JPS6024218A - Method for cold extrusion - Google Patents

Method for cold extrusion

Info

Publication number
JPS6024218A
JPS6024218A JP13105083A JP13105083A JPS6024218A JP S6024218 A JPS6024218 A JP S6024218A JP 13105083 A JP13105083 A JP 13105083A JP 13105083 A JP13105083 A JP 13105083A JP S6024218 A JPS6024218 A JP S6024218A
Authority
JP
Japan
Prior art keywords
axial
extrusion
extruding
slender
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13105083A
Other languages
Japanese (ja)
Other versions
JPH0349652B2 (en
Inventor
Samon Yanagimoto
柳本 左門
Takeshi Miki
武司 三木
Masahiro Toda
正弘 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13105083A priority Critical patent/JPS6024218A/en
Publication of JPS6024218A publication Critical patent/JPS6024218A/en
Publication of JPH0349652B2 publication Critical patent/JPH0349652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/14Making other products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To obtain a sound axial part free from internal cracking by extruding the slendermost axial part after extruding the 3rd slender axial part and then extruding the 2nd slender one in manufacturing a stepped shaft by three or more times of forward extrusions. CONSTITUTION:In manufacturing a stepped shaft having axial diameters d0, d1,...d4 by three or more times of forward extrusion processes A, B,..., the slendermost axial diam. d4 is extruded by the process D' after extruding the 3rd slender axial diam. d2 by the process C, and then the 2nd slender axial diam. d3 is extruded by the subsequent process E. The above mentioned method is also available for the increased number of extrusion stages. In this way, a sound axial part free from internal cracking is obtained, and the working limit capable of extrusion is remarkably improved.

Description

【発明の詳細な説明】 本発明は鋼材よシ段付シャフトを前方押出しによって製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a steel stepped shaft by forward extrusion.

自動車部品等に用いられる大径部と細径部を有するシャ
フトを製造するには切削、熱間鍛造、冷間鍛造、冷間押
出しなどの方法があるが、コストと生産性で有利々冷間
押出しを用いられる例が多い。冷間押出しは、鋼材を加
熱することなく厳しい加工を加えるので、熱間加工では
問題にならなかった鋼材の破壊を発生することがある。
There are various methods to manufacture shafts with large and small diameter parts used in automobile parts, etc., such as cutting, hot forging, cold forging, and cold extrusion, but cold forming is more advantageous in terms of cost and productivity. Extrusion is often used. Since cold extrusion applies severe processing to the steel without heating it, it may cause destruction of the steel, which would not be a problem with hot working.

その破壊の様式としては、表面割れと内部割れの2種類
に分類されるが、後者は前者のように加工後の製品検査
で目視検査にか\らないため見過ごされ易く、機械部品
にこの種の欠陥を内蔵したま\使用されると重大な事故
を引き起こす可能性がある。比較的大型の部品の場合に
は、非破壊検査によってオンラインで全数検査すること
も可能であり、これを実施している工場もある。
The mode of fracture is classified into two types: surface cracking and internal cracking, but the latter is easily overlooked because it cannot be visually inspected during post-processing product inspection like the former. If a product is used with a built-in defect, it may cause a serious accident. In the case of relatively large parts, it is possible to conduct a 100% online non-destructive inspection, and some factories do this.

しかしながら、小型部品ではその検査も困難であるし、
また少量生産の場合には、こうした非破壊検査設備を保
有することは経済上杵されないことも多い。そもそもこ
の種の欠陥は、鋼材を冷間で厳しい加工をすることに起
因して発生するものであるから、それを防止するには鋼
材性質の改善が一つの方法であシ、既にそれを″目指し
た鋼材も最近開発されている。しかしながら、鋼材加工
業者としてはそうした鋼材を用いつ〜も、尚一層厳しい
加工を与えようという要求が必然的に生じてくる。
However, it is difficult to inspect small parts,
Furthermore, in the case of small-volume production, it is often not economical to have such non-destructive testing equipment. In the first place, this type of defect occurs due to severe cold processing of steel materials, so one way to prevent them is to improve the properties of steel materials, and we have already done this. Steel materials aimed at this purpose have recently been developed. However, as steel material processors use such steel materials, there is inevitably a demand for even more severe processing.

