〕、リチウムビスパーフルオロエチルスルホニルイミド〔LiN(CSO〕、などが挙げられる。これらは、1種を単独で使用しても2種以上を併用してもよい。これらの中でも、炭素電極中へのアニオンの吸蔵量の大きさの観点から、LiPFが特に好ましい。
電解質塩の濃度は特に制限はなく目的に応じて適宜選択することができるが、非水溶媒中に、0.5〜6mol/Lが好ましく、電池容量と出力の両立の点から、2〜4mol/Lがより好ましい。
4.セパレータ
本発明の非水電解液蓄電素子は、正極と負極の短絡を防ぐため、必要に応じて、正極と負極の間にセパレータを設ける。
セパレータの材質、形状、大きさ、構造には特に制限はなく、目的に応じて適宜選択することができる。
前記セパレータの材質としては、例えば、クラフト紙、ビニロン混抄紙、合成パルプ混抄紙等の紙、セロハン、ポリエチレングラフト膜、ポリプロピレンメルトブロー不織布等のポリオレフィン不織布、ポリアミド不織布、ガラス繊維不織布、マイクロポア膜などが挙げられる。これらの中でも、電解液保持の点から気孔率50%以上のものが好ましい。
セパレータの形状は、微多孔(マイクロポア)を有する薄膜タイプよりも、気孔率が高い不織布系の方が好ましい。セパレータの厚みは、短絡防止と電解液保持の観点から20μm以上が好ましい。
セパレータの大きさは、非水電解液蓄電素子に使用可能な大きさであればよい。
セパレータの構造は、単層構造でも積層構造でもよい。
5.非水電解液蓄電素子の製造方法
本発明の非水電解液蓄電素子は、正極、負極及び非水電解液と、必要に応じて用いられるセパレータとを、適切な形状に組み立てることにより製造できる。更に、必要に応じて電池外装缶等の他の構成部材を用いることも可能である。
非水電解液蓄電素子を組み立てる方法には特に制限はなく、一般に採用されている方法の中から適宜選択すればよい。
本発明の非水電解液蓄電素子の形状には特に制限はなく、一般に採用されている各種形状の中から、その用途に応じて適宜選択することができる。
その例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ、などが挙げられる。
6.用途
本発明の非水電解液蓄電素子は、特に制限なく各種用途に用いることができる。その例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ、などが挙げられる。
以下、実施例及び比較例を示して本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
(実施例1)
<正極活物質の作製>
粉砕した生コークスをアルゴン雰囲気中、1200℃で焼成し易黒鉛化性炭素を得た。次いで、アルゴン雰囲気下、該易黒鉛化性炭素1質量部に対して2.5質量部の水酸化カリウム(KOH)と共に700℃で5時間焼成し、アルカリ賦活処理を施した。次いで、アルカリ賦活処理した易黒鉛化性炭素を超純水で洗浄した後、濾過し、乾燥機内で120℃で乾燥させて正極活物質(易黒鉛化性炭素A)を得た。
<正極の作製>
正極活物質として易黒鉛化性炭素A、導電助剤としてアセチレンブラック(デンカブラック粉状:電気化学工業社製)、バインダとしてアクリレート系ラテックス(TRD202A:JSR社製)、増粘剤としてカルボキシルメチルセルロース(ダイセル2200:ダイヤル化学工業社製)を、固形分の質量比で100:7.5:3.8:3.0となるように混合し、水を加えて適切な粘度に調整してスラリーを得た。このスラリーを、ドクターブレードを用いて、厚さ20μmのアルミニウム箔の片面に塗布した後、φ16mmに打ち抜いて正極とした。乾燥後の正極活物質の目付け量の平均は3.0mg/cmであった。
<非水電解液蓄電素子の作製>
上記正極と、φ16mmのリチウム金属箔からなる負極、セパレータ2枚及び電解液を用いて非水電解液蓄電素子を作製した。セパレータにはガラス濾紙(GA100:ADVANTEC社製)をφ16mmに打ち抜いたものを用いた。電解液には、2mol/LのLiPF電解質を含有するEC:DMC:FEC=2:96:2(質量%)の混合溶液(キシダ化学社製)を400μL用いた。
まず正極及びセパレータを150℃で4時間真空乾燥させた後、乾燥アルゴングローブボックス中で、上記各部材を用いて、2032型コインセルを組み立てた。
(実施例2)
易黒鉛化性炭素と水酸化カリウム(KOH)の焼成条件を900℃で2時間とした点以外は、実施例1と同様にしてアルカリ賦活処理を施した正極活物質(易黒鉛化性炭素B)を得た。
この易黒鉛化性炭素Bを正極活物質として用いた点以外は、実施例1と同様にして正極及び非水電解液蓄電素子を作製した。
(実施例3)
易黒鉛化性炭素と水酸化カリウム(KOH)の焼成条件を900℃で5時間とした点以外は、実施例1と同様にしてアルカリ賦活処理を施した正極活物質(易黒鉛化性炭素C)を得た。
この易黒鉛化性炭素Cを正極活物質として用いた点以外は、実施例1と同様にして正極及び非水電解液蓄電素子を作製した。
(実施例4)
易黒鉛化性炭素と水酸化カリウム(KOH)の焼成条件を900℃で10時間とした点以外は、実施例1と同様にしてアルカリ賦活処理を施した正極活物質(易黒鉛化性炭素D)を得た。
この易黒鉛化性炭素Dを正極活物質として用いた点以外は、実施例1と同様にして正極及び非水電解液蓄電素子を作製した。
(実施例5)
易黒鉛化性炭素と水酸化カリウム(KOH)の焼成条件を1000℃で2時間とした点以外は、実施例1と同様にしてアルカリ賦活処理を施した正極活物質(易黒鉛化性炭素E)を得た。
この易黒鉛化性炭素Eを正極活物質として用いた点以外は、実施例1と同様にして正極及び非水電解液蓄電素子を作製した。
(実施例6)
易黒鉛化性炭素と水酸化カリウム(KOH)の焼成条件を1000℃で5時間とした点以外は、実施例1と同様にしてアルカリ賦活処理を施した正極活物質(易黒鉛化性炭素F)を得た。
この易黒鉛化性炭素Fを正極活物質として用いた点以外は、実施例1と同様にして正極及び非水電解液蓄電素子を作製した。
(比較例1)
実施例1で粉砕した生コークスを焼成して得た易黒鉛化性炭素(易黒鉛化性炭素G)を正極活物質として用いた点以外は、実施例1と同様にして正極及び非水電解液蓄電素子を作製した。
(比較例2)
易黒鉛化性炭素と水酸化カリウム(KOH)の焼成条件を、700℃で2時間とした点以外は、実施例1と同様にしてアルカリ賦活処理を施した正極活物質(易黒鉛化性炭素H)を得た。
この易黒鉛化性炭素Hを正極活物質として用いた点以外は、実施例1と同様にして正極及び非水電解液蓄電素子を作製した。
(比較例3)
易黒鉛化性炭素と水酸化カリウム(KOH)の焼成条件を1000℃で10時間とした点以外は実施例1と同様にしてアルカリ賦活処理を施した正極活物質(易黒鉛化性炭素I)を得た。
この易黒鉛化性炭素Iを正極活物質として用いた点以外は、実施例1と同様にして正極及び非水電解液蓄電素子を作製した。
<正極活物質の物性の測定>
実施例1〜6及び比較例1〜3の各正極活物質の物性を測定した。結果を表1に示す。
BET比表面積は、TriStar3020(島津製作所製)による吸着等温線の結果からBET法を用いて算出した。
黒鉛の層間距離に相当する面間距離d(002)に由来するスペクトルのピーク位置はX′Part Pro(フィリップ社製)を用いたX線回折測定により求めた。
<非水電解液蓄電素子の充放電試験>
実施例1〜6、及び比較例1〜3の各非水電解液蓄電素子について充放電試験を行い、前処理後1サイクル目の放電容量及び100サイクル目の放電容量の維持率を測定した。放電容量は、正極活物質1g当たりの換算値(mAh/g)であり、容量維持率(%)は1サイクル目の放電容量に対する100サイクル目の放電容量の割合である。
結果を表1に示す。

