JP2016198775A - Front extrusion processing method of hollow member - Google Patents

Front extrusion processing method of hollow member Download PDF

Info

Publication number
JP2016198775A
JP2016198775A JP2015078482A JP2015078482A JP2016198775A JP 2016198775 A JP2016198775 A JP 2016198775A JP 2015078482 A JP2015078482 A JP 2015078482A JP 2015078482 A JP2015078482 A JP 2015078482A JP 2016198775 A JP2016198775 A JP 2016198775A
Authority
JP
Japan
Prior art keywords
hollow member
shaft portion
forward extrusion
outer diameter
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015078482A
Other languages
Japanese (ja)
Other versions
JP6485832B2 (en
Inventor
洋輝 成宮
Hiroki Narumiya
洋輝 成宮
根石 豊
Yutaka Neishi
豊 根石
加田 修
Osamu Kada
修 加田
久貴 佐分
Hisataka Sawake
久貴 佐分
勝彦 田中
Katsuhiko Tanaka
勝彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel and Sumikin Precision Forge Co Ltd
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Nippon Steel and Sumikin Precision Forge Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp, Nippon Steel and Sumikin Precision Forge Co Ltd filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015078482A priority Critical patent/JP6485832B2/en
Publication of JP2016198775A publication Critical patent/JP2016198775A/en
Application granted granted Critical
Publication of JP6485832B2 publication Critical patent/JP6485832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a front extrusion processing method which can suppress a crack of an inside diameter face of a hollow member not accompanied by a large increase of a manufacturing cost.SOLUTION: A front extrusion processing method narrows down an outside diameter face of a hollow member two steps or more by applying two times or more of the front extrusion processing to the hollow member. The front extrusion processing method includes: a first process for molding a first shaft part having a first outside diameter by the front extrusion processing; and a second process for molding a second shaft part having a second outside diameter which is smaller than the first outside diameter by the front extrusion processing. The second process is performed prior to the first process.SELECTED DRAWING: Figure 1

Description

本発明は、中空部材の前方押出加工方法に関する。   The present invention relates to a method for forward extrusion of a hollow member.

自動車部品などの機械部品の軽量化、低コスト化の要求に対応して、様々な中空冷間鍛造品が製造されるようになっている。中空冷間鍛造品の製造方法としては、例えば、以下の方法が知られている。まず、中実部材を後方押出加工及びその後の打ち抜き加工によって中空化する。そして、中空部材にさらに据え込み加工や前方押出加工等を行うことで、所定の形状の中空冷間鍛造品を作製する。この方法の中空部材の前方押出加工においては、内径部(内径面)の割れ発生が問題となっていた。   Various hollow cold forgings have been manufactured in response to demands for weight reduction and cost reduction of machine parts such as automobile parts. As a method for producing a hollow cold forged product, for example, the following methods are known. First, the solid member is hollowed by backward extrusion and subsequent punching. Then, a hollow cold forged product having a predetermined shape is produced by further performing upsetting and forward extrusion on the hollow member. In the forward extrusion process of the hollow member of this method, the occurrence of cracks in the inner diameter portion (inner diameter surface) has been a problem.

具体的には、中空部材を出発材として、2回以上の前方押出加工(中空部材の外径面を絞る加工)によって、異なる外径を持つ3つ以上の軸部を有する円筒状の所望の段付中空部材を成形する場合がある。この場合、通常は、中空部材の外径面を前方押出加工によって絞ることで2番目の太さの軸部を成形する。次いで、2番目の太さの軸部の外径面を前方押出加工によって絞ることで3番目の太さの軸部を成形する。このように、軸部の太いものから順次成形する。この場合、2番目以降の太さの軸部は、その軸部の上流側(その軸部より外径が太い軸部が存在する側)に存在する段差の数だけ前方押出されるため、段差の数が多くなればなるほど、段付中空部材の内径面割れが発生しやすくなる。   Specifically, a cylindrical desired material having three or more shaft portions having different outer diameters by two or more forward extrusion processes (a process of narrowing the outer diameter surface of the hollow member) using a hollow member as a starting material. A stepped hollow member may be formed. In this case, the shaft portion having the second thickness is usually formed by narrowing the outer diameter surface of the hollow member by forward extrusion. Next, the third-thickness shaft portion is formed by narrowing the outer diameter surface of the second-thickness shaft portion by forward extrusion. Thus, it shape | molds sequentially from the thing with a thick shaft part. In this case, the second and subsequent shaft portions are pushed forward by the number of steps present on the upstream side of the shaft portion (the side where the shaft portion having a larger outer diameter than the shaft portion is present). As the number increases, the inner surface cracks of the stepped hollow member are more likely to occur.

特許文献1においては、加工硬化指数n値が0.2以上の中実の被加工材(出発材)を用いる、もしくは、被加工材の加工硬化指数n値が0.2以上になるよう熱処理を行うことで、被加工材の多段冷間前方押出加工における内部割れを抑制する方法が提案されている。さらに、特許文献1においては、上記被加工材の使用もしくは熱処理に加えて、まず減面率の大きい前方押出加工を中実部材に対して行い、次に、望ましくは焼鈍などの熱処理を行った後、減面率の小さい前方押出加工を行うことで、中実部材の多段冷間前方押出における内部割れを抑制する方法が提案されている。また、特許文献2には、3段の段差を外径面に持つ段付中実部材の製造方法が開示されている。この方法では、出発材である中実部材に対して押出加工を行い、3番目に細い軸部を成形する。次いで、3番目に細い軸部に対して押出加工を行い、最も細い軸部を成形する。その後、3番目に細い軸部の残りに対して、2番目に細い軸部を成形するように、押出加工する。特許文献2においては、上記の順に加工することで、最も細い軸部が受ける前方押出加工の回数を減らし、最も細い軸部における内部割れを抑制する方法が提案されている。   In Patent Document 1, a solid work material (starting material) having a work hardening index n value of 0.2 or more is used, or heat treatment is performed so that the work hardening index n value of the work material becomes 0.2 or more. A method for suppressing internal cracks in multi-stage cold forward extrusion of a workpiece has been proposed. Furthermore, in Patent Document 1, in addition to the use of the workpiece or the heat treatment, first, forward extrusion with a large area reduction ratio is first performed on the solid member, and then, preferably, heat treatment such as annealing is performed. Then, the method of suppressing the internal crack in the multistage cold front extrusion of a solid member by performing the forward extrusion process with a small area reduction rate is proposed. Patent Document 2 discloses a method of manufacturing a stepped solid member having three steps on the outer diameter surface. In this method, a solid member as a starting material is extruded to form the third narrowest shaft portion. Next, extrusion processing is performed on the third thinnest shaft part, and the thinnest shaft part is formed. Thereafter, extrusion is performed so that the second thinnest shaft part is formed with respect to the remaining thinnest shaft part. In Patent Document 2, a method is proposed in which the number of forward extrusion processes received by the thinnest shaft part is reduced and the internal cracks in the thinnest shaft part are suppressed by processing in the order described above.

特開2000−312947号公報Japanese Patent Laid-Open No. 2000-312947 特開昭60−24218号公報Japanese Patent Laid-Open No. 60-24218

しかし、特許文献1で開示された方法は、加工硬化指数n値が0.2以上の被加工材に限定される。さらに、被加工材の加工硬化指数n値を0.2以上にするための熱処理工程や、減面率の大きい前方押出加工において生じた被加工材中のひずみを除去するための中間熱処理工程を必要とするため、製造コストの増加を余儀なくされる。また、特許文献2で開示された方法は、最も細い軸部以外の軸部における割れの発生を抑えようとする場合には効果が全く無い。さらに、特許文献1、2に開示された技術は、中実部材を対象としている。すなわち、特許文献1、2は、中空部材の内径面割れに何ら言及していない。   However, the method disclosed in Patent Document 1 is limited to a workpiece having a work hardening index n value of 0.2 or more. Furthermore, a heat treatment step for setting the work hardening index n value of the work piece to 0.2 or more, and an intermediate heat treatment step for removing strain in the work piece generated in the forward extrusion process with a large area reduction rate This necessitates an increase in manufacturing costs. In addition, the method disclosed in Patent Document 2 is completely ineffective when it is desired to suppress the occurrence of cracks in shaft portions other than the thinnest shaft portion. Furthermore, the techniques disclosed in Patent Documents 1 and 2 are intended for solid members. That is, Patent Documents 1 and 2 do not mention any inner surface cracks of the hollow member.

