JP2016201223A - Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2016201223A
JP2016201223A JP2015079735A JP2015079735A JP2016201223A JP 2016201223 A JP2016201223 A JP 2016201223A JP 2015079735 A JP2015079735 A JP 2015079735A JP 2015079735 A JP2015079735 A JP 2015079735A JP 2016201223 A JP2016201223 A JP 2016201223A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
active material
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015079735A
Other languages
Japanese (ja)
Other versions
JP6465456B2 (en
Inventor
慎之介 市川
Shinnosuke Ichikawa
慎之介 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2015079735A priority Critical patent/JP6465456B2/en
Publication of JP2016201223A publication Critical patent/JP2016201223A/en
Application granted granted Critical
Publication of JP6465456B2 publication Critical patent/JP6465456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a negative electrode active material for a nonaqueous electrolyte secondary battery, low in an average discharge potential and low in charge/discharge hysteresis; and a negative electrode for a nonaqueous electrolyte secondary battery, using the negative electrode active material for a nonaqueous electrolyte secondary battery.SOLUTION: A lithium tungsten composite oxide attributable to a PDF card number 01-088-0756 provided by the ICDD (R) is used as a negative electrode active material of a negative electrode for a nonaqueous electrolyte secondary battery. The lithium tungsten composite oxide is attributable to a space group P-1, and lattice constants satisfy 4.8 Å≤a≤5.4 Å, 7.3 Å≤b≤8.1 Å, 4.8 Å≤c≤5.3 Å, 97°≤α≤107°, 96°≤β≤107° and 103°≤γ≤114°, respectively.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解質二次電池用負極活物質、その負極活物質を用いる非水電解質二次電池用負極、及びその負極を有する非水電解質二次電池に関する。   The present invention relates to a negative electrode active material for a nonaqueous electrolyte secondary battery, a negative electrode for a nonaqueous electrolyte secondary battery using the negative electrode active material, and a nonaqueous electrolyte secondary battery having the negative electrode.

リチウムイオン二次電池に代表される非水電解質二次電池は、近年、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)などの自動車用電源としても用いられている。しかし、車内空間の限られた電池収納スペースの中でより大きな充放電容量を備えた電池を搭載することが求められている。そのため、単電池の構造や、単電池集合体と保護回路等を含む蓄電装置の構造の改良がなされているが、構造の改良のみでエネルギー密度の向上を図ることには限界がある。   In recent years, non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are also used as power sources for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), plug-in hybrid vehicles (PHEV) and the like. However, it is demanded to mount a battery having a larger charge / discharge capacity in a battery storage space having a limited interior space. Therefore, the structure of the unit cell and the structure of the power storage device including the unit cell assembly and the protection circuit have been improved. However, there is a limit to increase the energy density only by improving the structure.

従来の非水電解質二次電池には、負極活物質として主に黒鉛が用いられてきた。黒鉛の理論容量は372mAh/gである。黒鉛の真密度は約2.2g/ccである。したがって、体積当たりの理論容量は約800mAh/ccである。
黒鉛よりも体積当たりの理論容量が高い負極活物質として、SiO粒子を含む材料(例えば、特許文献1)等が検討されている。しかし、SiO粒子を含む材料は充放電に伴う膨張収縮が極めて大きいため、負極合剤の空隙率を高く設計する必要があり、体積エネルギー密度が高い負極とすることができない。
Conventional non-aqueous electrolyte secondary batteries have mainly used graphite as a negative electrode active material. The theoretical capacity of graphite is 372 mAh / g. The true density of graphite is about 2.2 g / cc. Therefore, the theoretical capacity per volume is about 800 mAh / cc.
As a negative electrode active material having a theoretical capacity per unit volume higher than that of graphite, a material containing SiO particles (for example, Patent Document 1) has been studied. However, since the material containing SiO particles is very large in expansion and contraction due to charge / discharge, it is necessary to design the negative electrode mixture with a high porosity, and thus a negative electrode having a high volumetric energy density cannot be obtained.

特許文献2には、負極活物質にSiOやWOを用い、セパレータとして不織布を用いたリチウム二次電池について記載されている。 Patent Document 2 describes a lithium secondary battery using SiO 2 or WO 2 as a negative electrode active material and using a nonwoven fabric as a separator.

非特許文献1には、リボン型構造のLiに化学的にLiを挿入したLiについて、岩塩型構造を有し、2分子のLiを可逆的に脱着し、10サイクル後、1.70V(vs.Li+/Li)において110mAh/gの安定的な可逆容量を有していることが記載されている(ABSTRUCT)。 Non-Patent Document 1 discloses that Li 5 W 2 O 7 in which Li is chemically inserted into Li 2 W 2 O 7 having a ribbon type structure has a rock salt type structure and reversibly desorbs two molecules of Li. It is described that after 10 cycles it has a stable reversible capacity of 110 mAh / g at 1.70 V (vs. Li + / Li) (ABSTRUCT).

非特許文献2には、LiOとWOをLi:W=4.4:1に混合し、950℃で28日間焼成し、徐冷してLiWOを作製したこと、MoKα線源を用いたエックス線回折測定の結果、LiWOは、空間群P−1に属する結晶構造を有し、結晶格子定数が、a=510.94(5)pm、b=771.59(7)pm、c=506.09(4)pm、α=101.804(8)°、β=101.78(1)°、γ=108.770(9)°であったことが記載されている(ABSTRUCT)。なお、前記「P−1」のバー”−”は本来「1」の上に付して記載される。この非特許文献に示されたLiWOの結晶構造は、図8に示すICDD(登録商標)(International Center for Diffraction Data 国際回折データセンター)が提供するPDF(Powder Diffraction File 粉末回折ファイル)におけるカード番号01−088−0756(化学式Li(WO))についての回折データと一致するものである。 Non-Patent Document 2 describes that Li 2 O and WO 3 were mixed in Li: W = 4.4: 1, baked at 950 ° C. for 28 days, slowly cooled to produce Li 4 WO 5 , MoKα rays As a result of X-ray diffraction measurement using a source, Li 4 WO 5 has a crystal structure belonging to the space group P-1, and has a crystal lattice constant of a = 510.94 (5) pm, b = 771.59 ( 7) pm, c = 506.09 (4) pm, α = 101.804 (8) °, β = 101.78 (1) °, γ = 108.770 (9) °. (ABSTRUCT). The bar “-” of “P-1” is originally described above “1”. The crystal structure of Li 4 WO 5 shown in this non-patent document is in a PDF (Powder Diffraction File powder diffraction file) provided by ICDD (registered trademark) (International Center for Diffraction Data) shown in FIG. This coincides with the diffraction data for card number 01-088-0756 (chemical formula Li 4 (WO 5 )).

特開2004−146292号公報JP 2004-146292 A WO2011/108455WO2011 / 108455

Inorg. Chem.53(2014)522−527Inorg. Chem. 53 (2014) 522-527 Anorg.Allg.Chem.573(1989)157−169Anorg. Allg. Chem. 573 (1989) 157-169

ノートパソコンや携帯電話などのモバイル機器の電源として用いられるリチウム二次電池には、主として放電容量が大きいことが求められてきた。しかしながら、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)などの自動車用電源として使用されるリチウム二次電池には、放電容量(Ah)が大きいだけでなく、エネルギー密度(Wh)が大きいこと、さらには、入出力特性が優れることが求められている。出力特性が優れることは自動車の加速性能が優れること、入力特性が優れることは自動車の減速時の回生電力を受け入れる能力が優れることに繋がる。したがって、入出力特性が優れるリチウム二次電池とすることができるリチウム二次電池用活物質が求められていた。   Lithium secondary batteries used as power sources for mobile devices such as notebook computers and mobile phones have been mainly required to have a large discharge capacity. However, lithium secondary batteries used as power sources for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), plug-in hybrid vehicles (PHEV) have not only a large discharge capacity (Ah) but also an energy density. It is required that (Wh) is large and that the input / output characteristics are excellent. An excellent output characteristic leads to an excellent acceleration performance of the automobile, and an excellent input characteristic leads to an excellent ability to accept regenerative electric power during deceleration of the automobile. Therefore, there has been a demand for an active material for a lithium secondary battery that can be a lithium secondary battery having excellent input / output characteristics.

しかしながら、従来のリチウム二次電池の負極に用いられている黒鉛は、充電電位が0V(vs.Li/Li)に近いため、回生電力を受け入れる際に負極電位が0V(vs.Li/Li)に到達する虞が高い。そのため、負極にLiが析出しやすいという問題点があった。 However, since the graphite used for the negative electrode of the conventional lithium secondary battery has a charging potential close to 0 V (vs. Li / Li + ), the negative electrode potential is 0 V (vs. Li / Li + ) when receiving regenerative power. There is a high possibility of reaching + ). Therefore, there is a problem that Li is likely to precipitate on the negative electrode.

そこで、本発明者は、自動車用電源として十分な寿命性能を備えた非水電解質二次電池とすることのできる非水電解質二次電池用負極活物質として、0V(vs.Li/Li)に近い電位、例えば0.1V(vs.Li/Li)未満の電位まで充電しなくても、実用的な性能を備えた負極活物質として使用することができ、そのうえで、平均放電電位ができるだけ卑であること、さらには、充放電ヒステリシスが小さいことが求められているという課題を認識した。充放電ヒステリシスが小さいとは、充電中の平均作動電位と放電中の平均作動電位との差が小さいことをいう。 Therefore, the inventor of the present invention uses 0 V (vs. Li / Li + ) as a negative electrode active material for a non-aqueous electrolyte secondary battery that can be a non-aqueous electrolyte secondary battery having sufficient life performance as a power source for automobiles. Can be used as a negative electrode active material having practical performance without being charged to a potential close to 1, for example, a potential of less than 0.1 V (vs. Li / Li + ). We recognized the problem that it is required to have a low charge / discharge hysteresis. “Charge / discharge hysteresis is small” means that the difference between the average operating potential during charging and the average operating potential during discharging is small.