〔充放電試験の実施方法〕
各非水電解液蓄電素子を25℃の恒温槽中に保持し、自動電池評価装置(1024B−7V0.1A−4:エレクトロフィールド社製)を用いて充放電試験を実施した。
初回の充放電は前処理として基準電流値を1.0mAとし、4.7Vまで定電流充電した後、4.7Vを5時間維持し、3.0Vまで定電流放電をする電界賦活処理を施した。電界賦活処理は、初回の電圧印加時に過電圧を印加して電極内に高電界を発生させ、賦活処理により形成されたミクロ孔以下の細孔内へ電解質イオンを進入させることにより細孔を拡張する効果がある。この前処理後に、下記の通常の使用状態を想定した充放電試験を100サイクル行った。
〔1〕:基準電流値で4.6Vまで定電流充電
〔2〕:5分間休止
〔3〕:基準電流値で3.0Vまで定電流放電
〔4〕:5分間休止
〔5〕:〔1〕〜〔4〕を1サイクルとし、充放電を繰り返す。
<体積変化率の測定>
充放電前の正極膜厚に対する充放電後の正極膜厚の体積変化率を測定した。結果を表1に示す。
体積変化率は、下記式で表されるように、充放電前の正極膜厚に対する100サイクル後の正極膜厚の変化率(%)であり、数値が大きいほど電極膨張の度合いが大きいことになる。
Figure 2017010798
Figure 2017010798
表1の結果から分かるように、易黒鉛化性炭素をアルカリ賦活処理しBET比表面積を23m/g以上とした炭素材料を正極活物質に用いた実施例1〜6では、比較例1〜2に比べて放電容量が向上し体積変化率が低減した。またBET比表面積が100m/gを超える正極活物質を用いた比較例3では、放電容量は増加したものの、100サイクル後の容量維持率(サイクル特性)が著しく低下した。
また、易黒鉛化性炭素をアルカリ賦活処理した炭素質材料の結晶性については、実施例1〜5と比較例1〜2からみて、放電容量が大きくなるd(002)のピークの位置が、26.0度以下のものが好ましい。しかし、該ピークの位置が19.9の実施例6では、容量維持率が若干低下したので、該ピークの位置は20.0度以上が好ましい。
また、図1に実施例1〜2及び比較例1の1サイクル目の充放電曲線を示すが、実施例1〜2の方が、BET比表面積が23m/g未満の比較例1に比べて、充電容量、放電容量共に大きいことが分かる。
(実施例7〜12)
実施例1で粉砕した生コークスを焼成して得た易黒鉛化性炭素に代えて天然黒鉛(日本黒鉛社製:特CP)を用いた点以外は、実施例1〜6と同様にして、アルカリ賦活処理を施した正極活物質(天然黒鉛A〜F)を得た。
この天然黒鉛A〜Fを正極活物質として使用した点以外は、実施例1〜6と同様にして実施例7〜12の各正極及び非水電解液蓄電素子を作製した。
(比較例4)
実施例1で粉砕した生コークスを焼成して得た易黒鉛化性炭素に代えて、アルカリ賦活処理を施さない天然黒鉛(日本黒鉛社製:特CP、天然黒鉛Gとする)を正極活物質として用いた点以外は、実施例1と同様にして正極及び非水電解液蓄電素子を作製した。
(比較例5〜6)
実施例1で粉砕した生コークスを焼成して得た易黒鉛化性炭素に代えて天然黒鉛(日本黒鉛社製:特CP)を用いた点以外は、比較例2〜3と同様にして、アルカリ賦活処理を施した正極活物質(天然黒鉛H〜I)を得た。
この天然黒鉛H〜Iを正極活物質として使用した点以外は、比較例2〜3と同様にして比較例5〜6の各正極及び非水電解液蓄電素子を作製した。
実施例7〜12及び比較例4〜6の各正極活物質の物性、及び各非水電解液蓄電素子の充放電特性を、実施例1と同様にして測定した。結果を表2に示す。
Figure 2017010798
(実施例13〜18)
実施例1で粉砕した生コークスを焼成して得た易黒鉛化性炭素に代えて人造黒鉛(ティムカル社製:KS−6)を用いた点以外は、実施例1〜6と同様にしてアルカリ賦活処理を施した正極活物質(人造黒鉛A〜F)を得た。
この人造黒鉛A〜Fを正極活物質として使用した点以外は、実施例1〜6と同様にして実施例13〜18の各正極及び非水電解液蓄電素子を作製した。
(比較例7)
実施例1で粉砕した生コークスを焼成して得た易黒鉛化性炭素に代えて、アルカリ賦活処理を施さない人造黒鉛(ティムカル社製:KS−6、人造黒鉛Gとする)を正極活物質として用いた点以外は、実施例1と同様にして正極及び非水電解液蓄電素子を作製した。
(比較例8〜9)