本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、製造コストの大幅な増加を伴うこと無く、中空部材の内径面割れを抑制することが可能な、新規かつ改良された中空部材の前方押出加工方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is a novel that can suppress cracking of the inner surface of the hollow member without significantly increasing the manufacturing cost. Another object of the present invention is to provide an improved method for forward extrusion of a hollow member.

上記課題を解決するために、本発明の一実施形態によれば、中空部材に2回以上の前方押出加工を行うことで、前記中空部材の外径面を2段階以上絞る前方押出加工方法であって、第1の外径を有する第1の軸部を前記前方押出加工により成形する第1の工程と、前記第1の外径よりも細い第2の外径を有する第2の軸部を前記前方押出加工により成形する第2の工程と、を含み、前記第2の工程は、前記第1の工程よりも先に行われることを特徴とする前方押出加工方法が提供される。   In order to solve the above-described problem, according to an embodiment of the present invention, a forward extrusion method for reducing the outer diameter surface of the hollow member by two or more stages by performing forward extrusion on the hollow member at least twice. A first step of forming a first shaft portion having a first outer diameter by the forward extrusion process, and a second shaft portion having a second outer diameter smaller than the first outer diameter And a second step of forming the portion by forward extrusion, wherein the second step is performed prior to the first step.

ここで、前記第2の工程を行う際の減面率が48%以上であってもよい。   Here, the area reduction rate when performing the second step may be 48% or more.

ダイス、パンチ及びマンドレルを用いて前記前方押出加工を行ってもよい。   The forward extrusion process may be performed using a die, a punch, and a mandrel.

以上説明した本発明によれば、製造コストの大幅な増加を伴うこと無く、中空部材の内径面割れを抑制することが可能である。   According to the present invention described above, it is possible to suppress the inner surface crack of the hollow member without significantly increasing the manufacturing cost.

従来技術及び本発明の実施形態に係る前方押出加工方法の概略を示す工程図である。It is process drawing which shows the outline of the front extrusion method which concerns on a prior art and embodiment of this invention. 図1の最終工程における延性破壊指数の分布を示す断面図である。It is sectional drawing which shows distribution of the ductile fracture index in the last process of FIG. 中空部材の前方押出加工において、減面率が延性破壊指数に与える影響を示すグラフである。It is a graph which shows the influence which an area reduction rate has on a ductile fracture index in forward extrusion processing of a hollow member. 本発明の実施系形態に係る前方押出加工装置の例を示す断面図である。It is sectional drawing which shows the example of the front extrusion processing apparatus which concerns on embodiment type | system | group of this invention. 本発明の実施形態に係る中空部材及び段付中空部材の形状を示す断面図である。It is sectional drawing which shows the shape of the hollow member which concerns on embodiment of this invention, and a stepped hollow member. 中空部材の前方押出加工において、マンドレルの使用の有無が、減面率と延性破壊指数の関係に与える影響を示すグラフである。It is a graph which shows the influence which the presence or absence of the use of a mandrel has on the relationship between the area reduction rate and the ductile fracture index in the forward extrusion of the hollow member.

以下に添付図面を参照しながら、本発明の好適な実施の形態について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、図面は、発明の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の物とは異なる個所もあるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol. The drawings are schematic diagrams for explaining the invention and promoting understanding thereof, and the shape, dimensions, ratios, and the like thereof are different from actual ones, but these are considered in the following explanation and known techniques. The design can be changed as appropriate.

<1.本発明者が行った検討>
本発明者らは、中空部材の内径面割れを抑制する方法について検討し、その結果、本実施形態に係る前方押出加工方法に想到した。そこで、まず、本発明者らが行った検討について説明する。
<1. Study conducted by the present inventor>
The present inventors examined a method for suppressing the inner surface crack of the hollow member, and as a result, came up with the forward extrusion method according to the present embodiment. Therefore, first, the study conducted by the present inventors will be described.

本発明者らは、中空部材の前方押出加工における内径面割れに及ぼす押出順序の影響を検討するために、前方押出中の中空部材に生じる延性破壊指数を有限要素法解析により推定した。その過程を図1、図2に基づいて説明する。   In order to examine the influence of the extrusion order on the inner surface crack in the forward extrusion of the hollow member, the inventors estimated the ductile fracture index generated in the hollow member during forward extrusion by finite element analysis. The process will be described with reference to FIGS.

図1(a)は、従来技術(比較例)による中空部材の前方押出加工方法の概略を示す工程図であり、図1(b)は、本発明の実施形態(実施例)に係る中空部材の前方押出加工方法の概略を示す工程図である。なお、図1(a)及び図1(b)に示す工程図は、各工程の被加工材である円筒状の中空部材Wをその中心軸に沿って切った断面図により構成される。従来技術及び本実施形態の前方押出加工のどちらも素材(出発材)の中空部材W(図1(a)及び図1(b)の最上段)および最終工程後の段付中空部材Wの形状(図1(a)及び図1(b)の最下段)は同一である。詳細には、段付中空部材Wは、外径の異なる4つの軸部を有し、且つ、4つの軸部は、その並び順に従って外径が細くなっている。しかしながら、従来技術による前方押出加工方法と本実施形態に係る前方押出加工方法とでは押出し(絞り)の順序が異なる。詳細には、従来技術では、出発材の中空部材Wの外径面を前方押出加工によって絞ることで3番目に細い軸部113を成形し(図1(a)の1工程目)、軸部113の外径面を前方押出加工によって絞ることで2番目に細い軸部112を成形し(図1(a)の2工程目)、軸部112の外径面を前方押出加工によって絞ることで最も細い軸部111(図1(a)の3工程目)を成形する。それに対し、本実施形態では、出発材の中空部材Wの外径面を前方押出加工によって絞ることで2番目に細い軸部112を成形し(図1(b)の1工程目)、軸部112の外径面を前方押出加工によって絞ることで最も細い軸部111を成形し(図1(b)の2工程目)、最も太い軸部114の外径面を前方押出加工によって絞ることで3番目に細い軸部113を成形する(図1(b)の3工程目)。すなわち、図1(b)においては、最も細い軸部111を成形した後に、軸部111よりも太い軸部114を成形する(3工程目)。   Fig.1 (a) is process drawing which shows the outline of the forward extrusion process method of the hollow member by a prior art (comparative example), FIG.1 (b) is the hollow member which concerns on embodiment (Example) of this invention. It is process drawing which shows the outline of this front extrusion processing method. 1A and 1B is a cross-sectional view of a cylindrical hollow member W, which is a material to be processed in each step, cut along the central axis. In both the conventional technique and the forward extrusion process of the present embodiment, the shape of the hollow member W of the raw material (starting material) (the uppermost stage in FIGS. 1A and 1B) and the stepped hollow member W after the final process (The lowest stage in FIG. 1A and FIG. 1B) is the same. Specifically, the stepped hollow member W has four shaft portions having different outer diameters, and the four shaft portions have outer diameters that are reduced according to the arrangement order. However, the order of extrusion (drawing) differs between the forward extrusion method according to the prior art and the forward extrusion method according to the present embodiment. Specifically, in the prior art, the third thin shaft portion 113 is formed by narrowing the outer diameter surface of the hollow member W as a starting material by forward extrusion (first step in FIG. 1A), and the shaft portion By squeezing the outer diameter surface of 113 by forward extrusion, the second thinnest shaft portion 112 is formed (second step in FIG. 1A), and the outer diameter surface of the shaft portion 112 is squeezed by forward extrusion processing. The thinnest shaft portion 111 (the third step in FIG. 1A) is formed. On the other hand, in this embodiment, the second thin shaft portion 112 is formed by narrowing the outer diameter surface of the hollow member W as a starting material by forward extrusion (first step in FIG. 1B), and the shaft portion By narrowing the outer diameter surface of 112 by forward extrusion, the thinnest shaft portion 111 is formed (second step in FIG. 1B), and the outer diameter surface of the thickest shaft portion 114 is narrowed by forward extrusion. The third thinnest shaft portion 113 is formed (third step in FIG. 1B). That is, in FIG.1 (b), after shape | molding the thinnest axial part 111, the axial part 114 thicker than the axial part 111 is shape | molded (3rd process).