非特許文献1には、岩塩型構造を有し、2分子のLiを可逆的に脱着するLiを正極活物質として検討したデータが記載されている。また、Introductionの欄には、LiWOが記載された非特許文献2が引用されている。しかし、これらのタングステン化合物を負極活物質として用いることについては記載がない。 Non-Patent Document 1 describes data obtained by examining Li 2 W 2 O 7 having a rock salt structure and reversibly desorbing two molecules of Li as a positive electrode active material. In addition, Non-Patent Document 2 in which Li 4 WO 5 is described is cited in the Introduction column. However, there is no description about using these tungsten compounds as a negative electrode active material.

非特許文献2には、LiWOの合成、及び結晶構造について示されている。しかし、LiWOを電池用の材料として用いることについては記載がない。 Non-Patent Document 2 shows the synthesis and crystal structure of Li 4 WO 5 . However, there is no description about using Li 4 WO 5 as a battery material.

本発明は、平均放電電位が低く、充放電ヒステリシスが小さい非水電解質二次電池用負極活物質、その負極活物質を用いた非水電解質二次電池用電極、及びその電極を有する非水電解質二次電池を提供することを目的とする。   The present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery having a low average discharge potential and a small charge / discharge hysteresis, a non-aqueous electrolyte secondary battery electrode using the negative electrode active material, and a non-aqueous electrolyte having the electrode An object is to provide a secondary battery.

本発明は上記の目的を達成するために以下の構成を有するものである。
(1)ICDD(登録商標)が提供するPDFカード番号01−088−0756に帰属可能なリチウムタングステン複合酸化物を含有する非水電解質二次電池用負極活物質。
(2)前記リチウムタングステン複合酸化物が、空間群P−1に帰属可能であり、格子定数がそれぞれ、
4.8≦a≦5.4Å、
7.3≦b≦8.1Å、
4.8≦c≦5.3Å、
97≦α≦107°、
96≦β≦107°、
103≦γ≦114°
を満たす前記(1)の非水電解質二次電池用負極活物質。
(3)前記(1)又は(2)のリチウムタングステン複合酸化物を、非水電解質二次電池用負極の負極活物質として使用する使用方法。
(4)前記(1)又は(2)のリチウムタングステン複合酸化物を負極活物質として含有する非水電解質二次電池用負極。
(5)正極、負極及び非水電解質を備えた非水電解質二次電池であって、前記負極が、前記(4)の非水電解質二次電池用負極である非水電解質二次電池。
(6)前記負極の充電下限電位が0.1V(vs.Li/Li)以上である前記(5)の非水電解質二次電池。
In order to achieve the above object, the present invention has the following configuration.
(1) A negative electrode active material for a nonaqueous electrolyte secondary battery containing a lithium tungsten composite oxide that can be assigned to PDF card number 01-088-0756 provided by ICDD (registered trademark).
(2) The lithium tungsten composite oxide can be assigned to the space group P-1, and the lattice constant is
4.8 ≦ a ≦ 5.4 mm,
7.3 ≦ b ≦ 8.1cm,
4.8 ≦ c ≦ 5.3cm,
97 ≦ α ≦ 107 °,
96 ≦ β ≦ 107 °,
103 ≦ γ ≦ 114 °
The negative electrode active material for a nonaqueous electrolyte secondary battery according to (1), wherein
(3) A method of using the lithium tungsten composite oxide according to (1) or (2) as a negative electrode active material of a negative electrode for a nonaqueous electrolyte secondary battery.
(4) A negative electrode for a non-aqueous electrolyte secondary battery comprising the lithium tungsten composite oxide according to (1) or (2) as a negative electrode active material.
(5) A nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, wherein the negative electrode is the negative electrode for a nonaqueous electrolyte secondary battery according to (4).
(6) The nonaqueous electrolyte secondary battery according to (5), wherein the lower limit charge potential of the negative electrode is 0.1 V (vs. Li / Li + ) or more.

本発明により、平均放電電位が低く、充放電ヒステリシスが小さい非水電解質二次電池用負極活物質、及び、これを用いた非水電解質二次電池用負極を提供することができる。したがって、十分な寿命性能を備えた非水電解質二次電池を提供できる。   According to the present invention, a negative electrode active material for a non-aqueous electrolyte secondary battery having a low average discharge potential and a small charge / discharge hysteresis, and a negative electrode for a non-aqueous electrolyte secondary battery using the same can be provided. Therefore, it is possible to provide a non-aqueous electrolyte secondary battery having sufficient life performance.

実施例に係る負極の充放電挙動を示す図The figure which shows the charging / discharging behavior of the negative electrode which concerns on an Example 実施例に係る負極の充放電挙動を示す図The figure which shows the charging / discharging behavior of the negative electrode which concerns on an Example 比較例に係る負極の充放電挙動を示す図The figure which shows the charging / discharging behavior of the negative electrode which concerns on a comparative example 比較例に係る負極の充放電挙動を示す図The figure which shows the charging / discharging behavior of the negative electrode which concerns on a comparative example 比較例に係る負極の充放電挙動を示す図The figure which shows the charging / discharging behavior of the negative electrode which concerns on a comparative example 比較例に係る負極の充放電挙動を示す図The figure which shows the charging / discharging behavior of the negative electrode which concerns on a comparative example 種々の充放電過程におけるLiWO負極のエックス線回折図X-ray diffraction pattern of Li 4 WO 5 negative electrode in various charge and discharge processes ICDD(登録商標)が提供するPDFカード番号01−088−0756の抜粋Excerpt of PDF card number 01-088-0756 provided by ICDD (registered trademark) 本発明に係る非水電解質二次電池の一実施形態を示す外観斜視図1 is an external perspective view showing an embodiment of a nonaqueous electrolyte secondary battery according to the present invention. 本発明に係る非水電解質二次電池を複数個集合した蓄電装置を示す概略図Schematic showing a power storage device in which a plurality of nonaqueous electrolyte secondary batteries according to the present invention are assembled.

(負極活物質)
本発明の負極活物質は、W源となる化合物、例えばWOと、Li源となる化合物、例えばLiCOとを、LiとWの比が4:1となるように秤量、混合し、大気中で焼成し、LiWOを合成することにより得ることができる。
なお、このリチウムタングステン複合酸化物を活物質に用いた負極は、後述するように、充放電にともなって、LiとWの比が変化するが、合成時の組成に基づいて、本明細書では、この負極を「LiWO負極」ということがある。
(Negative electrode active material)
The negative electrode active material of the present invention is prepared by weighing and mixing a compound serving as a W source, such as WO 3 and a compound serving as a Li source, such as Li 2 CO 3 , so that the ratio of Li to W is 4: 1. It can be obtained by firing in the atmosphere and synthesizing Li 4 WO 5 .
In addition, the negative electrode using this lithium tungsten composite oxide as an active material changes the ratio of Li and W with charge / discharge, as described later, but in this specification based on the composition during synthesis, The negative electrode is sometimes referred to as “Li 4 WO 5 negative electrode”.

LiWOは、酸化還元電位が0.5V(vs.Li/Li+)程度であるから、LiWO負極は、1.5V(vs.Li/Li+)以下の卑な電位範囲において高容量を発現する。したがって、エネルギー密度の高い非水電解質電池とすることのできる非水電解質電池用負極活物質を提供できる。
さらに、LiWO負極は、他のリチウムタングステン複合酸化物やタングステン酸化物と比べて充放電ヒステリシスが小さい。したがって、エネルギー効率が高い非水電解質電池を提供できる。
Since Li 4 WO 5 has an oxidation-reduction potential of about 0.5 V (vs. Li / Li + ), the Li 4 WO 5 negative electrode has a base potential range of 1.5 V (vs. Li / Li + ) or less. Expresses high capacity in Therefore, a negative electrode active material for a non-aqueous electrolyte battery that can be a non-aqueous electrolyte battery having a high energy density can be provided.
Furthermore, the Li 4 WO 5 negative electrode has smaller charge / discharge hysteresis than other lithium tungsten composite oxides and tungsten oxides. Therefore, a nonaqueous electrolyte battery with high energy efficiency can be provided.

LiWO負極の充電下限電位を0.1V(vs.Li/Li+)以上とすることにより、Li金属の電析を防止することができるとともに、良好な充放電サイクル性能が得られる。 By setting the charging lower limit potential of the Li 4 WO 5 negative electrode to 0.1 V (vs. Li / Li + ) or higher, electrodeposition of Li metal can be prevented and good charge / discharge cycle performance can be obtained.

また、充電下限電位を0.2V(vs.Li/Li+)以上とすることにより、さらに良好な充放電サイクル性能が得られる。 Further, by setting the charging lower limit potential to 0.2 V (vs. Li / Li + ) or more, further better charge / discharge cycle performance can be obtained.

