JP2002282689A - Catalyst carrier and catalyst, and method for producing them - Google Patents

Catalyst carrier and catalyst, and method for producing them

Info

Publication number
JP2002282689A
JP2002282689A JP2001165418A JP2001165418A JP2002282689A JP 2002282689 A JP2002282689 A JP 2002282689A JP 2001165418 A JP2001165418 A JP 2001165418A JP 2001165418 A JP2001165418 A JP 2001165418A JP 2002282689 A JP2002282689 A JP 2002282689A
Authority
JP
Japan
Prior art keywords
catalyst
composite oxide
catalyst carrier
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001165418A
Other languages
Japanese (ja)
Inventor
Hiroto Hirata
裕人 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001165418A priority Critical patent/JP2002282689A/en
Publication of JP2002282689A publication Critical patent/JP2002282689A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst carrier of a complex oxide which is used in a catalyst for cleaning an exhaust gas discharged from a car engine, etc., can provide a large surface area for gas to be cleaned, and can have a composition selectable in a wide range. SOLUTION: The catalyst carrier has a specific surface area of at least 200 m<2> /g and contains a complex oxide containing at least two metal elements, or has a peak of pore distribution at 1-10 nm and contains a compound oxide containing at least two metal elements. Preferably, the complex oxide contains aluminum, cerium and zirconium, or titanium and aluminum, or zirconium and calcium, or aluminum and magnesium. At least one catalyst component selected from the group consisting of platinum, gold, palladium, rhodium, ruthenium and iridium is carried on the catalyst carrier to constitute a catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、触媒担体及び触媒
に関し、より詳しくは、反応成分を含むガスに高い表面
積を提供する触媒用の担体、触媒、及びそれらの製造方
法に関する。
The present invention relates to a catalyst carrier and a catalyst, and more particularly to a catalyst carrier and a catalyst for providing a gas containing a reaction component with a high surface area, and a method for producing the same.

【0002】[0002]

【従来の技術】ガス中に含まれる反応成分の反応を促進
させる触媒は、一般に、触媒担体に触媒成分等を担持し
て構成される。例えば、自動車用エンジン等の内燃機関
から排出される排気ガスの場合、排気ガス中に含まれる
反応成分の窒素酸化物(NOx)を分解し、炭化水素
(HC)と一酸化炭素(CO)を燃焼させるために三元
触媒が使用され、また、三元触媒にリーン雰囲気でNO
xを吸蔵する機能を付加させてNOx浄化能力を高めた吸
蔵還元型NOx浄化用触媒が使用されるが、これらの触
媒は、一般に、γ-アルミナのような触媒担体に、白金
等の貴金属の触媒成分と付加的なNOx吸蔵剤のような
助触媒成分を担持して構成される。
2. Description of the Related Art A catalyst for promoting the reaction of a reaction component contained in a gas is generally constituted by supporting a catalyst component and the like on a catalyst carrier. For example, in the case of exhaust gas discharged from an internal combustion engine such as an automobile engine, a nitrogen oxide (NOx) as a reaction component contained in the exhaust gas is decomposed to convert hydrocarbon (HC) and carbon monoxide (CO). A three-way catalyst is used for combustion, and the three-way catalyst is NO
Oxidation-reduction-type NOx purification catalysts having an increased NOx purification ability by adding a function of storing x are used.In general, these catalysts are formed by depositing a noble metal such as platinum on a catalyst carrier such as γ-alumina. It is configured to carry a catalyst component and an auxiliary catalyst component such as an additional NOx storage agent.

【0003】ここで、触媒が反応成分の反応を効率的に
促進するためには、ガスが触媒に効率的に接触するよう
に、触媒がガスに高い表面積を提供することが必要であ
り、この高い表面積は、一般に、高い比表面積を有する
触媒担体上に触媒成分等が担持されることによって形成
される。そして、この高い表面積は、触媒が使用される
条件下で経時的に維持されることが必要である。
Here, in order for the catalyst to efficiently promote the reaction of the reaction components, it is necessary that the catalyst provide a high surface area to the gas so that the gas contacts the catalyst efficiently. The high surface area is generally formed by supporting a catalyst component or the like on a catalyst support having a high specific surface area. And this high surface area needs to be maintained over time under the conditions in which the catalyst is used.

【0004】例えば、自動車用エンジンの排気ガス浄化
用触媒の場合、常温と約1000℃の間で温度が繰り返
して変動し、かつ比較的HCとCOの濃度が高くてO2
濃度が低い還元性雰囲気と、比較的HCとCOの濃度が
低くてO2濃度が高い酸化性雰囲気が繰り返される条件
下で、この高い表面積が維持される必要がある。
For example, in the case of an exhaust gas purifying catalyst for an automobile engine, the temperature repeatedly fluctuates between room temperature and about 1000 ° C., and the concentration of HC and CO is relatively high and O 2
This high surface area needs to be maintained under conditions where a reducing atmosphere having a low concentration and an oxidizing atmosphere having a relatively low concentration of HC and CO and a high O 2 concentration are repeated.

【0005】したがって、触媒担体には、こうした厳し
い条件下でも耐久性を有する比表面積が高いアルミナ、
シリカ、ジルコニア等の金属酸化物の材料が選択され、
通常、約180m2/gの比表面積を有するγ-アルミナ
が使用される。このγ-アルミナは、現状では、高い比
表面積と優れた耐久性を最もバランス良く有する触媒担
体用の材料とされている。しかるに、排気ガス浄化用触
媒の浄化性能を一層向上させるためには、さらに高い比
表面積を有する触媒担体が望まれるが、アルミナ、シリ
カ、ジルコニア等の単一金属の酸化物は、それぞれの固
有の物性によって定まる耐久性を有する。
[0005] Accordingly, alumina having high specific surface area, which is durable even under such severe conditions, is provided on the catalyst support.
Materials of metal oxides such as silica and zirconia are selected,
Usually, γ-alumina having a specific surface area of about 180 m 2 / g is used. At present, γ-alumina is regarded as a material for a catalyst carrier having a high specific surface area and excellent durability in the best balance. However, in order to further improve the purification performance of the exhaust gas purifying catalyst, a catalyst support having a higher specific surface area is desired. However, oxides of a single metal such as alumina, silica, and zirconia have their own specific properties. Has durability determined by physical properties.

【0006】ところで、複数の元素を含む複合酸化物
は、それらの元素の複合効果によって高い耐久性を有す
ることが期待され、さらに、特定の複合酸化物は、耐久
性のみならず、酸素ストレージ性能、酸素イオン伝導
性、酸塩基点、吸着性等の機能性を有する。このため、
高い比表面積を有する特定の複合酸化物が触媒担体とし
て使用されれば、排気ガスの浄化性能が著しく改良され
た排気ガス浄化用触媒を提供できる可能性がある。こう
した複合酸化物を触媒担体として利用する先行技術に
は、例えば、特開平8-150335号公報、特開平1
1-347371号公報、特開2000-300985号
公報がある。
Incidentally, a composite oxide containing a plurality of elements is expected to have high durability due to the composite effect of those elements. Further, a specific composite oxide has not only durability but also oxygen storage performance. It has functions such as oxygen ion conductivity, acid-base point, and adsorptivity. For this reason,
If a specific composite oxide having a high specific surface area is used as a catalyst carrier, there is a possibility that an exhaust gas purification catalyst with significantly improved exhaust gas purification performance can be provided. Prior arts utilizing such a composite oxide as a catalyst carrier include, for example, JP-A-8-150335 and JP-A-1-150335.
There are JP-A-347371 and JP-A-2000-30085.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
触媒担体として使用された複合酸化物は、比表面積が高
くても約80m2/gであり、さらに比表面積を高める
余地があった。したがって、本発明は、従来よりも格段
に高い比表面積を有する複合酸化物からなる触媒担体を
提供し、それによって触媒性能を顕著に改良することを
目的とする。
However, the composite oxide used as a conventional catalyst carrier has a specific surface area of at least about 80 m 2 / g, and there is room for further increasing the specific surface area. Accordingly, an object of the present invention is to provide a catalyst support comprising a composite oxide having a much higher specific surface area than conventional ones, thereby remarkably improving the catalyst performance.

【0008】[0008]

【課題を解決するための手段】上記の目的は、200m
2/g以上の比表面積を有し、少なくとも2種の金属元
素を含む複合酸化物を含んでなる触媒担体によって達成
される。即ち、本発明の触媒担体は、従来よりも格段に
高い比表面積を有する複合酸化物を含んでなる触媒担体
であり、触媒成分に高い担持表面積を提供し、それによ
って触媒がガスに高い表面積を提供することができる触
媒担体である。
SUMMARY OF THE INVENTION The above-mentioned object is for 200 m
This is achieved by a catalyst carrier having a specific surface area of 2 / g or more and comprising a composite oxide containing at least two metal elements. That is, the catalyst carrier of the present invention is a catalyst carrier comprising a composite oxide having a much higher specific surface area than before, and provides a high supporting surface area for the catalyst component, whereby the catalyst has a high surface area for the gas. It is a catalyst carrier that can be provided.

【0009】また、上記の目的は、1〜10nm(ナノ
メートル)に細孔分布のピークを有し、少なくとも2種
の金属元素を含む複合酸化物を含んでなる触媒担体によ
って達成される。即ち、本発明の触媒担体は、従来より
も格段に小さい細孔分布を有する複合酸化物を含んでな
る触媒担体であり、触媒成分に、担持され得る微細な分
布の細孔を提供し、それによって触媒がガスに高い表面
積を提供することができる触媒担体である。
Further, the above object is achieved by a catalyst carrier which has a peak of pore distribution at 1 to 10 nm (nanometers) and comprises a composite oxide containing at least two kinds of metal elements. That is, the catalyst carrier of the present invention is a catalyst carrier comprising a composite oxide having a pore distribution much smaller than before, and provides fine distribution of pores that can be supported on the catalyst component. Is a catalyst carrier that allows the catalyst to provide a high surface area to the gas.