まず、本発明者らは、図1(a)の従来技術及び図1(b)の本実施形態における前方押出加工方法によって段付中空部材Wに生じる内径面割れの可能性を予測するために、各方法での中空部材Wの延性破壊指数Iを有限要素法解析により推定した。詳細には、各方法での段付中空部材Wを複数の小領域に区分し、各小領域に生じる延性破壊指数Iを推定した。延性破壊指数Iは以下の数式(1)で示される。   First, in order to predict the possibility of internal surface cracks occurring in the stepped hollow member W by the forward extrusion method in the prior art of FIG. 1 (a) and the present embodiment of FIG. 1 (b). The ductile fracture index I of the hollow member W in each method was estimated by finite element analysis. Specifically, the stepped hollow member W in each method was divided into a plurality of small regions, and the ductile fracture index I generated in each small region was estimated. The ductile fracture index I is represented by the following formula (1).

Figure 2016198775
Figure 2016198775

ここで、Iは延性破壊指数、σmaxは最大主応力、σeqは相当応力、εeqは相当塑性ひずみである。数式(1)の右辺の分子に書かれている積分式はCockcroft&Lathamの式と呼ばれる延性破壊条件式であり、この積分式から計算される数値が材料固有の定数cに達すると、割れが発生すると判断する。すなわち、延性破壊指数Iが1に達すると割れが発生すると判断する。 Here, I is the ductile fracture index, σ max is the maximum principal stress, σ eq is the equivalent stress, and ε eq is the equivalent plastic strain. The integral equation written in the numerator on the right side of Equation (1) is a ductile fracture condition equation called Cockcroft &Latham's equation. When the numerical value calculated from this integral equation reaches a constant c specific to the material, cracking occurs. to decide. That is, it is determined that cracking occurs when the ductile fracture index I reaches 1.

また、解析条件は以下のとおりである。外径φ20mm、内径φ10mmの中空部材Wを3回の前方押出により、図1(a)及び図1(b)の最下段に示されるように、最も太い軸部114の外径がφ20mm、内径がφ10mm、3番目に細い軸部113の外径がφ16mm、内径がφ5mm、2番目に細い軸部112の外径がφ15mm、内径がφ5mm、最も細い軸部111の外径がφ14mm、内径が5mmとなるように成形した。成形された段付中空部材Wの長手方向軸(中心軸)と各軸部を繋ぐ傾斜面121(軸部111と軸部112の間)、傾斜面122(軸部112と軸部113の間)、傾斜面123(軸部113と軸部114の間)のなす角度は20°、傾斜面121、122、123の角部の曲率半径は0.5mmとした。せん断摩擦係数m=0.1、軸対称モデル、金型は全て剛体、中空部材Wは剛塑性体(四角形要素)でSCr420H球状化焼鈍材の変形抵抗曲線および材料定数cを使用した。   The analysis conditions are as follows. A hollow member W having an outer diameter of φ20 mm and an inner diameter of φ10 mm is extruded forward three times, so that the outermost diameter of the thickest shaft portion 114 is φ20 mm and the inner diameter is as shown in the lowermost stage of FIGS. The outer diameter of the third thinnest shaft part 113 is φ16 mm, the inner diameter is φ5 mm, the outer diameter of the second thinnest shaft part 112 is φ15 mm, the inner diameter is φ5 mm, the outer diameter of the thinnest shaft part 111 is φ14 mm, and the inner diameter is Molded to 5 mm. An inclined surface 121 (between the shaft portion 111 and the shaft portion 112) and an inclined surface 122 (between the shaft portion 112 and the shaft portion 113) connecting the longitudinal axis (center axis) of the molded stepped hollow member W and each shaft portion. ), The angle formed by the inclined surface 123 (between the shaft portion 113 and the shaft portion 114) was 20 °, and the radius of curvature of the corner portions of the inclined surfaces 121, 122, 123 was 0.5 mm. The shear friction coefficient m = 0.1, the axisymmetric model, the molds were all rigid bodies, the hollow member W was a rigid plastic body (square element), and the deformation resistance curve and material constant c of the SCr420H spheroidized annealing material were used.

図2に最終工程後の段付き中空部材Wの断面における延性破壊指数Iの分布を示す。詳細には、図2(a)は、図1(a)の工程(従来技術)によって作成された段付中空部材Wの断面における延性破壊指数Iの分布であり、図2(b)は、図1(b)の工程(本実施形態)によって作成された段付中空部材Wの断面における延性破壊指数Iである。延性破壊指数Iが1未満の領域については、延性破壊指数Iの大きさは、図2の右端に示すように、ハッチングの濃淡で示し、ハッチングが濃い方が延性破壊指数Iは小さく、ハッチングが薄い方が延性破壊指数Iは大きくなる。また、延性破壊指数Iが1以上の領域は、斜線でハッチングされている。従来技術では、軸部111は、3回の前方押出加工を受けたため、その内径面での延性破壊指数Iが1.10となり、延性破壊指数Iが1を超える。したがって、従来技術においては、軸部111には内径面割れが発生する可能性が非常に高いと予測された。一方、本実施形態においては、軸部111が受ける押出加工の回数が3回から2回に減ったため、軸部111の延性破壊指数Iが0.56にまで低減された。したがって、本実施形態においては、延性破壊指数Iの値から、軸部111に内径面割れが発生する可能性は少ないと予測された。すなわち、前方押出加工を受ける回数が少なくすることによって、延性破壊指数Iが低減され、内径面割れの発生する可能性が少なくなることがわかった。   FIG. 2 shows the distribution of the ductile fracture index I in the cross section of the stepped hollow member W after the final process. Specifically, FIG. 2A is a distribution of the ductile fracture index I in the cross section of the stepped hollow member W created by the process of FIG. 1A (prior art), and FIG. It is the ductile fracture index I in the cross section of the stepped hollow member W produced by the process (this embodiment) of FIG.1 (b). As for the area where the ductile fracture index I is less than 1, the magnitude of the ductile fracture index I is indicated by the shade of hatching as shown at the right end of FIG. 2, and the darker the hatching, the smaller the ductile fracture index I and the hatching is. The thinner, the greater the ductile fracture index I. A region where the ductile fracture index I is 1 or more is hatched with diagonal lines. In the prior art, since the shaft portion 111 has undergone three forward extrusion processes, the ductile fracture index I on its inner diameter surface is 1.10, and the ductile fracture index I exceeds 1. Therefore, in the prior art, it has been predicted that there is a very high possibility that an inner surface crack will occur in the shaft portion 111. On the other hand, in this embodiment, since the number of extrusion processes that the shaft portion 111 receives is reduced from 3 times to 2 times, the ductile fracture index I of the shaft portion 111 is reduced to 0.56. Therefore, in this embodiment, from the value of the ductile fracture index I, it was predicted that there is little possibility that an inner surface crack occurs in the shaft portion 111. That is, it was found that by reducing the number of times of undergoing forward extrusion, the ductile fracture index I is reduced and the possibility of occurrence of inner surface cracks is reduced.

また、中実部材と異なり、中空部材Wは内径内にマンドレルを挿入した状態で前方押出加工を行うことが可能である。挿入するマンドレルの外径を、同じ中空部材Wをマンドレルの挿入なしに前方押出加工を行った場合の成形後の中空部材Wの内径よりも大きくすることで、中空部材Wの内径における縮径をマンドレルで制限しながら前方押出加工を行うことができる。このようにすることで、中空部材Wの内径が自由に縮径することができなくなるため、中空部材Wの中心軸方向の沿った材料の流れが促進され、中空部材の内径側と外径側の材料流れの速度差が小さくなり、内径面での引張応力が緩和されて、内径面割れを抑制することが可能となると考えられる。   Also, unlike the solid member, the hollow member W can be forward extruded with the mandrel inserted into the inner diameter. The outer diameter of the mandrel to be inserted is made larger than the inner diameter of the hollow member W after molding when the same hollow member W is subjected to forward extrusion without the insertion of the mandrel, thereby reducing the diameter of the hollow member W at the inner diameter. It is possible to perform forward extrusion while restricting with a mandrel. By doing so, the inner diameter of the hollow member W cannot be freely reduced, so that the flow of the material along the central axis direction of the hollow member W is promoted, and the inner diameter side and the outer diameter side of the hollow member W It is considered that the difference in the velocity of the material flow becomes smaller, the tensile stress on the inner surface is relaxed, and the inner surface crack can be suppressed.

