JP2006088221A - Manufacturing method of tube having high dimensional accuracy - Google Patents

Manufacturing method of tube having high dimensional accuracy Download PDF

Info

Publication number
JP2006088221A
JP2006088221A JP2004315231A JP2004315231A JP2006088221A JP 2006088221 A JP2006088221 A JP 2006088221A JP 2004315231 A JP2004315231 A JP 2004315231A JP 2004315231 A JP2004315231 A JP 2004315231A JP 2006088221 A JP2006088221 A JP 2006088221A
Authority
JP
Japan
Prior art keywords
tube
pipe
die
dimensional accuracy
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004315231A
Other languages
Japanese (ja)
Inventor
Kazuhito Kenmochi
一仁 剣持
Takuya Nagahama
拓也 長濱
Takashi Sakata
坂田  敬
Masayuki Sakaguchi
雅之 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004315231A priority Critical patent/JP2006088221A/en
Publication of JP2006088221A publication Critical patent/JP2006088221A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a tube having high dimensional accuracy capable of favorably manufacturing a tube having a large shrinkage ratio from a stock tube of one and the same size over the extensive range of request sizes of the tube, manufacturing tubes of different sizes, and manufacturing tubes at high efficiency. <P>SOLUTION: In the manufacturing method of the tube having high dimensional accuracy in which a plug 1 is inserted in a tube 3, and the tube is punched by a die 2, a plurality of dies of different working sizes which are arranged in series in multiple stages in the working direction are used for the die. The tube can be efficiently punched without seizure by feeding a lubricant to an inner surface and/or an outer surface of the tube during the working (the tube between the die stages). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高寸法精度管の製造方法に関し、とくに同一サイズの素管から縮径率の大きい管を有利に製造し、また、サイズの異なる管を製造可能な高寸法精度管の製造方法に関する。   The present invention relates to a method for manufacturing a high dimensional accuracy pipe, and particularly relates to a method for manufacturing a high dimensional accuracy pipe that can advantageously manufacture a pipe having a large diameter reduction ratio from the same size of a raw pipe, and can manufacture pipes having different sizes. .

金属管、例えば鋼管は通常、溶接管と継目無管に大別される。溶接管は、例えば電縫鋼管のように、帯板の幅を丸め、該丸めた幅の両端を突き合わせて溶接するという方法で製造し、一方、継目無管は、材料の塊を高温で穿孔後マンドレルミル等で圧延するという方法で製造している。溶接管の場合、溶接後に溶接部分の盛り上がりを研削して管の寸法精度を向上させているが、その肉厚偏差は、後工程で低減させる努力が払われているものの、3.0%を超える。また、継目無管の場合、穿孔工程で偏心しやすく該偏心により大きな肉厚偏差が生じやすい。この肉厚偏差は後工程で低減させる努力が払われているが、それでも充分低減させることができず、製品の段階で8.0%以上残存する。   Metal pipes, such as steel pipes, are generally roughly classified into welded pipes and seamless pipes. Welded pipes are manufactured by rounding the width of the strip and welding by welding both ends of the rounded width, such as ERW steel pipes, while seamless pipes are used to drill a mass of material at high temperatures. It is manufactured by a method of rolling with a mandrel mill afterwards. In the case of a welded pipe, the bulge of the welded part is ground after welding to improve the dimensional accuracy of the pipe, but the thickness deviation is 3.0%, although efforts are made to reduce it in a later process. Exceed. In the case of a seamless pipe, it is easy to be eccentric in the drilling process, and a large thickness deviation is likely to occur due to the eccentricity. Although efforts have been made to reduce this thickness deviation in a later process, it cannot be sufficiently reduced, and remains at 8.0% or more at the product stage.