【0010】[0010]

【発明の実施の形態】本発明の触媒担体を構成する複合
酸化物は、少なくとも2種の金属元素を含んでなる。こ
こで、金属元素は、s-ブロック金属元素、d-ブロック
金属元素、p-ブロック金属元素、f-ブロック金属元素
から広範囲に選択することができ、具体的には、ナトリ
ウム(Na)、カリウム(K)、マグネシウム(M
g)、カルシウム(Ca)、バリウム(Ba)、ストロ
ンチウム(Sr)、ランタン(La)、イットリウム
(Y)、セリウム(Ce)、プラセオジウム(Pr)、
ネオジム(Nd)、サマリウム(Sm)、ユウロピウム
(Eu)、ガドリニウム(Gd)、チタン(Ti)、錫
(Sn)、ジルコニウム(Zr)、マンガン(Mn)、
鉄(Fe)、コバルト(Co)、ニッケル(Ni)、ク
ロム(Cr)、ニオブ(Nb)、銅(Cu)、バナジウ
ム(V)、モリブデン(Mo)、タングステン(W)、
亜鉛(Zn)、アルミニウム(Al)、ケイ素(Si)
及びタンタル(Ta)等であることができる。好ましく
は、これらの群から選択された複数の金属元素は、複合
酸化物に含まれる全金属元素の少なくとも1モル%をそ
れぞれが構成する。
BEST MODE FOR CARRYING OUT THE INVENTION The composite oxide constituting the catalyst support of the present invention contains at least two kinds of metal elements. Here, the metal element can be selected from a wide range of s-block metal element, d-block metal element, p-block metal element, and f-block metal element, and specifically, sodium (Na), potassium (K), magnesium (M
g), calcium (Ca), barium (Ba), strontium (Sr), lanthanum (La), yttrium (Y), cerium (Ce), praseodymium (Pr),
Neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), titanium (Ti), tin (Sn), zirconium (Zr), manganese (Mn),
Iron (Fe), cobalt (Co), nickel (Ni), chromium (Cr), niobium (Nb), copper (Cu), vanadium (V), molybdenum (Mo), tungsten (W),
Zinc (Zn), Aluminum (Al), Silicon (Si)
And tantalum (Ta). Preferably, the plurality of metal elements selected from these groups each constitute at least 1 mol% of all metal elements contained in the composite oxide.

【0011】本発明の触媒担体を構成する複合酸化物
は、1つの局面として、200m2/g以上の比表面積
を有し、より好ましくは、300m2/g以上の比表面
積を有する。この比表面積は、N2吸着によるBET法
に基づいて測定した値を意味する。本発明の触媒担体を
構成する複合酸化物は、もう1つの局面として、1〜1
0nmに細孔分布のピークを有する。この細孔分布は、
2吸着によるBJH法に基づいて測定した値を意味す
る。
The composite oxide constituting the catalyst carrier of the present invention has, as one aspect, a specific surface area of 200 m 2 / g or more, more preferably 300 m 2 / g or more. This specific surface area means a value measured based on the BET method by N 2 adsorption. The composite oxide constituting the catalyst carrier of the present invention is, as another aspect, 1 to 1
It has a pore distribution peak at 0 nm. This pore distribution is
It means a value measured based on the BJH method by N 2 adsorption.

【0012】こうした従来よりも格段に高い比表面積及
び/又は格段に小さい細孔分布を有する複合酸化物は、
例えば、超臨界流体と多孔質の消失性基体を利用し、超
臨界流体に溶解させた金属化合物の溶液を、多孔質の消
失性基体に含浸させ、次いで金属化合物を含浸した基体
を加熱することによって製造することができる。
[0012] Such a composite oxide having a much higher specific surface area and / or a much smaller pore distribution than the conventional ones,
For example, using a supercritical fluid and a porous depletable substrate, impregnating a porous depletable substrate with a solution of a metal compound dissolved in a supercritical fluid, and then heating the substrate impregnated with the metal compound. Can be manufactured by

【0013】具体的には、二酸化炭素、エタン、トルエ
ン、アンモニア、フレオン13等から選択された物質
を、それぞれ固有の臨界温度と臨界圧力を超えた条件に
することで超臨界流体にし、この超臨界流体に、上記の
広範囲な各種金属から選択された少なくとも2種の金属
を、超臨界流体に溶解するアセチルアセトナートやアル
コキシド等の金属化合物として溶解させ、超臨界流体の
溶液を作成する。
More specifically, a substance selected from carbon dioxide, ethane, toluene, ammonia, freon 13 and the like is converted into a supercritical fluid by setting the conditions above their respective critical temperatures and critical pressures. At least two kinds of metals selected from the above wide variety of metals are dissolved in a supercritical fluid as a metal compound such as acetylacetonate or alkoxide which dissolves in the supercritical fluid to prepare a supercritical fluid solution.

【0014】次いで、この超臨界流体の溶液を、活性炭
のような多孔質であって燃焼等により消失させることが
できる基体に含浸させ、次いで金属化合物を含浸した基
体を好ましくは酸化性雰囲気中で加熱し、金属化合物を
金属酸化物に変化させると同時に基体を燃焼除去するこ
とにより複合酸化物を得ることができる。
Next, this supercritical fluid solution is impregnated into a porous substrate such as activated carbon which can be eliminated by burning or the like, and then the substrate impregnated with the metal compound is preferably placed in an oxidizing atmosphere. The composite oxide can be obtained by heating to change the metal compound into a metal oxide and at the same time burning off the substrate.

【0015】このような超臨界流体と多孔質の消失性基
体を利用する方法によれば、超臨界流体の高い溶解性と
拡散性により、金属化合物を多孔質基体の細孔内部まで
搬送し、細孔壁に金属化合物をコート(担持)すること
ができる。次いで、空気等の酸化性雰囲気中で加熱し、
金属化合物を金属酸化物に変化させると同時に基体を燃
焼除去させることで、多孔質基体の細孔形状を転写した
複合酸化物の多孔体を得ることができる。
According to the method using such a supercritical fluid and a porous depletable substrate, the metal compound is transported to the inside of the pores of the porous substrate due to the high solubility and diffusibility of the supercritical fluid. A metal compound can be coated (supported) on the pore walls. Then, heating in an oxidizing atmosphere such as air,
By converting the metal compound into a metal oxide and burning and removing the substrate at the same time, a porous body of a composite oxide in which the pore shape of the porous substrate is transferred can be obtained.

【0016】この方法において基体として、例えば、約
2500m2/gのような高い比表面積と微細な細孔分
布を有する活性炭を使用すれば、200m2/g以上の
比表面積及び/又は1〜10nmに細孔分布のピークの
ような、極めて高い比表面積及び/又は極めて小さい細
孔分布を有して、実質的に任意の金属元素の組成を有す
る複合酸化物の多孔体を得ることができ、そのままで又
は必要により軽度の解砕を施して、触媒担体として使用
することができる。
In this method, if activated carbon having a high specific surface area such as about 2500 m 2 / g and a fine pore distribution is used as a substrate, a specific surface area of 200 m 2 / g or more and / or 1 to 10 nm A very high specific surface area and / or a very small pore distribution, such as a peak of a pore distribution, to obtain a porous body of a composite oxide having a substantially arbitrary composition of a metal element, The catalyst can be used as it is or after being subjected to slight crushing if necessary.

【0017】そして、このようにして得られた触媒担体
に、白金、金、パラジウム、ロジウム、ルテニウム、及
びイリジウムからなる群より選択された少なくとも1種
の触媒成分を担持することにより、排気ガスとの高い接
触効率によってNOx浄化、HC又はCO燃焼の触媒性
能が顕著に改良された排気ガス浄化用触媒を得ることが
できる。
The catalyst carrier obtained in this manner carries at least one catalyst component selected from the group consisting of platinum, gold, palladium, rhodium, ruthenium and iridium, whereby the exhaust gas and It is possible to obtain an exhaust gas purifying catalyst in which the catalytic performance of NOx purification and HC or CO combustion is remarkably improved due to the high contact efficiency.

【0018】ここで、本発明の触媒担体を構成する複合
酸化物が、特定の金属元素を含んでなる場合、以下に示
すように特有の性能を有する触媒が得られることが見出
されている。第1の態様として、複合酸化物がアルミニ
ウム、セリウム、及びジルコニウムの金属元素を含む場
合、HC燃焼性能に優れた排気ガス浄化用触媒を形成す
ることができる。この理由は、セリウムとジルコニウム
を組み合わせることで、複合酸化物が高い酸素ストレー
ジ性能と酸素イオン伝導性といった機能性を有し、これ
が触媒成分の酸化作用を助長し、また、アルミニウムが
複合酸化物の耐熱性を高めるためと推察される。
Here, it has been found that when the composite oxide constituting the catalyst carrier of the present invention contains a specific metal element, a catalyst having a specific performance can be obtained as shown below. . As a first aspect, when the composite oxide contains metal elements of aluminum, cerium, and zirconium, it is possible to form an exhaust gas purifying catalyst having excellent HC combustion performance. The reason for this is that by combining cerium and zirconium, the composite oxide has functions such as high oxygen storage performance and oxygen ion conductivity, which promotes the oxidizing action of the catalyst component, and aluminum also promotes the oxidation of the composite oxide. It is presumed to increase heat resistance.

【0019】第2の態様として、複合酸化物が、チタン
及びアルミニウムの金属元素を含む場合、一酸化炭素と
水蒸気を反応させて水素を生成させる下記の水性ガスシ
フト反応: CO + H2O → CO2+ H2 に高い活性と耐久性を示す触媒を形成することができ
る。この理由は、触媒担体の高い比表面積によって触媒
活性が向上し、また、アルミニウムを複合化させること
による耐熱性の向上作用によるものと考えられる。
As a second embodiment, when the composite oxide contains a metal element of titanium and aluminum, the following water gas shift reaction for producing hydrogen by reacting carbon monoxide with water vapor: CO + H 2 O → CO it is possible to form a catalyst which exhibits high activity and durability 2 + H 2. It is considered that the reason for this is that the catalyst activity is improved by the high specific surface area of the catalyst carrier, and the heat resistance is improved by combining aluminum.

【0020】第3の態様として、複合酸化物が、ジルコ
ニウム及びカルシウムの金属元素を含む場合、炭化水素
と水蒸気を反応させて水素を生成させる下記の水蒸気改
質反応: HC + H2O → CO2+ H2 に高い活性と耐久性を示す触媒を形成することができ
る。この理由は、触媒担体の高い比表面積によって触媒
活性が向上し、また、触媒担体成分と触媒成分の相互作
用によるものと考えられる。
In a third embodiment, when the composite oxide contains metal elements of zirconium and calcium, the following steam reforming reaction is carried out to produce hydrogen by reacting a hydrocarbon with steam: HC + H 2 O → CO it is possible to form a catalyst which exhibits high activity and durability 2 + H 2. It is considered that the reason is that the catalyst activity is improved by the high specific surface area of the catalyst carrier, and that the catalyst carrier component interacts with the catalyst component.

【0021】この第2又は第3の態様の触媒は、NOx
吸蔵還元型触媒のようなアルカリ金属及びアルカリ土類
金属から選択された少なくとも1種の金属と白金等の触
媒成分を含む触媒と併用されることで、NOx浄化性能
が効果的に高められた排気ガス浄化用触媒を構成するこ
とができる。この理由は、これらの触媒は、CO又はH
CからH2を効率的に生成させ、この生成したH2が、N
OxをCO又はHCよりも効率的に還元するためと考え
られる。
[0021] The catalyst of the second or third aspect is characterized by NOx
Exhaust gas whose NOx purification performance has been effectively improved by being used in combination with a catalyst containing a catalyst component such as platinum and at least one metal selected from alkali metals and alkaline earth metals such as an occlusion reduction type catalyst. A gas purification catalyst can be configured. The reason for this is that these catalysts are CO or H
H 2 is efficiently generated from C, and the generated H 2
It is considered that Ox is reduced more efficiently than CO or HC.