次に、本発明者らは、中空部材Wの各軸を前方押出加工によって成形する際の減面率が内径面割れに及ぼす影響を検討するために、減面率の異なる前方押出加工における中空部材Wの内径面の延性破壊指数Iを有限要素解析により推定した。その結果を表1、図3に基づいて説明する。ここで、各軸の減面率とは、各軸の加工前の断面積をS0とし、加工後の各軸の断面積をSfとした場合、{(S0-Sf)/S0}×100(%)で求められる値である。 Next, in order to examine the influence of the area reduction rate on the inner surface crack when each shaft of the hollow member W is formed by the forward extrusion process, the hollows in the front extrusion process with different area reduction ratios are studied. The ductile fracture index I of the inner diameter surface of the member W was estimated by finite element analysis. The results will be described with reference to Table 1 and FIG. Here, the area reduction ratio of each axis is {(S 0 -S f ) / S, where S 0 is the cross-sectional area of each axis before machining and S f is the cross-sectional area of each axis after machining. 0 } × 100 (%).

外径φ20mm、内径φ10mmの中空部材Wを素材(出発材)として、素材の内径内にマンドレルを挿入することで内径をφ10mm一定としたまま、それぞれ1回の前方押出加工により外径をφ19mm(水準1、8)、φ18.5mm(水準2、9)、φ18mm(水準3、10)、φ17.5mm(水準4、11)、φ17mm(水準5、12)、φ16mm(水準6、13)、φ15mm(水準7、14)に絞った。そして、前方押出加工後の段付中空部材Wの内径面の延性破壊指数Iを有限要素解析により推定した。さらに、各水準の前方押出加工における減面率を、上記と同様に算出した。なお、段付中空部材Wの長手方向軸(中心軸)と2つの軸部を繋ぐ傾斜面のなす角度(すなわちダイス角度)は15°(水準1〜7)と30°(水準8〜14)の2通りである。その他の解析条件は次の通りである。傾斜面の角部の曲率半径は0.2mm、せん断摩擦係数m=0.1、軸対称モデル、金型は全て剛体、中空部材W(素材)は剛塑性体(四角形要素)でSCr420H球状化焼鈍材の変形抵抗曲線および材料定数cを使用した。この結果を表1および図3に示す。詳細には、表1には、各水準の加工の諸条件と減面率と延性破壊指数Iとを示す。図3には、減面率に対する延性破壊指数Iの関係を示す。   A hollow member W having an outer diameter of φ20 mm and an inner diameter of φ10 mm is used as a raw material (starting material), and the outer diameter is set to φ19 mm by a single forward extrusion process while the inner diameter is kept constant by φ10 mm by inserting the mandrel into the inner diameter of the raw material. Levels 1 and 8), φ18.5 mm (Levels 2 and 9), φ18 mm (Levels 3 and 10), φ17.5 mm (Levels 4 and 11), φ17 mm (Levels 5 and 12), φ16 mm (Levels 6 and 13), It was narrowed down to φ15 mm (levels 7 and 14). And the ductile fracture index I of the inner surface of the stepped hollow member W after forward extrusion was estimated by finite element analysis. Furthermore, the area reduction ratio in each level of forward extrusion was calculated in the same manner as described above. In addition, the angle (namely, dice angle) which the inclined surface which connects the longitudinal direction axis | shaft (center axis) of the stepped hollow member W and two axial parts (namely, dice angle) is 15 degrees (levels 1-7) and 30 degrees (levels 8-14). There are two ways. Other analysis conditions are as follows. The radius of curvature of the corner of the inclined surface is 0.2 mm, the shear friction coefficient m = 0.1, the axisymmetric model, the molds are all rigid bodies, and the hollow member W (material) is a rigid plastic body (rectangular element) and spheroidized with SCr420H. The deformation resistance curve and material constant c of the annealed material were used. The results are shown in Table 1 and FIG. In detail, Table 1 shows various levels of processing conditions, the area reduction rate, and the ductile fracture index I. FIG. 3 shows the relationship of the ductile fracture index I to the reduction in area.

Figure 2016198775
Figure 2016198775

図3に示すように、ダイス角度に関係なく、前方押出加工の際の減面率が高くなることで中空部材Wの内径面での延性破壊指数Iが低下し、減面率48%以上になると延性破壊指数Iはほぼ0となる。このことから、減面率を高くすることにより、内径面での割れが抑制され、特に減面率48%以上にすると内径面割れが大きく抑制されることが分かった。   As shown in FIG. 3, the ductile fracture index I at the inner diameter surface of the hollow member W is reduced by increasing the area reduction rate during forward extrusion regardless of the die angle, and the area reduction rate is 48% or more. Then, the ductile fracture index I becomes almost zero. From this, it was found that by increasing the area reduction rate, cracking at the inner diameter surface was suppressed, and particularly when the area reduction rate was 48% or more, inner diameter surface cracking was greatly suppressed.

<2.前方押出加工装置の構成及び前方押出加工方法>
以下に、本発明の実施形態で用いられる前方押出加工装置及び前方押出加工方法について説明する。図4は、中空部材Wの外径面を1段絞る前方押出加工装置200の一例の概要を示す断面図である。前方押出加工装置200は、ダイス201と、マンドレル202とを備える。ダイス201は、略円筒形状の部材である。マンドレル202は、略円柱形状の部材であり、ダイス201の内部にダイス201と同軸上に設けられている。直線202aは、マンドレル202及びダイス201の中心軸を示す。ダイス201の内径面201bには、外径絞り部230が成形されている。なお、以下の説明では、中空部材Wが前方押出加工装置200内を進行する(流れる)方向A1を下流方向、下流方向の逆方向を上流方向として説明する。
<2. Configuration of forward extrusion apparatus and forward extrusion method>
Below, the front extrusion apparatus and the front extrusion method used by embodiment of this invention are demonstrated. FIG. 4 is a cross-sectional view showing an outline of an example of the forward extrusion processing apparatus 200 for reducing the outer diameter surface of the hollow member W by one stage. The front extrusion apparatus 200 includes a die 201 and a mandrel 202. The die 201 is a substantially cylindrical member. The mandrel 202 is a substantially cylindrical member, and is provided coaxially with the die 201 inside the die 201. A straight line 202 a indicates the central axis of the mandrel 202 and the die 201. An outer diameter restricting portion 230 is formed on the inner diameter surface 201 b of the die 201. In the following description, the direction A1 in which the hollow member W travels (flows) in the front extrusion processing apparatus 200 will be described as the downstream direction, and the reverse direction of the downstream direction will be described as the upstream direction.

外径絞り部230は、ランド部231と、傾斜面232と、逃げ部233とを備える。ランド部231は、マンドレル202側に突出した部分である。傾斜面232は、中空部材Wの進行方向(矢印A1方向)に交差する面であり、ランド部231とランド部231の上流側の内径面201bとを連結する。逃げ部233は、ランド部231の下流側に成形される。逃げ部233の内径面(表面)は、ランド部231の内径面(表面)よりも外側(ダイス201の外径面側)に配置される。すなわち、逃げ部233と中空部材Wとの間には隙間が形成されている。   The outer diameter restricting portion 230 includes a land portion 231, an inclined surface 232, and a relief portion 233. The land portion 231 is a portion protruding toward the mandrel 202 side. The inclined surface 232 is a surface that intersects the traveling direction (arrow A1 direction) of the hollow member W, and connects the land portion 231 and the inner diameter surface 201b on the upstream side of the land portion 231. The escape portion 233 is formed on the downstream side of the land portion 231. The inner diameter surface (surface) of the escape portion 233 is disposed on the outer side (outer diameter surface side of the die 201) than the inner diameter surface (surface) of the land portion 231. That is, a gap is formed between the escape portion 233 and the hollow member W.

