JP2016203052A - Method for producing hydrogen and catalyst for hydrogen production - Google Patents

Method for producing hydrogen and catalyst for hydrogen production Download PDF

Info

Publication number
JP2016203052A
JP2016203052A JP2015084327A JP2015084327A JP2016203052A JP 2016203052 A JP2016203052 A JP 2016203052A JP 2015084327 A JP2015084327 A JP 2015084327A JP 2015084327 A JP2015084327 A JP 2015084327A JP 2016203052 A JP2016203052 A JP 2016203052A
Authority
JP
Japan
Prior art keywords
catalyst
mass
oxide
ammonia
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015084327A
Other languages
Japanese (ja)
Other versions
JP6482022B2 (en
Inventor
江口 浩一
Koichi Eguchi
浩一 江口
松井 敏明
Toshiaki Matsui
敏明 松井
広樹 室山
Hiroki Muroyama
広樹 室山
岳太 岡西
Takehiro Okanishi
岳太 岡西
要 大藏
Kaname Okura
要 大藏
川原 潤
Jun Kawahara
潤 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Kyoto University
Original Assignee
Mitsui Chemicals Inc
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Kyoto University filed Critical Mitsui Chemicals Inc
Priority to JP2015084327A priority Critical patent/JP6482022B2/en
Publication of JP2016203052A publication Critical patent/JP2016203052A/en
Application granted granted Critical
Publication of JP6482022B2 publication Critical patent/JP6482022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing hydrogen, in which hydrogen is produced efficiently from an ammonia-containing raw material gas by using a catalyst, and to provide the catalyst for hydrogen production.SOLUTION: The method for producing hydrogen comprises a step of bringing the ammonia-containing raw material gas into contact with the catalyst (X) which contains as constituent elements: one or more elements (A) selected from nickel, cobalt and iron; one or more elements (B) selected from strontium and barium; and one or more elements (C) selected from the lanthanide series, from which lanthanum and cerium are excluded. The contents of the one or more elements (B) are set within 0.1-15 mass% in terms of oxides thereof. The catalyst for hydrogen production is also provided.SELECTED DRAWING: None

Description

本発明は、触媒を用いてアンモニアを窒素と水素に分解して水素を製造する水素の製造方法及び水素製造用触媒に関する。   The present invention relates to a hydrogen production method and a hydrogen production catalyst for producing hydrogen by decomposing ammonia into nitrogen and hydrogen using a catalyst.

水素は世界的なエネルギー需要の増加や地球規模の気候変動といった問題を解決するための新たなエネルギー源として期待されており、関連する様々な技術が開発されている。しかしながら、水素の貯蔵・輸送に高いコストがかかることが、水素エネルギー社会の実現に向けた大きな障害の一つとなっている。水素と比べて低コストでの輸送・貯蔵が可能なアンモニアは、分解反応により比較的容易に水素を生成することが知られており、この反応を効率的に進行させることができればアンモニアは水素キャリアとして有望な物質となり得る。そのため、アンモニア分解を触媒により効率的に進行させる技術は、海外で製造された安価なアンモニアを輸送してより安価な水素を製造・使用することを可能とし、産業上非常に有益な技術である。   Hydrogen is expected as a new energy source to solve problems such as global energy demand increase and global climate change, and various related technologies have been developed. However, the high cost of storing and transporting hydrogen is one of the major obstacles to the realization of a hydrogen energy society. Ammonia, which can be transported and stored at a lower cost compared to hydrogen, is known to generate hydrogen relatively easily by a decomposition reaction. If this reaction can proceed efficiently, ammonia will be a hydrogen carrier. As a promising substance. Therefore, the technology that efficiently promotes ammonia decomposition with a catalyst is a very useful technology in the industry, because it allows cheaper ammonia produced overseas to be transported and used to produce and use cheaper hydrogen. .

アンモニア分解の触媒としては、貴金属系触媒としてルテニウムを含む触媒と、非貴金属系触媒としてニッケル、コバルト、鉄を含有する触媒と、の2通りに大別される。一般に貴金属系触媒の方が高活性であることが知られているが、より安価な非貴金属系触媒がコスト面で有利であり、非貴金属系触媒の高活性化が望まれている。   The catalyst for decomposing ammonia is roughly classified into two types: a catalyst containing ruthenium as a noble metal catalyst and a catalyst containing nickel, cobalt and iron as a non-noble metal catalyst. In general, it is known that a noble metal catalyst has higher activity, but a cheaper non-noble metal catalyst is advantageous in terms of cost, and higher activation of the non-noble metal catalyst is desired.

このような背景から、非貴金属系のアンモニア分解触媒の例として、ランタン−ストロンチウム−コバルト3元系の触媒が開示されている(例えば、特許文献1参照)。   From such a background, a lanthanum-strontium-cobalt ternary catalyst is disclosed as an example of a non-noble metal-based ammonia decomposition catalyst (see, for example, Patent Document 1).

また、セリアジルコニアに対し、コバルトまたはニッケルを担持させ、さらにアルカリ金属またはアルカリ土類金属を添加した触媒が開示されている(例えば、特許文献2参照)。   Further, a catalyst is disclosed in which cobalt or nickel is supported on ceria zirconia and an alkali metal or alkaline earth metal is further added (for example, see Patent Document 2).

さらに、ストロンチウムとニッケルとを酸化イットリウムに担持した触媒が開示されている(例えば、非特許文献1参照)。   Furthermore, a catalyst in which strontium and nickel are supported on yttrium oxide is disclosed (for example, see Non-Patent Document 1).

特開2012−254419号公報JP 2012-254419 A 特開2010−94668号公報JP 2010-94668 A

Kaname Okura, Hiroki Muroyama, Toshiaki Matsui, and Koichi Eguchi “Ammonia decomposition over Ni catalysts supported on rare-earth oxides”, TOCAT7 Abstract, O-A07Kaname Okura, Hiroki Muroyama, Toshiaki Matsui, and Koichi Eguchi “Ammonia decomposition over Ni catalysts supported on rare-earth oxides”, TOCAT7 Abstract, O-A07

上記特許文献1は、ストロンチウム含有量が高く、かつペロブスカイト構造を有する前駆体を経由するという特殊な場合においてのみ高いアンモニア分解活性を示す触媒が示されており、汎用性の高い技術とは言えない。また、特許文献2では、構成要素としてセリウムの複合酸化物を用いているが、酸化セリウム(セリア)は酸塩基両性化合物であり、アンモニア分解反応に適していない酸点を有している。またセリウムの複合酸化物へのストロンチウムの添加による活性向上の効果はみられていない。さらに、非特許文献1では、アルカリ土類金属成分と希土類酸化物との体系的な組み合わせについて記載されていない。
このように、非貴金属系触媒について、(1)非貴金属成分であるニッケル、コバルト、鉄、(2)アルカリ金属またはアルカリ土類金属成分、(3)希土類酸化物類の3つ構成成分について、それぞれ活性向上の効果は知られているが、従来以上に効率的にアンモニア分解し得る組み合わせや組成は未だ明らかにされておらず、汎用性の高い技術は確立されていない。
このような状況に鑑み、本発明では、アンモニアを含有する原料ガスから、触媒を用いて効率的に水素を製造する水素の製造方法及び水素製造用触媒を提供することを課題とする。
Patent Document 1 discloses a catalyst exhibiting high ammonia decomposition activity only in a special case where the content of strontium is high and a precursor having a perovskite structure is used, and it cannot be said that the technique is highly versatile. . Further, in Patent Document 2, a cerium complex oxide is used as a constituent element, but cerium oxide (ceria) is an acid-base amphoteric compound and has an acid site that is not suitable for ammonia decomposition reaction. Moreover, the effect of the activity improvement by addition of strontium to the complex oxide of cerium is not seen. Further, Non-Patent Document 1 does not describe a systematic combination of an alkaline earth metal component and a rare earth oxide.
Thus, for non-noble metal-based catalysts, (1) non-noble metal components nickel, cobalt, iron, (2) alkali metal or alkaline earth metal component, and (3) rare earth oxide components, The effect of improving the activity is known, but the combination and composition capable of decomposing ammonia more efficiently than before have not yet been clarified, and a highly versatile technique has not been established.
In view of such a situation, an object of the present invention is to provide a hydrogen production method and a hydrogen production catalyst for efficiently producing hydrogen from a source gas containing ammonia using a catalyst.

本発明者らは上記の課題に鑑み鋭意検討した結果、上述の課題に対し、ニッケル、コバルト及び鉄から選ばれる1種以上の元素(A)、ストロンチウム及びバリウムから選ばれる1種以上の元素(B)、並びにランタンとセリウムとを除いたランタノイドから選ばれる1種以上の元素(C)を構成要素として含み、かつ元素(B)を元素(B)の酸化物として換算した場合に0.1質量%〜15質量%の範囲で含有する触媒(X)に、アンモニアを含有する原料ガスを接触させて水素製造を行うことにより、同技術を工業的なレベルにまで向上させ、より汎用性の高い技術として本発明を完成させるに至った。   As a result of intensive studies in view of the above-mentioned problems, the present inventors have found that one or more elements (A) selected from nickel, cobalt and iron, one or more elements selected from strontium and barium ( B), and one or more elements (C) selected from lanthanoids excluding lanthanum and cerium as constituent elements, and the element (B) converted to an oxide of the element (B) is 0.1 By carrying out hydrogen production by bringing a raw material gas containing ammonia into contact with the catalyst (X) contained in the range of mass% to 15 mass%, the technology is improved to an industrial level, and more versatile. The present invention has been completed as a high technology.

すなわち、本発明には以下の事項が含まれる。
[1]ニッケル、コバルト及び鉄から選ばれる1種以上の元素(A)、ストロンチウム及びバリウムから選ばれる1種以上の元素(B)、並びにランタンとセリウムとを除いたランタノイドから選ばれる1種以上の元素(C)を含み、かつ元素(B)を、元素(B)の酸化物換算で0.1質量%〜15質量%の範囲で含有する触媒(X)に、アンモニアを含有する原料ガスを接触させる工程を有する水素の製造方法。
That is, the present invention includes the following matters.
[1] One or more elements selected from nickel, cobalt and iron (A), one or more elements selected from strontium and barium (B), and one or more selected from lanthanides excluding lanthanum and cerium A raw material gas containing ammonia in the catalyst (X) containing the element (C) and containing the element (B) in the range of 0.1% by mass to 15% by mass in terms of the oxide of the element (B) A method for producing hydrogen, comprising a step of contacting the substrate.

[2]前記元素(C)が、ネオジム、サマリウム、ユウロピウム、ガドリニウム及びエルビウムから選ばれる1種以上の元素である、[1]に記載の水素の製造方法。 [2] The method for producing hydrogen according to [1], wherein the element (C) is one or more elements selected from neodymium, samarium, europium, gadolinium, and erbium.

[3]前記元素(A)が、ニッケルである、[1]又は[2]に記載の水素の製造方法。 [3] The method for producing hydrogen according to [1] or [2], wherein the element (A) is nickel.