【0022】第4の態様として、複合酸化物が、アルミ
ニウム及びマグネシウムの金属元素を含む場合、高いN
Ox吸蔵量と耐久性を有する改良されたNOx吸蔵還元型
触媒触媒を形成することができる。この理由は、高い塩
基性を有するマグネシウムがアルミニウムの複合化によ
って安定化されるためと考えられる。
As a fourth aspect, when the composite oxide contains metal elements of aluminum and magnesium, a high N
An improved NOx storage-reduction catalyst having an Ox storage amount and durability can be formed. This is considered to be because magnesium having a high basicity is stabilized by complexing aluminum.

【0023】こうした複合酸化物の触媒担体に白金等の
触媒成分を担持するのは、蒸発乾固、還元析出、イオン
交換法等の触媒担体に金属を担持させる通常の方法によ
り行うことができる。ここで、好ましくは、触媒成分も
また上記のように超臨界流体を利用して触媒担体に担持
する。本発明の触媒担体は、極めて高い比表面積又は極
めて小さい細孔分布を有するため、超臨界流体の高い拡
散性を利用する方法が、触媒成分の均一な担持に適する
からである。
The loading of a catalyst component such as platinum on the catalyst support of such a composite oxide can be carried out by an ordinary method of loading a metal on the catalyst support, such as evaporation to dryness, reduction precipitation, or ion exchange. Here, preferably, the catalyst component is also supported on the catalyst carrier using a supercritical fluid as described above. This is because the catalyst carrier of the present invention has an extremely high specific surface area or an extremely small pore distribution, so that a method utilizing high diffusivity of a supercritical fluid is suitable for uniformly supporting a catalyst component.

【0024】具体的には、上記と同様に、二酸化炭素等
の超臨界流体に、白金アセチルアセトナート等の貴金属
化合物を溶解させ、この超臨界流体の溶液を、本発明の
触媒担体に含浸させ、次いで貴金属化合物を含浸した触
媒担体を加熱し、貴金属化合物の有機成分を逃散させる
ことにより触媒成分を担持することができる。
Specifically, in the same manner as described above, a noble metal compound such as platinum acetylacetonate is dissolved in a supercritical fluid such as carbon dioxide, and a solution of this supercritical fluid is impregnated into the catalyst carrier of the present invention. Then, the catalyst support impregnated with the noble metal compound is heated to allow the organic component of the noble metal compound to escape, thereby supporting the catalyst component.

【0025】こうした本発明の触媒担体、触媒、及びこ
れらの製造方法を、図1に模式的に示す。図1は、活性
炭を消失性基体として用い、超臨界流体を利用して、活
性炭の細孔形状を転写した形状を有する本発明の触媒担
体を調製し、次いで超臨界流体を利用して触媒成分を担
持し、本発明の触媒を製造する工程を例示する。この図
1に示す工程は、下記の実施例1に対応するが、あくま
で本発明の理解を目的として模式的に示すものであっ
て、本発明を限定するものではない。
FIG. 1 schematically shows such a catalyst carrier, a catalyst and a method for producing the same according to the present invention. FIG. 1 shows the preparation of a catalyst carrier of the present invention having a shape obtained by transferring the pore shape of activated carbon using a supercritical fluid, using activated carbon as a depleting substrate, and then using a supercritical fluid to prepare a catalyst component. And a step of producing the catalyst of the present invention. The steps shown in FIG. 1 correspond to Example 1 described below, but are schematically shown for the purpose of understanding the present invention, and do not limit the present invention.

【0026】[0026]

【実施例】実施例1 内容積約1000ccの耐圧容器の中に、アルミニウム
(III)アセチルアセトナート(CH3COCHCOCH3)3
Alを8.1g、セリウム(III)アセチルアセトナート・
3水和物(CH3COCHCOCH3)3Ce・3H2Oを1
2.3g、及びジルコニウム(IV)アセチルアセトナート
(CH3COCHCOCH3)4Zrを12.2g入れ(A
l:Ce:Zr=1:1:1のモル比)、これにアセト
ンを50g添加した。この耐圧容器内の上部のアセトン
が接触しない位置に、ステンレス製メッシュで作成した
開孔容器を設置し、この開孔容器の中に比表面積約25
00m2/gの活性炭を30g入れた。
EXAMPLE 1 Aluminum was placed in a pressure-resistant container having an internal volume of about 1000 cc.
(III) acetylacetonate (CH 3 COCHCOCH 3 ) 3
8.1 g of Al, cerium (III) acetylacetonate
Trihydrate (CH 3 COCHCOCH 3 ) 3 Ce · 3H 2 O
2.3 g, and zirconium (IV) acetylacetonate
12.2 g of (CH 3 COCHCOCH 3 ) 4 Zr is added (A
l: Ce: Zr = 1: 1: 1), and 50 g of acetone was added thereto. An open container made of stainless steel mesh was placed at a position where acetone did not come into contact with the upper part of the pressure container, and a specific surface area of about 25
30 g of activated carbon of 00 m 2 / g was added.

【0027】次いで、耐圧容器に蓋をして、耐圧容器内
に二酸化炭素を導入して加熱し、約30MPaで120
℃の超臨界状態にし、この容器の内部を攪拌しながら超
臨界状態を24時間維持した。次いで、耐圧容器から、
Al、Ce、及びZrがコート(担持)された活性炭を
取り出し、200ml/分の流量で空気が流通する70
0℃の炉の中で5時間加熱して活性炭を燃焼除去し、A
l-Ce-Zr複合酸化物を得た。得られた複合酸化物の
比表面積は380m2/gであった。
Next, the pressure vessel is covered, and carbon dioxide is introduced into the pressure vessel and heated.
C., and the supercritical state was maintained for 24 hours while stirring the inside of the vessel. Then, from the pressure vessel,
The activated carbon coated (supported) with Al, Ce, and Zr is taken out, and air flows at a flow rate of 200 ml / min.
Activated carbon was burned off by heating for 5 hours in a furnace at 0 ° C.
1-Ce-Zr composite oxide was obtained. The specific surface area of the obtained composite oxide was 380 m 2 / g.

【0028】次いで、上記の内容積約1000ccの耐
圧容器の中に、パラジウム(II)アセチルアセトナート
(CH3COCHCOCH3)2Pdを1.0g入れ、これに
アセトンを20g添加した。この耐圧容器内の上部のア
セトンが接触しない位置に、ステンレス製メッシュで作
成した開孔容器を設置し、先に調製したAl-Ce-Zr
複合酸化物を8.0g入れた。
Next, palladium (II) acetylacetonate is placed in the above pressure-resistant container having an internal volume of about 1000 cc.
1.0 g of (CH 3 COCHCOCH 3 ) 2 Pd was added, and 20 g of acetone was added thereto. An apertured container made of stainless steel mesh was placed at a position where the acetone did not come into contact with the upper part of the pressure-resistant container, and the previously prepared Al-Ce-Zr was prepared.
8.0 g of the composite oxide was charged.

【0029】次いで、耐圧容器に蓋をして、耐圧容器内
に二酸化炭素を導入して加熱し、約30MPaで150
℃の超臨界状態にし、この容器の内部を攪拌しながら超
臨界状態を24時間維持した。次いで、耐圧容器から、
Al-Ce-Zr複合酸化物を取り出し、200ml/分
の流量で空気が流通する450℃の炉の中で2時間加熱
して有機物を逃散させ、本発明のAl-Ce-Zr複合酸
化物の触媒担体にPdが担持された本発明の触媒Aを得
た。触媒Aに含まれるPdの濃度を元素分析によって測
定した結果、2.8質量%であった。
Next, the pressure vessel is covered, carbon dioxide is introduced into the pressure vessel, and the vessel is heated at about 30 MPa.
C., and the supercritical state was maintained for 24 hours while stirring the inside of the vessel. Then, from the pressure vessel,
The Al-Ce-Zr composite oxide is taken out and heated for 2 hours in a 450 ° C. furnace through which air flows at a flow rate of 200 ml / min to allow organic substances to escape, and the Al-Ce-Zr composite oxide of the present invention is removed. A catalyst A of the present invention in which Pd was supported on a catalyst carrier was obtained. As a result of measuring the concentration of Pd contained in Catalyst A by elemental analysis, it was 2.8% by mass.

【0030】実施例2 実施例1で用いた内容積約1000ccの耐圧容器の中
に、トリイソプロポキシアルミニウムAl(O-i-C3
7)3を5.1g、トリエトキシセリウムCe(OC25)3
を6.9g、及びテトライソプロピルジルコニウムZr
(O-i-C37)4を8.2g入れ(Al:Ce:Zr=
1:1:1のモル比)、これにイソプロパノールを50
g添加し、次いで、実施例1と同様にして、耐圧容器内
の上部のイソプロパノールが接触しない位置に、比表面
積約2500m2/gの活性炭を30g入れた。
Example 2 In the pressure vessel having an internal volume of about 1000 cc used in Example 1, triisopropoxyaluminum Al (OiC 3 H) was placed.
7 ) 5.1 g of 3 and triethoxycerium Ce (OC 2 H 5 ) 3
6.9 g and tetraisopropyl zirconium Zr
8.2 g of (OiC 3 H 7 ) 4 was added (Al: Ce: Zr =
1: 1: 1 molar ratio), to which 50
g, and then 30 g of activated carbon having a specific surface area of about 2500 m 2 / g was placed in the upper part of the pressure-resistant container in the same manner as in Example 1 where the isopropanol was not in contact.

【0031】次いで、実施例1と同様にして耐圧容器の
中を超臨界状態に24時間維持した後、耐圧容器からA
l、Ce、及びZrがコートされた活性炭を取り出し、
200ml/分の流量で空気が流通する700℃の炉の
中で5時間加熱して活性炭を燃焼除去し、Al-Ce-Z
r複合酸化物を得た。得られた複合酸化物の比表面積は
361m2/gであった。
Then, after maintaining the inside of the pressure vessel in a supercritical state for 24 hours in the same manner as in Example 1,
Take out activated carbon coated with l, Ce, and Zr,
Activated carbon was burned and removed by heating for 5 hours in a furnace at 700 ° C. in which air flows at a flow rate of 200 ml / min, and Al-Ce-Z
r composite oxide was obtained. The specific surface area of the obtained composite oxide was 361 m 2 / g.

【0032】次いで、実施例1と同様にして、上記の耐
圧容器の中に、パラジウム(II)アセチルアセトナートを
1.5g入れ、これにアセトンを20g添加し、耐圧容
器内の上部に開孔容器を設置して、この中に先に調製し
たAl-Ce-Zr複合酸化物を8.0g入れ、次いで、
耐圧容器の中を約30MPaで150℃の超臨界状態に
24時間維持し、実施例1と同様にして、本発明のAl
-Ce-Zr複合酸化物の触媒担体にPdが担持された本
発明の触媒Bを得た。この触媒BのPd濃度は2.3質
量%であった。
Then, in the same manner as in Example 1, 1.5 g of palladium (II) acetylacetonate was placed in the above pressure vessel, and 20 g of acetone was added thereto. A container was placed, and 8.0 g of the previously prepared Al-Ce-Zr composite oxide was placed therein.
The inside of the pressure vessel was maintained at a supercritical state of 150 ° C. at about 30 MPa for 24 hours.
A catalyst B of the present invention in which Pd was supported on a catalyst carrier of a -Ce-Zr composite oxide was obtained. The Pd concentration of this catalyst B was 2.3% by mass.