また、充電下限電位が0.3V(vs.Li/Li+)以上であっても、表6に示すように、LiWO負極では黒鉛負極より大きな体積当たりの放電容量が得られる。また、充電下限電位が0.3V(vs.Li/Li+)以上であることにより、LiとAlとの合金化反応を避けることができるから、Al集電体箔を有する非水電解質二次電池負極及び非水電解質二次電池が実現可能である。したがって、軽量で安価な非水電解質電池を提供できる。 Moreover, even if the charge lower limit potential is 0.3 V (vs. Li / Li + ) or more, as shown in Table 6, the Li 4 WO 5 negative electrode has a larger discharge capacity per volume than the graphite negative electrode. In addition, since the lower limit charge potential is 0.3 V (vs. Li / Li + ) or more, an alloying reaction between Li and Al can be avoided, so that the non-aqueous electrolyte secondary having an Al current collector foil is used. A battery negative electrode and a nonaqueous electrolyte secondary battery are realizable. Therefore, a non-aqueous electrolyte battery that is lightweight and inexpensive can be provided.

(正極活物質)
正極活物質としては、限定されない。例えば、LiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(LiCoO、LiNiO、LiMn、LiMnO、LiNiCo(1−y)、LiNiMnCo(1−y−z)、LiNiMn(2−y)等)、LiMe(XO(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、Vを表す)で表されるポリアニオン化合物(LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。正極活物質としては、さらに、ジスルフィド、ポリピロール、ポリアニリン、ポリパラスチレン、ポリアセチレン、ポリアセン系材料等の導電性高分子化合物、擬グラファイト構造炭素質材料等も挙げられる。正極活物質においては、これら化合物の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
(Positive electrode active material)
The positive electrode active material is not limited. For example, a composite oxide represented by Li x MO y (M represents at least one transition metal) (Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x MnO 3 , Li x Ni y Co (1-y) O 2, Li x Ni y Mn z Co (1-y-z) O 2, Li x Ni y Mn (2-y) O 4 , etc.), Li w Me x (XO y) z (Me represents at least one transition metal, X represents P, Si, B, V, for example) (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO) 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.). The elements or polyanions in these compounds may be partially substituted with other elements or anion species. Examples of the positive electrode active material further include conductive polymer compounds such as disulfide, polypyrrole, polyaniline, polyparastyrene, polyacetylene, and polyacene-based materials, and pseudographite-structured carbonaceous materials. In a positive electrode active material, 1 type of these compounds may be used independently, and 2 or more types may be mixed and used for it.

(正極・負極)
正極活物質、及び負極活物質は正極及び負極の主要成分であるが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。
(Positive electrode / Negative electrode)
The positive electrode active material and the negative electrode active material are main components of the positive electrode and the negative electrode. In addition to the main components, the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, a filler, and the like. It may be contained as a constituent component.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, Conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material can be included as one kind or a mixture thereof. .

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが好ましい。導電剤の添加量は、正極または負極の総質量に対して0.1質量%〜50質量%が好ましく、特に0.5質量%〜30質量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため好ましい。正極活物質に導電剤を十分に混合するために、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミル等の粉体混合機を乾式、あるいは湿式で用いることが可能である。   Among these, as the conductive agent, acetylene black is preferable from the viewpoints of electron conductivity and coatability. The addition amount of the conductive agent is preferably 0.1% by mass to 50% by mass, and particularly preferably 0.5% by mass to 30% by mass with respect to the total mass of the positive electrode or the negative electrode. In particular, acetylene black is preferably used after being pulverized into ultrafine particles of 0.1 to 0.5 μm because the required carbon amount can be reduced. In order to sufficiently mix the conductive agent with the positive electrode active material, a powder mixer such as a V-type mixer, an S-type mixer, a grinder, a ball mill, a planetary ball mill, or the like can be used in a dry or wet manner. .

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマー、ポリアミドイミド、ポリイミド、アクリル樹脂、ポリアクリル酸等を1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総質量に対して1〜50質量%が好ましく、特に2〜30質量%が好ましい。   The binder is usually a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene. Rubber (SBR), a polymer having rubber elasticity such as fluorine rubber, polyamideimide, polyimide, acrylic resin, polyacrylic acid and the like can be used as one kind or a mixture of two or more kinds. The addition amount of the binder is preferably 1 to 50% by mass, and particularly preferably 2 to 30% by mass with respect to the total mass of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば限定されない。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総質量に対して添加量は30質量%以下が好ましい。   The filler is not limited as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by mass or less with respect to the total mass of the positive electrode or the negative electrode.

正極及び負極は、前記主要構成成分(正極活物質又は負極材料)を含有し、N−メチルピロリドン,トルエン等の有機溶媒又は水を分散溶媒とする塗布液を作製し、正極集電体に塗布し、前記分散溶媒を加熱除去すること等により好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが好ましいが、これらに限定されるものではない。   The positive electrode and the negative electrode contain the main constituents (positive electrode active material or negative electrode material), produce a coating solution using an organic solvent such as N-methylpyrrolidone or toluene or water as a dispersion solvent, and apply it to the positive electrode current collector. The dispersion solvent is preferably produced by removing the solvent by heating. About the application method, for example, it is preferable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.

集電体としては、Al箔、Cu箔等の集電箔を用いることができる。正極の集電箔としてはAl箔が好ましい。LiWO負極の充電下限電位を0.3V(vs.Li/Li+)より貴になるように電池を設計する場合は、負極の集電体にAlを使用することが可能である。集電箔の厚みは10〜30μmが好ましい。また、合剤層の厚みはプレス後において、40〜150μm(集電箔厚みを除く)が好ましい。 As the current collector, a current collector foil such as an Al foil or a Cu foil can be used. As the current collector foil of the positive electrode, an Al foil is preferable. When the battery is designed so that the lower limit charge potential of the Li 4 WO 5 negative electrode is no less than 0.3 V (vs. Li / Li + ), Al can be used for the negative electrode current collector. The thickness of the current collector foil is preferably 10 to 30 μm. Further, the thickness of the mixture layer is preferably 40 to 150 μm (excluding the current collector foil thickness) after pressing.

(非水電解質)
本発明に係る非水電解質二次電池に用いる非水電解質は、限定されず、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
(Non-aqueous electrolyte)
The nonaqueous electrolyte used for the nonaqueous electrolyte secondary battery according to the present invention is not limited, and those generally proposed for use in lithium batteries and the like can be used. Nonaqueous solvents used for the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; Nitriles such as acetonitrile and benzonitrile; Dioxolane or derivatives thereof; Ethylene sulfide, sulfolane, sultone or derivatives thereof Examples thereof include a conductor alone or a mixture of two or more thereof, but are not limited thereto.

非水電解質に用いる電解質塩としては、限定されない。例えば、LiClO,LiBF,LiAsF,LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−CNClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 The electrolyte salt used for the non-aqueous electrolyte is not limited. For example, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN, etc. ), An inorganic ion salt containing one of sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, (CH 3) 4 NBF 4, (CH 3) 4 NBr, (C 2 H 5) 4 NClO 4, (C 2 H 5) 4 NI, (C 3 H 7) 4 NBr, (n-C 4 H 9) 4 NClO 4, (n-C 4 H ) 4 NI, (C 2 H 5) 4 N-maleate, (C 2 H 5) 4 N-benzoate, (C 2 H 5) 4 N-phthalate, lithium stearyl sulfonate, lithium octyl sulfonate, dodecylbenzene sulfonate Organic ionic salts such as lithium acid can be used, and these ionic compounds can be used alone or in admixture of two or more.

さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より好ましい。 Further, by using a mixture of LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further reduced, Low temperature characteristics can be further improved, and self-discharge can be suppressed, which is more preferable.

また、非水電解質として常温溶融塩やイオン液体を用いてもよい。   Moreover, you may use normal temperature molten salt and an ionic liquid as a nonaqueous electrolyte.

非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/L〜5mol/Lが好ましく、さらに好ましくは、0.5mol/L〜2.5mol/Lである。   The concentration of the electrolyte salt in the nonaqueous electrolyte is preferably 0.1 mol / L to 5 mol / L, more preferably 0.5 mol / L to 2 in order to reliably obtain a nonaqueous electrolyte battery having high battery characteristics. 0.5 mol / L.

(セパレータ)
セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
(Separator)
As the separator, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the material constituting the separator for a nonaqueous electrolyte battery include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。   The separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte. Use of the non-aqueous electrolyte in the gel state as described above is preferable in that it has an effect of preventing leakage.

さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため好ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。   Furthermore, it is preferable to use a separator in combination with the above-described porous film, non-woven fabric, or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several μm or less, and holding the electrolyte in the micropores of the film, Gels.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、電子線(EB)照射、又はラジカル開始剤を添加して加熱若しくは紫外線(UV)照射を行う等により、架橋反応を行わせることが可能である。   Examples of the solvophilic polymer include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked. The monomer can be subjected to a crosslinking reaction by electron beam (EB) irradiation or heating or ultraviolet ray (UV) irradiation by adding a radical initiator.

(非水電解質二次電池の構成)
本発明の非水電解質二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池、扁平型電池等が一例として挙げられる。
図8に角型電池の一例を示す。セパレータを挟んで巻回された正極及び負極よりなる電極群2が角型の電池容器3に収納され、正極リード4’を介して正極端子4が、負極リード5’を介して負極端子5が電池容器外に導出されている。
(Configuration of non-aqueous electrolyte secondary battery)
The configuration of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and examples thereof include a cylindrical battery having a positive electrode, a negative electrode, and a roll separator, a square battery, and a flat battery.
FIG. 8 shows an example of a prismatic battery. An electrode group 2 composed of a positive electrode and a negative electrode wound with a separator interposed therebetween is housed in a rectangular battery container 3. A positive electrode terminal 4 is connected via a positive electrode lead 4 ′, and a negative electrode terminal 5 is connected via a negative electrode lead 5 ′. It is led out of the battery container.