[4]前記元素(B)が、バリウムである[1]〜[3]のいずれか1つに記載の水素の製造方法。 [4] The method for producing hydrogen according to any one of [1] to [3], wherein the element (B) is barium.

[5]前記原料ガスが、アンモニアを50体積%以上100体積%以下含む、[1]〜[4]のいずれか1つに記載の水素の製造方法。 [5] The method for producing hydrogen according to any one of [1] to [4], wherein the source gas contains 50% by volume to 100% by volume of ammonia.

[6]前記触媒(X)に前記原料ガスを接触させる際の触媒層の温度が300℃〜900℃である、[1]〜[5]のいずれか1つに記載の水素の製造方法。
[7]ニッケル、コバルト及び鉄から選ばれる1種以上の元素(A)、ストロンチウム及びバリウムから選ばれる1種以上の元素(B)、並びにランタンとセリウムとを除いたランタノイドから選ばれる1種以上の元素(C)を構成元素として含み、かつ元素(B)の含有量が、元素(B)の酸化物換算で0.1質量%〜15質量%の範囲であり、アンモニアを含有する原料ガスを分解して水素を製造することに用いられる水素製造用触媒。
[6] The method for producing hydrogen according to any one of [1] to [5], wherein the temperature of the catalyst layer when the source gas is brought into contact with the catalyst (X) is 300 ° C to 900 ° C.
[7] One or more elements selected from nickel, cobalt and iron (A), one or more elements selected from strontium and barium (B), and one or more selected from lanthanides excluding lanthanum and cerium Element gas (C) as a constituent element, and the content of the element (B) is in the range of 0.1% by mass to 15% by mass in terms of oxide of the element (B), and contains a source gas containing ammonia A catalyst for hydrogen production used for producing hydrogen by decomposing hydrogen.

本発明によれば、アンモニアを含有する原料ガスから効率的に水素が製造される水素の製造方法及び水素製造用触媒が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of hydrogen and the catalyst for hydrogen manufacture in which hydrogen is efficiently manufactured from the raw material gas containing ammonia are provided.

以下、実施の形態に係る、触媒を用いてアンモニアを含有する原料ガスからの水素の製造方法、及びアンモニアを含有する原料ガスから水素を製造する水素製造用触媒について詳細に説明する。
実施の形態に係る水素の製造方法は、アンモニアを含有する原料ガスを、上記触媒(X)に接触させて分解し(アンモニア分解反応)、水素を製造するものである。以下、原料ガス、触媒組成、触媒調製方法、反応様式、反応条件及び生成物について順次詳細に説明する。
また、本明細書中、数値範囲を表す「〜」はその上限及び下限の数値を含む範囲を表す。
Hereinafter, a method for producing hydrogen from a source gas containing ammonia using a catalyst and a catalyst for producing hydrogen that produces hydrogen from a source gas containing ammonia will be described in detail.
The method for producing hydrogen according to the embodiment produces hydrogen by bringing a raw material gas containing ammonia into contact with the catalyst (X) and decomposing it (ammonia decomposition reaction). Hereinafter, the raw material gas, the catalyst composition, the catalyst preparation method, the reaction mode, the reaction conditions, and the products will be sequentially described in detail.
In the present specification, “˜” representing a numerical range represents a range including upper and lower numerical values.

〔原料ガス〕
本実施形態において、アンモニア分解反応に用いる原料ガスについては特に制限は無く、アンモニアを含んでいればアンモニア以外の成分を含んでいてもよい。
原料ガス中のアンモニア濃度には特に制限はないが、アンモニア濃度としては、1体積%〜100体積%の範囲内であることが好ましく、20体積%〜100体積%の範囲内であることがより好ましく、50体積%〜100体積%の範囲内であることがさらに好ましく、90体積%〜100体積%の範囲内であることが特に好ましい。
アンモニア以外の成分としては特に制限はないが、具体的にはヘリウム、窒素、アルゴン、水蒸気、二酸化炭素、一酸化炭素、水素、炭化水素類、などが挙げられる。中でもヘリウム、窒素、アルゴンが好ましい。
[Raw gas]
In the present embodiment, the source gas used for the ammonia decomposition reaction is not particularly limited, and may contain components other than ammonia as long as it contains ammonia.
The ammonia concentration in the raw material gas is not particularly limited, but the ammonia concentration is preferably in the range of 1% by volume to 100% by volume, more preferably in the range of 20% by volume to 100% by volume. Preferably, it is more preferably in the range of 50% by volume to 100% by volume, and particularly preferably in the range of 90% by volume to 100% by volume.
Components other than ammonia are not particularly limited, and specific examples include helium, nitrogen, argon, water vapor, carbon dioxide, carbon monoxide, hydrogen, hydrocarbons, and the like. Of these, helium, nitrogen, and argon are preferable.

〔触媒の組成〕
本実施形態におけるアンモニア分解触媒である上記触媒(X)は、元素(A)、元素(B)及び元素(C)を構成成分として含み、加えてそれ以外の構成成分を含んでいてもよいものとする。
[Composition of catalyst]
The catalyst (X) which is an ammonia decomposition catalyst in the present embodiment includes the element (A), the element (B) and the element (C) as constituent components, and may further include other constituent components. And

元素(A)は、ニッケル、コバルト及び鉄の3つの元素より選ばれる少なくとも1種の元素であり、好ましくは上記3つの元素より選ばれる1種または2種の元素であり、より好ましくは上記3つの元素より選ばれる1種の元素である。元素(A)が上記3つの元素より選ばれる1種の元素である場合については、元素(A)は、ニッケル及びコバルトより選ばれる1種の元素であることが好ましく、ニッケルであることがより好ましい。また、元素(A)が上記3つの元素より選ばれる2種の元素である場合については、元素(A)はニッケル及びコバルトであることが好ましい。   The element (A) is at least one element selected from the three elements of nickel, cobalt, and iron, preferably one or two elements selected from the above three elements, more preferably the above 3 elements. One element selected from two elements. In the case where the element (A) is one element selected from the above three elements, the element (A) is preferably one element selected from nickel and cobalt, and more preferably nickel. preferable. Moreover, about the case where an element (A) is two types of elements chosen from said three elements, it is preferable that an element (A) is nickel and cobalt.

アンモニア分解反応時の反応条件下における元素(A)の化学的な形態については特に制限は無く、元素(A)を含んでいれば他の元素を同時に含んだ形態として存在していてもよい。元素(A)の化学的な形態として具体的には、単体金属、合金、窒化物、酸化物、複合酸化物、炭化物、水酸化物、及びこれらの混合物等が挙げられ、中でも単体金属、合金、窒化物、酸化物、複合酸化物、及びこれらの混合物が好ましく、さらには単体金属、合金、窒化物、酸化物、複合酸化物、及びこれらの混合物がより好ましい。元素(A)の化学的な形態としてより具体的には、ニッケル金属、酸化ニッケル(NiO)、窒化ニッケル(Ni3N)、コバルト金属、酸化コバルト(CoO, Co3O4)、窒化コバルト(CoxNy)が挙げられ、中でもニッケル金属、コバルト金属が好ましい。 There is no particular limitation on the chemical form of the element (A) under the reaction conditions during the ammonia decomposition reaction, and it may exist as a form containing other elements at the same time as long as it contains the element (A). Specific examples of the chemical form of the element (A) include simple metals, alloys, nitrides, oxides, composite oxides, carbides, hydroxides, and mixtures thereof. , Nitrides, oxides, composite oxides, and mixtures thereof are preferable, and single metals, alloys, nitrides, oxides, composite oxides, and mixtures thereof are more preferable. More specifically, the chemical form of the element (A) is nickel metal, nickel oxide (NiO), nickel nitride (Ni 3 N), cobalt metal, cobalt oxide (CoO, Co 3 O 4 ), cobalt nitride ( Co x N y ), among which nickel metal and cobalt metal are preferable.

元素(B)は、ストロンチウム及びバリウムより選ばれる少なくとも1種の元素であり、バリウムであることが好ましい。
アンモニア分解反応時の反応条件下における元素(B)の化学的な形態については特に制限は無く、元素(B)を含んでいれば他の元素を同時に含んだ形態として存在していてもよい。好ましい化学的な形態としては酸化物または複合酸化物が挙げられ、中でも酸化ストロンチウム(SrO)、酸化バリウム(BaO)、及びその混合物が好ましい。また元素(B)は複数の形態の混合体として存在していてもよいが、触媒に含まれる全ての元素(B)のうち30質量%〜100質量%が酸化物または複合酸化物であることが特に好ましい。酸化物または複合酸化物以外の形態として具体的には窒化物、水酸化物などが挙げられる。
The element (B) is at least one element selected from strontium and barium, and is preferably barium.
There is no particular limitation on the chemical form of the element (B) under the reaction conditions during the ammonia decomposition reaction, and as long as the element (B) is contained, it may exist as a form containing other elements simultaneously. Preferable chemical forms include oxides or composite oxides. Among them, strontium oxide (SrO), barium oxide (BaO), and mixtures thereof are preferable. The element (B) may exist as a mixture of a plurality of forms, but 30% by mass to 100% by mass of all the elements (B) contained in the catalyst is an oxide or a composite oxide. Is particularly preferred. Specific examples of forms other than oxides or composite oxides include nitrides and hydroxides.

元素(C)は、ランタンとセリウムとを除いたランタノイドの元素より選ばれる少なくとも1種の元素であり、中でもプラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムより選ばれる少なくとも1種の元素であることが好ましく、ネオジム、サマリウム、ユウロピウム、ガドリニウム及びエルビウムより選ばれる少なくとも1種の元素であることがより好ましく、サマリウム、ユウロピウム及びガドリニウムより選ばれる少なくとも1種の元素であることがさらに好ましく、サマリウムであることが特に好ましい。
元素(B)と元素(C)との組み合わせとして、元素(B)がストロンチウムを含んでいる場合には、元素(C)はサマリウム、ユウロピウム及びガドリニウムより選ばれる少なくとも1種の元素であることが好ましく、サマリウム及びガドリニウムより選ばれる少なくとも1種の元素であることがより好ましく、サマリウムであることがさらに好ましい。また元素(B)がバリウムを含んでいる場合には、元素(C)はネオジム、サマリウム、ユウロピウム、ガドリニウム及びエルビウムより選ばれる少なくとも1種の元素であることが好ましく、ネオジム、サマリウム、ユウロピウム及びエルビウムより選ばれる少なくとも1種の元素であることがより好ましく、サマリウム及びガドリニウムより選ばれる少なくとも1種の元素であることがさらに好ましい。
The element (C) is at least one element selected from lanthanoid elements excluding lanthanum and cerium, among which praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and It is preferably at least one element selected from lutetium, more preferably at least one element selected from neodymium, samarium, europium, gadolinium and erbium, and at least one element selected from samarium, europium and gadolinium. More preferably, the element is samarium.
As a combination of the element (B) and the element (C), when the element (B) contains strontium, the element (C) is at least one element selected from samarium, europium and gadolinium. Preferably, it is at least one element selected from samarium and gadolinium, more preferably samarium. When element (B) contains barium, element (C) is preferably at least one element selected from neodymium, samarium, europium, gadolinium and erbium, and neodymium, samarium, europium and erbium. More preferably, it is at least one element selected from the group consisting of at least one element selected from samarium and gadolinium.