【0033】比較例1 硝酸アルミニウムAl(NO3)3、硝酸セリウムCe(N
3)3、及びオキシ硝酸ジルコニウムZrO(NO3)2
混合水溶液を作成し(Al:Ce:Zr=1:1:1の
モル比)、これにアンモニア水を添加して金属水酸化物
を共沈させ、生成した沈殿物を大気雰囲気の700℃で
5時間焼成し、Al-Ce-Zr複合酸化物を得た。得ら
れた複合酸化物の比表面積は1m2/g未満であり、こ
れを振動ミルによって粉砕して71m2/gの比表面積
にした。次いで、このAl-Ce-Zr複合酸化物に、硝
酸パラジウムPd(NO3)2水溶液を使用してPdを担持
し、大気雰囲気の450℃で2時間焼成して比較用の触
媒aを得た。この触媒aのPd濃度は2.8質量%であ
った。
Comparative Example 1 Aluminum nitrate Al (NO 3 ) 3 , cerium nitrate Ce (N
A mixed aqueous solution of O 3 ) 3 and zirconium oxynitrate ZrO (NO 3 ) 2 was prepared (molar ratio of Al: Ce: Zr = 1: 1: 1). Was co-precipitated, and the resulting precipitate was calcined at 700 ° C. in the air atmosphere for 5 hours to obtain an Al—Ce—Zr composite oxide. The specific surface area of the obtained composite oxide was less than 1 m 2 / g, which was pulverized by a vibration mill to a specific surface area of 71 m 2 / g. Next, Pd was supported on the Al-Ce-Zr composite oxide using an aqueous solution of palladium nitrate Pd (NO 3 ) 2 and calcined at 450 ° C. for 2 hours in an air atmosphere to obtain a catalyst a for comparison. . The Pd concentration of this catalyst a was 2.8% by mass.

【0034】実施例3 実施例1で用いた耐圧容器の中にオルトチタン酸テトラ
エチルTi(OC25) 4を54.2g、トリイソプロポキ
シアルミニウムを2.6g(Ti:Al=95:5のモ
ル比)、及びイソプロピルアルコールを20g入れ、次
いで、実施例1と同様にして、耐圧容器の上部に比表面
積約2500m2/gの活性炭を30g入れた。次い
で、実施例1と同様にして耐圧容器の中を約30MPa
で120℃の超臨界状態に24時間維持した後、耐圧容
器からTiとAlがコートされた活性炭を取り出し、2
00ml/分の流量で空気が流通する550℃の炉の中
で5時間加熱して活性炭を燃焼除去し、Ti-Al複合
酸化物を得た。得られた複合酸化物の比表面積は296
2/gであった。
Example 3 Tetra orthotitanate was placed in the pressure vessel used in Example 1.
Ethyl Ti (OCTwoHFive) Four54.2 g of triisopropoxy
2.6 g of aluminum (Ti: Al = 95: 5
20 g of isopropyl alcohol) and
Then, in the same manner as in Example 1, the specific surface
Approximately 2500mTwo/ G of activated carbon. Next
In the same manner as in Example 1, the pressure inside the pressure vessel is about 30 MPa.
After maintaining the supercritical state at 120 ° C. for 24 hours at
Take out the activated carbon coated with Ti and Al from the vessel,
In a furnace at 550 ° C through which air flows at a flow rate of 00 ml / min
To remove activated carbon by heating for 5 hours with Ti-Al composite
An oxide was obtained. The specific surface area of the obtained composite oxide is 296.
mTwo/ G.

【0035】次いで、実施例1と同様にして、上記の耐
圧容器の中に、白金(II)アセチルアセトナート(CH3
OCHCOCH3)2Ptを0.8g入れ、これにアセトン
を10g添加し、耐圧容器内の上部に開孔容器を設置し
て、この中に先に調製したTi-Al複合酸化物を18.
0g入れ、次いで、耐圧容器の中を約30MPaで15
0℃の超臨界状態に24時間維持し、実施例1と同様に
して、本発明のTi-Al複合酸化物の触媒担体にPt
が担持された本発明の触媒Cを得た。この触媒CのPt
濃度は2.01質量%であった。
Then, in the same manner as in Example 1, platinum (II) acetylacetonate (CH 3 C
0.8 g of OCHCOCH 3 ) 2 Pt was added, and 10 g of acetone was added thereto. An apertured vessel was placed at the top of the pressure-resistant vessel, and the previously prepared Ti-Al composite oxide was placed therein.
0 g, and then the pressure in the pressure vessel is about 30 MPa for 15 minutes.
Maintained in a supercritical state at 0 ° C. for 24 hours, and in the same manner as in Example 1, the catalyst support of the Ti—Al composite oxide of the present invention was made of Pt.
Was carried to obtain a catalyst C of the present invention. Pt of this catalyst C
The concentration was 2.01% by mass.

【0036】比較例2 酸化物の原料として、トリイソプロポキシアルミニウム
を用いない以外は実施例3と同様にして、実施例3で用
いた耐圧容器の中で、57gのオルトチタン酸テトラエ
チルを用いて活性炭にTiをコートし、次いでTi酸化
物を調製した。得られたTi酸化物の比表面積は276
2/gであった。次いで、このTi酸化物に、実施例
3と同様にして超臨界流体を用いてPtを担持し、比較
用の触媒bを得た。この触媒bのPt濃度は1.93質
量%であった。
Comparative Example 2 In a pressure vessel used in Example 3, 57 g of tetraethyl orthotitanate was used in the same manner as in Example 3 except that triisopropoxyaluminum was not used as a raw material of the oxide. Activated carbon was coated with Ti, and then a Ti oxide was prepared. The specific surface area of the obtained Ti oxide is 276.
m 2 / g. Next, Pt was supported on this Ti oxide using a supercritical fluid in the same manner as in Example 3, to obtain a catalyst b for comparison. The Pt concentration of this catalyst b was 1.93% by mass.

【0037】比較例3 Ti酸化物に代えて市販のチタニア粉末(比表面積40
2/g、石原産業製TTO-55)を用い、ジニトロジ
アンミン白金錯体溶液を用いてチタニアにPtが担持さ
れた比較用の触媒cを得た。この触媒cのPt濃度は
2.00質量%であった。
Comparative Example 3 Commercially available titania powder (specific surface area: 40
Using m 2 / g, TTO-55 manufactured by Ishihara Sangyo Co., Ltd., a comparative catalyst c having Pt supported on titania was obtained using a dinitrodiammine platinum complex solution. The Pt concentration of this catalyst c was 2.00% by mass.

【0038】実施例4 実施例1で用いた耐圧容器の中にジルコニウム(IV)アセ
チルアセトナート(CH3COCHCOCH3)4Zrを7
5g、カルシウム(II)アセチルアセトナート(CH3CO
CHCOCH3)2Caを2.0g(Zr:Ca=95:5
のモル比)、及びアセトンを100g入れ、次いで、実
施例1と同様にして、耐圧容器の上部に比表面積約25
00m2/gの活性炭を60g入れた。次いで、実施例
1と同様にして耐圧容器の中を約30MPaで120℃
の超臨界状態に8時間維持した後、耐圧容器から、Zr
とCaがコートされた活性炭を取り出し、200ml/
分の流量で空気が流通する550℃の炉の中で5時間加
熱して活性炭を燃焼除去し、Zr-Ca複合酸化物を得
た。得られた複合酸化物の比表面積は233m2/gで
あった。
Example 4 Zirconium (IV) acetylacetonate (CH 3 COCHCOCH 3 ) 4 Zr was placed in the pressure vessel used in Example 1 for 7 hours.
5 g, calcium (II) acetylacetonate (CH 3 CO
CHCOCH 3 ) 2 Ca 2.0 g (Zr: Ca = 95: 5)
), And 100 g of acetone. Then, in the same manner as in Example 1, a specific surface area of about 25
60 g of 00 m 2 / g activated carbon was added. Next, the inside of the pressure vessel was heated at about 30 MPa to 120 ° C. in the same manner as in Example 1.
After maintaining for 8 hours in the supercritical state of
And activated carbon coated with Ca
The mixture was heated in a furnace at 550 ° C. in which air flows at a flow rate of 1 minute for 5 hours to burn and remove the activated carbon, thereby obtaining a Zr—Ca composite oxide. The specific surface area of the obtained composite oxide was 233 m 2 / g.

【0039】次いで、上記の耐圧容器の中に、ロジウム
(III)アセチルアセトナート(CH3COCHCOCH3)3
Rhを2.0g入れ、これにアセトンを20g添加し、
耐圧容器内の上部に開孔容器を設置して、この中に先に
調製したZr-Ca複合酸化物を18.0g入れ、次い
で、耐圧容器の中を約30MPaで150℃の超臨界状
態に8時間維持した後、実施例1と同様にして、本発明
のZr-Ca複合酸化物の触媒担体にRhが担持された
本発明の触媒Dを得た。この触媒DのRh濃度は2.3
0質量%であった。
Next, rhodium is placed in the pressure vessel.
(III) acetylacetonate (CH 3 COCHCOCH 3 ) 3
2.0 g of Rh was added, and 20 g of acetone was added thereto.
An open-hole container was placed in the upper part of the pressure-resistant container, and 18.0 g of the previously prepared Zr-Ca composite oxide was placed therein. After maintaining for 8 hours, in the same manner as in Example 1, the catalyst D of the present invention in which Rh was supported on the catalyst support of the Zr—Ca composite oxide of the present invention was obtained. The Rh concentration of this catalyst D was 2.3.
It was 0% by mass.

【0040】比較例4 酸化物の原料として、カルシウム(IV)アセチルアセトナ
ートを用いない以外は実施例4と同様にして、実施例4
で用いた耐圧容器の中で、80gのジルコニウム(IV)ア
セチルアセトナートを用いて活性炭にZrをコートし、
次いでZr酸化物を調製した。得られたZr酸化物の比
表面積は221m2/gであった。次いで、このTi酸
化物に、実施例4と同様にして超臨界流体を用いてRh
を担持し、比較用の触媒dを得た。この触媒dのRh濃
度は2.21質量%であった。
Comparative Example 4 Example 4 was repeated in the same manner as in Example 4 except that calcium (IV) acetylacetonate was not used as a raw material for the oxide.
In the pressure vessel used in the above, 80 g of zirconium (IV) acetylacetonate was used to coat activated carbon with Zr,
Next, a Zr oxide was prepared. The specific surface area of the obtained Zr oxide was 221 m 2 / g. Next, Rh was added to this Ti oxide using a supercritical fluid in the same manner as in Example 4.
And a catalyst d for comparison was obtained. The Rh concentration of this catalyst d was 2.21% by mass.