(蓄電装置の構成)
本発明の非水電解質二次電池は、特に電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)などの自動車用電源として用いる場合に、複数の非水電解質二次電池を集合して構成した蓄電装置(バッテリーモジュール)として搭載することができる。
図9に、非水電解質二次電池1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。
(Configuration of power storage device)
The non-aqueous electrolyte secondary battery according to the present invention includes a plurality of non-aqueous electrolyte secondary batteries, particularly when used as a power source for an automobile such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV). It can be mounted as a power storage device (battery module) configured as a group.
FIG. 9 shows an example of a power storage device 30 in which the power storage units 20 in which the nonaqueous electrolyte secondary batteries 1 are assembled are further assembled.

<実施例1>
(LiWOの合成)
11.592gの三酸化タングステン(WO)(高純度化学社製)及び7.389gの炭酸リチウム(LiCO)(ナカライテスク社製)(Li/W=4)を秤量し、直径5mmのジルコニア製ボール(商品名:YTZボール)が90g(約250個)入った内容積80mLのジルコニア製ポットに投入した。このポットにさらにエタノール10mLを投入し、蓋をして、遊星型ボールミル(FRITSCH社製、型番pulverisette 5)にセットし、公転回転数300rpmで9分混合した後に1分間の休止を入れる操作を計6回繰り返した。この混合物を75℃の乾燥機で3時間以上乾燥し、混合粉体を調製した。この混合粉体を、容量30mLのアルミナ製るつぼ(型番:1−7745−07)に載置し、卓上真空・ガス置換炉(型番:KDF75)に設置し、空気気流中、常圧下、常温から950℃まで10hかけて昇温し、950℃で4h保持した。焼成後の粉末を取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、組成式LiWOで表される実施例1に係るリチウムタングステン複合酸化物を作製した。
<Example 1>
(Synthesis of Li 4 WO 5 )
11.592 g of tungsten trioxide (WO 3 ) (manufactured by Koyo Chemical Co., Ltd.) and 7.389 g of lithium carbonate (Li 2 CO 3 ) (manufactured by Nacalai Tesque) (Li / W = 4) were weighed and had a diameter of 5 mm. Were introduced into a zirconia pot having an internal volume of 80 mL containing 90 g (about 250) of zirconia balls (trade name: YTZ balls). The pot was further charged with 10 mL of ethanol, covered, set on a planetary ball mill (manufactured by FRISCH, model number pulverisete 5), mixed for 9 minutes at a revolution speed of 300 rpm, and then put into a rest for 1 minute. Repeated 6 times. This mixture was dried with a dryer at 75 ° C. for 3 hours or more to prepare a mixed powder. This mixed powder is placed in an alumina crucible (model number: 1-7745-07) with a capacity of 30 mL and placed in a tabletop vacuum / gas replacement furnace (model number: KDF75). The temperature was raised to 950 ° C. over 10 hours and held at 950 ° C. for 4 hours. The baked powder was taken out and pulverized for several minutes in a smoked automatic mortar to make the particle size uniform. In this way, a lithium tungsten composite oxide according to Example 1 represented by the composition formula Li 4 WO 5 was produced.

<比較例1>
(Liの合成)
18.543gのWO及び2.956gのLiCO(Li/W=1)を秤量したこと、常温から600℃まで10hかけて昇温し、600℃で4h保持したことを除いては、実施例1と同様の手順で、組成式Liで表されるリチウムタングステン複合酸化物を作製した。
<Comparative Example 1>
(Synthesis of Li 2 W 2 O 7 )
Except that 18.543 g of WO 3 and 2.956 g of Li 2 CO 3 (Li / W = 1) were weighed, heated from room temperature to 600 ° C. over 10 h, and held at 600 ° C. for 4 h. A lithium tungsten composite oxide represented by the composition formula Li 2 W 2 O 7 was produced in the same procedure as in Example 1.

<比較例2>
(LiWOの合成)
13.911gのWO及び4.433gのLiCO(Li/W=2)を秤量したこと、常温から600℃まで10hかけて昇温し、600℃で4h保持したことを除いては、実施例1と同様の手順で、組成式LiWOで表されるリチウムタングステン複合酸化物を作製した。
<Comparative example 2>
(Synthesis of Li 2 WO 4 )
Except that 13.911 g of WO 3 and 4.433 g of Li 2 CO 3 (Li / W = 2) were weighed, heated from room temperature to 600 ° C. over 10 h, and held at 600 ° C. for 4 h. In the same procedure as in Example 1, a lithium tungsten composite oxide represented by the composition formula Li 2 WO 4 was produced.

<比較例3>
(LiWOの合成)
13.910gのWO及び13.300gのLiCO(Li/W=6)を秤量したことを除いては、実施例1と同様の手順で、組成式LiWOで表されるリチウムタングステン複合酸化物を作製した。
<Comparative Example 3>
(Synthesis of Li 6 WO 6 )
It is represented by the composition formula Li 6 WO 6 in the same procedure as in Example 1 except that 13.910 g of WO 3 and 13.300 g of Li 2 CO 3 (Li / W = 6) were weighed. A lithium tungsten composite oxide was prepared.

<比較例4>
三酸化タングステン(WO)(高純度化学社製)を準備した。
<Comparative example 4>
Tungsten trioxide (WO 3 ) (manufactured by Kojundo Chemical Co., Ltd.) was prepared.

(エックス線回折測定)
実施例1及び比較例1〜4に係るリチウムタングステン複合酸化物又はタングステン酸化物について、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて粉末エックス線回折測定を行った。線源はCuKα線、管電圧及び管電流はそれぞれ30kV及び15mAとし、回折エックス線は厚み30μmのKβフィルターを通り高速一次元検出器(型番:D/teX Ultra 2)にて検出される。サンプリング幅は0.01°、スキャンスピードは5°/min、発散スリット幅は0.625°、受光スリット幅は13mm(OPEN)、散乱スリット幅は8mmとする。得られたエックス線回折図及びエックス線回折データについて、統合粉末エックス線解析ソフトウェア「PDXL」(Rigaku社製)を用いて解析を実施した。それぞれの化合物が帰属される空間群又は晶系と結晶格子定数を表1に示した。実施例1のリチウムタングステン複合酸化物は、空間群、及び格子定数の値から、ICDD(登録商標)が提供するPDFカード番号01−088−0756に帰属可能なLiWOであることが確認された。なお、「R−3」のバー”−”は本来「3」の上に付して記載される。「P2−1/n」のバー”−”は本来「2」の上に付して記載される。
(X-ray diffraction measurement)
About the lithium tungsten complex oxide or tungsten oxide which concerns on Example 1 and Comparative Examples 1-4, the powder X-ray-diffraction measurement was performed using the X-ray-diffraction apparatus (the Rigaku company make, model name: MiniFlex II). The radiation source is CuKα ray, the tube voltage and tube current are 30 kV and 15 mA, respectively, and the diffraction X-ray passes through a Kβ filter having a thickness of 30 μm and is detected by a high-speed one-dimensional detector (model number: D / teX Ultra 2). The sampling width is 0.01 °, the scanning speed is 5 ° / min, the divergence slit width is 0.625 °, the light receiving slit width is 13 mm (OPEN), and the scattering slit width is 8 mm. The obtained X-ray diffraction diagram and X-ray diffraction data were analyzed using integrated powder X-ray analysis software “PDXL” (manufactured by Rigaku). Table 1 shows the space group or crystal system to which each compound belongs and the crystal lattice constant. The lithium tungsten composite oxide of Example 1 is confirmed to be Li 4 WO 5 that can be assigned to PDF card number 01-088-0756 provided by ICDD (registered trademark) from the values of the space group and the lattice constant. It was done. In addition, the bar “-” of “R-3” is originally described above “3”. The bar “-” of “P2-1 / n” is originally described above “2”.

Figure 2016201223
Figure 2016201223

(非水電解質二次電池の作製)
実施例1及び比較例1〜4のそれぞれのリチウムタングステン複合酸化物又はタングステン酸化物を非水電解質電池の負極活物質として用いて、以下の手順で非水電解質二次電池を作製し、電池特性を評価した。
(Preparation of non-aqueous electrolyte secondary battery)
Using each lithium tungsten composite oxide or tungsten oxide of Example 1 and Comparative Examples 1 to 4 as a negative electrode active material of a non-aqueous electrolyte battery, a non-aqueous electrolyte secondary battery was produced by the following procedure, and battery characteristics were obtained. Evaluated.