アンモニア分解反応時の反応条件下における元素(C)の化学的な形態については特に制限は無く、元素(C)を含んでいれば他の元素を同時に含んだ形態として存在していてもよい。好ましい化学的な形態としては酸化物または複合酸化物が挙げられ、中でも酸化ネオジム(Nd2O3)、酸化サマリウム(Sm2O3)、酸化ユウロピウム(Eu2O3)、酸化ガドリニウム(Gd2O3)、及びその混合物が好ましい。また元素(C)は複数の形態の混合体として存在していてもよいが、触媒に含まれる全ての元素(C)のうち30質量%〜100質量%が酸化物または複合酸化物を形成していることが好ましい。酸化物または複合酸化物以外の形態として具体的には窒化物、水酸化物などが挙げられる。 There is no particular limitation on the chemical form of the element (C) under the reaction conditions during the ammonia decomposition reaction, and it may exist as a form containing other elements at the same time as long as it contains the element (C). Preferable chemical forms include oxides or composite oxides, among which neodymium oxide (Nd 2 O 3 ), samarium oxide (Sm 2 O 3 ), europium oxide (Eu 2 O 3 ), gadolinium oxide (Gd 2 O 3 ) and mixtures thereof are preferred. The element (C) may exist as a mixture of a plurality of forms, but 30% by mass to 100% by mass of all the elements (C) contained in the catalyst form an oxide or a composite oxide. It is preferable. Specific examples of forms other than oxides or composite oxides include nitrides and hydroxides.

アンモニア分解反応時の反応条件下において、触媒に含まれる元素(B)及び元素(C)はそれぞれ異なる化学的な形態を有していてもよいが、元素(B)及び元素(C)からなる複合酸化物を形成していてもよい。複合酸化物の構造には特に制限はないが、具体的にはペロブスカイト型酸化物、蛍石型酸化物、スピネル型酸化物等が挙げられる。   Under the reaction conditions during the ammonia decomposition reaction, the element (B) and the element (C) contained in the catalyst may have different chemical forms, but are composed of the element (B) and the element (C). A composite oxide may be formed. The structure of the composite oxide is not particularly limited, and specific examples include perovskite oxide, fluorite oxide, and spinel oxide.

上記以外の構成成分については特に制限はない。具体的には、アルカリ金属元素、ストロンチウムとバリウムとを除いたアルカリ土類金属元素、イットリウム、ランタン、セリウム、4族元素、鉄以外の8族元素、コバルト以外の9族元素、ニッケル以外の10族元素、アルミニウム、炭素、ケイ素、窒素、酸素などが挙げられる。また、これらの化学的な形態及び触媒(X)中の含有量いずれについても特に制限はない。   There is no restriction | limiting in particular about structural components other than the above. Specifically, alkali metal elements, alkaline earth metal elements excluding strontium and barium, yttrium, lanthanum, cerium, group 4 elements, group 8 elements other than iron, group 9 elements other than cobalt, 10 other than nickel Group elements, aluminum, carbon, silicon, nitrogen, oxygen and the like. Moreover, there is no restriction | limiting in particular about any of these chemical forms and content in catalyst (X).

触媒(X)に含まれる元素(A)、元素(B)、及び元素(C)の量について、元素(A)については単体金属換算で、元素(B)及び元素(C)については酸化物換算で算出すると以下の範囲が好ましい。更に、それぞれの含有量の算出方法について、以下に詳細を説明する。   Regarding the amount of the element (A), element (B), and element (C) contained in the catalyst (X), the element (A) is converted to a single metal, and the element (B) and the element (C) are oxides. The following ranges are preferable when calculated in terms of conversion. Further, details of the calculation method of each content will be described below.

触媒(X)に含まれる元素(A)の量は、含まれる全ての元素(A)が単体金属として存在すると仮定して算出する。元素(A)の合計量には特に制限はないが、元素(A)の単体金属として、0.01質量%〜80質量%であることが好ましく、1質量%〜50質量%であることがより好ましく、30質量%〜50質量%であることがさらに好ましい。   The amount of the element (A) contained in the catalyst (X) is calculated on the assumption that all the contained elements (A) exist as a single metal. Although there is no restriction | limiting in particular in the total amount of an element (A), It is preferable that it is 0.01 mass%-80 mass% as a single metal of an element (A), and it is 1 mass%-50 mass%. More preferably, it is more preferably 30% by mass to 50% by mass.

触媒(X)に含まれる元素(B)の量は、含まれる全ての元素(B)が酸化物として存在すると仮定して算出する。元素(B)の合計量は元素(B)の酸化物として0.1質量%〜15質量%の範囲であれば特に制限はないが、1質量%〜15質量%の範囲にあることが好ましく、2質量%〜12質量%の範囲にあることがより好ましく、2質量%〜9質量%の範囲にあることがより好ましく、2質量%〜7質量%の範囲にあることがさらに好ましく、3質量%〜7質量%の範囲が特に好ましい。   The amount of the element (B) contained in the catalyst (X) is calculated on the assumption that all the contained elements (B) exist as oxides. The total amount of the element (B) is not particularly limited as long as it is in the range of 0.1 to 15% by mass as the oxide of the element (B), but is preferably in the range of 1 to 15% by mass. More preferably in the range of 2% to 12% by weight, more preferably in the range of 2% to 9% by weight, still more preferably in the range of 2% to 7% by weight. The range of mass% to 7 mass% is particularly preferable.

触媒(X)が元素(B)としてストロンチウムのみを含有する場合には、1質量%〜15質量%の範囲にあることが好ましく、2質量%〜15質量%の範囲にあることがより好ましく、2質量%〜12質量%の範囲にあることがより好ましく、2質量%〜9質量%の範囲にあることがより好ましく、2質量%〜7質量%の範囲にあることがさらに好ましく、3質量%〜7質量%の範囲が特に好ましい。また、元素(B)としてバリウムのみを含有する場合には、1質量%〜15質量%の範囲にあることが好ましく、2質量%〜12質量%の範囲にあることがより好ましく、2質量%〜9質量%の範囲にあることがより好ましく、2質量%〜7質量%の範囲にあることがより好ましく、3質量%〜7質量%の範囲にあることがさらに好ましく、4質量%〜6質量%の範囲が特に好ましい。   When the catalyst (X) contains only strontium as the element (B), it is preferably in the range of 1% by mass to 15% by mass, more preferably in the range of 2% by mass to 15% by mass, More preferably in the range of 2% by mass to 12% by mass, more preferably in the range of 2% by mass to 9% by mass, still more preferably in the range of 2% by mass to 7% by mass. A range of from% to 7% by weight is particularly preferred. Further, when only barium is contained as the element (B), it is preferably in the range of 1% by mass to 15% by mass, more preferably in the range of 2% by mass to 12% by mass, and 2% by mass. It is more preferably in the range of -9% by mass, more preferably in the range of 2% by mass to 7% by mass, further preferably in the range of 3% by mass to 7% by mass, and 4% by mass to 6%. A mass% range is particularly preferred.

触媒(X)に含まれる元素(C)の量は、含まれる全ての元素(C)が酸化物として存在すると仮定して算出する。元素(C)の合計量には特に制限はないが、元素(C)の酸化物として0.01質量%〜97質量%であることが好ましく、0.1質量%〜85質量%であることがより好ましく、15質量%〜75質量%であることがさらに好ましい。さらに好ましい範囲は15質量%〜60質量%であり、特に好ましい範囲は52質量%〜60質量%である。   The amount of the element (C) contained in the catalyst (X) is calculated on the assumption that all the contained elements (C) exist as oxides. Although there is no restriction | limiting in particular in the total amount of an element (C), It is preferable that it is 0.01 mass%-97 mass% as an oxide of an element (C), and it is 0.1 mass%-85 mass% Is more preferable, and it is further more preferable that it is 15 mass%-75 mass%. A more preferable range is 15% by mass to 60% by mass, and a particularly preferable range is 52% by mass to 60% by mass.

触媒(X)に含まれる元素(B)のモル数と元素(A)のモル数との比率((B)/(A))は、0.01〜0.21が好ましく、より好ましくは0.02〜0.15であり、特に好ましくは0.02〜0.12である。
触媒(X)が元素(B)としてストロンチウムのみを含有する場合には、元素(B)のモル数と元素(A)のモル数との比率((B)/(A))は、0.01〜0.21が好ましく、0.02〜0.15がより好ましく、0.04〜0.14がより好ましく、0.02〜0.12がさらに好ましく、0.04〜0.1が特に好ましい。また、元素(B)としてバリウムのみを含有する場合には、0.01〜0.21が好ましく、0.01〜0.15がより好ましく、0.02〜0.15がより好ましく、0.02〜0.12がより好ましく、0.02〜0.1がさらに好ましく、0.02〜0.08が特に好ましい。
The ratio ((B) / (A)) between the number of moles of the element (B) and the number of moles of the element (A) contained in the catalyst (X) is preferably from 0.01 to 0.21, more preferably 0. 0.02 to 0.15, particularly preferably 0.02 to 0.12.
When the catalyst (X) contains only strontium as the element (B), the ratio ((B) / (A)) of the number of moles of the element (B) to the number of moles of the element (A) is 0. 01 to 0.21 is preferable, 0.02 to 0.15 is more preferable, 0.04 to 0.14 is more preferable, 0.02 to 0.12 is still more preferable, and 0.04 to 0.1 is particularly preferable preferable. Moreover, when only barium is contained as an element (B), 0.01-0.21 are preferable, 0.01-0.15 are more preferable, 0.02-0.15 are more preferable, 0.0. 02 to 0.12 is more preferable, 0.02 to 0.1 is more preferable, and 0.02 to 0.08 is particularly preferable.

〔触媒の調製方法〕
アンモニア分解触媒である触媒(X)は、前記した性状を満たす限り、その調製方法については特に制限はない。触媒(X)の調製に用いる手法としては主に、固体成分を溶液成分に浸漬させて調製する含浸法、気体成分を固体成分と接触させる蒸着法、溶液成分から固体成分を沈殿させる沈殿法、複数種の固体成分を混合する固相混合法、の4種の手法が挙げられる。
[Method for preparing catalyst]
The catalyst (X), which is an ammonia decomposition catalyst, is not particularly limited as to its preparation method as long as the above properties are satisfied. As a method for preparing the catalyst (X), mainly, an impregnation method in which a solid component is immersed in a solution component, an evaporation method in which a gas component is brought into contact with the solid component, a precipitation method in which the solid component is precipitated from the solution component, There are four methods such as a solid phase mixing method in which a plurality of types of solid components are mixed.