この前方押出加工装置200を用いた前方押出加工方法は以下のとおりである。すなわち、中空部材Wをダイス201とマンドレル202との間に通し、中空部材Wをパンチにより前方押出する。これにより、中空部材Wは、矢印A1方向に進行する。中空部材Wの外径面は、外径絞り部230により絞られる(すなわち縮径される)。これにより、段付中空部材Wが成形される。   The forward extrusion method using this forward extrusion apparatus 200 is as follows. That is, the hollow member W is passed between the die 201 and the mandrel 202, and the hollow member W is pushed forward by a punch. Thereby, the hollow member W advances in the arrow A1 direction. The outer diameter surface of the hollow member W is squeezed (ie, reduced in diameter) by the outer diameter squeezing portion 230. Thereby, the stepped hollow member W is molded.

そして、本実施形態では、ダイス、パンチ及びマンドレルを用いて前方押出加工方法を2回以上行うことで、中空部材Wの外径面を2段以上絞る。すなわち、本実施形態に係る前方押出加工方法は、第1の外径を有する第1の軸部を前方押出加工により成形する第1の工程と、第1の外径よりも細い第2の外径を有する第2の軸部を前方押出加工により成形する第2の工程と、を含む。そして、第2の工程は、第1の工程よりも先に行われる。   And in this embodiment, the outer-diameter surface of the hollow member W is restrict | squeezed 2 steps | paragraphs or more by performing a front extrusion method twice or more using a die | dye, a punch, and a mandrel. That is, the forward extrusion method according to the present embodiment includes a first step of forming a first shaft portion having a first outer diameter by forward extrusion, and a second outer portion that is thinner than the first outer diameter. A second step of forming a second shaft portion having a diameter by forward extrusion. Then, the second step is performed before the first step.

なお、本実施形態に係る前方押出加工装置及びそれを用いた前方押出加工方法は、上記説明のような前方押出加工装置200及びそれを用いた前方押出加工方法に限定されるものではなく、ダイス、パンチ及びマンドレルを備える前方押出加工装置及びそれを用いた前方押出加工方法であれば、特に限定されるものではない。     The forward extrusion apparatus and the forward extrusion method using the same according to the present embodiment are not limited to the forward extrusion apparatus 200 and the forward extrusion method using the same as described above. If it is a front extrusion processing apparatus provided with a punch and a mandrel and a front extrusion processing method using the same, it will not specifically limit.

次に、本発明の効果を確認するために、以下の実施例を行った。なお、以下に示す実施例は、本発明の実施形態に係る前方押出加工のあくまでも一例であって、本発明の実施形態に係る中空部材の前方押出加工が、下記の例に限定されるものではない。   Next, in order to confirm the effect of the present invention, the following examples were performed. In addition, the Example shown below is only an example of the forward extrusion process which concerns on embodiment of this invention, Comprising: The forward extrusion process of the hollow member which concerns on embodiment of this invention is not limited to the following example. Absent.

本実施例でも、上記と同様に、有限要素法解析により各実施例2〜6(水準2〜6)及び比較例(水準1)の中空部材Wにおける延性破壊指数を推定した。解析条件は以下のとおりである。図5(a)の断面図に示されるような外径φ20mm、内径φ10mmの中空部材W(出発材)を、中空部材Wの内径内に外径φ10mmのマンドレルを挿入し、中空部材Wの内径の縮径をマンドレルで制限しながら、図5(b)の断面図に示すような、外径φ20mm、内径φ10mmの軸部414と、外径φ18mm、内径φ10mmの軸部413と、外径φ16mm、内径φ10mmの軸部412と、外径φ15mm、内径φ10mmの軸部411を持ち、それらが傾斜面423、傾斜面422、傾斜面421で繋がれた段付中空部材Wとなるように、各実施例2〜6(水準2〜6)及び比較例(水準1)の前方押出加工を行った。すなわち、加工後に得られる段付中空部材Wは、外径の異なる4つの軸部411、412、413、414を有し、各軸部は、その並び順に従って外径が細くなっている。なお、前方押出加工方法については、前述のとおりである。加工後の中空部材Wの長手方向軸(中心軸)と各傾斜面423,422、421のなす角度は全て30°、傾斜面423,422、421の角部の曲率半径は0.5mmとし、せん断摩擦係数m=0.1、軸対称モデル、金型は全て剛体、素材は剛塑性体(四角形要素)でS43C球状化焼鈍材の変形抵抗曲線および材料定数cを使用した。また、各実施例2〜6(水準2〜6)及び比較例(水準1)にかかる前方押出加工の順番を表2に示す。例えば、実施例4(水準4)は、出発材である中空部材Wから2番目に細い軸部412を成形し、次いで、軸部412から最も細い軸部411を成形し、さらに、もっとも太い軸部414から3番目に細い軸部413を成形する。したがって、その順番は、図1(b)に示す例に対応するものである。表2からわかるように、実施例2〜6では、それぞれ前方押出加工の順序が異なるものの、少なくとも1回は、太い軸部の成形(上記第1の工程)の前に細い軸部の成形(上記第2の工程)を行う。例えば、実施例2、6では、軸部412よりも細い軸部411の成形は、軸部412を成形するよりも先に行われる。また、実施例3,6では、軸部413よりも細い軸部412の成形は、軸部413を成形するよりも先に行われる。また、実施例4,5では、軸部413よりも細い軸部411の成形は、軸部413を成形するよりも先に行われる。各実施例2〜6(水準2〜6)及び比較例(水準1)の内径面延性破壊指数Iと減面率の結果を表2に示す。   Also in this example, the ductile fracture index in the hollow member W of each of Examples 2 to 6 (levels 2 to 6) and the comparative example (level 1) was estimated by the finite element method analysis in the same manner as described above. The analysis conditions are as follows. A hollow member W (starting material) having an outer diameter of φ20 mm and an inner diameter of φ10 mm as shown in the sectional view of FIG. 5A is inserted, and a mandrel having an outer diameter of φ10 mm is inserted into the inner diameter of the hollow member W. As shown in the cross-sectional view of FIG. 5B, a shaft portion 414 having an outer diameter of φ20 mm and an inner diameter of φ10 mm, a shaft portion 413 having an outer diameter of φ18 mm and an inner diameter of φ10 mm, and an outer diameter of φ16 mm. In order to form a stepped hollow member W having a shaft portion 412 having an inner diameter φ10 mm and a shaft portion 411 having an outer diameter φ15 mm and an inner diameter φ10 mm, which are connected by an inclined surface 423, an inclined surface 422, and an inclined surface 421. The forward extrusion processing of Examples 2 to 6 (Level 2 to 6) and Comparative Example (Level 1) was performed. That is, the stepped hollow member W obtained after processing has four shaft portions 411, 412, 413, and 414 having different outer diameters, and each shaft portion has a smaller outer diameter in accordance with the arrangement order. The forward extrusion method is as described above. The angles formed by the longitudinal axis (center axis) of the hollow member W after processing and the inclined surfaces 423, 422, 421 are all 30 °, and the curvature radii of the corners of the inclined surfaces 423, 422, 421 are 0.5 mm, The shear friction coefficient m = 0.1, the axisymmetric model, the molds were all rigid bodies, the materials were rigid plastic bodies (square elements), and the deformation resistance curve and material constant c of the S43C spheroidized annealing material were used. Table 2 shows the order of forward extrusion according to Examples 2 to 6 (Levels 2 to 6) and Comparative Examples (Level 1). For example, in Example 4 (Level 4), the thinnest shaft portion 412 is formed from the hollow member W which is the starting material, and then the thinnest shaft portion 411 is formed from the shaft portion 412, and further, the thickest shaft is formed. A third narrow shaft portion 413 is formed from the portion 414. Therefore, the order corresponds to the example shown in FIG. As can be seen from Table 2, in Examples 2 to 6, although the order of forward extrusion is different, at least once, before forming the thick shaft (the first step), forming the thin shaft ( The second step) is performed. For example, in Examples 2 and 6, the shaft portion 411 thinner than the shaft portion 412 is formed before the shaft portion 412 is formed. In Examples 3 and 6, the shaft portion 412 that is thinner than the shaft portion 413 is formed before the shaft portion 413 is formed. In the fourth and fifth embodiments, the shaft portion 411 thinner than the shaft portion 413 is formed before the shaft portion 413 is formed. Table 2 shows the results of the inner surface ductile fracture index I and the area reduction rate of Examples 2 to 6 (Levels 2 to 6) and Comparative Examples (Level 1).