、t1図(A)、(B)、(C’)、(・D)、(E)
、(D′)は段付シャフトの製造過程を示す一態様図で
あリ、(A)→(B)→(C)→(D)→(E) の順
に成形すれば軸径の太い方から細い方へと順番にd0→
d1→d1→d、→d4と加工されることになり、これ
は従来の加工法である。ところが、このような加工を行
なうと内部割れの欠陥がしばしば発生し、加工の制約を
受ける。そこで、このような問題の生じるような冷間押
出し法の開発が望まれている。
, t1 diagrams (A), (B), (C'), (・D), (E)
, (D') are views showing one aspect of the manufacturing process of the stepped shaft.If the steps are molded in the order of (A) → (B) → (C) → (D) → (E), the shaft diameter will be larger. d0 in order from the thinner side →
The processing is performed in the order of d1→d1→d, →d4, which is a conventional processing method. However, when such processing is performed, defects such as internal cracks often occur, which limits processing. Therefore, it is desired to develop a cold extrusion method that does not cause such problems.

本発明はこうした現状に鍾みなされたものであわ、従来
に比べはるかに高い加工度を与えることを可能とするも
のであって、その要旨は、3回以上の前方押出しによっ
て段付シャフトを製造するにあたって、3番目に細い゛
軸部を押出した後、最も細い軸部を押出し、しかる後2
番目に細い軸部を押出すことを特徴とする冷間押出し法
にある。
The present invention has been developed in consideration of the current situation, and enables a much higher degree of machining than conventional methods.The gist of the present invention is to manufacture a stepped shaft by forward extrusion three or more times. To do this, after extruding the third thinnest shank, extrude the thinnest shank, and then
It is a cold extrusion method characterized by extruding the thinnest shaft part.

以下、本発明を詳述する。The present invention will be explained in detail below.

本発明法は、第1図(A)、(B)、(C)、(D)、
(E)、(D′)の工程において、(C)で軸径d。
The method of the present invention is shown in FIG. 1 (A), (B), (C), (D),
In the steps (E) and (D'), the shaft diameter d is determined in (C).

を押出した後、(D)に代えて(D’) K $シ、先
に最も細い軸径d4を押出し、その後(E)に戻って、
2番目に細い軸径d、を押出すものである。
After extruding, replace (D) with (D') K $, first extrude the smallest shaft diameter d4, then return to (E),
It extrudes the second smallest shaft diameter d.

第1図の例では4段押出しの例であるが、5段押出し、
6段押出しなども同様に3番目に細い軸部を押出した後
、最も細い軸部を押出し、しかる後2番目に細い軸部を
押出すことが主要な点である。
The example in Figure 1 is an example of 4-stage extrusion, but 5-stage extrusion,
In the case of six-stage extrusion, the main point is to extrude the third thinnest shaft, then the thinnest shaft, and then the second thinnest shaft.

こうした成形法の改善によシ、内部割れを発生させずに
加工できる限界が大幅に向上する。
These improvements in forming methods will greatly improve the limits of what can be processed without causing internal cracks.

それは内部割れの発生がダイスを通して押出し回数と強
い相関性があるためであって、割れを防止するには押出
し回数を減らすのが最も有効というこになるからである
This is because the occurrence of internal cracks has a strong correlation with the number of extrusions through a die, and the most effective way to prevent cracks is to reduce the number of extrusions.

即ち、第1図で(A)→(B)→(C)→(D)→(E
)という工程を用いれば、最も細い径64部は索材d0
から4回押出しで形成されることになる。
That is, in Figure 1, (A) → (B) → (C) → (D) → (E
), the smallest diameter 64 part is the cable material d0
It will be formed by four extrusions.

この場合、鋼材によっては径d4の部分で内部割れを発
生する恐れがある。しかるに同じ鋼材を(A)→(B)
→(C)→(Dす→(B)の本発明工程にかければ、は
とんどの場合径d4の部分には内 ′部割れを生ずるこ
とは々い。それは、この条件下ではd4の部分は素材d
0からの押出し回数が3回のみであるからである。
In this case, depending on the steel material, there is a risk that internal cracks may occur at the portion of diameter d4. However, the same steel material (A) → (B)
→ (C) → (D → (B)) When subjected to the process of the present invention, internal cracks are unlikely to occur in the portion of diameter d4 in most cases. The part is material d
This is because the number of extrusions from zero is only three.