上記含浸法について、固体成分を溶液成分に浸漬させて調製する手法であれば公知の手法が特に制限無く用いられる。具体的には、ポアフィリング法、インシピエント・ウェットネス(incipient wetness)法、平衡吸着法、蒸発乾固法、噴霧乾燥法、沈着法、イオン交換法などが挙げられる。また使用する溶液成分については組成及び濃度について特に制限は無く、複数の成分を含んでいてもよい。   For the impregnation method, any known method can be used without particular limitation as long as it is a method in which a solid component is immersed in a solution component. Specific examples include a pore filling method, an incipient wetness method, an equilibrium adsorption method, an evaporation to dryness method, a spray drying method, a deposition method, and an ion exchange method. Moreover, there is no restriction | limiting in particular about a composition and a density | concentration about the solution component to be used, You may contain several components.

上記蒸着法について、気体成分を固体成分と接触させて調製する手法であれば公知の手法が特に制限無く用いられる。具体的には、化学蒸着法、真空蒸着法、スパッタリング法等が挙げられる。また使用する溶液成分については組成について特に制限は無く、複数の成分を含んでいてもよく、また不活性な同伴ガスを含んでいてもよい。   For the above-described vapor deposition method, any known method can be used without particular limitation as long as it is a method in which a gaseous component is brought into contact with a solid component. Specific examples include chemical vapor deposition, vacuum vapor deposition, and sputtering. Moreover, there is no restriction | limiting in particular about a composition about the solution component to be used, A several component may be included and the inert accompanying gas may be included.

上記沈殿法について、溶液成分から固体成分を沈殿させて調製する手法であれば公知の手法が特に制限無く用いられる。具体的には、1種類のカチオンを含む溶液から沈殿剤添加により同カチオンの難溶性塩を沈殿させる一般的な沈殿法に加え、2種類以上のカチオンを含む溶液から沈殿剤添加により複数の難溶性塩を同時に沈殿させる共沈法、溶液中の溶質を加水分解及び縮重合により沈殿させるゾルゲル法などが挙げられる。共沈法を用いる場合について、アルカリ土類金属である元素(B)のカチオンを含む場合については、同カチオンが一般に沈殿し難いため、クエン酸やシュウ酸等の多価カルボン酸を沈殿促進剤として加えてもよい。   Regarding the above-described precipitation method, any known method can be used without particular limitation as long as it is a method in which a solid component is precipitated from a solution component. Specifically, in addition to a general precipitation method of precipitating a sparingly soluble salt of the same cation from a solution containing one kind of cation by adding a precipitant, a plurality of difficulties can be obtained by adding a precipitant from a solution containing two or more kinds of cations. Examples thereof include a coprecipitation method in which soluble salts are simultaneously precipitated, and a sol-gel method in which solutes in a solution are precipitated by hydrolysis and condensation polymerization. In the case of using the coprecipitation method, when the cation of the element (B) which is an alkaline earth metal is included, the cation is generally difficult to precipitate, so that polyvalent carboxylic acid such as citric acid or oxalic acid is used as a precipitation accelerator. May be added as

上記固相混合法について、複数種の固体成分を混合して調製する手法であれば公知の手法が特に制限無く用いられる。具体的には、複数種の固体成分を反応を伴わずに物理的に混合するだけの物理混合法、複数種の固体成分を混合し高温処理等により反応させて複合化させる固相合成法などが挙げられる。   As for the solid phase mixing method, known methods can be used without particular limitation as long as they are prepared by mixing a plurality of types of solid components. Specifically, a physical mixing method that only physically mixes multiple types of solid components without causing a reaction, a solid-phase synthesis method that mixes multiple types of solid components and reacts them by high-temperature treatment, etc. Is mentioned.

上記4種の手法(含浸法、蒸着法、沈殿法、固相合成法)を用いて触媒(X)を調製する場合について、4種の中から複数の手法を組み合わせて用いてもよく、また同じ手法を複数回用いてもよい。具体的な調製方法として以下(1)〜(3)の3つの方法が挙げられる。
(1)元素(A)及び元素(B)を含む溶液成分を用い、元素(C)を含む固体成分に対し、元素(A)及び元素(B)を含浸法により担持させ、触媒(X)とする。
(2)元素(A)、元素(B)、元素(C)を含む溶液成分から沈殿法により元素(A)、元素(B)、元素(C)を含む固体成分を沈殿させ、触媒(X)とする。
(3)元素(A)を含む固体成分、元素(B)を含む固体成分、及び元素(C)を含む固体成分を固相混合法により混合し、触媒(X)とする。
(1)及び(3)の調製方法で用いる固体成分については特に制限はない。具体的には、市販品や、元素(A)、元素(B)、または元素(C)を含む溶液から沈殿法により調製した固体成分、などを用いる。(1)及び(3)の調製方法で用いる固体成分の化学的な形態に特に制限はないが、それぞれの元素の酸化物が好ましい形態として挙げられる。
When preparing the catalyst (X) using the above four methods (impregnation method, vapor deposition method, precipitation method, solid phase synthesis method), a plurality of methods may be used in combination from the four types. The same technique may be used multiple times. Specific preparation methods include the following three methods (1) to (3).
(1) Using a solution component containing the element (A) and the element (B), the element (A) and the element (B) are supported on the solid component containing the element (C) by an impregnation method, and the catalyst (X) And
(2) A solid component containing the element (A), the element (B), and the element (C) is precipitated from the solution component containing the element (A), the element (B), and the element (C) by a precipitation method, and the catalyst (X ).
(3) A solid component containing the element (A), a solid component containing the element (B), and a solid component containing the element (C) are mixed by a solid phase mixing method to obtain a catalyst (X).
There is no restriction | limiting in particular about the solid component used with the preparation method of (1) and (3). Specifically, a commercially available product, a solid component prepared by a precipitation method from a solution containing the element (A), the element (B), or the element (C) is used. Although there is no restriction | limiting in particular in the chemical form of the solid component used with the preparation method of (1) and (3), The oxide of each element is mentioned as a preferable form.

(1)及び(2)の調製方法で用いる溶液成分についても特に制限はないが、各元素を含有する水溶性化合物を水に溶解させ調製した水溶液を用いるのが好ましい。また溶液成分として水溶液を用いた場合について、沈殿剤としてアルカリ性化合物を用いるのが好ましい。アルカリ性化合物として具体的には、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、及びこれらの水溶液などが挙げられ、尿素を溶液中で分解しアンモニアを発生させる方法を用いてもよい。   The solution components used in the preparation methods (1) and (2) are not particularly limited, but it is preferable to use an aqueous solution prepared by dissolving a water-soluble compound containing each element in water. In the case where an aqueous solution is used as the solution component, it is preferable to use an alkaline compound as the precipitant. Specific examples of the alkaline compound include ammonia, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, and aqueous solutions thereof. A method of decomposing urea in a solution to generate ammonia may be used. .

触媒(X)の調製過程で取り扱う固体成分について、必要に応じて酸化雰囲気での焼成処理及び還元雰囲気での還元処理のうちどちらか一方、または両方を施してもよい。該焼成処理及び該還元処理は、上記触媒の調製法において、それぞれの調製におけるすべての工程(全触媒調製工程)での最初、途中、及び全触媒調製工程の最後のいずれで実施してもよく、また複数回実施してもよい。中でも特に、全触媒調製工程の最後に該焼成処理及び該還元処理を順に実施することが好ましい。   About the solid component handled in the preparation process of catalyst (X), you may give either one or both of the calcination process in an oxidizing atmosphere, and the reduction process in a reducing atmosphere as needed. The calcination treatment and the reduction treatment may be performed at the beginning, in the middle of all the steps in the respective preparations (all catalyst preparation steps), or at the end of all the catalyst preparation steps in the catalyst preparation method. Also, it may be performed a plurality of times. In particular, it is preferable to sequentially perform the calcination treatment and the reduction treatment at the end of the entire catalyst preparation step.

酸化雰囲気としては、例えば空気下、酸素と窒素の混合ガス下などが挙げられるが、特にこれらに限定されるものではない。
還元雰囲気としては、例えば水素雰囲気下、一酸化炭素雰囲気下、一酸化窒素雰囲気下などが挙げられるが、特にこれらに限定されるものではない。
Examples of the oxidizing atmosphere include, but are not limited to, under air and under a mixed gas of oxygen and nitrogen.
Examples of the reducing atmosphere include, but are not limited to, a hydrogen atmosphere, a carbon monoxide atmosphere, and a nitrogen monoxide atmosphere.

全触媒調製工程の最後に該焼成処理及び該還元処理を順に実施する場合について、それぞれの処理条件には特に制限はない。焼成処理温度は100℃〜1200℃の範囲が好ましく、400℃〜900℃の範囲がより好ましい。
焼成処理時間は0.1時間〜48時間の範囲が好ましく、0.5時間〜24時間の範囲がより好ましい。
還元処理温度は100℃〜1200℃の範囲が好ましく、400℃〜900℃の範囲がより好ましい。
還元処理時間は0.1時間〜48時間の範囲が好ましく、0.5時間〜24時間の範囲がより好ましい。
また、該焼成処理及び該還元処理のどちらか一方、または両方をアンモニア分解反応器内において、反応前に実施し、そのまま反応に用いてもよい。
Regarding the case where the calcination treatment and the reduction treatment are sequentially performed at the end of all the catalyst preparation steps, there are no particular limitations on the treatment conditions. The firing temperature is preferably in the range of 100 ° C to 1200 ° C, more preferably in the range of 400 ° C to 900 ° C.
The firing time is preferably in the range of 0.1 hour to 48 hours, and more preferably in the range of 0.5 hour to 24 hours.
The reduction treatment temperature is preferably in the range of 100 ° C to 1200 ° C, more preferably in the range of 400 ° C to 900 ° C.
The reduction treatment time is preferably in the range of 0.1 hour to 48 hours, and more preferably in the range of 0.5 hour to 24 hours.
Further, either or both of the calcination treatment and the reduction treatment may be carried out in the ammonia decomposition reactor before the reaction and used as it is for the reaction.

触媒(X)の形態については特に制限はなく、粉体のまま触媒として用いてもよいが、必要に応じて成形触媒として用いてもよく、粉体または成形触媒いずれの場合でも反応器内で触媒層を形成させて用いることができる。成形触媒としては、粉体触媒を加圧・圧縮した凝集塊もしくはこの凝集塊を適当な粒径に破砕した圧縮成形体、粉体触媒を打錠機により一定の形状に圧縮固形化した打錠成形体、粉体触媒を球状担体にコーティングした球状成形体、粉体触媒をハニカム担体にコーティングしたハニカム成形体、粉体触媒にバインダーを加え混練・押出した押出成形体、等が挙げられるがこれらに限定されるものではない。   The form of the catalyst (X) is not particularly limited and may be used as a catalyst as a powder, but may be used as a shaped catalyst as necessary, and in the case of either a powder or a shaped catalyst, in the reactor. A catalyst layer can be formed and used. As the molding catalyst, an agglomerate obtained by pressurizing and compressing the powder catalyst, a compression molded product obtained by crushing the agglomerate to an appropriate particle size, and a tableting in which the powder catalyst is compressed and solidified into a certain shape by a tableting machine. Examples of the molded body include a spherical molded body in which a powder catalyst is coated on a spherical carrier, a honeycomb molded body in which a powder catalyst is coated on a honeycomb carrier, and an extruded molded body in which a binder is added to a powder catalyst and kneaded and extruded. It is not limited to.