【0041】比較例5 Zr酸化物に代えて市販のジルコニア粉末(比表面積1
05m2/g、第一稀元素化学工業製RC-100)を用
い、硝酸ロジウム溶液を用いてジルコニアにRhが担持
された比較用の触媒eを得た。この触媒eのRh濃度は
2.30質量%であった。
Comparative Example 5 A commercially available zirconia powder (specific surface area: 1) was used in place of Zr oxide.
Using a rhodium nitrate solution, a catalyst e for comparison in which Rh was supported on zirconia was obtained by using 05 m 2 / g, RC-100 manufactured by Daiichi Kagaku Kagaku Kogyo. The Rh concentration of this catalyst e was 2.30% by mass.

【0042】実施例5 実施例1で用いた耐圧容器の中にアルミニウム(III)ア
セチルアセトナートを91g、マグネシウム(II)アセチ
ルアセトナート(CH3COCHCOCH3)2Mgを31
g(Al:Mg=2:1のモル比)、及びアセトンを6
0g入れ、次いで、実施例1と同様にして、耐圧容器の
上部に比表面積約2500m2/gの活性炭を60g入
れた。次いで、実施例1と同様にして耐圧容器の中を約
30MPaで120℃の超臨界状態に8時間維持した
後、耐圧容器から、AlとMgがコートされた活性炭を
取り出し、200ml/分の流量で空気が流通する60
0℃の炉の中で5時間加熱して活性炭を燃焼除去し、A
l-Mg複合酸化物を得た。得られた複合酸化物の比表
面積は243m2/gであった。
Example 5 91 g of aluminum (III) acetylacetonate and 31 of magnesium (II) acetylacetonate (CH 3 COCHCOCH 3 ) 2 Mg were placed in the pressure vessel used in Example 1.
g (Al: Mg = 2: 1 molar ratio) and acetone
0 g, and then, as in Example 1, 60 g of activated carbon having a specific surface area of about 2500 m 2 / g were placed in the upper part of the pressure vessel. Then, after maintaining the inside of the pressure vessel at a supercritical state of 120 ° C. at about 30 MPa for 8 hours in the same manner as in Example 1, the activated carbon coated with Al and Mg was taken out of the pressure vessel, and the flow rate was 200 ml / min. The air circulates at 60
Activated carbon is burned and removed by heating in a 0 ° C. furnace for 5 hours.
1-Mg composite oxide was obtained. The specific surface area of the obtained composite oxide was 243 m 2 / g.

【0043】次いで、上記の耐圧容器の中に、白金(II)
アセチルアセトナートを0.8g入れ、これにアセトン
を10g添加し、耐圧容器内の上部に開孔容器を設置し
て、この中に先に調製したAl-Mg複合酸化物を18.
0g入れ、次いで、耐圧容器の中を約30MPaで15
0℃の超臨界状態に8時間維持し、実施例1と同様にし
て、本発明のAl-Mg複合酸化物の触媒担体にPtが
担持された本発明の触媒Eを得た。この触媒EのPt濃
度は2.12質量%であった。
Next, platinum (II) was placed in the pressure vessel.
0.8 g of acetylacetonate was added, and 10 g of acetone was added thereto. An apertured vessel was placed at the top of the pressure-resistant vessel, and the previously prepared Al-Mg composite oxide was placed therein.
0 g, and then the pressure in the pressure vessel is about 30 MPa for 15 minutes.
While maintaining the supercritical state at 0 ° C. for 8 hours, in the same manner as in Example 1, a catalyst E of the present invention in which Pt was supported on a catalyst carrier of the Al—Mg composite oxide of the present invention was obtained. The Pt concentration of this catalyst E was 2.12% by mass.

【0044】比較例6 市販のAl-Mg複合酸化物(比表面積105m2/g)
を用いた以外は比較例3と同様にして、Al-Mg複合
酸化物にPtが2.12質量%で担持された比較用の触
媒fを得た。
Comparative Example 6 Commercially available Al-Mg composite oxide (specific surface area: 105 m 2 / g)
In the same manner as in Comparative Example 3 except for using, a catalyst f for comparison in which Pt was supported at 2.12% by mass on the Al-Mg composite oxide was obtained.

【0045】比較例7 γ-アルミナを用いた以外は比較例6と同様にして、γ-
アルミナにPtが2.12質量%で担持された比較用の
触媒gを得た。
Comparative Example 7 The procedure of Comparative Example 6 was repeated except that γ-alumina was used.
A comparative catalyst g having Pt supported on alumina at 2.12% by mass was obtained.

【0046】−細孔分布の測定− 実施例1〜2と比較例1のAl-Ce-Zr複合酸化物の
細孔分布を、細孔分布測定装置アサップ2000(島津
製作所販売)を使用し、N2吸着によるBJH法に基づ
いて測定した。その結果を図2に示す。図2の結果か
ら、実施例1〜2で用いたAl-Ce-Zr複合酸化物
は、約3nmに細孔分布のピークを有し、比較例1より
も格段に小さい細孔分布を有することが分かる。
-Measurement of Pore Distribution- The pore distribution of the Al—Ce—Zr composite oxide of Examples 1 and 2 and Comparative Example 1 was measured using a pore distribution measuring device ASAP 2000 (available from Shimadzu Corporation). It was measured based on the BJH method by N 2 adsorption. The result is shown in FIG. 2, the Al—Ce—Zr composite oxide used in Examples 1 and 2 has a pore distribution peak at about 3 nm, and has a significantly smaller pore distribution than Comparative Example 1. I understand.

【0047】−触媒性能評価(1)− 上記の実施例1の触媒A、実施例2の触媒B、及び比較
例1の触媒aを、それぞれ圧縮・解砕して直径1〜3m
mのペレットに形成した各2gを、実験室用の排気ガス
浄化性能評価装置の反応管内部に設置した。次いで、下
記のモデル雰囲気ガスを流通させ、触媒床温度を20℃
/分の速度で昇温させながら、各温度におけるCH4
浄化率を測定した。この結果を図3にまとめて示す。 ガス組成: 1100ppmCH4 + 10.0%CO2 + 5.0%O
2+ 10.0%H2O (残余:窒素)
-Evaluation of Catalyst Performance (1)-The catalyst A of Example 1, the catalyst B of Example 2, and the catalyst a of Comparative Example 1 were each compressed and crushed to have a diameter of 1 to 3 m.
Each 2 g formed into a m-size pellet was placed inside a reaction tube of an exhaust gas purification performance evaluation device for a laboratory. Next, the following model atmosphere gas was passed, and the catalyst bed temperature was set to 20 ° C.
The rate of purification of CH 4 at each temperature was measured while increasing the temperature at a rate of / min. The results are shown in FIG. Gas composition: 1100 ppm CH 4 + 10.0% CO 2 + 5.0% O
2 + 10.0% H 2 O (residual: nitrogen)

【0048】図3の結果から、触媒Aと触媒Bは、触媒
aよりもかなり低い温度からCH4の浄化が始まり、触
媒性能が顕著に高いことが分かる。なお、CH4の50
%浄化温度は、触媒Aで352℃、触媒Bで359℃、
触媒aで440℃であった。
From the results shown in FIG. 3, it can be seen that the catalysts A and B begin to purify CH 4 at a temperature much lower than that of the catalyst a, and the catalyst performance is remarkably high. In addition, 50 of CH 4
% Purification temperature is 352 ° C. for catalyst A, 359 ° C. for catalyst B,
The temperature was 440 ° C. for catalyst a.

【0049】−触媒性能評価(2)− 以下のようにして水性ガスシフト反応用の触媒としての
性能評価を行った。実施例3の触媒C、比較例2の触媒
b、及び比較例3の触媒cの各2g、及び各触媒を大気
雰囲気中で600℃×10時間の焼成に供した触媒
(「耐久後」と表す。)の各2gを、直径1〜3mmの
ペレットに形成して実験室用反応管の内部に配置し、下
記の組成のガスを流通させながら200〜500℃の範
囲で温度を変化させ、反応管出口のガスをガスクロマト
グラフィーに導いて生成したH2の濃度を測定した。 CO:1.0% + CO2:10.0% + H2O:3.0%
(残余:窒素) このH2の濃度を、初期の触媒について図4に、耐久後
の触媒について図5に示す。結果より、実施例の触媒
は、とりわけ耐久後の低温でのH2生成に効果を奏する
ことが分かる。
-Evaluation of catalyst performance (2)-The performance as a catalyst for a water gas shift reaction was evaluated as follows. Catalysts obtained by subjecting each of 2 g of the catalyst C of Example 3, the catalyst b of Comparative Example 2, and the catalyst c of Comparative Example 3, and each of the catalysts to calcination at 600 ° C. for 10 hours in an air atmosphere (“after endurance”) Is formed into pellets having a diameter of 1 to 3 mm and placed inside a reaction tube for a laboratory. The temperature is changed in a range of 200 to 500 ° C. while flowing a gas having the following composition, The gas at the outlet of the reaction tube was led to gas chromatography to measure the concentration of H 2 produced. CO: 1.0% + CO 2: 10.0% + H 2 O: 3.0%
(Remainder: Nitrogen) The H 2 concentration is shown in FIG. 4 for the initial catalyst and in FIG. 5 for the endured catalyst. From the results, it can be seen that the catalysts of the examples are particularly effective in producing H 2 at a low temperature after durability.

【0050】−触媒性能評価(3)− 以下のようにして水蒸気改質反応用の触媒としての性能
評価を行った。実施例4の触媒D、比較例4の触媒d、
及び比較例5の触媒eの各2g、及びそれぞれの触媒を
大気雰囲気中で600℃×10時間の焼成に供した触媒
(「耐久後」と表す。)の各2gを、直径1〜3mmの
ペレットに形成して実験室用反応管の内部に配置し、下
記の組成のガスを流通させながら200〜500℃の範
囲で温度を変化させ、反応管出口のガスをガスクロマト
グラフィーに導いて生成したH2の濃度を測定した。 C36:1000ppm + H2O:3% (残余:
窒素) このH2の濃度を、初期の触媒について図6に、耐久後
の触媒について図7に示す。結果より、実施例の触媒
は、とりわけ耐久後に広い温度範囲でH2生成に効果を
奏することが分かる。
-Evaluation of catalyst performance (3)-The performance as a catalyst for a steam reforming reaction was evaluated as follows. Catalyst D of Example 4, catalyst d of Comparative Example 4,
2 g of each of the catalysts e of Comparative Example 5 and 2 g of each of the catalysts (represented as “after endurance”) obtained by subjecting each of the catalysts to calcination at 600 ° C. for 10 hours in the air atmosphere were used. It is formed into pellets and placed inside a reaction tube for a laboratory. The temperature is changed in the range of 200 to 500 ° C. while flowing a gas having the following composition, and the gas at the outlet of the reaction tube is guided to gas chromatography to generate gas. the concentration of H 2 was measured. C 3 H 6 : 1000 ppm + H 2 O: 3% (residual:
Nitrogen) The H 2 concentration is shown in FIG. 6 for the initial catalyst and in FIG. The results show that the catalysts of the examples exert an effect on H 2 generation particularly in a wide temperature range after durability.