最近、環境問題から自動車の軽量化に拍車が掛かっており、ドライブシャフト等の駆動系部品は中実の金属棒から中空の金属管に置き換えられつつある。これら自動車用駆動系部品の金属管には、肉厚、内径、外径の各偏差として3.0%以下、さらに厳しくは1.0%以下、の高寸法精度が要求される。
そこで、金属管の肉厚、内径、外径の精度を高める手段として、従来一般に、図3に示すように、管3(溶接管、継目無管とも)を造管後にダイス2とプラグ1を用いて冷間で引き抜く製造方法(いわゆる冷牽法)がとられている(例えば特許文献1)。
特許第2812151号公報
Recently, due to environmental problems, the weight reduction of automobiles has been accelerated, and drive system parts such as drive shafts are being replaced from solid metal rods to hollow metal tubes. The metal pipes of these automobile drive system parts are required to have a high dimensional accuracy of 3.0% or less, more strictly 1.0% or less, as deviations in thickness, inner diameter, and outer diameter.
Therefore, as a means for improving the accuracy of the thickness, inner diameter, and outer diameter of the metal pipe, conventionally, as shown in FIG. 3, after forming the pipe 3 (both welded pipe and seamless pipe), the die 2 and the plug 1 are connected. A manufacturing method (so-called cold check method) that is used and pulled out cold is used (for example, Patent Document 1).
Japanese Patent No. 2812151

しかし、従来の冷牽法では、設備上の制約や管の肉厚・径が大きくて引き抜き応力が充分得られずに縮径率を低くせざるを得ない場合などでは、加工バイト(プラグとダイス孔内面との隙間)内での管の応力が引張応力であるがゆえに、ダイスと管外面、およびプラグと管内面の接触が不十分となり、管の内面、外面の平滑化が不足して凹凸が残留しやすい。そのため、冷牽法では管の縮径率を大きくして加工バイト内で管の内外面とプラグ、ダイスとの間の接触を向上させることが行われている。しかし、冷牽法において管の縮径率を大きくすると、管の内面に凹凸が発生して管の縮径率が大きくなるほど凹凸による粗さが増加する。その結果、冷牽法では高寸法精度の管を得ることが難しく、寸法精度のさらに良好な管が強く求められていた。   However, in the conventional cold check method, when the restrictions on equipment and the thickness and diameter of the tube are large and sufficient pulling stress cannot be obtained and the diameter reduction rate must be lowered, etc., a machining tool (plug and plug) Because the stress of the tube within the gap between the die hole inner surface is a tensile stress, the contact between the die and the outer surface of the tube and the plug and the inner surface of the tube is insufficient, and the smoothness of the inner and outer surfaces of the tube is insufficient. Unevenness is likely to remain. Therefore, in the cold check method, the reduction ratio of the tube is increased to improve the contact between the inner and outer surfaces of the tube and the plug and die in the machining tool. However, when the diameter reduction ratio of the pipe is increased in the cold check method, unevenness is generated on the inner surface of the pipe, and the roughness due to the unevenness increases as the diameter reduction ratio of the pipe increases. As a result, it has been difficult to obtain a tube with high dimensional accuracy by the cold check method, and a tube with better dimensional accuracy has been strongly demanded.

また、高寸法精度管の製造にあたり、ダイス1段当たりの縮径率は最大でも18%程度であり、これ以上はダイスと管、プラグと管が焼き付いて摩擦係数が大きくなり、荷重が大きくて加工ができなかった。そこで、複数のサイズの素管を準備して、種々のサイズのダイスを用意して、ダイス1段による加工を余儀なくされていた。
上記の要求や難点に鑑み、本発明は、管の広範囲の要求サイズに亘り、同一サイズの素管から縮径率の大きい管を有利に製造し、また、サイズの異なる管を製造可能、さらには高能率に製造可能な、高寸法精度管の製造方法を提供することを目的とする。
Also, when manufacturing high dimensional accuracy tubes, the diameter reduction ratio per die is about 18% at the maximum, and the die and tube, plug and tube are seized, and the friction coefficient increases and the load increases. Processing was not possible. Therefore, a plurality of sizes of raw pipes are prepared, dies of various sizes are prepared, and processing by one stage of the dies is forced.
In view of the above requirements and difficulties, the present invention can advantageously manufacture a tube with a large diameter reduction ratio from the same size raw tube over a wide range of required sizes of the tube, and can also manufacture tubes of different sizes, An object of the present invention is to provide a manufacturing method of a high dimensional accuracy tube that can be manufactured with high efficiency.