上記成形触媒について、賦孔剤を加えて成形し、焼成処理を施すことにより細孔を形成させてもよい。賦孔剤としては、焼成処理により容易に除去されるカルボキシメチルセルロース、ポリスチレン等が挙げられるが、特にこれらに限定されるものではない。   About the said shaping | molding catalyst, you may form a pore by adding a pore-forming agent and shape | molding and performing a baking process. Examples of the pore-forming agent include carboxymethyl cellulose and polystyrene that can be easily removed by baking treatment, but are not particularly limited thereto.

本実施形態に係る触媒(X)、及び全触媒調製工程の最後に還元処理を行う場合の還元処理前の触媒(X)の前駆体について、化学的な形態には特に制限はない。上記のように調製された触媒(X)及び還元処理前の触媒(X)前駆体について、元素(A)、元素(B)、元素(C)はペロブスカイト構造を形成する場合もあるが、本発明で得られる効果は該ペロブスカイト構造の有無には特に影響を受けない。   There are no particular limitations on the chemical form of the catalyst (X) according to the present embodiment and the precursor of the catalyst (X) before the reduction treatment when the reduction treatment is performed at the end of the entire catalyst preparation step. Regarding the catalyst (X) prepared as described above and the catalyst (X) precursor before the reduction treatment, the element (A), the element (B), and the element (C) may form a perovskite structure. The effect obtained by the invention is not particularly affected by the presence or absence of the perovskite structure.

元素(A)の原料としては、元素(A)を含んでいる化合物であればよく、特に制限はない。具体的には、ニッケルの原料としては、硝酸ニッケル(II)、酸化ニッケル(II)、塩化ニッケル(II)、水酸化ニッケル(II)、硫酸ニッケル(II)、酢酸ニッケル(II)、炭酸ニッケル(II)、塩基性炭酸ニッケル(II)、金属ニッケルなどが挙げられる。コバルトの原料としては、硝酸コバルト(II)、酸化コバルト(II)、塩化コバルト(II)、水酸化コバルト(II)、硫酸コバルト(II)、酢酸コバルト(II)、炭酸コバルト(II)、塩基性炭酸コバルト(II)、金属コバルトなどが挙げられる。鉄の原料としては、硝酸鉄(II)、硝酸鉄(III)、酸化鉄(II)、酸化鉄(III)、塩化鉄(II)、塩化鉄(III)、水酸化鉄(II)、水酸化鉄(III)、硫酸鉄(II)、硫酸鉄(III)、酢酸鉄(II)、塩基性酢酸鉄(III)、炭酸鉄(II)、金属鉄などが挙げられる。   The raw material for the element (A) is not particularly limited as long as it is a compound containing the element (A). Specifically, the nickel raw materials include nickel nitrate (II), nickel oxide (II), nickel chloride (II), nickel hydroxide (II), nickel sulfate (II), nickel acetate (II), nickel carbonate (II), basic nickel carbonate (II), metallic nickel and the like. Cobalt raw materials include cobalt nitrate (II), cobalt oxide (II), cobalt chloride (II), cobalt hydroxide (II), cobalt sulfate (II), cobalt acetate (II), cobalt carbonate (II), base Cobalt carbonate (II), metallic cobalt and the like. The raw materials for iron include iron nitrate (II), iron nitrate (III), iron oxide (II), iron oxide (III), iron chloride (II), iron chloride (III), iron hydroxide (II), water Examples thereof include iron oxide (III), iron sulfate (II), iron sulfate (III), iron acetate (II), basic iron acetate (III), iron carbonate (II), and iron metal.

元素(B)の原料としては、元素(B)を含んでいる化合物であればよく、特に制限はない。具体的には、ストロンチウムの原料としては、硝酸ストロンチウム、酸化ストロンチウム、塩化ストロンチウム、水酸化ストロンチウム、硫酸ストロンチウム、酢酸ストロンチウム、炭酸ストロンチウムなどが挙げられる。バリウムの原料としては、硝酸バリウム、酸化バリウム、塩化バリウム、水酸化バリウム、硫酸バリウム、酢酸バリウム、炭酸バリウムなどが挙げられる。   The raw material for the element (B) is not particularly limited as long as it is a compound containing the element (B). Specifically, examples of the raw material of strontium include strontium nitrate, strontium oxide, strontium chloride, strontium hydroxide, strontium sulfate, strontium acetate, and strontium carbonate. Examples of the raw material for barium include barium nitrate, barium oxide, barium chloride, barium hydroxide, barium sulfate, barium acetate, and barium carbonate.

元素(C)の原料としては、元素(C)を含んでいる化合物であればよく、特に制限はない。具体的には、ネオジムの原料としては、硝酸ネオジム、酸化ネオジム、塩化ネオジム、水酸化ネオジム、硫酸ネオジム、酢酸ネオジム、炭酸ネオジムなどが挙げられる。サマリウムの原料としては、硝酸サマリウム、酸化サマリウム、塩化サマリウム、硫酸サマリウム、酢酸サマリウム、炭酸サマリウムなどが挙げられる。ユウロピウムの原料としては、硝酸ユウロピウム、酸化ユウロピウム、塩化ユウロピウム、硫酸ユウロピウム、酢酸ユウロピウム、炭酸ユウロピウムなどが挙げられる。ガドリニウムの原料としては、硝酸ガドリニウム、酸化ガドリニウム、塩化ガドリニウム、硫酸ガドリニウム、酢酸ガドリニウム、炭酸ガドリニウムなどが挙げられる。   The raw material for the element (C) is not particularly limited as long as it is a compound containing the element (C). Specifically, the neodymium raw material includes neodymium nitrate, neodymium oxide, neodymium chloride, neodymium hydroxide, neodymium sulfate, neodymium acetate, neodymium carbonate, and the like. Examples of the samarium raw material include samarium nitrate, samarium oxide, samarium chloride, samarium sulfate, samarium acetate, and samarium carbonate. Examples of europium raw materials include europium nitrate, europium oxide, europium chloride, europium sulfate, europium acetate, and europium carbonate. Examples of the raw material for gadolinium include gadolinium nitrate, gadolinium oxide, gadolinium chloride, gadolinium sulfate, gadolinium acetate, and gadolinium carbonate.

〔反応様式〕
本実施形態の製造方法を実施するための反応様式としては、固定床式、流動床式、移動床式など特に限定されないが、固定床式が好適である。また固定床式反応器について既知のあらゆる形式を用いることができ、具体的な形式としては触媒充填層型反応器、触媒膜型反応器などが挙げられる。
反応器の加熱方法にも特に制限は無く、電気ヒーター加熱、バーナー加熱、ケロシンや溶融塩等の熱媒加熱など既知のあらゆる方法を用いることができる。
原料ガス供給様式に特に制限は無く、精製ガスとして供給してもよいが、ハーバーボッシュ法によるアンモニア合成プラント、排ガスにアンモニアを含む有機性廃棄物処理プラントなど、アンモニアを生成するプロセスからの生成ガスを直接供給してもよい。
[Reaction format]
The reaction mode for carrying out the production method of the present embodiment is not particularly limited, such as a fixed bed type, a fluidized bed type, and a moving bed type, but a fixed bed type is preferred. Any known type of fixed bed reactor can be used, and specific examples include a catalyst packed bed type reactor and a catalyst membrane type reactor.
The method for heating the reactor is not particularly limited, and any known method such as heating with an electric heater, heating with a burner, heating with a heating medium such as kerosene or molten salt can be used.
There are no particular restrictions on the raw material gas supply mode, and it may be supplied as purified gas, but the product gas from processes that produce ammonia, such as the ammonia synthesis plant by the Harbor Bosch method, and the organic waste treatment plant that contains ammonia in the exhaust gas May be supplied directly.

〔反応条件〕
(反応温度)
前記触媒(X)に前記原料ガスを接触させる際の触媒の温度としては、200℃〜1000℃の範囲内であることが好ましく、300℃〜900℃の範囲内であることがより好ましく、400℃〜800℃の範囲内であることが特に好ましい。
[Reaction conditions]
(Reaction temperature)
The temperature of the catalyst when the source gas is brought into contact with the catalyst (X) is preferably in the range of 200 ° C. to 1000 ° C., more preferably in the range of 300 ° C. to 900 ° C., 400 It is particularly preferable that the temperature is within a range of from ℃ to 800 ℃.

(反応ガス成分)
アンモニア分解反応に使用する前記原料ガスはそのまま触媒に供給してもよいが、必要に応じてその他のガスを同伴させた反応ガスとして供給してもよい。同伴させるガスとしては、例えば窒素、アルゴン、ヘリウム、水素、一酸化炭素、水蒸気などが挙げられるが、これらに限定されるものではない。
(Reaction gas component)
The raw material gas used for the ammonia decomposition reaction may be supplied to the catalyst as it is, but may be supplied as a reaction gas accompanied by other gases as necessary. Examples of the gas to be accompanied include nitrogen, argon, helium, hydrogen, carbon monoxide, and water vapor, but are not limited thereto.

(反応圧力)
反応器内の反応ガスの圧力については、アンモニア分圧として0.001MPa〜3MPaの範囲内であることが好ましく、0.05MPa〜1MPaの範囲内であることがより好ましく、0.05MPa〜0.2MPaの範囲内であることが特に好ましい。また、反応ガスの全圧としては、0.001MPa〜3MPaの範囲内であることが好ましく、0.05MPa〜1MPaの範囲内であることがより好ましく、0.05MPa〜0.2MPaの範囲内であることが特に好ましい。
(Reaction pressure)
The pressure of the reaction gas in the reactor is preferably in the range of 0.001 MPa to 3 MPa, more preferably in the range of 0.05 MPa to 1 MPa, and more preferably in the range of 0.05 MPa to 0.00 MPa. A range of 2 MPa is particularly preferable. Further, the total pressure of the reaction gas is preferably in the range of 0.001 MPa to 3 MPa, more preferably in the range of 0.05 MPa to 1 MPa, and in the range of 0.05 MPa to 0.2 MPa. It is particularly preferred.