さらに、より加工性の嵐い鋼材で5段目で内部割れが出
るものについても、最も細い径を先に4段目で押出し完
了すれば内部割れは発生しない。以下、段数がふえても
同様である。
Furthermore, even with steel materials that are more workable and which may develop internal cracks in the 5th stage, if the narrowest diameter is completed in the 4th stage extrusion first, internal cracks will not occur. The same holds true even if the number of stages increases.

なお、本発明Fi31E以上の前方押出しによって段付
シャフトを製造することを前提条件としてbるのは、こ
うした加工に供される鋼材では2回以下の前方押出しで
成形される場合には内部割れの発生する危険性は着しく
低いからである。このよりに本発明法によって鋼材の加
工限界を高めることになるので、従来では太i部分と細
い部分の寸法差の大きい部材を一体で作製する必要めあ
る場合、太い部分を据込みにするか又は細い部分を切削
加工にたよるかせねばならなかったのを連続押出]−で
製造できるよりになシ、生産性の向上は著しく大きくな
る。しかも工程変更を必要とする部分は単にダイスの順
序の入れ替えのみに過ぎずコストアップは全くない。
The prerequisite for manufacturing the stepped shaft in the present invention by forward extrusion of Fi31E or higher is that steel materials subjected to such processing are prone to internal cracking when formed by two or less forward extrusions. This is because the risk of occurrence is fairly low. As a result, the method of the present invention increases the machining limit of steel materials, so if it is necessary to fabricate a member with a large dimensional difference between the thick part and the thin part in one piece, it is necessary to upset the thick part. Alternatively, the improvement in productivity is significantly greater than when manufacturing by continuous extrusion, which previously required cutting of thin parts. Furthermore, the process change required is simply a change in the order of the dice, and there is no cost increase at all.

次に本発明の効果を実施例によってさらに具体的に説明
する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

表に機械構造用炭素鋼5isc、s、isc、555C
fsならし材を用い、3回乃至5回の押出しを実施した
。用いたダイスは超硬製で、ダイス半角は176である
。いずれの例でも従来法は太い径から順に細くして最後
に最も細い部分を押出す手順となっているが、本発明で
は最初は太い径から順に押出すが、最後は2番目に細い
部分を押出すものでアシ、最本細い部分はその1段前に
押出される。
Machine structural carbon steel 5isc, s, isc, 555C is shown in the table.
Three to five extrusions were performed using fs conditioner. The die used was made of carbide and had a half-width of 176 mm. In either example, the conventional method is to start with the thickest diameter and then extrude the thinnest part. However, in the present invention, the diameter is first extruded starting from the thickest part, and then the second thinnest part is extruded. The reed is extruded, and the thinnest part is extruded one stage before the reed.

このような工程の差によって、従来法では最終工程で最
も細い部分に内部割れを発生したが、本発明法ではいず
れも健全であった。これらの例では表右欄に示すように
従来法で健全に押出せる減面率に比べて、本発明法では
約10%以上の向上が見られる。
Due to such a difference in process, internal cracks occurred in the thinnest part in the final process in the conventional method, but in all cases in the method of the present invention, they were sound. In these examples, as shown in the right column of the table, the method of the present invention improves the area reduction rate by about 10% or more compared to the area reduction rate that can be extruded soundly using the conventional method.

以上に述べた如く、本発明は従来法に比べて設備コスト
は全く上がることなく、鋼材の加工限を著しく高めるこ
とにより、結果的に徊込みあるいは切削の工程を省いて
大惠なコストダウンと生産性向上をもたらすものであっ
て、生産上貢献するところ大である。
As mentioned above, the present invention does not increase the equipment cost at all compared to the conventional method, significantly increases the machining limit of steel materials, and as a result eliminates the digging or cutting process, resulting in a huge cost reduction. It brings about productivity improvement and makes a great contribution to production.