実施例1で粉砕した生コークスを焼成して得た易黒鉛化性炭素に代えて人造黒鉛(ティムカル社製:KS−6)を用いた点以外は、比較例2〜3と同様にしてアルカリ賦活処理を施した正極活物質(人造黒鉛H〜I)を得た。
この人造黒鉛H〜Iを正極活物質として使用した点以外は、比較例2〜3と同様にして比較例8〜9の各正極及び非水電解液蓄電素子を作製した。
実施例13〜18及び比較例7〜9の各正極活物質の物性、及び各非水電解液蓄電素子の充放電特性を、実施例1と同様にして測定した。結果を表3に示す。
Figure 2017010798
表2、表3の結果から分かるように、実施例7〜12、13〜18(天然黒鉛又は人造黒鉛をアルカリ賦活処理しBET比表面積を23m/g以上とした炭素材料を正極活物質として使用)では、比較例4〜5、7〜8に比べて放電容量が向上し、体積変化率が低減した。またBET比表面積が100m/gを超える正極活物質を用いた比較例6、9では、放電容量は増加したものの、100サイクル後の容量維持率(サイクル特性)が著しく低下した。
また、天然黒鉛又は人造黒鉛をアルカリ賦活処理した炭素質材料の結晶性については、実施例8〜12、14〜18と、比較例4〜5、7〜8からみて、放電容量が大きくなるd(002)のピークの位置が26.0度以下のものが好ましい。しかし、該ピークの位置が24.9、24.8の比較例6、9では、容量維持率が若干低下したので、これらの炭素質材料については、該ピークの位置は25.0度以上が好ましい。
(実施例19)
賦活処理の条件を、易黒鉛化性炭素1質量部に対して2.5質量部の水酸化セシウム(CsOH)と共に1000℃で5時間焼成に変えた点以外は、実施例1の<正極活物質の作製>の場合と同様にしてアルカリ賦活処理を施した正極活物質(易黒鉛化性炭素J)を得た。
この易黒鉛化性炭素Jを正極活物質として用いた点以外は、実施例1と同様にして正極及び非水電解液蓄電素子を作製した。
(実施例20)
賦活処理の条件を、易黒鉛化性炭素1質量部に対して2.5質量部の水酸化ナトリウム(NaOH)と共に1000℃で5時間焼成に変えた点以外は、実施例1の<正極活物質の作製>の場合と同様にしてアルカリ賦活処理を施した正極活物質(易黒鉛化性炭素K)を得た。
この易黒鉛化性炭素Kを正極活物質として用いた点以外は、実施例1と同様にして正極及び非水電解液蓄電素子を作製した。
実施例19、20の各正極活物質の物性、及び各非水電解液蓄電素子の充放電特性を、実施例1と同様にして測定した。結果を表4に示す。
Figure 2017010798
表4の結果から分かるように、アルカリ賦活処理を施した正極活物質を用いた実施例6、19、20の方が、賦活処理を施していない比較例1よりも、放電容量と体積変化率が優れている。また、アルカリ賦活剤の中でも、水酸化カリウム(KOH)が最も優れている。
(実施例21)
<負極の作製>
負極活物質として人造黒鉛(日立化性工業社製:MAGD)、導電助剤としてアセチレンブラック(デンカブラック粉状:電気化学工業社製)、バインダとしてSBR系材料(EX1215:電気化学工業社製)、増粘剤としてカルボキシルメチルセルロース(ダイセル2200:ダイヤル化学工業社製)を、固形分の質量比で100:5.0:3.0:2.0になるように混合し、水を加えて適切な粘度に調整してスラリーを得た。このスラリーを、ドクターブレードを用いて厚さ18μmの銅箔の片面に塗布した後、φ16mmに打ち抜いて負極とした。乾燥後の負極活物質の目付け量の平均は3.0mg/cmであった。
<非水電解液蓄電素子の作製>
正極を実施例2と同じものに変え、負極をリチウム金属箔から上記のものに変えた点以外は、実施例1と同様にして2032型コインセルを組み立てた。
(実施例22)
<負極の作製>
負極活物質としてチタン酸リチウム〔LiTi12(LTO):石原産業社製〕、導電助剤としてアセチレンブラック(デンカブラック粉状:電気化学工業社製)、バインダとしてスチレンブタジエンゴム(TRD102A:JSR社製)、増粘剤としてカルボキシルメチルセルロース(ダイセル2200:ダイセル化学工業社製)を、固形分の質量比で100:7:3:1になるように混合し、水を加えて適切な粘度に調整しスラリーを得た。このスラリーを、ドクターブレードを用いて厚み18μmのアルミニウム箔の片面に塗布した後、直径16mmに打ち抜いて負極とした。乾燥後の負極活物質の目付け量の平均は3.0mg/cmであった。