(接触時間)
原料ガスと触媒との接触時間について特に制限はないが、下記式(1)で定義される触媒質量当たりの重量空間速度(SV)として1000(Ncc/g/h)〜100000(Ncc/g/h)の範囲内で反応を実施することが好ましく、3000(Ncc/g/h)〜100000(Ncc/g/h)の範囲内で反応を実施することがより好ましい。なお原料供給量は、単位時間当たりに供給される、標準状態でのアンモニア気体の体積(Ncc)として表記する。
(SV[Ncc/g/h])=(原料供給量[Ncc/h])/(触媒質量[g])・・・(1)
(Contact time)
Although there is no restriction | limiting in particular about the contact time of raw material gas and a catalyst, 1000 (Ncc / g / h)-100,000 (Ncc / g / g) as a space-time velocity (SV) per catalyst mass defined by following formula (1) It is preferable to carry out the reaction within the range of h), and it is more preferred to carry out the reaction within the range of 3000 (Ncc / g / h) to 100,000 (Ncc / g / h). The raw material supply amount is expressed as a volume (Ncc) of ammonia gas supplied per unit time in a standard state.
(SV [Ncc / g / h]) = (Raw material supply amount [Ncc / h]) / (Catalyst mass [g]) (1)

〔生成物〕
本実施形態に係るアンモニア分解反応の結果得られる生成物について特に制限は無く、水素を含んでいれば水素以外の成分を含んでいてもよい。生成物中の水素濃度に特に制限はないが、一般的なアンモニア分解ではアンモニア2分子から水素3分子及び窒素1分子が生成するため、原料ガスに窒素及び水素が含まれていない場合には、生成物中に窒素と水素が1:3の体積比で含まれるのが一般的と言える。また、生成物中にアンモニアを含んでいてもよいが、生成物中のアンモニア含有量は、80体積%以下であることが好ましく、50体積%以下であることがさらに好ましく、10体積%以下であることが特に好ましい。
[Product]
There is no restriction | limiting in particular about the product obtained as a result of the ammonia decomposition reaction which concerns on this embodiment, and if it contains hydrogen, you may contain components other than hydrogen. The hydrogen concentration in the product is not particularly limited, but in general ammonia decomposition, 3 molecules of hydrogen and 1 molecule of nitrogen are produced from 2 molecules of ammonia. Therefore, when nitrogen and hydrogen are not contained in the source gas, It can be generally said that the product contains nitrogen and hydrogen in a volume ratio of 1: 3. Further, ammonia may be contained in the product, but the ammonia content in the product is preferably 80% by volume or less, more preferably 50% by volume or less, and 10% by volume or less. It is particularly preferred.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によって何らかの制限を受けるものではない。なお、特に断りのない限り、「%」は「質量%」を表す。
[触媒調製例1]Ni-Sm2O3
5.95gの硝酸ニッケル六水和物(和光純薬工業株式会社製)を蒸留水に溶解して調製した溶液に、1.80gの酸化サマリウム(和光純薬工業株式会社製)を加えて十分に攪拌し、80℃のウォーターバスを用いて蒸発乾固した。得られた固体成分を、空気下600℃で5時間焼成を行いNi-Sm2O3を調製した。
[触媒調製例2]3%BaO-Ni-Sm2O3
0.15gの硝酸バリウム(和光純薬工業株式会社製)及び5.95gの硝酸ニッケル六水和物を蒸留水に溶解して調製した溶液に、1.71gの酸化サマリウムを加えて十分に攪拌し、80℃のウォーターバスを用いて蒸発乾固した。得られた固体成分を、空気下600℃で5時間焼成を行い3%BaO-Ni-Sm2O3を調製した。
[触媒調製例3]5%BaO-Ni-Sm2O3
硝酸バリウムを0.26g、酸化サマリウムを1.65g使用した以外は触媒調製例2と同様にして、5%BaO-Ni-Sm2O3を調製した。
[触媒調製例4]10%BaO-Ni-Sm2O3
硝酸バリウムを0.51g、酸化サマリウムを1.50g使用した以外は触媒調製例2と同様にして、10%BaO-Ni-Sm2O3を調製した。
[触媒調製例5]20%BaO-Ni-Sm2O3
硝酸バリウムを1.02g、酸化サマリウムを1.20g使用した以外は触媒調製例2と同様にして、20%BaO-Ni-Sm2O3を調製した。
[触媒調製例6]3%SrO-Ni-Sm2O3
硝酸バリウム0.15gの代わりに0.18gの硝酸ストロンチウム(和光純薬工業株式会社製)を使用した以外は触媒調製例2と同様にして、3%SrO-Ni-Sm2O3を調製した。
[触媒調製例7]5%SrO-Ni-Sm2O3
硝酸ストロンチウムを0.31g、酸化サマリウムを1.65g使用した以外は触媒調製例6と同様にして、5%SrO-Ni-Sm2O3を調製した。
[触媒調製例8]5%MgO-Ni-Sm2O3
硝酸バリウム0.26gの代わりに0.95gの硝酸マグネシウム六水和物(和光純薬工業株式会社製)を使用した以外は触媒調製例3と同様にして、5%MgO-Ni-Sm2O3を調製した。
[触媒調製例9]5%CaO-Ni-Sm2O3
硝酸バリウム0.26gの代わりに0.63gの硝酸カルシウム四水和物(和光純薬工業株式会社製)を使用した以外は触媒調製例3と同様にして、5%CaO-Ni-Sm2O3を調製した。
[触媒調製例10]Ni-Nd2O3
酸化サマリウム1.80gの代わりに1.80gの酸化ネオジム(和光純薬工業株式会社製)を使用した以外は触媒調製例1と同様にして、Ni-Nd2O3を調製した。
[触媒調製例11]5%BaO-Ni-Nd2O3
酸化サマリウム1.65gの代わりに1.65gの酸化ネオジムを使用した以外は触媒調製例3と同様にして、5%BaO-Ni-Nd2O3を調製した。
[触媒調製例12]Ni-Eu2O3
酸化サマリウム1.80gの代わりに1.80gの酸化ユウロピウム(和光純薬工業株式会社製)を使用した以外は触媒調製例1と同様にして、Ni-Eu2O3を調製した。
[触媒調製例13]5%BaO-Ni-Eu2O3
酸化サマリウム1.65gの代わりに1.65gの酸化ユウロピウムを使用した以外は触媒調製例3と同様にして、5%BaO-Ni-Eu2O3を調製した。
[触媒調製例14]5%SrO-Ni-Eu2O3
酸化サマリウム1.65gの代わりに1.65gの酸化ユウロピウムを使用した以外は触媒調製例7と同様にして、5%SrO-Ni-Eu2O3を調製した。
[触媒調製例15]Ni-Gd2O3
酸化サマリウム1.80gの代わりに1.80gの酸化ガドリニウム(和光純薬工業株式会社製)を使用した以外は触媒調製例1と同様にして、Ni-Gd2O3を調製した。
[触媒調製例16]5%BaO-Ni-Gd2O3
酸化サマリウム1.65gの代わりに1.65gの酸化ガドリニウムを使用した以外は触媒調製例3と同様にして、5%BaO-Ni-Gd2O3を調製した。
[触媒調製例17]5%SrO-Ni-Gd2O3
酸化サマリウム1.65gの代わりに1.65gの酸化ガドリニウムを使用した以外は触媒調製例7と同様にして、5%SrO-Ni-Gd2O3を調製した。
[触媒調製例18]5%BaO-Ni-Er2O3
酸化サマリウム1.65gの代わりに1.65gの酸化エルビウム(和光純薬工業株式会社製)を使用した以外は触媒調製例3と同様にして、5%BaO-Ni-Er2O3を調製した。
[触媒調製例19]5%SrO-Ni-La2O3
酸化サマリウム1.65gの代わりに1.65gの酸化ランタン(信越化学工業株式会社製)を使用した以外は触媒調製例7と同様にして、5%SrO-Ni-La2O3を調製した。
[触媒調製例20]5%BaO-Ni-CeO2
酸化サマリウム1.65gの代わりに1.65gの酸化セリウム(第一稀元素化学株式会社製)を使用した以外は触媒調製例3と同様にして、5%BaO-Ni-CeO2を調製した。
[触媒調製例21]5%BaO-Ni-Y2O3
酸化サマリウム1.65gの代わりに1.65gの酸化イットリウム(和光純薬工業株式会社製)を使用した以外は触媒調製例3と同様にして、5%BaO-Ni-Y2O3を調製した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention does not receive a restriction | limiting in any way by these Examples. Unless otherwise specified, “%” represents “% by mass”.
[Catalyst Preparation Example 1] Ni-Sm 2 O 3
To a solution prepared by dissolving 5.95 g of nickel nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) in distilled water, 1.80 g of samarium oxide (manufactured by Wako Pure Chemical Industries, Ltd.) is sufficiently added. And evaporated to dryness using a water bath at 80 ° C. The obtained solid component was calcined at 600 ° C. for 5 hours in air to prepare Ni—Sm 2 O 3 .
[Catalyst Preparation Example 2] 3% BaO—Ni—Sm 2 O 3
To a solution prepared by dissolving 0.15 g of barium nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 5.95 g of nickel nitrate hexahydrate in distilled water, add 1.71 g of samarium oxide and stir well. And evaporated to dryness using a 80 ° C. water bath. The obtained solid component was calcined at 600 ° C. for 5 hours in air to prepare 3% BaO—Ni—Sm 2 O 3 .
[Catalyst Preparation Example 3] 5% BaO—Ni—Sm 2 O 3
5% BaO—Ni—Sm 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 2, except that 0.26 g of barium nitrate and 1.65 g of samarium oxide were used.
[Catalyst Preparation Example 4] 10% BaO—Ni—Sm 2 O 3
10% BaO—Ni—Sm 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 2, except that 0.51 g of barium nitrate and 1.50 g of samarium oxide were used.
[Catalyst Preparation Example 5] 20% BaO—Ni—Sm 2 O 3
20% BaO—Ni—Sm 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 2, except that 1.02 g of barium nitrate and 1.20 g of samarium oxide were used.
[Catalyst Preparation Example 6] 3% SrO—Ni—Sm 2 O 3
3% SrO—Ni—Sm 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 2, except that 0.18 g of strontium nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 0.15 g of barium nitrate. .
[Catalyst Preparation Example 7] 5% SrO—Ni—Sm 2 O 3
5% SrO—Ni—Sm 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 6 except that 0.31 g of strontium nitrate and 1.65 g of samarium oxide were used.
[Catalyst Preparation Example 8] 5% MgO—Ni—Sm 2 O 3
5% MgO—Ni—Sm 2 O in the same manner as in Catalyst Preparation Example 3 except that 0.95 g of magnesium nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 0.26 g of barium nitrate. 3 was prepared.
[Catalyst Preparation Example 9] 5% CaO—Ni—Sm 2 O 3
5% CaO—Ni—Sm 2 O in the same manner as in Catalyst Preparation Example 3, except that 0.63 g of calcium nitrate tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 0.26 g of barium nitrate. 3 was prepared.
[Catalyst Preparation Example 10] Ni—Nd 2 O 3
Ni-Nd 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 1 except that 1.80 g of neodymium oxide (Wako Pure Chemical Industries, Ltd.) was used instead of 1.80 g of samarium oxide.
[Catalyst Preparation Example 11] 5% BaO—Ni—Nd 2 O 3
5% BaO—Ni—Nd 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 3, except that 1.65 g of neodymium oxide was used instead of 1.65 g of samarium oxide.
[Catalyst Preparation Example 12] Ni-Eu 2 O 3
Ni-Eu 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 1, except that 1.80 g of europium oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 1.80 g of samarium oxide.
[Catalyst Preparation Example 13] 5% BaO-Ni-Eu 2 O 3
5% BaO—Ni—Eu 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 3, except that 1.65 g of europium oxide was used instead of 1.65 g of samarium oxide.
[Catalyst Preparation Example 14] 5% SrO—Ni—Eu 2 O 3
5% SrO—Ni—Eu 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 7, except that 1.65 g of europium oxide was used instead of 1.65 g of samarium oxide.
[Catalyst Preparation Example 15] Ni-Gd 2 O 3
Ni-Gd 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 1, except that 1.80 g of gadolinium oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 1.80 g of samarium oxide.
[Catalyst Preparation Example 16] 5% BaO—Ni—Gd 2 O 3
5% BaO—Ni—Gd 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 3, except that 1.65 g of gadolinium oxide was used instead of 1.65 g of samarium oxide.
[Catalyst Preparation Example 17] 5% SrO—Ni—Gd 2 O 3
5% SrO—Ni—Gd 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 7, except that 1.65 g of gadolinium oxide was used instead of 1.65 g of samarium oxide.
[Catalyst Preparation Example 18] 5% BaO—Ni—Er 2 O 3
5% BaO—Ni—Er 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 3 except that 1.65 g of erbium oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 1.65 g of samarium oxide. .
[Catalyst Preparation Example 19] 5% SrO—Ni—La 2 O 3
5% SrO—Ni—La 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 7 except that 1.65 g of lanthanum oxide (manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of 1.65 g of samarium oxide.
[Catalyst Preparation Example 20] 5% BaO—Ni—CeO 2
5% BaO—Ni—CeO 2 was prepared in the same manner as in Catalyst Preparation Example 3 except that 1.65 g of cerium oxide (Daiichi Rare Elemental Chemical Co., Ltd.) was used instead of 1.65 g of samarium oxide.
[Catalyst Preparation Example 21] 5% BaO—Ni—Y 2 O 3
5% BaO—Ni—Y 2 O 3 was prepared in the same manner as in Catalyst Preparation Example 3, except that 1.65 g of yttrium oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 1.65 g of samarium oxide. .