Figure 2016198775
Figure 2016198775

表2によれば、比較例(水準1)の順序で前方押出加工を行った場合は、軸部411の内径面の延性破壊指数Iが1を超えたのに対し、実施例2〜6(水準2〜6)の場合は、いずれも軸部411の内径面の延性破壊指数Iが1未満であった。このような結果から、比較例(水準1)においては軸部411での内径面割れが生じる可能性が高く、実施例2〜6(水準2〜6)においては軸部411での内径面割れが抑制されていると予測される。   According to Table 2, when forward extrusion processing was performed in the order of the comparative example (level 1), the ductile fracture index I of the inner diameter surface of the shaft portion 411 exceeded 1, whereas Examples 2 to 6 ( In each of the levels 2 to 6), the ductile fracture index I of the inner diameter surface of the shaft portion 411 was less than 1. From such a result, in the comparative example (level 1), there is a high possibility that the inner surface crack in the shaft portion 411 occurs, and in Examples 2 to 6 (levels 2 to 6), the inner surface crack in the shaft portion 411 occurs. Is expected to be suppressed.

詳細には、比較例(水準1)では、軸部411は、1〜3工程目の全てにおいて前方押出加工を受け(すなわち、軸部411は3回前方押出加工を受ける)、且つ、1〜3工程目のいずれでも減面率が48%以下であったため、各工程で大きく延性破壊指数が上昇し、最終的な軸部411の内径面の延性破壊指数Iが1を超えたものと推定される。   Specifically, in the comparative example (level 1), the shaft portion 411 is subjected to forward extrusion processing in all the first to third steps (that is, the shaft portion 411 is subjected to forward extrusion processing three times), and 1 to Since the area reduction rate was 48% or less in any of the third processes, the ductile fracture index increased greatly in each process, and it was estimated that the ductile fracture index I of the inner diameter surface of the shaft portion 411 exceeded 1 Is done.

一方、実施例2(水準2)では、比較例(水準1)と比べて、軸部411における最終的な内径面の延性破壊指数Iは0.44にまで低減された。これは、実施例2(水準2)では、軸部411が前方押出加工を受ける回数が2回に減ったため、比較例(水準1)と比べて、軸部411における最終的な延性破壊指数Iが低減されたと推定される。また、実施例3、4(水準3、4)では、比較例(水準1)と比べて、軸部411における最終的な延性破壊指数Iは0.40にまで低減された。この結果は、実施例3,4(水準3,4)では、軸部411が前方押出加工を受ける回数が2回に減り、且つ、軸部411が前方押出加工を受ける1工程目では減面率が48.0%と高く、1工程目において軸部411の延性破壊指数Iがほとんど上昇しなかったため、比較例(水準1)と比べて、軸部411における最終的な延性破壊指数Iは低減されたと推定される。さらに、実施例5、6(水準5、6)では、比較例(水準1)と比べて、軸部411が前方押出加工を受ける回数が1回に減り、且つ、軸部411が前方押出加工を受ける1工程目での減面率が58.3%と高く、1工程目の延性破壊指数Iが低く抑えられるため、軸部411における最終的な延性破壊指数Iは0.02にまで低減された。   On the other hand, in Example 2 (Level 2), the ductile fracture index I of the final inner diameter surface in the shaft portion 411 was reduced to 0.44, compared to the comparative example (Level 1). This is because in Example 2 (Level 2), the number of times that the shaft portion 411 undergoes forward extrusion processing is reduced to two times, so that the final ductile fracture index I in the shaft portion 411 is lower than that in the comparative example (Level 1). Is estimated to have been reduced. In Examples 3 and 4 (levels 3 and 4), the final ductile fracture index I in the shaft portion 411 was reduced to 0.40 as compared with the comparative example (level 1). As a result, in Examples 3 and 4 (levels 3 and 4), the number of times that the shaft portion 411 is subjected to forward extrusion is reduced to two times, and the surface area is reduced in the first step where the shaft portion 411 is subjected to forward extrusion. The rate was as high as 48.0%, and the ductile fracture index I of the shaft portion 411 was hardly increased in the first step. Therefore, the final ductile fracture index I in the shaft portion 411 was lower than that of the comparative example (level 1). Presumed to have been reduced. Furthermore, in Examples 5 and 6 (levels 5 and 6), the number of times that the shaft portion 411 undergoes forward extrusion is reduced to one and the shaft portion 411 is forward extruded compared to the comparative example (level 1). The area reduction rate in the first process is as high as 58.3%, and the ductile fracture index I in the first process is kept low, so the final ductile fracture index I in the shaft portion 411 is reduced to 0.02. It was done.

ところで、実施例3、4、6(水準3、4、6)では、軸部413よりも先に軸部412の成形を行ったため、軸部412を成形する際の減面率が大きく(48.0%)となっている。このため、軸部411だけでなく、最終的な軸部412における延性破壊指数も、比較例(水準1)の軸部412の延性破壊指数Iに比べて低くなっている。具体的には、比較例(水準1)の軸部412の延性破壊指数Iが0.70であったのに対し、実施例3,4,6(水準3、4、6)の軸部412の延性破壊指数Iは0.04であった。なお、実施例2、5(水準2,5)の最終的な軸部412の延性破壊指数Iは、比較例(水準1)と同じ(0.70)であったが、この数値は1以下であった。この結果は、実施例2、5(水準2,5)及び比較例(水準1)では、軸部412が受ける前方押出加工を受ける回数は2回であり、且つ、軸部412の受ける各前方押し出し加工における減面率も、25.3%及び30.4%と同じであるためと推定される。   By the way, in Examples 3, 4, and 6 (levels 3, 4, and 6), since the shaft portion 412 was formed before the shaft portion 413, the area reduction rate when forming the shaft portion 412 was large (48 0.0%). For this reason, not only the shaft part 411 but also the final ductile fracture index in the shaft part 412 is lower than the ductile fracture index I of the shaft part 412 of the comparative example (level 1). Specifically, the ductile fracture index I of the shaft portion 412 of the comparative example (level 1) was 0.70, whereas the shaft portion 412 of Examples 3, 4, 6 (levels 3, 4, 6). The ductile fracture index I was 0.04. In addition, although the ductile fracture index I of the final shaft portion 412 in Examples 2 and 5 (levels 2 and 5) was the same (0.70) as that in the comparative example (level 1), this value was 1 or less. Met. As a result, in Examples 2 and 5 (levels 2 and 5) and the comparative example (level 1), the number of times the shaft portion 412 is subjected to the forward extrusion process is two times, and each front portion received by the shaft portion 412 is It is estimated that the area reduction ratio in the extrusion process is also the same as 25.3% and 30.4%.

なお、軸部413については、各実施例2〜6(水準2〜6)及び比較例(水準1)ともに、前方押出加工を受ける回数は1回であり、且つ、軸部413の受ける前方押し出し加工における減面率(25.3%)は同じであるため、各実施例2〜6(水準2〜6)及び比較例(水準1)ともに、軸部413における最終的な延性破壊指数Iも同じ値(0.28)となる。   In addition, about the axial part 413, each Example 2-6 (level 2-6) and the comparative example (level 1) receive the forward extrusion process once, and forward extrusion received by the axial part 413 Since the area reduction rate (25.3%) in the processing is the same, the final ductile fracture index I in the shaft portion 413 is also the same in each of Examples 2 to 6 (Level 2 to 6) and Comparative Example (Level 1). The same value (0.28) is obtained.