<非水電解液蓄電素子の作製>
正極を実施例2と同じものに変え、負極をリチウム金属箔から上記のものに変えた点以外は、実施例1と同様にして2032型コインセルを組み立てた。
(実施例23)
実施例8と同じ正極、及び実施例21と同じ負極を用いた点以外は、実施例1と同様にして2032型コインセルを組み立てた。
(実施例24)
実施例8と同じ正極、及び実施例22と同じ負極を用いた点以外は、実施例1と同様にして2032型コインセルを組み立てた。
(実施例25)
実施例14と同じ正極、及び実施例21と同じ負極を用いた点以外は、実施例1と同様にして2032型コインセルを組み立てた。
(実施例26)
実施例14と同じ正極、及び実施例22と同じ負極を用いた点以外は、実施例1と同様にして2032型コインセルを組み立てた。
(比較例10)
比較例1と同じ正極、及び実施例21と同じ負極を用いた点以外は、実施例1と同様にして2032型コインセルを組み立てた。
(比較例11)
比較例1と同じ正極、及び実施例22と同じ負極を用いた点以外は、実施例1と同様にして2032型コインセルを組み立てた。
(比較例12)
比較例4と同じ正極、及び実施例21と同じ負極を用いた点以外は、実施例1と同様にして2032型コインセルを組み立てた。
(比較例13)
比較例4と同じ正極、及び実施例22と同じ負極を用いた点以外は、実施例1と同様にして2032型コインセルを組み立てた。
(比較例14)
比較例7と同じ正極、及び実施例21と同じ負極を用いた点以外は、実施例1と同様にして2032型コインセルを組み立てた。
(比較例15)
比較例7と同じ正極、及び実施例22と同じ負極を用いた点以外は、実施例1と同様にして2032型コインセルを組み立てた。
実施例21〜26及び比較例10〜15の各正極活物質のBET比表面積、及び各非水電解液蓄電素子の放電容量と体積変化率を、実施例1と同様にして測定した。結果を表5に示す。
Figure 2017010798
表5の結果から分かるように、負極に黒鉛やチタン酸リチウム(LTO)を用いた場合でも、実施例21〜26の方が、比較例10〜15よりも、放電容量と体積変化率が優れている。
1 正極
2 負極
3 セパレータ
4 電池外装缶
5 負極引き出し線
6 正極引き出し線
10 非水電解液蓄電素子
特開2013−058442号公報 特開2014−112524号公報 特許第4569126号公報