【0051】−触媒性能評価(4)− 以下のようにして、上記の実施例3の触媒C、比較例2
の触媒b、及び比較例3の触媒cの各触媒を含むNOx
吸蔵還元型触媒を調製し、そのNOx吸蔵の性能評価を
行った。10gのγ-アルミナを100gのイオン交換
水に分散させ、このスラリーに8.5gの酢酸バリウム
を溶解させ、濃縮乾固した後、550℃×2時間の焼成
を行って、バリウムが担持されたγ-アルミナを調製し
た。次に、このバリウム担持γ-アルミナを、2.1gの
炭酸水素アンモニウムNH 4HCO3を150gのイオン
交換水に溶解させた溶液に分散させて15分間攪拌し、
次いで吸引濾過と乾燥を行って、γ-アルミナに担持さ
れたバリウムを炭酸バリウムに変化させた。
-Evaluation of Catalyst Performance (4)-As described below, the catalyst C of Example 3 and Comparative Example 2 were used.
Containing each of catalyst b and catalyst c of Comparative Example 3
Prepare a storage reduction catalyst and evaluate its NOx storage performance.
went. 10 g of γ-alumina and 100 g of ion exchange
Disperse in water and add 8.5 g of barium acetate
Is dissolved and concentrated to dryness, and then calcined at 550 ° C. for 2 hours.
To prepare barium-supported γ-alumina
Was. Next, 2.1 g of this barium-supported γ-alumina was
Ammonium hydrogen carbonate NH FourHCOThreeThe 150g of ion
Dispersed in a solution dissolved in exchanged water and stirred for 15 minutes,
Next, suction filtration and drying were performed to support the γ-alumina.
The barium was changed to barium carbonate.

【0052】次に、この炭酸バリウム担持混合粉末を1
50gのイオン交換水に分散させ、このスラリーにPt
8.6×10-4モル相当量のジニトロジアンミン白金錯
体溶液を加え、30分間攪拌した。次に、このスラリー
を、濾過・乾燥して回収し、110℃×2時間の乾燥と
450℃×2時間の焼成を行って、白金とバリウムが担
持されたγ-アルミナを得た。この白金バリウム担持γ-
アルミナに、実施例3の触媒C、比較例2の触媒b、及
び比較例3の触媒cの各触媒をそれぞれ等質量で加え、
各混合粉末をボールミルによって24時間混合し、三通
りのNOx吸蔵還元型触媒を調製した。
Next, this barium carbonate-supported mixed powder was mixed with 1
Disperse in 50 g of ion-exchanged water and add Pt
A dinitrodiammine platinum complex solution equivalent to 8.6 × 10 -4 mol was added and stirred for 30 minutes. Next, the slurry was collected by filtration and drying, and dried at 110 ° C. for 2 hours and calcined at 450 ° C. for 2 hours to obtain γ-alumina supporting platinum and barium. This platinum barium supported γ-
Catalysts of Example 3, Catalyst b of Comparative Example 2, and Catalyst c of Comparative Example 3 were added to alumina in equal masses, respectively.
The mixed powders were mixed by a ball mill for 24 hours to prepare three types of NOx storage reduction catalysts.

【0053】上記の三通りの各触媒の各2gを、それぞ
れ実験室用反応器に配置し、下記に示す組成のモデル排
気ガスを100,000-1の空間速度で導入し、触媒の
NOx吸蔵量によって触媒性能を評価した。 リーンガス組成: NO:800ppm + C36:600ppm + CO2:
11.0%+ O2:7.0% + H2O:3.0% (残余:
2) リッチガス組成: NO:100ppm + C36:330ppm + CO:
6000ppm+ CO2:11.0% + H2:0.15%
+ H2O:3.0% (残余:N2
2 g of each of the above three catalysts was placed in a laboratory reactor, and a model exhaust gas having the following composition was introduced at a space velocity of 100,000 -1 to store NOx in the catalyst. The catalyst performance was evaluated by the amount. Lean gas composition: NO: 800 ppm + C 3 H 6 : 600 ppm + CO 2 :
11.0% + O 2 : 7.0% + H 2 O: 3.0% (residual:
N 2 ) Rich gas composition: NO: 100 ppm + C 3 H 6 : 330 ppm + CO:
6000 ppm + CO 2 : 11.0% + H 2 : 0.15%
+ H 2 O: 3.0% (the remainder: N 2)

【0054】これらのガスの温度は、250〜450℃
の範囲で変化させ、リッチガスを供給しながら実験室用
反応器出口のガス組成が定常状態になった後、リーンガ
スに切り換えてNOxを吸蔵させ、再び実験室用反応器
出口のガス組成が定常状態になった後に、5秒間にわた
ってリッチガスを導入し、再びリーンガスに切り換えた
後のNOx吸蔵量、即ち、リッチスパイクの後のNOx吸
蔵量を測定した。この結果を図8に示す。図8から分か
るように、触媒Cを含むNOx吸蔵還元型触媒は、触媒
b又は触媒cを含むNOx吸蔵還元型触媒よりも、25
0〜450℃の範囲でリッチスパイクの後のNOx吸蔵
量が多く、したがって、より低温から高いNOx浄化性
能を発揮し得ることが分かる。
The temperature of these gases is from 250 to 450 ° C.
After the gas composition at the laboratory reactor outlet reaches a steady state while supplying a rich gas, the gas is switched to lean gas to absorb NOx, and the gas composition at the laboratory reactor outlet again becomes a steady state. After that, the rich gas was introduced for 5 seconds, and the NOx storage amount after switching to the lean gas again, that is, the NOx storage amount after the rich spike, was measured. The result is shown in FIG. As can be seen from FIG. 8, the NOx occlusion reduction type catalyst including the catalyst C is 25 times less than the NOx occlusion reduction type catalyst including the catalyst b or the catalyst c.
It is understood that the NOx storage amount after the rich spike is large in the range of 0 to 450 ° C., and therefore, it is possible to exhibit high NOx purification performance from a lower temperature.

【0055】−触媒性能評価(5)− 以下のようにして、上記の実施例4の触媒D、比較例4
の触媒d、及び比較例5の触媒eの各触媒を含むNOx
吸蔵還元型触媒を調製し、そのNOx吸蔵の性能評価を
行った。γ-アルミナと、触媒D、触媒d、及び触媒e
の各触媒を1:1の質量比でボールミルを用いて24時
間混合した。この混合粉末の各20gを200gのイオ
ン交換水に分散させ、この各スラリーに8.5gの酢酸
バリウムを溶解させ、濃縮乾固した後、550℃×2時
間の焼成を行って、バリウムが担持された混合粉末を調
製した。次に、この各バリウム担持混合粉末を、2.2
gの炭酸水素アンモニウムNH4HCO3を150gのイ
オン交換水に溶解させた溶液に分散させて15分間攪拌
し、次いで吸引濾過と乾燥を行って、各混合粉末に担持
されたバリウムを炭酸バリウムに変化させた。
-Evaluation of catalyst performance (5)-As described below, catalyst D of Example 4 and Comparative Example 4
NOx containing each of catalyst d and catalyst e of Comparative Example 5
A storage reduction catalyst was prepared, and its NOx storage performance was evaluated. γ-alumina, catalyst D, catalyst d, and catalyst e
Were mixed in a 1: 1 mass ratio using a ball mill for 24 hours. 20 g of each of the mixed powders was dispersed in 200 g of ion-exchanged water, and 8.5 g of barium acetate was dissolved in each of the slurries. The prepared mixed powder was prepared. Next, each barium-supported mixed powder was added to 2.2
g of ammonium bicarbonate NH 4 HCO 3 was dispersed in a solution of 150 g of ion-exchanged water and stirred for 15 minutes, followed by suction filtration and drying to convert barium carried on each mixed powder into barium carbonate. Changed.

【0056】次に、この炭酸バリウム担持混合粉末を、
それぞれ200gのイオン交換水に分散させ、この各ス
ラリーにPt1.17×10-3モル相当量のジニトロジ
アンミン白金錯体溶液を加え、30分間攪拌した。次
に、この各スラリーを、濾過・乾燥して回収し、110
℃×2時間の乾燥と450℃×2時間の焼成を行って、
三通りのNOx吸蔵還元型触媒を調製した。得られたN
Ox吸蔵還元型触媒において、混合粉末1gあたりの担
持量はいずれも、Pt担持量は8.54×10-4モル、
Ba担持量は1.67×10-3モルであった。
Next, this barium carbonate-supported mixed powder was
Each was dispersed in 200 g of ion-exchanged water, and a dinitrodiammine platinum complex solution equivalent to 1.17 × 10 −3 mol of Pt was added to each slurry, followed by stirring for 30 minutes. Next, each of these slurries was collected by filtration and drying,
Drying at 450 ° C for 2 hours and firing at 450 ° C for 2 hours
Three types of NOx storage reduction catalysts were prepared. N obtained
In the Ox storage reduction catalyst, the supported amount per 1 g of the mixed powder was 8.54 × 10 -4 mol,
The amount of Ba supported was 1.67 × 10 −3 mol.

【0057】上記の三通りの各触媒の各2gを、それぞ
れ実験室用反応器に配置し、下記に示す組成のモデル排
気ガスを100,000-1の空間速度で導入し、上記の
評価と同様に、触媒のNOx吸蔵量によって触媒性能を
評価した。この結果を図9に示す。 リーンガス組成: NO:800ppm + C36:2400ppm + CO
2:11.0%+ CO:700ppm + O2:7.0% +
2O:3.0% (残余:N2) リッチガス組成: NO:100ppm + C36:6700ppm + CO
2:11.0%+ CO:5900ppm + H2O:3.0%
(残余:N2
Each 2 g of each of the above three catalysts was placed in a laboratory reactor, and a model exhaust gas having the composition shown below was introduced at a space velocity of 100,000 -1. Similarly, the catalyst performance was evaluated based on the NOx storage amount of the catalyst. The result is shown in FIG. Lean gas composition: NO: 800ppm + C 3 H 6: 2400ppm + CO
2: 11.0% + CO: 700ppm + O 2: 7.0% +
H 2 O: 3.0% (residual: N 2 ) Rich gas composition: NO: 100 ppm + C 3 H 6 : 6700 ppm + CO
2: 11.0% + CO: 5900ppm + H 2 O: 3.0%
(Remainder: N 2 )

【0058】図9から分かるように、触媒Dを含むNO
x吸蔵還元型触媒は、触媒d又は触媒eを含むNOx吸蔵
還元型触媒よりも、250〜450℃の範囲でリッチス
パイクの後のNOx吸蔵量が多く、したがって、より低
温から高いNOx浄化性能を発揮し得ることが分かる。
As can be seen from FIG. 9, NO containing catalyst D
The x storage reduction catalyst has a larger NOx storage amount after the rich spike in the range of 250 to 450 ° C than the NOx storage reduction catalyst including the catalyst d or the catalyst e, and therefore has a higher NOx purification performance from a lower temperature. It can be seen that it can be demonstrated.