負極活物質2.275gとアセチレンブラック(AB)0.700gをそれぞれ秤取し、直径5mmのジルコニア製ボール(商品名:YTZボール)が90g(約250個)入った内容積80mLのジルコニア製ポットに投入した。このポットにさらにエタノール10mLを投入し、蓋をして、遊星型ボールミル(FRITSCH社製、型番pulverisette 5)にセットし、公転回転数300rpmで9分混合した後に1分間の休止を入れる操作を計6回繰り返した。この混合物を75℃の乾燥機で3時間以上乾燥することで、混合粉体を調製した。この混合粉体とポリフッ化ビニリデン(PVdF)を、負極活物質、AB及びPVdFの質量比が65:20:15となるように混合した。この混合物を、分散媒としてN−メチルピロリドンを加えて混練分散し、塗布液を調製した。なお、PVdFについては、固形分が溶解分散された液を用いることによって、固形質量換算した。該塗布液を厚さ20μmの電解銅箔集電体に塗布した後、分散媒を蒸発させるために80℃のホットプレート上で60分の乾燥を行い、ロールプレスを行うことで負極板を作製した。合剤層のプレス後の厚みは13μm、塗布重量は2.5mg/cmであった。ここで、合剤層の厚みを実用電池として好ましい範囲(40〜150μm)よりも薄くしたのは、負極活物質としての挙動をより正確に捉えるためである。 A zirconia pot with an internal volume of 80 mL that weighs 2.275 g of the negative electrode active material and 0.700 g of acetylene black (AB), and contains 90 g (about 250 pieces) of zirconia balls (product name: YTZ balls) having a diameter of 5 mm. It was thrown into. The pot was further charged with 10 mL of ethanol, covered, set on a planetary ball mill (manufactured by FRISCH, model number pulverisete 5), mixed for 9 minutes at a revolution speed of 300 rpm, and then put into a rest for 1 minute. Repeated 6 times. This mixture was dried at 75 ° C. for 3 hours or longer to prepare a mixed powder. This mixed powder and polyvinylidene fluoride (PVdF) were mixed so that the mass ratio of the negative electrode active material, AB, and PVdF was 65:20:15. This mixture was kneaded and dispersed by adding N-methylpyrrolidone as a dispersion medium to prepare a coating solution. In addition, about PVdF, it converted into solid mass by using the liquid by which solid content was melt | dissolved and dispersed. After applying the coating solution to an electrolytic copper foil current collector having a thickness of 20 μm, drying is performed on a hot plate at 80 ° C. for 60 minutes in order to evaporate the dispersion medium, and a negative electrode plate is produced by performing a roll press. did. The thickness of the mixture layer after pressing was 13 μm, and the coating weight was 2.5 mg / cm 2 . Here, the reason why the thickness of the mixture layer is made thinner than a preferable range (40 to 150 μm) as a practical battery is to more accurately grasp the behavior as the negative electrode active material.

前記負極を作用極として非水電解質二次電池を組立て、負極としての挙動を評価した。単独挙動を正確に観察する目的のため、対極には金属リチウムをニッケル箔集電体に密着させて用いた。ここで、非水電解質二次電池の容量が負極によって制限されないよう、十分な量の金属リチウムを配置した。   A non-aqueous electrolyte secondary battery was assembled using the negative electrode as a working electrode, and the behavior as a negative electrode was evaluated. For the purpose of accurately observing the single behavior, lithium metal was used in close contact with the nickel foil current collector as the counter electrode. Here, a sufficient amount of metallic lithium was disposed so that the capacity of the nonaqueous electrolyte secondary battery was not limited by the negative electrode.

電解液として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)が体積比6:7:7である混合溶媒に濃度が1mol/LとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用い、正極端子及び負極端子の開放端部が外部露出するように電極を収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記電解液を注液後、注液孔を封止した。以上の手順にて非水電解質二次電池(リチウム二次電池)を作製した。 As an electrolytic solution, LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) had a volume ratio of 6: 7: 7 so that the concentration would be 1 mol / L. The solution was used. As the separator, a polypropylene microporous film whose surface was modified with polyacrylate was used. A metal resin composite film made of polyethylene terephthalate (15 μm) / aluminum foil (50 μm) / metal-adhesive polypropylene film (50 μm) is used for the exterior body, and the electrodes are exposed so that the open ends of the positive electrode terminal and the negative electrode terminal are exposed to the outside. The metal resin composite film was hermetically sealed with the fusion allowance where the inner surfaces of the metal resin composite films faced each other except for the portion serving as the injection hole, and the injection hole was sealed after the electrolyte solution was injected. A non-aqueous electrolyte secondary battery (lithium secondary battery) was produced by the above procedure.

(充放電試験)
以下の試験では、作用極と対極との間で電圧制御を行ったが、対極における金属リチウムの溶解・析出反応抵抗が極めて低いことから、充放電中の端子間電圧は、金属リチウムを用いた参照極に対する作用極の電位と等しいとみなすことができる。
(Charge / discharge test)
In the following tests, voltage control was performed between the working electrode and the counter electrode. However, since lithium lithium dissolution / deposition reaction resistance at the counter electrode was extremely low, metal lithium was used as the terminal voltage during charging and discharging. It can be regarded as being equal to the potential of the working electrode with respect to the reference electrode.

以下の試験は、リチウムタングステン複合酸化物又はタングステン酸化物を負極活物質として評価することを目的としているから、前記リチウムタングステン複合酸化物に対して電気化学的にリチウムイオンが吸蔵される反応である還元方向に通電する操作から開始する。以下、本願明細書では、リチウムタングステン複合酸化物に対してリチウムイオンが吸蔵される還元反応を「充電」、リチウムイオンが放出される酸化反応を「放電」という。   The following test is intended to evaluate lithium tungsten composite oxide or tungsten oxide as a negative electrode active material, and thus is a reaction in which lithium ions are electrochemically occluded with respect to the lithium tungsten composite oxide. Start with the operation of energizing in the reduction direction Hereinafter, in this specification, the reduction reaction in which lithium ions are occluded in the lithium tungsten composite oxide is referred to as “charging”, and the oxidation reaction in which lithium ions are released is referred to as “discharging”.

上記非水電解質二次電池について、25℃環境下で、2〜4サイクルの充放電を実施した。充電は定電流定電位充電とし、充電下限電位は0.0V(vs.Li/Li)、0.1V(vs.Li/Li)又は0.2V(vs.Li/Li)とし、充電終止条件は、充電電流が2mA/gに減衰した時点とした。放電は定電流放電とし、放電終止電位は3.0V(vs.Li/Li)とした。充電電流の定電流値及び放電電流は、負極板が含有する負極活物質の質量に対して50mA/gとした。全てのサイクルにおいて、充電後及び放電後に10分間の休止時間を設定した。なお、実施例1において50mA/gは約0.25CmAに相当する。 About the said nonaqueous electrolyte secondary battery, 2-4 cycles charge / discharge was implemented in 25 degreeC environment. The charging is constant current constant potential charging, and the lower limit charging potential is 0.0 V (vs. Li / Li + ), 0.1 V (vs. Li / Li + ) or 0.2 V (vs. Li / Li + ), The charge termination condition was the time when the charging current was attenuated to 2 mA / g. The discharge was a constant current discharge, and the discharge end potential was 3.0 V (vs. Li / Li + ). The constant current value and the discharge current of the charging current were 50 mA / g with respect to the mass of the negative electrode active material contained in the negative electrode plate. In all cycles, a 10 minute rest period was set after charging and discharging. In Example 1, 50 mA / g corresponds to about 0.25 CmA.

表2に、充電下限電位を0.0V(vs.Li/Li)としたときの2サイクル目の平均放電電位及び2サイクル目の充放電ヒステリシスを示す。表3に、充電下限電位を0.1V(vs.Li/Li)としたときの2サイクル目の平均放電電位及び2サイクル目の充放電ヒステリシスを示す。 Table 2 shows the average discharge potential of the second cycle and the charge / discharge hysteresis of the second cycle when the charge lower limit potential is 0.0 V (vs. Li / Li + ). Table 3 shows the average discharge potential of the second cycle and the charge / discharge hysteresis of the second cycle when the charge lower limit potential is 0.1 V (vs. Li / Li + ).

Figure 2016201223
Figure 2016201223

Figure 2016201223
Figure 2016201223

また、図1に、実施例1について、充電下限電位を0.0V(vs.Li/Li)としたときの2サイクル目の充放電カーブを示す。図2に、実施例1について、充電下限電位を0.1V(vs.Li/Li)としたときの2サイクル目の充放電カーブを示す。図3−6に、比較例1−4について、充電下限電位を0.1V(vs.Li/Li)としたときの2サイクル目の充放電カーブをそれぞれ示す。いずれの図も、横軸は充電状態を表すSOC、または放電深度を表すDODとしており、2サイクル目の放電容量を100%として計算している。これらの図から、LiWOを用いた負極は、0.7V(vs.Li/Li)付近にプラトーが観察され、卑な電位で放電が進行していることがわかる。 FIG. 1 shows a charge / discharge curve for the second cycle when the lower limit charge potential is 0.0 V (vs. Li / Li + ) for Example 1. FIG. 2 shows a charge / discharge curve in the second cycle when the lower limit charge potential is 0.1 V (vs. Li / Li + ) for Example 1. 3-6 shows charge / discharge curves in the second cycle when the lower limit charge potential is 0.1 V (vs. Li / Li + ) for Comparative Example 1-4. In each figure, the horizontal axis represents SOC representing the state of charge or DOD representing the depth of discharge, and the discharge capacity at the second cycle is calculated as 100%. From these figures, it can be seen that in the negative electrode using Li 4 WO 5 , a plateau is observed in the vicinity of 0.7 V (vs. Li / Li + ), and discharge proceeds at a base potential.

以上の結果からわかるように、いずれの充電条件を採用した場合でも、LiWOを負極活物質に用いた実施例1においては、他のリチウムタングステン複合酸化物又はタングステン酸化物を用いた比較例1〜4に比べて、平均放電電位が低く、充放電ヒステリシスが小さいことがわかる。 As can be seen from the above results, in any example in which Li 4 WO 5 was used as the negative electrode active material in any of the charging conditions, a comparison using another lithium tungsten composite oxide or tungsten oxide was performed. Compared with Examples 1-4, it turns out that an average discharge potential is low and charging / discharging hysteresis is small.