Claims (7)

  1. アニオンを挿入及び脱離可能な正極活物質を含む正極と、負極と、非水電解液とを有し、前記正極活物質として、結晶性を有しBET比表面積が23〜100m/gの賦活処理された炭素質材料を用いた非水電解液蓄電素子。
  2. 前記負極が、カチオンを挿入及び脱離可能な負極活物質を含む請求項1に記載の非水電解液蓄電素子。
  3. 前記炭素質材料が、そのX線回折スペクトルにおいて、炭素質材料の層間距離に相当する面間距離d(002)由来のピークが、ブラッグ角度2θの20.0〜26.0度の間に位置する請求項1又は2に記載の非水電解液蓄電素子。
  4. 前記炭素質材料が易黒鉛化性炭素である請求項1〜3のいずれかに記載の非水電解液蓄電素子。
  5. 前記炭素質材料が天然黒鉛又は人造黒鉛である請求項1〜3のいずれかに記載の非水電解液蓄電素子。
  6. 前記賦活処理がアルカリ賦活処理である請求項1〜5のいずれかに記載の非水電解液蓄電素子。
  7. 前記非水電解液が、電解質塩としてLiPFを含む請求項1〜6のいずれかに記載の非水電解液蓄電素子。
JP2015125550A 2015-06-23 2015-06-23 非水電解液蓄電素子 Pending JP2017010798A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015125550A JP2017010798A (ja) 2015-06-23 2015-06-23 非水電解液蓄電素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015125550A JP2017010798A (ja) 2015-06-23 2015-06-23 非水電解液蓄電素子