【0059】−触媒性能評価(6)− 以下のようにして、上記の実施例5の触媒E、比較例6
の触媒f、及び比較例7の触媒gの各触媒を含むNOx
吸蔵還元型触媒を調製し、その性能評価を行った。触媒
E、触媒f、及び触媒gの各12gを、それぞれ100
gのイオン交換水に分散させ、得られた各スラリーに酢
酸カリウムの1.96gを溶解させ、濃縮乾固した後、
550℃×2時間の焼成を行って、上記の各触媒にカリ
ウムを担持し、三通りのNOx吸蔵還元型触媒を調製し
た。
-Evaluation of catalyst performance (6)-As described below, the catalyst E of Example 5 and Comparative Example 6 were used.
NOx containing each of catalyst f and catalyst g of Comparative Example 7
An occlusion reduction type catalyst was prepared and its performance was evaluated. 12 g of each of the catalyst E, the catalyst f, and the catalyst g were each
g of ion-exchanged water, and 1.96 g of potassium acetate was dissolved in each obtained slurry.
By baking at 550 ° C. × 2 hours, potassium was supported on each of the above catalysts to prepare three types of NOx storage reduction catalysts.

【0060】上記の三通りの各触媒の各2gを、それぞ
れ実験室用反応器に配置し、下記に示す組成のモデル排
気ガスを用いて200〜700℃の範囲で評価した以外
は上記の評価と同様にして、触媒のNOx吸蔵量によっ
て触媒性能を評価した。この結果を図10に示す。 リーンガス組成: NO:800ppm + C36:600ppm + CO2:
11.0%+ O2:7.0% + H2O:3.0% (残余:
2) リッチガス組成: NO:100ppm + C36:330ppm +CO:6
000ppm+ CO2:11.0% + H2:0.15% +
2O:3.0% (残余:N2
The above evaluations were conducted except that 2 g of each of the above three catalysts was placed in a laboratory reactor and evaluated in the range of 200 to 700 ° C. using a model exhaust gas having the following composition. In the same manner as described above, the catalyst performance was evaluated based on the NOx storage amount of the catalyst. The result is shown in FIG. Lean gas composition: NO: 800 ppm + C 3 H 6 : 600 ppm + CO 2 :
11.0% + O 2 : 7.0% + H 2 O: 3.0% (residual:
N 2 ) Rich gas composition: NO: 100 ppm + C 3 H 6 : 330 ppm + CO: 6
000 ppm + CO 2 : 11.0% + H 2 : 0.15% +
H 2 O: 3.0% (residual: N 2 )

【0061】図10から分かるように、触媒Eを含むN
Ox吸蔵還元型触媒は、触媒f又は触媒gを含むNOx吸
蔵還元型触媒よりも、200〜700℃の範囲でリッチ
スパイクの後のNOx吸蔵量が多く、したがって、より
低温からより高温まで高いNOx浄化性能を発揮し得る
ことが分かる。
As can be seen from FIG. 10, N containing catalyst E
The Ox storage reduction type catalyst has a higher NOx storage amount after the rich spike in the range of 200 to 700 ° C than the NOx storage reduction type catalyst including the catalyst f or the catalyst g, and thus has a higher NOx from a lower temperature to a higher temperature. It can be seen that purification performance can be exhibited.

【0062】[0062]

【発明の効果】ガスに高い接触面積を与える触媒に使用
される触媒担体、その触媒担体を備えた触媒、及びそれ
らの製造方法を提供することができる。
Industrial Applicability The present invention can provide a catalyst carrier used for a catalyst that gives a high contact area to a gas, a catalyst provided with the catalyst carrier, and a method for producing them.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の触媒担体と触媒の製造工程を例示する
模式図である。
FIG. 1 is a schematic view illustrating a process for producing a catalyst carrier and a catalyst of the present invention.

【図2】触媒担体の細孔分布を比較したグラフである。FIG. 2 is a graph comparing pore distributions of catalyst supports.

【図3】CH4の浄化率を比較したグラフである。FIG. 3 is a graph comparing the purification rates of CH 4 .

【図4】H2の生成量を比較したグラフである。FIG. 4 is a graph comparing the amounts of generated H 2 .

【図5】H2の生成量を比較したグラフである。FIG. 5 is a graph comparing the amounts of generated H 2 .

【図6】H2の生成量を比較したグラフである。FIG. 6 is a graph comparing the generation amounts of H 2 .

【図7】H2の生成量を比較したグラフである。FIG. 7 is a graph comparing the production amounts of H 2 .

【図8】リッチスパイク後のNOx吸蔵量を比較したグ
ラフである。
FIG. 8 is a graph comparing NOx storage amounts after a rich spike.

【図9】リッチスパイク後のNOx吸蔵量を比較したグ
ラフである。
FIG. 9 is a graph comparing the NOx storage amounts after rich spikes.

【図10】飽和NOx吸蔵量を比較したグラフである。FIG. 10 is a graph comparing the saturated NOx storage amounts.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/02 B01J 23/58 A 23/42 ZAB 32/00 23/58 35/10 301F 23/63 37/02 101Z 32/00 F01N 3/10 A 35/10 301 3/28 311R 37/02 101 B01J 23/56 301A F01N 3/10 B01D 53/36 C 3/28 311 104A Fターム(参考) 3G091 AA02 AB01 AB03 AB06 BA07 BA11 BA39 GB03Y GB04Y GB05Y GB06Y GB07Y HA29 4D048 AA06 AA13 AA18 AB05 BA01X BA02X BA03X BA07X BA08X BA19X BA30X BA31X BA33X BA42X BB01 EA04 4G069 AA01 AA03 AA08 BA01A BA01B BA02A BA04A BA04B BA05A BA06A BA06B BA08B BA20A BA20B BB06A BB06B BC02A BC03A BC09A BC09B BC10A BC10B BC12A BC13A BC16A BC16B BC22A BC31A BC33A BC35A BC40A BC42A BC43A BC43B BC44A BC50A BC51A BC51B BC54A BC55A BC56A BC58A BC59A BC60A BC62A BC66A BC67A BC68A BC70A BC71A BC71B BC72A BC72B BC74A BC75A BC75B BD05A CA02 CA03 CA09 CC17 CC26 EC03X EC03Y EC04X EC04Y EC05X EC05Y EC13X EC13Y EC14X EC14Y FA02 FB14 FB16 FC10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 23/02 B01J 23/58 A 23/42 ZAB 32/00 23/58 35/10 301F 23/63 37 / 02 101Z 32/00 F01N 3/10 A 35/10 301 3/28 311R 37/02 101 B01J 23/56 301A F01N 3/10 B01D 53/36 C 3/28 311 104A F term (reference) 3G091 AA02 AB01 AB03 AB06 BA07 BA11 BA39 GB03Y GB04Y GB05Y GB06Y GB07Y HA29 4D048 AA06 AA13 AA18 AB05 BA01X BA02X BA03X BA07X BA08X BA19X BA30X BA31X BA33X BA42X BB01 BC04 EA04 4G069 AA01 AA03 A05BA02 BA01ABA BAB BAB BAB BC10B BC12A BC13A BC16A BC16B BC22A BC31A BC33A BC35A BC40A BC42A BC43A BC43B BC44A BC50A BC51A BC51B BC54A BC55A BC56A BC58A B C59A BC60A BC62A BC66A BC67A BC68A BC70A BC71A BC71B BC72A BC72B BC74A BC75A BC75B BD05A CA02 CA03 CA09 CC17 CC26 EC03X EC03Y EC04X EC04Y EC05X EC05Y EC13X EC13Y EC14X EC14Y FA02 FB14 FB16 FC10

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 200m2/g以上の比表面積を有し、
少なくとも2種の金属元素を含む複合酸化物を含んでな
る触媒担体。
1. It has a specific surface area of 200 m 2 / g or more,
A catalyst carrier comprising a composite oxide containing at least two metal elements.
【請求項2】 1〜10nmに細孔分布のピークを有
し、少なくとも2種の金属元素を含む複合酸化物を含ん
でなる触媒担体。
2. A catalyst carrier comprising a composite oxide having a pore distribution peak at 1 to 10 nm and containing at least two kinds of metal elements.
【請求項3】 複合酸化物が、アルミニウム、セリウ
ム、及びジルコニウムを含んでなる請求項1又は2に記
載の触媒担体。
3. The catalyst carrier according to claim 1, wherein the composite oxide contains aluminum, cerium, and zirconium.
【請求項4】 複合酸化物が、チタン、及びアルミニウ
ムを含んでなる請求項1又は2に記載の触媒担体。
4. The catalyst carrier according to claim 1, wherein the composite oxide contains titanium and aluminum.
【請求項5】 複合酸化物が、ジルコニウム、及びカル
シウムを含んでなる請求項1又は2に記載の触媒担体。
5. The catalyst carrier according to claim 1, wherein the composite oxide contains zirconium and calcium.
【請求項6】 複合酸化物が、アルミニウム、及びマグ
ネシウムを含んでなる請求項1又は2に記載の触媒担
体。
6. The catalyst carrier according to claim 1, wherein the composite oxide contains aluminum and magnesium.
【請求項7】 請求項1〜6のいずれか1項に記載の触
媒担体に、白金、金、パラジウム、ロジウム、ルテニウ
ム、及びイリジウムからなる群より選択された少なくと
も1種の触媒成分が担持された触媒。
7. The catalyst carrier according to claim 1, wherein at least one catalyst component selected from the group consisting of platinum, gold, palladium, rhodium, ruthenium, and iridium is supported on the catalyst carrier. Catalyst.
【請求項8】 超臨界流体に溶解させた金属化合物の溶
液を、多孔質の消失性基体に含浸させ、次いで前記金属
化合物を含浸した前記消失性基体を加熱することを特徴
とする請求項1〜6のいずれか1項に記載の触媒担体の
製造方法。
8. The method according to claim 1, wherein a solution of the metal compound dissolved in a supercritical fluid is impregnated on a porous vanishing substrate, and the vanishing substrate impregnated with the metal compound is heated. 7. The method for producing a catalyst carrier according to any one of claims 6 to 6.
【請求項9】 白金、金、パラジウム、ロジウム、ルテ
ニウム、及びイリジウムからなる群より選択された少な
くとも1種の元素を含む貴金属化合物を超臨界流体に溶
解させ、請求項1〜6のいずれか1項に記載の触媒担体
に前記超臨界流体を含浸させ、前記貴金属化合物を含浸
した前記触媒担体を加熱することを特徴とする触媒の製
造方法。
9. A supercritical fluid comprising a noble metal compound containing at least one element selected from the group consisting of platinum, gold, palladium, rhodium, ruthenium and iridium dissolved in a supercritical fluid. A method for producing a catalyst, comprising impregnating the supercritical fluid into the catalyst support described in the paragraph, and heating the catalyst support impregnated with the noble metal compound.
JP2001165418A 2001-01-19 2001-05-31 Catalyst carrier and catalyst, and method for producing them Pending JP2002282689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001165418A JP2002282689A (en) 2001-01-19 2001-05-31 Catalyst carrier and catalyst, and method for producing them