次に、実施例1について、表2と表3を比べると、充電下限電位を0.0V(vs.Li/Li)とした場合に比べて、充電下限電位を0.1V(vs.Li/Li)とした方が、平均放電電位が低く、充放電ヒステリシスが小さくできることがわかる。 Next, when Table 2 and Table 3 are compared for Example 1, the charging lower limit potential is 0.1 V (vs. Li) compared to the case where the charging lower limit potential is 0.0 V (vs. Li / Li + ). / Li + ) shows that the average discharge potential is lower and the charge / discharge hysteresis can be reduced.

表4に、より実用的な実施態様として、充電下限電位は0.1V(vs.Li/Li)又は0.2V(vs.Li/Li)とし、放電終止電位を1.5V(vs.Li/Li)とした場合の2サイクル目の平均放電電位及び充放電ヒステリシスの値を示す。放電終止電位を1.5V(vs.Li/Li)とした場合、平均放電電位はより低く、充放電ヒステリシスの値はより小さくできる。 In Table 4, as a more practical embodiment, the lower limit charge potential is 0.1 V (vs. Li / Li + ) or 0.2 V (vs. Li / Li + ), and the discharge end potential is 1.5 V (vs. . Li / Li + ) shows the average discharge potential and charge / discharge hysteresis value in the second cycle. When the discharge end potential is 1.5 V (vs. Li / Li + ), the average discharge potential is lower, and the charge / discharge hysteresis value can be smaller.

Figure 2016201223
Figure 2016201223

また、表4から、充電下限電位を0.1V(vs.Li/Li)とした場合に比べて、充電下限電位を0.2V(vs.Li/Li)とした方が、平均放電電位がさらに低く、充放電ヒステリシスをさらに小さくできることがわかる。 Also, from Table 4, the average discharge is lower when the charge lower limit potential is 0.2 V (vs. Li / Li + ) than when the charge lower limit potential is 0.1 V (vs. Li / Li + ). It can be seen that the potential is lower and the charge / discharge hysteresis can be further reduced.

次に、LiWO負極の充電下限電位を0.0V(vs.Li/Li)、0.1V(vs.Li/Li)又は0.2V(vs.Li/Li)とし、放電終止電位を3.0V(vs.Li/Li)としたそれぞれの電池について、サイクル安定性を評価するため、4サイクル目の平均放電電位から1サイクル目の平均放電電位を差し引いた値を算出したので、「放電電位上昇(V)」として表5に示す。 Next, 0.0 V and lower limit charging potential of Li 4 WO 5 negative electrode (vs.Li/Li +), and 0.1V (vs.Li/Li +) or 0.2V (vs.Li/Li +), For each battery having a discharge end potential of 3.0 V (vs. Li / Li + ), in order to evaluate cycle stability, a value obtained by subtracting the average discharge potential of the first cycle from the average discharge potential of the fourth cycle is Since it was calculated, it is shown in Table 5 as “discharge potential rise (V)”.

Figure 2016201223
Figure 2016201223

表5から、充放電サイクル性能に優れた電池とすることができる点においても、LiWO負極の充電下限電位は、0.0V(vs.Li/Li)よりも0.1V(vs.Li/Li)が好ましく、0.2V(vs.Li/Li)がより好ましいことがわかる。 Table 5, also in that it can be an excellent battery charge and discharge cycle performance, Li 4 WO 5 lower limit charging potential of the negative electrode, 0.0V (vs.Li/Li +) 0.1V than (vs .Li / Li +) is preferred, 0.2V (vs.Li/Li +) and more preferably it is seen.

(活物質体積当たりの放電容量の評価)
上記実施例に係る電池について、種々の充放電試験を行った場合の放電容量を求める場合は、負極合剤が含有しているアセチレンブラック(AB)の寄与分を差し引いて評価することとした。この目的のために、LiWOに代えて電気化学的に不活性なAlを用いたことを除いては、実施例1と同様の手順で電池(以下、「AB電池」という。)を作製し、同様の充放電試験を行い、ABの質量当たりの放電容量(mAh/g)を求めた。次に、実施例に係る電池から得られたみかけの放電容量(mAh)からABの寄与分に相当する放電容量(mAh)を差し引いた値を用いて、活物質質量あたりの真の放電容量(mAh/g)を求めた。次に、活物質体積あたりの真の放電容量(mAh/cc)を以下の式により求めた。
活物質体積あたりの真の放電容量(mAh/cc)=活物質質量あたりの真の放電容量(mAh/g)×LiWOの真密度(5.47g/cc)
種々の充電下限電位及び放電終止電位を採用したときの2サイクル目の活物質体積あたりの真の放電容量を表6に示す。なお、参考として黒鉛の実績値(350mAh/g×2.2g/cc)を併記する。
(Evaluation of discharge capacity per volume of active material)
In the case of obtaining the discharge capacity when various charge / discharge tests were performed on the batteries according to the above examples, the contribution of acetylene black (AB) contained in the negative electrode mixture was subtracted for evaluation. For this purpose, a battery (hereinafter referred to as “AB battery”) was prepared in the same manner as in Example 1 except that electrochemically inactive Al 2 O 3 was used instead of Li 4 WO 5. And the same charge / discharge test was conducted to determine the discharge capacity (mAh / g) per mass of AB. Next, using the value obtained by subtracting the discharge capacity (mAh) corresponding to the contribution of AB from the apparent discharge capacity (mAh) obtained from the battery according to the example, the true discharge capacity per active material mass ( mAh / g) was determined. Next, the true discharge capacity (mAh / cc) per active material volume was determined by the following equation.
True discharge capacity per active material volume (mAh / cc) = True discharge capacity per active material mass (mAh / g) × True density of Li 4 WO 5 (5.47 g / cc)
Table 6 shows the true discharge capacity per volume of the active material at the second cycle when various charge lower limit potentials and discharge end potentials are adopted. For reference, the actual value of graphite (350 mAh / g × 2.2 g / cc) is also shown.

Figure 2016201223
Figure 2016201223

表6の結果からわかるように、本発明に係る非水電解質二次電池用負極活物質は、体積エネルギー密度の点で優れている。   As can be seen from the results in Table 6, the negative electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is excellent in terms of volume energy density.

さらに、0.3V(vs.Li/Li)を超える電位を充電下限電位として設定することにより、負極集電体にアルミニウムを使用することができるという利点が生まれる。したがって、負極活物質にLiWOを用い、負極集電体にアルミニウム又はアルミニウム合金を用い、0.3V(vs.Li/Li)を超える電位を充電下限電位として設定することにより、さらに軽量で安価な非水電解質二次電池を提供できる。 Furthermore, by setting a potential exceeding 0.3 V (vs. Li / Li + ) as the charging lower limit potential, there is an advantage that aluminum can be used for the negative electrode current collector. Therefore, Li 4 WO 5 is used for the negative electrode active material, aluminum or an aluminum alloy is used for the negative electrode current collector, and a potential exceeding 0.3 V (vs. Li / Li + ) is set as the lower limit charge potential. A lightweight and inexpensive non-aqueous electrolyte secondary battery can be provided.

(充放電過程の負極活物質の結晶構造解析)
実施例1のLiWO、AB及びPVdFの混合物がN−メチルピロリドンにて混練分散された塗布液を,上記と同様の方法で作製した。ステンレス鋼(商品名:SUS316)製の端子を取り付けた発泡ニッケルに該塗布液を塗布した後、分散媒を蒸発させるために80℃の乾燥機で30分の乾燥を行い、一軸加圧を行うことで作用極を作製した。合剤の塗布重量は約30mgであった。
(Crystal structure analysis of negative electrode active material during charge / discharge process)
A coating solution in which a mixture of Li 4 WO 5 , AB and PVdF of Example 1 was kneaded and dispersed with N-methylpyrrolidone was prepared in the same manner as described above. After the coating solution is applied to foamed nickel with terminals made of stainless steel (trade name: SUS316), it is dried for 30 minutes with a dryer at 80 ° C. to evaporate the dispersion medium, and uniaxial pressure is applied. This produced a working electrode. The coating weight of the mixture was about 30 mg.

対極にはリチウム金属を使用した。ステンレス鋼(商品名:SUS316)製の端子を取り付けたステンレス鋼(商品名:SUS316)製のメッシュ集電体の両面に、厚さ300μmのリチウム金属箔を貼り合わせてプレス加工したものを対極とした。また、リチウム金属片をステンレス鋼(商品名:SUS316)製の集電棒の先端に貼り付けたものを参照極とした。   Lithium metal was used for the counter electrode. A stainless steel (product name: SUS316) mesh current collector to which stainless steel (product name: SUS316) terminals are attached is bonded to both sides of a 300 μm-thick lithium metal foil and pressed. did. Moreover, what attached the lithium metal piece to the front-end | tip of the collector rod made from stainless steel (brand name: SUS316) was made into the reference electrode.

電解液として,エチレンカーボネート(EC)/ジエチルカーボネート(DEC)が体積比5:5である混合溶媒に、濃度が1.0mol/LとなるようにLiClOを溶解させた溶液を用いた。 As an electrolytic solution, a solution in which LiClO 4 was dissolved in a mixed solvent having an ethylene carbonate (EC) / diethyl carbonate (DEC) volume ratio of 5: 5 so as to have a concentration of 1.0 mol / L was used.