 7−7-

Claims (1)

【特許請求の範囲】[Claims] 3回以上の前方押出しによって段付シャフトを製造する
にあたって、3番目に細い細部を押出した後、最も細い
軸部を押出し、しかる後2番目に細い軸部を押出すこと
を特徴とする、冷間押出し法。
In producing a stepped shaft by three or more forward extrusions, the third narrowest detail is extruded, then the thinnest shank is extruded, and then the second thinnest shank is extruded. Interextrusion method.
JP13105083A 1983-07-20 1983-07-20 Method for cold extrusion Granted JPS6024218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13105083A JPS6024218A (en) 1983-07-20 1983-07-20 Method for cold extrusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13105083A JPS6024218A (en) 1983-07-20 1983-07-20 Method for cold extrusion

Publications (2)

Publication Number Publication Date
JPS6024218A true JPS6024218A (en) 1985-02-06
JPH0349652B2 JPH0349652B2 (en) 1991-07-30

Family

ID=15048838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13105083A Granted JPS6024218A (en) 1983-07-20 1983-07-20 Method for cold extrusion

Country Status (1)

Country Link
JP (1) JPS6024218A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245933A (en) * 1985-04-25 1986-11-01 Honda Motor Co Ltd Manufacture of multistage shaft
JPH0537991U (en) * 1991-10-31 1993-05-21 日本特殊塗料株式会社 Soundproof material
KR100810103B1 (en) * 2006-09-20 2008-03-06 맹혁재 Forging method of decreasing diameter type product
JP2016198775A (en) * 2015-04-07 2016-12-01 新日鐵住金株式会社 Front extrusion processing method of hollow member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257076A (en) * 1974-11-01 1977-05-11 Gorukofusukoe Proizv K Obiedei Method of making headed shank member from binary titanium alloy of high strength

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257076A (en) * 1974-11-01 1977-05-11 Gorukofusukoe Proizv K Obiedei Method of making headed shank member from binary titanium alloy of high strength

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245933A (en) * 1985-04-25 1986-11-01 Honda Motor Co Ltd Manufacture of multistage shaft
JPH0337451B2 (en) * 1985-04-25 1991-06-05 Honda Motor Co Ltd
JPH0537991U (en) * 1991-10-31 1993-05-21 日本特殊塗料株式会社 Soundproof material
KR100810103B1 (en) * 2006-09-20 2008-03-06 맹혁재 Forging method of decreasing diameter type product
JP2016198775A (en) * 2015-04-07 2016-12-01 新日鐵住金株式会社 Front extrusion processing method of hollow member

Also Published As

Publication number Publication date
JPH0349652B2 (en) 1991-07-30

Similar Documents

Publication Publication Date Title
JP2000071046A (en) Method of manufacturing stepped and flanged annular member
US4628008A (en) Method for eliminating, or minimizing the effects of, defects in materials
JPS6024218A (en) Method for cold extrusion
Volokitina et al. Microstructure of bimetallic wire in the “ECAP-drawing» process
JPS5819429A (en) Production of hot-extruded alloy material
Yang et al. Plastic flow in a lead extrusion
JP2000140979A (en) Stepped shaft part and its production method
CN1045910C (en) Drawing method for metal conic tube of integrated road lamp pole
Templin et al. Som Stress-Strain Studies of Metals
JP2006193765A (en) Method for producing member made of aluminum alloy
JPWO2016159361A1 (en) Aluminum alloy tube excellent in corrosion resistance and workability and method for producing the same
JPH08243680A (en) Upsetting method for tube
JP2016094656A (en) Cylindrical material and method for producing the same
Bogatov et al. Improvement of manufacturing technology for thin-walled pipes made of copper alloys
JP2612072B2 (en) Cylindrical iron-based sintered slag for plastic working and method for producing the same
JPH10272536A (en) Manufacture of forged scroll parts
US1712972A (en) Method of forming blanks for making seamless tubes
JPS636302B2 (en)
JP3920581B2 (en) Manufacturing method for thick thin tube
JPH0386335A (en) Cylindrical member and its manufacture
JPH105848A (en) Manufacture of cold drawn wire for bearing
JP4992677B2 (en) Method for manufacturing ultrasonic fatigue test piece of wire
DE2624610B2 (en) Process for the production of rims from an aluminum alloy by die casting
RU2283715C1 (en) Method for making forged pieces with square or rectangular cross section
JPH04311589A (en) Production of pipe with thin diameter