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-12382 2001-01-19
JP2001012382 2001-01-19
JP2001165418A JP2002282689A (en) 2001-01-19 2001-05-31 Catalyst carrier and catalyst, and method for producing them

Publications (1)

Publication Number Publication Date
JP2002282689A true JP2002282689A (en) 2002-10-02

Family

ID=26608016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165418A Pending JP2002282689A (en) 2001-01-19 2001-05-31 Catalyst carrier and catalyst, and method for producing them

Country Status (1)

Country Link
JP (1) JP2002282689A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226282A (en) * 2001-01-31 2002-08-14 Toyota Central Res & Dev Lab Inc Method for manufacturing form transcription material
JP2002306959A (en) * 2001-04-13 2002-10-22 Toyota Central Res & Dev Lab Inc NOx OCCLUDING AGENT, NOx OCCLUDING REDUCTION TYPE CATALYST AND MANUFACTURING METHOD THEREFOR
WO2004073856A1 (en) * 2003-02-18 2004-09-02 KOSTYAKOV, Vyacheslav Vasilievich Catalyst for purifying engine exhaust gases
WO2005079978A1 (en) * 2004-02-19 2005-09-01 Idemitsu Kosan Co., Ltd. Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
WO2005121025A1 (en) 2004-06-11 2005-12-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal oxide nanoporous body, coating composition for obtaining same, methods for producing those
JP2006511426A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Nickel catalyst formulation without precious metals for hydrogen generation
JP2006122793A (en) * 2004-10-28 2006-05-18 Toda Kogyo Corp Catalyst and its manufacturing method, catalyst for shift reaction of water gas, method for producing water gas, and catalyst and method for cleaning exhaust gas
JP2006167499A (en) * 2004-12-13 2006-06-29 Univ Of Tokyo Solid base catalyst having mesoporous alumina
JP2006341176A (en) * 2005-06-08 2006-12-21 Toyota Motor Corp Manufacturing method of catalyst carrier and manufacturing method of exhaust gas purifying catalyst
EP1840086A3 (en) * 2006-03-31 2008-07-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing nanoporous metal oxide material
JP2009061580A (en) * 2007-08-09 2009-03-26 National Institute For Materials Science Nano flake-like metal composite material, and manufacturing method of the same and surface enhanced raman scattering active substrate
JP2009233662A (en) * 2008-03-06 2009-10-15 Toda Kogyo Corp Porous catalytic body decomposing hydrocarbon, and its manufacturing method, method of manufacturing mixed reformed gas containing hydrogen, and fuel cell system
US7618919B2 (en) * 2005-01-28 2009-11-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst support and method of producing the same
JP2010064036A (en) * 2008-09-12 2010-03-25 Japan Energy Corp Reforming catalyst for hydrogen production suitable for producing hydrogen at low temperature and hydrogen production method using the catalyst
US7754649B2 (en) 2006-03-31 2010-07-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Structure having strong contact with solid particles, substrate having strong contact with solid particles, and manufacturing methods thereof
US7838460B2 (en) * 2005-01-28 2010-11-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Nanoporous metal oxide material, catalyst support, and catalyst for hydrogen production reaction using the same
JP2011083685A (en) * 2009-10-14 2011-04-28 Jx Nippon Oil & Energy Corp Reforming catalyst for use in producing hydrogen, method of producing the same, and method of producing hydrogen using the same
JP2011167595A (en) * 2010-02-16 2011-09-01 Jx Nippon Oil & Energy Corp Reforming catalyst for producing hydrogen, method for producing the same, and method for producing hydrogen using the catalyst
US8252257B2 (en) 2006-09-25 2012-08-28 Babcock-Hitachi K.K. Method for purifying gas, gas purifying apparatus, and gas purifying catalyst
JP2016052637A (en) * 2014-09-04 2016-04-14 株式会社アルバック Method of producing exhaust gas purification catalyst
JP2016079083A (en) * 2014-10-21 2016-05-16 高知県公立大学法人 Mesoporous nano spherical particle producing method
CN115193430A (en) * 2021-04-06 2022-10-18 三星工程株式会社 Ammonia decomposition catalyst and ammonia decomposition method using same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529293B2 (en) * 2001-01-31 2010-08-25 株式会社豊田中央研究所 Method for manufacturing form transfer material
JP2002226282A (en) * 2001-01-31 2002-08-14 Toyota Central Res & Dev Lab Inc Method for manufacturing form transcription material
JP2002306959A (en) * 2001-04-13 2002-10-22 Toyota Central Res & Dev Lab Inc NOx OCCLUDING AGENT, NOx OCCLUDING REDUCTION TYPE CATALYST AND MANUFACTURING METHOD THEREFOR
JP4586293B2 (en) * 2001-04-13 2010-11-24 株式会社豊田中央研究所 NOx occlusion agent, NOx occlusion reduction type catalyst and method for producing the same
JP2006511426A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Nickel catalyst formulation without precious metals for hydrogen generation
JP4648004B2 (en) * 2002-12-20 2011-03-09 本田技研工業株式会社 Nickel catalyst formulation without precious metals for hydrogen generation
WO2004073856A1 (en) * 2003-02-18 2004-09-02 KOSTYAKOV, Vyacheslav Vasilievich Catalyst for purifying engine exhaust gases
WO2005079978A1 (en) * 2004-02-19 2005-09-01 Idemitsu Kosan Co., Ltd. Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
US7670987B2 (en) 2004-02-19 2010-03-02 Idemitsu Kosan Co., Ltd. Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
US8343456B2 (en) 2004-02-19 2013-01-01 Idemitsu Kosan Co., Ltd. Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
JPWO2005121025A1 (en) * 2004-06-11 2008-04-10 株式会社豊田中央研究所 Metal oxide nanoporous material, coating composition for obtaining the same, and method for producing the same
EP1777197A1 (en) * 2004-06-11 2007-04-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal oxide nanoporous body, coating composition for obtaining same, methods for producing those
US7935653B2 (en) 2004-06-11 2011-05-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal oxide nanoporous material, coating composition to obtain the same, and methods of manufacturing them
EP1777197A4 (en) * 2004-06-11 2009-04-29 Toyota Chuo Kenkyusho Kk Metal oxide nanoporous body, coating composition for obtaining same, methods for producing those
WO2005121025A1 (en) 2004-06-11 2005-12-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal oxide nanoporous body, coating composition for obtaining same, methods for producing those
JP2006122793A (en) * 2004-10-28 2006-05-18 Toda Kogyo Corp Catalyst and its manufacturing method, catalyst for shift reaction of water gas, method for producing water gas, and catalyst and method for cleaning exhaust gas
JP4525909B2 (en) * 2004-10-28 2010-08-18 戸田工業株式会社 Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP2006167499A (en) * 2004-12-13 2006-06-29 Univ Of Tokyo Solid base catalyst having mesoporous alumina
US7618919B2 (en) * 2005-01-28 2009-11-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst support and method of producing the same
US7838460B2 (en) * 2005-01-28 2010-11-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Nanoporous metal oxide material, catalyst support, and catalyst for hydrogen production reaction using the same
JP2006341176A (en) * 2005-06-08 2006-12-21 Toyota Motor Corp Manufacturing method of catalyst carrier and manufacturing method of exhaust gas purifying catalyst
US7754649B2 (en) 2006-03-31 2010-07-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Structure having strong contact with solid particles, substrate having strong contact with solid particles, and manufacturing methods thereof
EP1840086A3 (en) * 2006-03-31 2008-07-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing nanoporous metal oxide material
US8252257B2 (en) 2006-09-25 2012-08-28 Babcock-Hitachi K.K. Method for purifying gas, gas purifying apparatus, and gas purifying catalyst
JP2009061580A (en) * 2007-08-09 2009-03-26 National Institute For Materials Science Nano flake-like metal composite material, and manufacturing method of the same and surface enhanced raman scattering active substrate
JP2009233662A (en) * 2008-03-06 2009-10-15 Toda Kogyo Corp Porous catalytic body decomposing hydrocarbon, and its manufacturing method, method of manufacturing mixed reformed gas containing hydrogen, and fuel cell system
JP2010064036A (en) * 2008-09-12 2010-03-25 Japan Energy Corp Reforming catalyst for hydrogen production suitable for producing hydrogen at low temperature and hydrogen production method using the catalyst
JP2011083685A (en) * 2009-10-14 2011-04-28 Jx Nippon Oil & Energy Corp Reforming catalyst for use in producing hydrogen, method of producing the same, and method of producing hydrogen using the same
JP2011167595A (en) * 2010-02-16 2011-09-01 Jx Nippon Oil & Energy Corp Reforming catalyst for producing hydrogen, method for producing the same, and method for producing hydrogen using the catalyst
JP2016052637A (en) * 2014-09-04 2016-04-14 株式会社アルバック Method of producing exhaust gas purification catalyst
JP2016079083A (en) * 2014-10-21 2016-05-16 高知県公立大学法人 Mesoporous nano spherical particle producing method
CN115193430A (en) * 2021-04-06 2022-10-18 三星工程株式会社 Ammonia decomposition catalyst and ammonia decomposition method using same

Similar Documents

Publication Publication Date Title
JP2002282689A (en) Catalyst carrier and catalyst, and method for producing them
JP5864443B2 (en) Exhaust gas purification catalyst
JP2001269578A (en) Exhaust gas cleaning catalyst
JP5565569B2 (en) Exhaust gas purification catalyst
JP5533783B2 (en) Catalyst for exhaust gas purification of internal combustion engine
JP5607131B2 (en) Exhaust gas purification catalyst
WO2006134787A1 (en) Exhaust gas purifying catalyst
JPH0531367A (en) Catalyst for exhaust gas purification
JP4831753B2 (en) Exhaust gas purification catalyst
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP2003313011A (en) Method for producing metal oxide
JP5196656B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5071840B2 (en) Exhaust gas purification catalyst
JP4779461B2 (en) Catalyst carrier, method for producing the same, and exhaust gas purification catalyst
JP4304559B2 (en) Hydrogen production catalyst, exhaust gas purification catalyst, and exhaust gas purification method
JP2002210369A (en) Catalyst for cleaning exhaust gas and its production method
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2006122793A (en) Catalyst and its manufacturing method, catalyst for shift reaction of water gas, method for producing water gas, and catalyst and method for cleaning exhaust gas
JP2006341152A (en) Catalyst carrier manufacturing method and manufacturing method of exhaust gas purifying catalyst
JP5181839B2 (en) Exhaust gas purification catalyst
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP4852793B2 (en) Exhaust gas purification device and exhaust gas purification catalyst for internal combustion engine
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007203160A (en) Catalyst support for purification of exhaust gas, catalyst for purification of exhaust gas using it and method of purifying exhaust gas