アルゴン雰囲気を維持したグローブボックス中で次に示すようなガラス製の非水電解質電池を組み立てた。予め容器の蓋部分に導線部を固定した金メッキクリップに上記対極と作用極と参照極とを各1枚ずつ挟んだ後、作用極と対極が対向するように固定した。上記対極と作用極と参照極はこの順番に配置されるように固定した。次に、一定量の電解液を入れたポリプロピレン製カップをガラス容器内に設置し、そこに作用極、対極及び参照極が浸かるように蓋をすることで非水電解質電池A〜Fを組み立てた。   A glass non-aqueous electrolyte battery as shown below was assembled in a glove box maintained in an argon atmosphere. Each of the counter electrode, the working electrode, and the reference electrode was sandwiched between gold-plated clips whose conductor portions were fixed to the lid portion of the container in advance, and then fixed so that the working electrode and the counter electrode face each other. The counter electrode, working electrode, and reference electrode were fixed so as to be arranged in this order. Next, a non-aqueous electrolyte battery A to F was assembled by installing a cup made of polypropylene containing a certain amount of electrolyte in a glass container and covering the working electrode, counter electrode, and reference electrode so as to be immersed therein. .

非水電解質電池Aについては室温環境下に放置し、非水電解質電池B〜Fについては、それぞれ次の操作を行った後、10分以上の休止を置き、作用極を取り出した。   The non-aqueous electrolyte battery A was left in a room temperature environment, and the non-aqueous electrolyte batteries B to F were each subjected to the following operation and then suspended for 10 minutes or more, and the working electrode was taken out.

(電池B)
室温環境下で、充電電流10mA/gにて定電流充電を行い、電位が0.7V(vs.Li/Li)に達した時点で開回路状態とした。
(Battery B)
Under a room temperature environment, constant current charging was performed at a charging current of 10 mA / g, and the circuit was opened when the potential reached 0.7 V (vs. Li / Li + ).

(電池C)
室温環境下で、充電電流10mA/gにて定電流充電を行い、電位が0.428V(vs.Li/Li)に達した時点で開回路状態とした。
(Battery C)
Under a room temperature environment, constant current charging was performed at a charging current of 10 mA / g, and the circuit was opened when the potential reached 0.428 V (vs. Li / Li + ).

(電池D)
室温環境下で、充電電流10mA/gにて定電流充電を行い、電位が0.4V(vs.Li/Li)に達した時点で開回路状態とした。
(Battery D)
Under a room temperature environment, constant current charging was performed at a charging current of 10 mA / g, and the circuit was opened when the potential reached 0.4 V (vs. Li / Li + ).

(電池E)
室温環境下で、充電電流10mA/g、充電下限電位0.2V(vs.Li/Li)の定電流定電位充電とし、充電終止条件は、充電電流が2mA/gに達した時点とした。
(Battery E)
Under a room temperature environment, the charging current is 10 mA / g, the charging lower limit potential is 0.2 V (vs. Li / Li + ), constant current and constant potential charging, and the charging termination condition is the time when the charging current reaches 2 mA / g. .

(電池F)
室温環境下で、充放電を2サイクル繰り返し、2サイクル目の放電が終了した時点で開回路状態とした。ここで、充電は、充電電流10mA/g、充電下限電位0.2V(vs.Li/Li+)の定電流定電位充電とし、充電終止条件は、充電電流が2mA/gに減衰した時点とした。放電は、放電電流10mA/g、放電上限電位3.0V(vs.Li/Li+)の定電流放電とした。
(Battery F)
Under a room temperature environment, charge and discharge were repeated for two cycles, and an open circuit state was established when the discharge of the second cycle was completed. Here, the charging is a constant current and constant potential charging with a charging current of 10 mA / g and a charging lower limit potential of 0.2 V (vs. Li / Li + ), and the charge termination condition is that the charging current is attenuated to 2 mA / g. did. The discharge was a constant current discharge with a discharge current of 10 mA / g and a discharge upper limit potential of 3.0 V (vs. Li / Li + ).

取り出した作用極をジメチルカーボネート(DMC)にて洗浄した後、十分に乾燥させた。これを、アルゴン雰囲気を維持するための専用の装置(汎用雰囲気セパレータ)(Rigaku社製)に設置し、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて粉末エックス線回折測定を行った。線源はCuKα線、管電圧及び管電流はそれぞれ30kV及び15mAとし、回折エックス線は厚み30μmのKβフィルターを通り高速一次元検出器(型番:D/teX Ultra 2)にて検出される。サンプリング幅は0.01°、スキャンスピードは5°/min、発散スリット幅は0.625°、受光スリット幅は13mm(OPEN)、散乱スリット幅は8mmとする。得られたエックス線回折図及びエックス線回折データについて、統合粉末エックス線解析ソフトウェア「PDXL」(Rigaku社製)を用いて解析を実施した。   The working electrode taken out was washed with dimethyl carbonate (DMC) and then sufficiently dried. This is installed in a dedicated apparatus (general-purpose atmosphere separator) (manufactured by Rigaku) for maintaining an argon atmosphere, and powder X-ray diffraction measurement is performed using an X-ray diffractometer (manufactured by Rigaku, model name: MiniFlex II). It was. The radiation source is CuKα ray, the tube voltage and tube current are 30 kV and 15 mA, respectively, and the diffraction X-ray passes through a Kβ filter having a thickness of 30 μm and is detected by a high-speed one-dimensional detector (model number: D / teX Ultra 2). The sampling width is 0.01 °, the scanning speed is 5 ° / min, the divergence slit width is 0.625 °, the light receiving slit width is 13 mm (OPEN), and the scattering slit width is 8 mm. The obtained X-ray diffraction diagram and X-ray diffraction data were analyzed using integrated powder X-ray analysis software “PDXL” (manufactured by Rigaku).

エックス線回折測定の結果を図7に示す。図7に付した符号A〜Fは、上記電池A〜Fにそれぞれ対応している。Aでは、表1と同様、ICDD(登録商標)が提供するPDFカード番号01−088−0756に帰属される回折パターンが観察された。B、C及びDでは、Aで観察された回折ピークと同じ角度(例えば18.4°付近)での回折線の他に、Aで観察された回折ピークと異なる角度(例えば17.3°付近)での回折線が観察され、充電の進行に伴って後者の回折強度が次第に増していく様子が観察された。Eでは、前者の回折ピークが弱く、後者の回折ピークが強く観察された。しかし、充放電を行った後の放電末であるFでは、Aと同様の回折パターンが観察された。   The result of X-ray diffraction measurement is shown in FIG. Reference signs A to F attached to FIG. 7 correspond to the batteries A to F, respectively. In A, as in Table 1, a diffraction pattern attributed to PDF card number 01-088-0756 provided by ICDD (registered trademark) was observed. In B, C and D, in addition to the diffraction line at the same angle as the diffraction peak observed at A (for example, around 18.4 °), an angle different from the diffraction peak observed at A (for example, around 17.3 °) ) Was observed, and the diffraction intensity of the latter gradually increased with the progress of charging. In E, the former diffraction peak was weak and the latter diffraction peak was observed strongly. However, the same diffraction pattern as A was observed in F which is the end of discharge after charging and discharging.

さらに、本発明者は、電池Fと同じ条件で充放電を14サイクル繰り返した電池の放電末のリチウムタングステン複合酸化物のエックス線回折パターンを観察した。すると、複数回の充放電サイクル後でも、放電末では空間群P−1に帰属される回折パターンを有し、合成時の各格子定数の値のずれが5%より大きくなることはないことを確認した。したがって、本発明のリチウムタングステン複合酸化物は、充放電サイクル後の放電末においても、ICDD(登録商標)が提供するPDFカード番号01−088−0756に帰属可能であることがわかった。   Furthermore, the present inventor observed the X-ray diffraction pattern of the lithium tungsten composite oxide at the end of discharge of the battery in which charging and discharging were repeated for 14 cycles under the same conditions as in the battery F. Then, even after a plurality of charge / discharge cycles, it has a diffraction pattern belonging to the space group P-1 at the end of discharge, and the deviation of the values of the respective lattice constants at the time of synthesis does not exceed 5%. confirmed. Therefore, it was found that the lithium tungsten composite oxide of the present invention can be assigned to PDF card number 01-088-0756 provided by ICDD (registered trademark) even at the end of discharge after the charge / discharge cycle.

以上のことから、本発明に係るLiWOは、負極活物質として用いたとき、充放電反応が結晶学的にも可逆であること、及び、充放電反応が二相共存反応によって進行することがわかる。この測定結果は、放電カーブにおいてプラトーが観察されたことを裏付けている。 From the above, when Li 4 WO 5 according to the present invention is used as a negative electrode active material, the charge / discharge reaction is crystallographically reversible, and the charge / discharge reaction proceeds by a two-phase coexistence reaction. I understand that. This measurement result confirms that a plateau was observed in the discharge curve.

ここで、本発明に係る非水電解質電池では、充放電の履歴を経ると、負極が備えるリチウムタングステン複合酸化物のモル比Li/Wは、必ずしも合成時点の量論比どおり(4:1)とは限らず、大きく変動しうる。したがって、このリチウムタングステン複合酸化物を特定するにあたって、LiWOのモル比Li/Wの値は採用すべきでない。 Here, in the nonaqueous electrolyte battery according to the present invention, after passing through the charge / discharge history, the molar ratio Li / W of the lithium tungsten composite oxide included in the negative electrode is not necessarily the same as the stoichiometric ratio (4: 1). Not only that, but it can vary greatly. Therefore, in specifying this lithium tungsten composite oxide, the value of the molar ratio Li / W of Li 4 WO 5 should not be adopted.