すなわち、表3による結果から、前方押出加工を受ける回数を少なくすることによって、段付中空部材Wの内径面の割れを抑制することができることがわかった。さらに、前方押出加工の減面率を高くすることによって、段付中空部材Wの内径面の割れを抑制することができることがわかった。この減面率は、図3の結果から推測されるように、内径面の割れを効果的に抑制するためには48%以上とすることが好ましい。したがって、前方押出加工の回数を少なくし、減面率を高くするためには、前方押出加工により一の軸部を成形した後に、この一の軸部よりも太い軸部をさらなる先方押出加工により成形することが好ましい。   That is, from the results according to Table 3, it was found that the cracks on the inner diameter surface of the stepped hollow member W can be suppressed by reducing the number of times of undergoing forward extrusion. Furthermore, it turned out that the crack of the internal-diameter surface of the stepped hollow member W can be suppressed by making the area reduction rate of a forward extrusion process high. As can be inferred from the results shown in FIG. 3, the area reduction ratio is preferably set to 48% or more in order to effectively suppress cracks on the inner diameter surface. Therefore, in order to reduce the number of forward extrusion processes and increase the area reduction ratio, after forming one shaft part by forward extrusion process, a shaft part thicker than this one shaft part is further processed by further forward extrusion process. It is preferable to mold.

次にマンドレルの使用の効果を確認するために以下の実施例を行った。なお、以下に示す実施例は、本発明の実施形態に係る前方押出加工のあくまでも一例であって、本発明の実施形態に係る中空部材の前方押出加工が、下記の例に限定されるものではない。   Next, in order to confirm the effect of using the mandrel, the following examples were conducted. In addition, the Example shown below is only an example of the forward extrusion process which concerns on embodiment of this invention, Comprising: The forward extrusion process of the hollow member which concerns on embodiment of this invention is not limited to the following example. Absent.

本実施例でも、上記と同様に、有限要素法解析により各実施例(水準7〜11)及び各比較例(水準12〜16)の中空部材Wにおける延性破壊指数を推定した。解析条件は以下のとおりである。実施例(水準7〜11)では、外径φ20mm、内径φ10mmの中空部材Wを素材(出発材)として、素材の内径内にマンドレルを挿入し、さらにダイスとパンチを用いて、それぞれ1回の前方押出加工により、外径φ19mm、内径φ10mm(水準7)、外径φ18mm、内径9mm(水準8)、外径φ17mm、内径8mm(水準9)、外径φ16mm、内径8mm(水準10)、外径φ15mm、内径9mm(水準11)、に絞った。比較例(水準12〜16)では、同じく外径φ20mm、内径φ10mmの中空部材Wを素材(出発材)として、素材の内径内にマンドレルを挿入することなく、ダイスとパンチのみを用いて、それぞれ1回の前方押出加工により、外径φ18mm(水準12)、外径φ16mm(水準13)、外径φ15mm(水準14)、外径φ14mm(水準15)、外径φ12mm(水準16)、に絞った。そして、前方押出加工後の段付中空部材Wの内径面の延性破壊指数Iを有限要素解析により推定した。さらに、各水準の前方押出加工後の段付中空部材Wの外径と内径を測り、減面率を上記と同様に算出した。なお、段付中空部材Wの長手方向軸(中心軸)と2つの軸部を繋ぐ傾斜面のなす角度(すなわちダイス角度)はすべて20°である。その他の解析条件は次の通りである。傾斜面の角部の曲率半径は0.5mm、せん断摩擦係数m=0.1、軸対称モデル、金型は全て剛体、中空部材W(素材)は剛塑性体(四角形要素)でSCr420H球状化焼鈍材の変形抵抗曲線および材料定数cを使用した。この結果を表3および図6に示す。詳細には、表3には、実施例及び比較例の各水準の、段付中空部材Wの外径および内径と減面率と延性破壊指数Iとを示す。図6には、減面率に対する延性破壊指数Iの関係を示す。   Also in the present example, the ductile fracture index in the hollow member W of each example (levels 7 to 11) and each comparative example (levels 12 to 16) was estimated by the finite element method analysis in the same manner as described above. The analysis conditions are as follows. In the examples (levels 7 to 11), a hollow member W having an outer diameter of φ20 mm and an inner diameter of φ10 mm is used as a raw material (starting material), and a mandrel is inserted into the inner diameter of the raw material. By forward extrusion, outer diameter φ19mm, inner diameter φ10mm (level 7), outer diameter φ18mm, inner diameter 9mm (level 8), outer diameter φ17mm, inner diameter 8mm (level 9), outer diameter φ16mm, inner diameter 8mm (level 10), outer The diameter was reduced to 15 mm and the inner diameter was 9 mm (level 11). In comparative examples (levels 12 to 16), a hollow member W having an outer diameter of φ20 mm and an inner diameter of φ10 mm is used as a raw material (starting material), and only a die and a punch are used without inserting a mandrel into the inner diameter of the raw material. By one forward extrusion process, the outer diameter is reduced to φ18 mm (level 12), outer diameter φ16 mm (level 13), outer diameter φ15 mm (level 14), outer diameter φ14 mm (level 15), outer diameter φ12 mm (level 16). It was. And the ductile fracture index I of the inner surface of the stepped hollow member W after forward extrusion was estimated by finite element analysis. Furthermore, the outer diameter and inner diameter of the stepped hollow member W after forward extrusion of each level were measured, and the area reduction rate was calculated in the same manner as described above. In addition, the angle (namely, dice angle) which the inclined surface which connects the longitudinal direction axis | shaft (center axis | shaft) and two axial parts of the stepped hollow member W makes 20 degrees. Other analysis conditions are as follows. The radius of curvature of the corner of the inclined surface is 0.5 mm, the shear friction coefficient m = 0.1, the axisymmetric model, the molds are all rigid bodies, the hollow member W (material) is a rigid plastic body (rectangular element) and spheroidized with SCr420H The deformation resistance curve and material constant c of the annealed material were used. The results are shown in Table 3 and FIG. Specifically, Table 3 shows the outer diameter and inner diameter, the area reduction rate, and the ductile fracture index I of the stepped hollow member W at each level of the example and the comparative example. FIG. 6 shows the relationship of the ductile fracture index I to the area reduction rate.

Figure 2016198775
Figure 2016198775

図6に示すように、中空部材Wの内径内にマンドレルを挿入して、中空部材Wの内径の縮径をマンドレルで制限することで、減面率の大小に関係なく、前方押出加工後の中空部材Wの内径面での延性破壊指数Iが低下しており、マンドレルを用いることで内径面割れの抑制が可能になることが分かった。   As shown in FIG. 6, by inserting a mandrel into the inner diameter of the hollow member W and restricting the reduced diameter of the inner diameter of the hollow member W with the mandrel, regardless of the size of the area reduction, It has been found that the ductile fracture index I on the inner diameter surface of the hollow member W is reduced, and that it is possible to suppress inner surface cracking by using a mandrel.

以上により、本実施形態によれば、太い軸部よりも先に押し出しを行って細い軸部を成形することにより、前方押出加工を受ける回数を少なくすることによって、段付中空部材Wの内径面の割れを抑制することができる。   As described above, according to the present embodiment, the inner surface of the stepped hollow member W is reduced by reducing the number of times of undergoing forward extrusion by forming the thin shaft portion by performing extrusion before the thick shaft portion. Can be prevented from cracking.

また、本実施形態によれば、中空部材Wの内径内にマンドレルを挿入し、空部材Wの内径の縮径をマンドレルで制限しながら前方押出加工により成形することによって、中空部材Wの内径面の引張応力を緩和し、段付中空部材Wの内径面の割れを抑制することができる。   Further, according to the present embodiment, the inner surface of the hollow member W is formed by inserting a mandrel into the inner diameter of the hollow member W, and forming the hollow member W by forward extrusion while restricting the reduced diameter of the inner diameter of the empty member W with the mandrel. It is possible to relieve the tensile stress of the stepped hollow member W and to prevent the inner surface of the stepped hollow member W from cracking.