[実施例1]活性評価:アンモニア分解反応
触媒調製例2で調製した3%BaO-Ni-Sm2O3について、固定床流通式反応装置を用いてアンモニア分解反応を行い活性を評価した。3%BaO-Ni-Sm2O3 0.30gを反応管に充填し、アルゴン流通下で600℃まで昇温させた。次いでアルゴン希釈した50体積%水素を50Ncc/minの流量で反応管に流通させながら600℃、全圧0.10MPaで2時間流通させ還元処理を行った。還元処理後、ガスを100体積%アルゴンに切り替え、500℃に降温し、全圧0.10MPaにおいて流通ガスを100体積%アンモニアガスに切り替え、30Ncc/minの流量で反応管に流通させてアンモニア分解反応を行った。
アンモニア分解率は以下の式を用いて算出し、分解率は91%となった。
アンモニア分解率(%)=(水素生成量+窒素生成量)/(2×アンモニア供給量)×100
[実施例2]
触媒として、触媒調製例3で調製した5%BaO-Ni-Sm2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は93%となった。
[実施例3]
触媒として、触媒調製例4で調製した10%BaO-Ni-Sm2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は79%となった。
[実施例4]
触媒として、触媒調製例6で調製した3%SrO-Ni-Sm2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は83%となった。
[実施例5]
触媒として、触媒調製例7で調製した5%SrO-Ni-Sm2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は82%となった。
[比較例1]
触媒として、触媒調製例1で調製したNi-Sm2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は60%となった。
[比較例2]
触媒として、触媒調製例5で調製した20%BaO-Ni-Sm2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は66%となった。
[比較例3]
触媒として、触媒調製例8で調製した5%MgO-Ni-Sm2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は58%となった。
[比較例4]
触媒として、触媒調製例9で調製した5%CaO-Ni-Sm2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は59%となった。
Example 1 Activity Evaluation: Ammonia Decomposition Reaction The 3% BaO—Ni—Sm 2 O 3 prepared in Catalyst Preparation Example 2 was subjected to an ammonia decomposition reaction using a fixed bed flow reactor to evaluate the activity. The reaction tube was charged with 0.30 g of 3% BaO—Ni—Sm 2 O 3 and heated to 600 ° C. under a stream of argon. Subsequently, 50 vol% hydrogen diluted with argon was circulated through the reaction tube at a flow rate of 50 Ncc / min for 2 hours at 600 ° C. and a total pressure of 0.10 MPa for reduction treatment. After the reduction treatment, the gas is switched to 100 volume% argon, the temperature is lowered to 500 ° C., the flow gas is switched to 100 volume% ammonia gas at a total pressure of 0.10 MPa, and the ammonia is decomposed by flowing through the reaction tube at a flow rate of 30 Ncc / min. Reaction was performed.
The ammonia decomposition rate was calculated using the following formula, and the decomposition rate was 91%.
Ammonia decomposition rate (%) = (hydrogen generation amount + nitrogen generation amount) / (2 × ammonia supply amount) × 100
[Example 2]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% BaO—Ni—Sm 2 O 3 prepared in Catalyst Preparation Example 3 was used as the catalyst.
The ammonia decomposition rate was 93%.
[Example 3]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 10% BaO—Ni—Sm 2 O 3 prepared in Catalyst Preparation Example 4 was used as the catalyst.
The ammonia decomposition rate was 79%.
[Example 4]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 3% SrO—Ni—Sm 2 O 3 prepared in Catalyst Preparation Example 6 was used as the catalyst.
The ammonia decomposition rate was 83%.
[Example 5]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% SrO—Ni—Sm 2 O 3 prepared in Catalyst Preparation Example 7 was used as the catalyst.
The ammonia decomposition rate was 82%.
[Comparative Example 1]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of Ni-Sm 2 O 3 prepared in Catalyst Preparation Example 1 was used as the catalyst.
The ammonia decomposition rate was 60%.
[Comparative Example 2]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 20% BaO—Ni—Sm 2 O 3 prepared in Catalyst Preparation Example 5 was used as the catalyst.
The ammonia decomposition rate was 66%.
[Comparative Example 3]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% MgO—Ni—Sm 2 O 3 prepared in Catalyst Preparation Example 8 was used as the catalyst.
The ammonia decomposition rate was 58%.
[Comparative Example 4]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% CaO—Ni—Sm 2 O 3 prepared in Catalyst Preparation Example 9 was used as the catalyst.
The ammonia decomposition rate was 59%.

実施例1〜5のいずれのアンモニア分解率も、比較例1及び比較例2の分解率より高いことから、ストロンチウム、バリウム添加によりNi-Sm2O3のアンモニア分解活性は向上し、好適なストロンチウムまたはバリウム添加量が酸化ストロンチウムまたは酸化バリウムとして0.1質量%〜15質量%の範囲内にあることが示された。
実施例2及び実施例5のいずれのアンモニア分解率も比較例1、比較例3、及び比較例4の分解率より高いことから、Ni/Sm2O3への添加物として、ストロンチウム及びバリウムはアンモニア分解活性の向上に効果があるが、マグネシウム及びカルシウムには効果がないことが示された。
Since any ammonia decomposition rate of Examples 1-5 is higher than the decomposition rate of Comparative Example 1 and Comparative Example 2, the ammonia decomposition activity of Ni-Sm 2 O 3 is improved by addition of strontium and barium, and suitable strontium Or it was shown that the addition amount of barium exists in the range of 0.1 mass%-15 mass% as strontium oxide or barium oxide.
Since the ammonia decomposition rates of Example 2 and Example 5 were higher than those of Comparative Example 1, Comparative Example 3, and Comparative Example 4, strontium and barium were added as additives to Ni / Sm 2 O 3 . It was shown that it was effective in improving the ammonia decomposing activity, but not effective in magnesium and calcium.

[実施例6]
触媒として、触媒調製例11で調製した5%BaO-Ni-Nd2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は84%となった。
[実施例7]
触媒として、触媒調製例13で調製した5%BaO-Ni-Eu2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は92%となった。
[実施例8]
触媒として、触媒調製例14で調製した5%SrO-Ni-Eu2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は81%となった。
[実施例9]
触媒として、触媒調製例16で調製した5%BaO-Ni-Gd2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は96%となった。
[実施例10]
触媒として、触媒調製例17で調製した5%SrO-Ni-Gd2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は82%となった。
[実施例11]
触媒として、触媒調製例18で調製した5%BaO-Ni-Er2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は93%となった。
[比較例5]
触媒として、触媒調製例10で調製したNi-Nd2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は51%となった。
[比較例6]
触媒として、触媒調製例12で調製したNi-Eu2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は58%となった。
[比較例7]
触媒として、触媒調製例15で調製したNi-Gd2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は62%となった。
[比較例8]
触媒として、触媒調製例19で調製した5%SrO-Ni-La2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は69%となった。
[比較例9]
触媒として、触媒調製例20で調製した5%BaO-Ni-CeO2 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は58%となった。
[比較例10]
触媒として、触媒調製例21で調製した5%BaO-Ni-Y2O3 0.30gを用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は76%となった。
[Example 6]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% BaO—Ni—Nd 2 O 3 prepared in Catalyst Preparation Example 11 was used as the catalyst.
The ammonia decomposition rate was 84%.
[Example 7]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% BaO—Ni—Eu 2 O 3 prepared in Catalyst Preparation Example 13 was used as the catalyst.
The ammonia decomposition rate was 92%.
[Example 8]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% SrO—Ni—Eu 2 O 3 prepared in Catalyst Preparation Example 14 was used as the catalyst.
The ammonia decomposition rate was 81%.
[Example 9]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% BaO—Ni—Gd 2 O 3 prepared in Catalyst Preparation Example 16 was used as the catalyst.
The ammonia decomposition rate was 96%.
[Example 10]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% SrO—Ni—Gd 2 O 3 prepared in Catalyst Preparation Example 17 was used as the catalyst.
The ammonia decomposition rate was 82%.
[Example 11]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% BaO—Ni—Er 2 O 3 prepared in Catalyst Preparation Example 18 was used as the catalyst.
The ammonia decomposition rate was 93%.
[Comparative Example 5]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of Ni—Nd 2 O 3 prepared in Catalyst Preparation Example 10 was used as the catalyst.
The ammonia decomposition rate was 51%.
[Comparative Example 6]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of Ni-Eu 2 O 3 prepared in Catalyst Preparation Example 12 was used as the catalyst.
The ammonia decomposition rate was 58%.
[Comparative Example 7]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of Ni-Gd 2 O 3 prepared in Catalyst Preparation Example 15 was used as the catalyst.
The ammonia decomposition rate was 62%.
[Comparative Example 8]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% SrO—Ni—La 2 O 3 prepared in Catalyst Preparation Example 19 was used as the catalyst.
The ammonia decomposition rate was 69%.
[Comparative Example 9]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% BaO—Ni—CeO 2 prepared in Catalyst Preparation Example 20 was used as the catalyst.
The ammonia decomposition rate was 58%.
[Comparative Example 10]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of 5% BaO—Ni—Y 2 O 3 prepared in Catalyst Preparation Example 21 was used as the catalyst.
The ammonia decomposition rate was 76%.