上述のとおり、本発明に係るリチウムタングステン複合酸化物は、充放電サイクル後の放電末状態で、空間群P−1に帰属可能な結晶構造が維持され、充放電後と合成時の各格子定数の値のずれが5%より大きくなることがなく、ICDD(登録商標)が提供するPDFカード番号01−088−0756に帰属可能である。したがって、非水電解質電池から放電末状態のリチウムタングステン複合酸化物を取り出し、エックス線回折測定を行って、その帰属空間群、及び各格子定数を調べることにより特定することができる。
すなわち、放電末状態の非水電解質電池から取り出したリチウムタングステン複合酸化物についてエックス線回折測定を行って得た回折パターンが、空間群P−1に帰属し、ICDD(登録商標)が提供するPDFカード番号01−088−0756に示される各格子定数に、5%程度の誤差を加えた以下の数値範囲を満たすことが、本発明の負極活物質、及び非水電解質電池であることの目安となる。
4.8≦a≦5.4Å、
7.3≦b≦8.1Å、
4.8≦c≦5.3Å、
97≦α≦107°、
96≦β≦107°、
103≦γ≦114°
As described above, the lithium-tungsten composite oxide according to the present invention maintains the crystal structure that can be assigned to the space group P-1 in the final state of discharge after the charge / discharge cycle, and each lattice constant after charge / discharge and during synthesis. Is not larger than 5%, and can be attributed to PDF card number 01-088-0756 provided by ICDD (registered trademark). Therefore, it can be specified by taking out the lithium tungsten composite oxide in a discharged state from the non-aqueous electrolyte battery, performing X-ray diffraction measurement, and examining its assigned space group and each lattice constant.
That is, a diffraction pattern obtained by performing X-ray diffraction measurement on a lithium tungsten composite oxide taken out from a non-aqueous electrolyte battery in a discharged state belongs to the space group P-1, and is a PDF card provided by ICDD (registered trademark). Satisfying the following numerical range obtained by adding an error of about 5% to each lattice constant indicated by the number 01-088-0756 is a guideline for the negative electrode active material and the nonaqueous electrolyte battery of the present invention. .
4.8 ≦ a ≦ 5.4 mm,
7.3 ≦ b ≦ 8.1cm,
4.8 ≦ c ≦ 5.3cm,
97 ≦ α ≦ 107 °,
96 ≦ β ≦ 107 °,
103 ≦ γ ≦ 114 °

負極の充電下限電位が0.1V(vs.Li/Li+)以上である本発明の非水電解質二次電池は、充電下限電位を0.1V(vs.Li/Li+)に制御した充放電制御回路を備えた蓄電池システムで使用される。 The non-aqueous electrolyte secondary battery of the present invention in which the negative electrode charging lower limit potential is 0.1 V (vs. Li / Li + ) or more is a charge in which the charging lower limit potential is controlled to 0.1 V (vs. Li / Li + ). Used in storage battery systems equipped with a discharge control circuit.

本発明は、エネルギー密度が大きく、自動車の加速性能及び減速時の回生電力を受け入れる能力が優れ、十分な寿命性能を備えた非水電解質二次電池を提供することができるから、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)などの自動車用電池として、有用である。   The present invention can provide a non-aqueous electrolyte secondary battery having a large energy density, excellent acceleration performance of a vehicle and ability to accept regenerative power during deceleration, and sufficient life performance. ), Hybrid vehicles (HEV), plug-in hybrid vehicles (PHEV), and the like.

1 非水電解質二次電池
2 電極群
3 電池容器
4 正極端子
4’正極リード
5 負極端子
5’負極リード
20 蓄電ユニット
30 蓄電装置
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Electrode group 3 Battery container 4 Positive electrode terminal 4 'Positive electrode lead 5 Negative electrode terminal 5' Negative electrode lead 20 Power storage unit 30 Power storage device

Claims (6)

ICDD(登録商標)が提供するPDFカード番号01−088−0756に帰属可能なリチウムタングステン複合酸化物を含有することを特徴とする非水電解質二次電池用負極活物質。   A negative active material for a non-aqueous electrolyte secondary battery, comprising a lithium tungsten composite oxide that can be assigned to PDF card number 01-088-0756 provided by ICDD (registered trademark). 前記リチウムタングステン複合酸化物が、空間群P−1に帰属可能であり、格子定数がそれぞれ、
4.8≦a≦5.4Å、
7.3≦b≦8.1Å、
4.8≦c≦5.3Å、
97≦α≦107°、
96≦β≦107°、
103≦γ≦114°
を満たすことを特徴とする請求項1に記載の非水電解質二次電池用負極活物質。
The lithium tungsten composite oxide can be assigned to the space group P-1, and the lattice constant is
4.8 ≦ a ≦ 5.4 mm,
7.3 ≦ b ≦ 8.1cm,
4.8 ≦ c ≦ 5.3cm,
97 ≦ α ≦ 107 °,
96 ≦ β ≦ 107 °,
103 ≦ γ ≦ 114 °
The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein:
請求項1又は2に記載のリチウムタングステン複合酸化物を、非水電解質二次電池用負極の負極活物質として使用する使用方法。 The usage method which uses the lithium tungsten complex oxide of Claim 1 or 2 as a negative electrode active material of the negative electrode for nonaqueous electrolyte secondary batteries. 請求項1又は請求項2に記載のリチウムタングステン複合酸化物を負極活物質として含有することを特徴とする非水電解質二次電池用負極。   A negative electrode for a non-aqueous electrolyte secondary battery comprising the lithium tungsten composite oxide according to claim 1 or 2 as a negative electrode active material. 正極、負極及び非水電解質を備えた非水電解質二次電池であって、前記負極が、請求項4に記載の非水電解質二次電池用負極であることを特徴とする非水電解質二次電池。   A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the negative electrode is a negative electrode for a non-aqueous electrolyte secondary battery according to claim 4. battery. 前記負極の充電下限電位が0.1V(vs.Li/Li+)以上であることを特徴とする請求項5に記載の非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 5, wherein a lower limit potential of charging of the negative electrode is 0.1 V (vs. Li / Li +) or more.
JP2015079735A 2015-04-09 2015-04-09 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Active JP6465456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015079735A JP6465456B2 (en) 2015-04-09 2015-04-09 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015079735A JP6465456B2 (en) 2015-04-09 2015-04-09 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2016201223A true JP2016201223A (en) 2016-12-01
JP6465456B2 JP6465456B2 (en) 2019-02-06

Family

ID=57424759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015079735A Active JP6465456B2 (en) 2015-04-09 2015-04-09 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6465456B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018190344A1 (en) * 2017-04-11 2019-11-21 ヤマハ発動機株式会社 Lithium ion battery
WO2022186087A1 (en) 2021-03-01 2022-09-09 株式会社村田製作所 Solid-state battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636798A (en) * 1992-07-17 1994-02-10 Fuji Elelctrochem Co Ltd Lithium secondary battery
JPH087886A (en) * 1994-06-21 1996-01-12 Sanyo Electric Co Ltd Nonaquoeus electrolytic secondary battery and manufacture thereof
JP2006172991A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Negative electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636798A (en) * 1992-07-17 1994-02-10 Fuji Elelctrochem Co Ltd Lithium secondary battery
JPH087886A (en) * 1994-06-21 1996-01-12 Sanyo Electric Co Ltd Nonaquoeus electrolytic secondary battery and manufacture thereof
JP2006172991A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Negative electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018190344A1 (en) * 2017-04-11 2019-11-21 ヤマハ発動機株式会社 Lithium ion battery
WO2022186087A1 (en) 2021-03-01 2022-09-09 株式会社村田製作所 Solid-state battery

Also Published As

Publication number Publication date
JP6465456B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
US9692043B2 (en) Active material for nonaqueous electrolyte energy storage device
JP6660581B2 (en) Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR102010014B1 (en) Lithium secondary battery and operating method thereof
JP2017027881A (en) Positive electrode active material for nonaqueous electrolyte battery
JP6186731B2 (en) Nonaqueous electrolyte secondary battery
EP3451437B1 (en) Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device
WO2014115195A1 (en) Nonaqueous electrolyte rechargeable battery
JP6186744B2 (en) Nonaqueous electrolyte secondary battery
JP6465456B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2014216127A (en) Nonaqueous electrolyte secondary battery
JP6403943B2 (en) Lithium ion secondary battery, method for producing the same, and method for using the same
JP6160113B2 (en) Nonaqueous electrolyte secondary battery
JP2017168258A (en) Lithium ion secondary battery
JP6627535B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2017117775A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR101991057B1 (en) Lithium secondary battery and operating method thereof
JP6392502B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery and method for using non-aqueous electrolyte secondary battery manufactured by the manufacturing method
JP6403942B2 (en) Lithium ion secondary battery, method for producing the same, and method for using the same
JP2017059443A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016149328A (en) Negative electrode active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP6699268B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries
JP6164012B2 (en) Electrode for nonaqueous electrolyte storage element
JP2014207092A (en) Nonaqueous electrolyte secondary battery
JP2014191957A (en) Nonaqueous electrolyte secondary battery
JP2015201335A (en) lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6465456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181230