また、本実施形態によれば、太い軸部よりも先に押し出しを行って細い軸部を成形することにより、前方押出加工の際の減面率を高くし、段付中空部材Wの内径面の割れを抑制することができる。この減面率は、内径面の割れを効果的に抑制するために、48%以上とすることが好ましい。   In addition, according to the present embodiment, by extruding the thick shaft portion before forming the thin shaft portion, the area reduction rate at the time of forward extrusion is increased, and the inner diameter surface of the stepped hollow member W Can be prevented from cracking. The area reduction rate is preferably 48% or more in order to effectively suppress cracks on the inner diameter surface.

加えて、本実施形態によれば、中空部材Wの加工硬化指数n値によらず、内径面割れを抑制することができる。さらに、最も細い軸部以外の軸部でも内径面割れの抑制が可能である。   In addition, according to the present embodiment, the inner surface crack can be suppressed regardless of the work hardening index n value of the hollow member W. Furthermore, inner surface cracks can be suppressed even in shaft portions other than the thinnest shaft portion.

また、本実施形態は、中空部材Wの材質、特性を特に制限するものではない。例えば、本実施形態が適用可能な中空部材Wは、特定の加工硬化指数n値を有する金属部材に制限されない。さらに、本実施形態においては、内径面割れが生じやすい材質に適用することが可能である。すなわち、本実施形態は、あらゆる金属の中空部材に適用可能である。本実施形態は、これらの金属部材のうち、鋼材であっても良い。さらに、本実施形態では、前方押出加工の順序を変更するだけなので、製造コストを大幅に増加させることがない。   In addition, the present embodiment does not particularly limit the material and characteristics of the hollow member W. For example, the hollow member W to which the present embodiment is applicable is not limited to a metal member having a specific work hardening index n value. Furthermore, in this embodiment, it is possible to apply to the material which is easy to produce an internal surface crack. That is, the present embodiment can be applied to any metal hollow member. This embodiment may be a steel material among these metal members. Furthermore, in this embodiment, since the order of forward extrusion is only changed, the manufacturing cost is not significantly increased.

さらに、本実施形態による中空部材の前方押出し加工方法は、前方押出加工の回数を上記説明のように限定するものではなく、2回以上の前方押出加工を行う中空部材の前方押出し加工方法であれば、適用することができる。したがって、最終的に成形される段付中空部材の段数又は軸部の数についても、特に限定されるものではない。   Further, the forward extrusion method of the hollow member according to the present embodiment is not limited to the number of forward extrusion processes as described above, and may be a forward extrusion method of the hollow member that performs the forward extrusion process twice or more. Can be applied. Therefore, the number of steps or the number of shaft portions of the stepped hollow member to be finally formed is not particularly limited.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

111、112、113、114、411、412、413、414 軸部
121、122、123、421、422、423 傾斜面
200 前方押出加工装置
201 ダイス
201b 内径面
202 マンドレル
230 外径絞り部
231 ランド部
232 傾斜面
233 逃げ部
W 中空部材
111, 112, 113, 114, 411, 412, 413, 414 Shaft part 121, 122, 123, 421, 422, 423 Inclined surface 200 Forward extrusion device 201 Die 201b Inner diameter surface 202 Mandrel 230 Outer diameter throttle part 231 Land part 232 Inclined surface 233 Escape part W Hollow member

Claims (3)

中空部材に2回以上の前方押出加工を行うことで、前記中空部材の外径面を2段階以上絞る前方押出加工方法であって、
第1の外径を有する第1の軸部を前記前方押出加工により成形する第1の工程と、
前記第1の外径よりも細い第2の外径を有する第2の軸部を前記前方押出加工により成形する第2の工程と、を含み、
前記第2の工程は、前記第1の工程よりも先に行われることを特徴とする前方押出加工方法。
A forward extrusion method for reducing the outer diameter surface of the hollow member by two or more stages by performing forward extrusion on the hollow member at least twice,
A first step of forming a first shaft portion having a first outer diameter by the forward extrusion process;
A second step of forming a second shaft portion having a second outer diameter that is thinner than the first outer diameter by the forward extrusion process,
The forward extrusion method, wherein the second step is performed prior to the first step.
前記第2の工程を行う際の減面率が48%以上であることを特徴とする、請求項1に記載の前方押出加工方法。   The forward extrusion method according to claim 1, wherein a reduction in area when performing the second step is 48% or more. ダイス、パンチ及びマンドレルを用いて前記前方押出加工を行うこと特徴とする、請求項1又は2に記載の前方押出加工方法。
The forward extrusion method according to claim 1 or 2, wherein the forward extrusion process is performed using a die, a punch, and a mandrel.
JP2015078482A 2015-04-07 2015-04-07 Method for forward extrusion of hollow member Active JP6485832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015078482A JP6485832B2 (en) 2015-04-07 2015-04-07 Method for forward extrusion of hollow member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015078482A JP6485832B2 (en) 2015-04-07 2015-04-07 Method for forward extrusion of hollow member

Publications (2)

Publication Number Publication Date
JP2016198775A true JP2016198775A (en) 2016-12-01
JP6485832B2 JP6485832B2 (en) 2019-03-20

Family

ID=57423616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078482A Active JP6485832B2 (en) 2015-04-07 2015-04-07 Method for forward extrusion of hollow member

Country Status (1)

Country Link
JP (1) JP6485832B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024218A (en) * 1983-07-20 1985-02-06 Nippon Steel Corp Method for cold extrusion
JPH03248731A (en) * 1990-02-22 1991-11-06 Kiyouhou Seisakusho:Kk Manufacture of reinforcing member for instrument panel
JP2006142983A (en) * 2004-11-19 2006-06-08 Nsk Ltd Wheel supporting hub unit, its raceway ring member, and manufacturing method for the member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024218A (en) * 1983-07-20 1985-02-06 Nippon Steel Corp Method for cold extrusion
JPH03248731A (en) * 1990-02-22 1991-11-06 Kiyouhou Seisakusho:Kk Manufacture of reinforcing member for instrument panel
JP2006142983A (en) * 2004-11-19 2006-06-08 Nsk Ltd Wheel supporting hub unit, its raceway ring member, and manufacturing method for the member

Also Published As

Publication number Publication date
JP6485832B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
US8516868B2 (en) Dies for shear drawing
JP4766117B2 (en) Manufacturing method of ultra-thin metal tube by cold drawing method
KR20180110000A (en) A method of manufacturing a steel pipe having a different thickness and a steel pipe having a different thickness
KR20130138169A (en) Processing of alpha/beta titanium alloys
JP5062760B2 (en) Bolt manufacturing method, bolt manufacturing apparatus, and bolt manufacturing mold
JP2007130661A (en) Multi-stage forward extrusion method
WO2006025369A1 (en) Die, method of manufacturing stepped metal tube, and stepped metal tube
JP2012219931A (en) Rack bar and method of manufacturing the same
WO2012063900A1 (en) Process for manufacture of fastening component made from aluminum-based alloy, and fastening component made from aluminum-based alloy
CN113649427B (en) 6061 aluminum alloy thin-wall pipe forming process
JP6253488B2 (en) Front extrusion method, hollow member manufacturing method, and front extrusion processing apparatus
EP3372324A1 (en) Long cartridge case
US2341469A (en) Method of manufacturing waisted bolts
JP6485832B2 (en) Method for forward extrusion of hollow member
US3486361A (en) Strengthening of elongated metal sections
RU2309810C2 (en) Piercing method for making seamless pipe
JP6665643B2 (en) Manufacturing method and manufacturing apparatus for expanded pipe parts
JP6515274B2 (en) Device and method for manufacturing end-thickened steel pipe
CN104097032A (en) Bearing needle forming process
RU2461436C1 (en) Method of producing variable cross-section thin-wall shells
JP2006088221A (en) Manufacturing method of tube having high dimensional accuracy
Choi et al. Forming of the precision aluminum tube for a light weight propeller shaft
KR100724231B1 (en) Die, method of manufacturing stepped metal tube, and stepped metal tube
RU2652331C1 (en) Method of manufacturing ball-shaped studs
JP2001096334A (en) Die apparatus for sizing and processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190213

R150 Certificate of patent or registration of utility model

Ref document number: 6485832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250