実施例6〜10のいずれのアンモニア分解率も比較例5〜7よりも高いことから、ストロンチウム、バリウム添加によりNi-Nd2O3、Ni-Eu2O3、Ni-Gd2O3のアンモニア分解活性が向上することが示された。よって、ネオジム、ユウロピウム、ガドリニウムを用いた場合でも、ストロンチウム及びバリウムはアンモニア分解活性の向上に効果があることが示された。
実施例2、及び実施例5〜11のいずれのアンモニア分解率も比較例8〜10のアンモニア分解率より高いことから、希土類酸化物の中でもランタン、セリウム、及びイットリウムとストロンチウム及びバリウムとの組み合わせよりも、サマリウム、ネオジム、ユウロピウム、ガドリニウム及びエルビウムとストロンチウム及びバリウムとの組み合わせの方がアンモニア分解活性の向上に効果があることが示された。
Since the ammonia decomposition rates of Examples 6 to 10 were higher than those of Comparative Examples 5 to 7, ammonia of Ni—Nd 2 O 3 , Ni—Eu 2 O 3 , and Ni—Gd 2 O 3 was added by addition of strontium and barium. It was shown that the degradation activity is improved. Therefore, even when neodymium, europium, or gadolinium was used, it was shown that strontium and barium are effective in improving ammonia decomposition activity.
Since the ammonia decomposition rate of Example 2 and Examples 5 to 11 is higher than the ammonia decomposition rate of Comparative Examples 8 to 10, among the rare earth oxides, lanthanum, cerium, and a combination of yttrium, strontium, and barium. In addition, it was shown that the combination of samarium, neodymium, europium, gadolinium and erbium with strontium and barium is more effective in improving the ammonia decomposition activity.

水素を燃料などのエネルギー源として利用する分野に好適に適用することができる。   It can be suitably applied to the field where hydrogen is used as an energy source such as fuel.

Claims (7)

ニッケル、コバルト及び鉄から選ばれる1種以上の元素(A)、ストロンチウム及びバリウムから選ばれる1種以上の元素(B)、並びにランタンとセリウムとを除いたランタノイドから選ばれる1種以上の元素(C)を含み、かつ元素(B)を、元素(B)の酸化物換算で0.1質量%〜15質量%の範囲で含有する触媒(X)に、アンモニアを含有する原料ガスを接触させる工程を有する水素の製造方法。   One or more elements selected from nickel, cobalt and iron (A), one or more elements selected from strontium and barium (B), and one or more elements selected from lanthanoids excluding lanthanum and cerium ( A source gas containing ammonia is brought into contact with the catalyst (X) containing C) and containing the element (B) in the range of 0.1% by mass to 15% by mass in terms of the oxide of the element (B). The manufacturing method of hydrogen which has a process. 前記元素(C)が、ネオジム、サマリウム、ユウロピウム、ガドリニウム及びエルビウムから選ばれる1種以上の元素である請求項1に記載の水素の製造方法。   The method for producing hydrogen according to claim 1, wherein the element (C) is one or more elements selected from neodymium, samarium, europium, gadolinium, and erbium. 前記元素(A)が、ニッケルである請求項1又は請求項2に記載の水素の製造方法。   The method for producing hydrogen according to claim 1, wherein the element (A) is nickel. 前記元素(B)が、バリウムである請求項1〜請求項3のいずれか1項に記載の水素の製造方法。   The method for producing hydrogen according to any one of claims 1 to 3, wherein the element (B) is barium. 前記原料ガスが、アンモニアを50体積%以上100体積%以下含む請求項1〜請求項4のいずれか1項に記載の水素の製造方法。   The method for producing hydrogen according to any one of claims 1 to 4, wherein the source gas contains 50% by volume to 100% by volume of ammonia. 前記触媒(X)に前記原料ガスを接触させる際の前記触媒(X)の温度が、300℃〜900℃である請求項1〜請求項5のいずれか1項に記載の水素の製造方法。   The temperature of the said catalyst (X) at the time of making the said source gas contact the said catalyst (X) is 300 to 900 degreeC, The manufacturing method of hydrogen of any one of Claims 1-5. ニッケル、コバルト及び鉄から選ばれる1種以上の元素(A)、ストロンチウム及びバリウムから選ばれる1種以上の元素(B)、並びにランタンとセリウムとを除いたランタノイドから選ばれる1種以上の元素(C)を含み、かつ元素(B)の含有量が、元素(B)の酸化物換算で0.1質量%〜15質量%の範囲であり、アンモニアを含有する原料ガスを分解して水素を製造することに用いられる水素製造用触媒。   One or more elements selected from nickel, cobalt and iron (A), one or more elements selected from strontium and barium (B), and one or more elements selected from lanthanoids excluding lanthanum and cerium ( C) and the content of the element (B) is in the range of 0.1% by mass to 15% by mass in terms of the oxide of the element (B), and hydrogen is removed by decomposing the raw material gas containing ammonia. Catalyst for hydrogen production used for production.
JP2015084327A 2015-04-16 2015-04-16 Method for producing hydrogen and catalyst for producing hydrogen Active JP6482022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015084327A JP6482022B2 (en) 2015-04-16 2015-04-16 Method for producing hydrogen and catalyst for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015084327A JP6482022B2 (en) 2015-04-16 2015-04-16 Method for producing hydrogen and catalyst for producing hydrogen

Publications (2)

Publication Number Publication Date
JP2016203052A true JP2016203052A (en) 2016-12-08
JP6482022B2 JP6482022B2 (en) 2019-03-13

Family

ID=57488306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015084327A Active JP6482022B2 (en) 2015-04-16 2015-04-16 Method for producing hydrogen and catalyst for producing hydrogen

Country Status (1)

Country Link
JP (1) JP6482022B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019011212A (en) * 2017-06-29 2019-01-24 国立大学法人京都大学 Method for producing hydrogen and hydrogen production catalyst
JP2020179331A (en) * 2019-04-24 2020-11-05 国立大学法人京都大学 Method for producing hydrogen production catalyst
WO2022070597A1 (en) 2020-09-29 2022-04-07 株式会社日本触媒 Ammonia decomposition catalyst

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220389864A1 (en) 2021-05-14 2022-12-08 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
EP4352008A1 (en) 2021-06-11 2024-04-17 Amogy Inc. Systems and methods for processing ammonia
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198639A (en) * 1989-01-27 1990-08-07 Nkk Corp Catalyst for decomposing ammonia
JP2004195454A (en) * 2002-12-04 2004-07-15 Ngk Insulators Ltd Method for recovering energy from ammonia derived from waste
JP2010094668A (en) * 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd Catalyst for ammonia decomposition, process for producing the same, and method for treating ammonia
JP2012254419A (en) * 2011-06-09 2012-12-27 Kyoto Univ Ammonia decomposing catalyst, ammonia decomposing method using the catalyst, and method for regenerating the catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198639A (en) * 1989-01-27 1990-08-07 Nkk Corp Catalyst for decomposing ammonia
JP2004195454A (en) * 2002-12-04 2004-07-15 Ngk Insulators Ltd Method for recovering energy from ammonia derived from waste
JP2010094668A (en) * 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd Catalyst for ammonia decomposition, process for producing the same, and method for treating ammonia
JP2012254419A (en) * 2011-06-09 2012-12-27 Kyoto Univ Ammonia decomposing catalyst, ammonia decomposing method using the catalyst, and method for regenerating the catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大藏要 ほか: "希土類酸化物担持Ni触媒を用いたアンモニア分解反応", 触媒討論会講演予稿集, vol. 111, JPN6018034591, 11 March 2013 (2013-03-11), pages 152, ISSN: 0003872041 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019011212A (en) * 2017-06-29 2019-01-24 国立大学法人京都大学 Method for producing hydrogen and hydrogen production catalyst
JP2020179331A (en) * 2019-04-24 2020-11-05 国立大学法人京都大学 Method for producing hydrogen production catalyst
JP7161664B2 (en) 2019-04-24 2022-10-27 国立大学法人京都大学 Method for producing catalyst for hydrogen production
WO2022070597A1 (en) 2020-09-29 2022-04-07 株式会社日本触媒 Ammonia decomposition catalyst

Also Published As

Publication number Publication date
JP6482022B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6482022B2 (en) Method for producing hydrogen and catalyst for producing hydrogen
JP6883289B2 (en) Hydrogen production method and catalyst for hydrogen production
JP7352487B2 (en) Ammonia decomposition catalyst
JP2016159209A (en) Ammonia decomposition catalyst, production method of catalyst, and ammonia decomposition method using catalyst
CN106102905A (en) For high temperature carbon dioxide hydrogenation, hydrogenate for combining high temperature carbon dioxide and reform and/or the catalyst containing yttrium for reforming, and for high temperature carbon dioxide hydrogenation, be used for combining high temperature carbon dioxide hydrogenation and reform and/or the method for reforming
JP6395150B2 (en) Method for producing hydrogen and catalyst for producing hydrogen
KR101579776B1 (en) Manufacturing method of perovskite-type nickel based catalysts
JP2002282689A (en) Catalyst carrier and catalyst, and method for producing them
CN102463119A (en) Methanation catalyst and preparation method thereof
JP2010240646A (en) Catalyst for producing hydrogen, and method of producing hydrogen using the same
JP2011056488A (en) Ammonia reforming catalyst and method of manufacturing hydrogen using the same
CN111939907A (en) Catalyst for low-temperature ammonia decomposition hydrogen production and preparation method and application thereof
JP2015196110A (en) Catalyst for hydrogen production and hydrogen production method using the same
JPWO2013021506A1 (en) Redox material for thermochemical water splitting and hydrogen production method
CN113634257A (en) Application of bifunctional catalyst to CO in flue gas2Integration of capture and methanation
JP2003320254A (en) Catalyst for water gas shift reaction and steam reforming reaction of methanol
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
KR20150067253A (en) Method for producing composite oxide and composite oxide catalyst
CN113145122B (en) Composite metal oxide catalyst, preparation method thereof and application thereof in catalyzing direct decomposition of nitrogen oxide
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP2012254419A (en) Ammonia decomposing catalyst, ammonia decomposing method using the catalyst, and method for regenerating the catalyst
Nikolić et al. Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams
KR20230034166A (en) METHOD FOR SYNTHESIS Ni/AlMaOx CATALYSTS FOR AMMONIA DECOMPOSITION USING CATION ANION DOUBLE HYDROLYSIS
JP6181260B1 (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst
JP7161664B2 (en) Method for producing catalyst for hydrogen production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R150 Certificate of patent or registration of utility model

Ref document number: 6482022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250