Publications (1)

Publication Number Publication Date
JP2017010798A true JP2017010798A (ja) 2017-01-12

Family

ID=57763880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015125550A Pending JP2017010798A (ja) 2015-06-23 2015-06-23 非水電解液蓄電素子

Country Status (1)

Country Link
JP (1) JP2017010798A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109003823A (zh) * 2018-08-08 2018-12-14 上海奥威科技开发有限公司 具有高倍率充放电能力长寿命的锂离子电容器的制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109003823A (zh) * 2018-08-08 2018-12-14 上海奥威科技开发有限公司 具有高倍率充放电能力长寿命的锂离子电容器的制造方法
CN109003823B (zh) * 2018-08-08 2020-10-23 上海奥威科技开发有限公司 具有高倍率充放电能力长寿命的锂离子电容器的制造方法

Similar Documents

Publication Publication Date Title
JP6558441B2 (ja) 非水電解液蓄電素子
JP6617817B2 (ja) 多孔質炭素、及び電極
JP6669229B2 (ja) 炭素質材料、及び電極
JP2017220311A (ja) 非水電解液蓄電素子
JP2016167443A (ja) 非水電解液蓄電素子
JP2016091652A (ja) 非水電解液蓄電素子
JP2016046042A (ja) 非水電解液蓄電素子
JP2016046287A (ja) 非水電解液蓄電素子
JP2018152158A (ja) 非水系蓄電素子の運転方法
JP2017224585A (ja) 非水電解液蓄電素子
JP6834138B2 (ja) 非水電解液蓄電素子
JP2017228513A (ja) 非水電解液蓄電素子
JP2017010798A (ja) 非水電解液蓄電素子
JP2016167403A (ja) 非水電解液蓄電素子
JP6967473B2 (ja) 非水電解液蓄電素子
JP2018067504A (ja) 非水電解液蓄電素子
CN108878954B (zh) 非水电解质储蓄元件
JP2017220332A (ja) 非水電解液蓄電素子
JP2017092000A (ja) 非水電解液蓄電素子
JP6476944B2 (ja) 非水電解液蓄電素子
JP2020068192A (ja) 蓄電素子
JP2018147795A (ja) 非水系蓄電素子及びその運転方法
JP2017157347A (ja) 非水電解液蓄電素子
JP2017228514A (ja) 非水電解液蓄電素子
JP2017091743A (ja) 正極、及び非水電解液蓄電素子