上記目的を達成した本発明は、管内にプラグを装入し、該管をダイスで押し抜き加工する高寸法精度管の製造方法において、前記ダイスとして、加工方向に多段に直列配置した加工サイズの異なる複数のダイスを用いることを特徴とする高寸法精度管の製造方法である。
本発明では、前記複数のダイスによる総縮径率を18%以上とするのが好ましい。また、本発明では、目標製品管サイズに応じて前記複数のダイスの配置段数を変更することが好ましい。また、本発明では、前記複数のダイスの段間の管外面に潤滑剤を供給しつつ押し抜きを行うことが好ましい。また、本発明では、前記プラグに設けた潤滑剤供給孔から前記複数のダイスの段間の管内面に潤滑剤を供給しつつ押し抜きを行うことが好ましい。また、本発明では、管内にプラグを装入する工程を省略してもよい。
The present invention that has achieved the above object is a manufacturing method of a high dimensional accuracy pipe in which a plug is inserted into a pipe and the pipe is punched with a die. It is a manufacturing method of a high dimensional accuracy pipe characterized by using a plurality of different dies.
In the present invention, it is preferable that the total diameter reduction ratio of the plurality of dies is 18% or more. Moreover, in this invention, it is preferable to change the arrangement | positioning stage number of these dice | dies according to a target product pipe | tube size. In the present invention, it is preferable to perform the punching while supplying a lubricant to the outer surface of the pipe between the stages of the plurality of dies. In the present invention, it is preferable to perform the punching while supplying the lubricant from the lubricant supply hole provided in the plug to the inner surface of the pipe between the stages of the plurality of dies. In the present invention, the step of inserting the plug into the pipe may be omitted.

本発明によれば、押し抜き加工方向に多段に直列配置した複数のダイスを用いることにより、1個のダイスを用いる場合よりも縮径率を増大させることができ、また、ダイスの配置段数を変えることで同一サイズの素管から種々異なるサイズの管を製造できる。また、複数のダイスの配置段間の管外面および/または管内面に潤滑剤を供給しつつ押し抜きを行うことにより同一サイズの素管から種々異なるサイズの管を、焼き付きの発生なく高能率に製造できる。   According to the present invention, by using a plurality of dies arranged in series in the punching direction, the diameter reduction ratio can be increased as compared with the case of using a single die, and the number of dies arranged can be reduced. By changing, it is possible to manufacture various sizes of tubes from the same size. In addition, by supplying a lubricant to the outer surface and / or inner surface of the tube between the arrangement stages of a plurality of dies, it is possible to efficiently convert various sizes of tubes from the same size of raw tube without causing seizure. Can be manufactured.

従来、ダイスとプラグを用いて管を引き抜いた場合、管の寸法精度を向上させることが困難である理由は、引き抜きであるがゆえに、加工バイト内でダイスと管外面、プラグと管内面の接触が不十分となることに由来する。すなわち、図3に示すように、管3を、その管内にプラグ1を装入し、ダイス2から引き抜くことにより、ダイス2の出側で管引き機5により加えられた引き抜き力(張力)によって加工バイト内には引張場が発生する。加工バイト内の入側では、プラグ1に管内面が沿って変形するため、管外面はダイス2に接触しないかあるいは軽度にしか接触せず、また、加工バイト内の出側では、ダイス2に管外面が接触して変形するため、管内面はプラグ1に接触しないかあるいは軽度にしか接触しない。そのため、管外面、管内面ともに加工バイト内に自由変形の部分が存在して凹凸を十分平滑化できず、引き抜き後には寸法精度の不十分な管しか得られていなかった。   Conventionally, when a pipe is pulled out using a die and a plug, it is difficult to improve the dimensional accuracy of the pipe. This is due to the fact that is insufficient. That is, as shown in FIG. 3, by inserting the plug 1 into the pipe and pulling it out of the die 2, the pulling force (tension) applied by the pipe puller 5 on the exit side of the die 2 is used. A tensile field is generated in the machining tool. Since the inner surface of the tube is deformed along the plug 1 on the entry side in the processing tool, the outer surface of the tube does not contact the die 2 or only slightly, and on the exit side in the processing tool, the die 2 is contacted. Since the outer surface of the tube contacts and deforms, the inner surface of the tube does not contact the plug 1 or only slightly contacts. For this reason, both the outer surface of the tube and the inner surface of the tube have free deformation portions in the machining bite, and the unevenness cannot be sufficiently smoothed, and only a tube with insufficient dimensional accuracy has been obtained after drawing.

これに比べて、本発明で用いる押し抜き加工の場合、図2に示すように、管3を、その管内にプラグ1を装入し、ダイス2の入側から管押し機4にて押し込み力(圧縮力)を加えて、管3をダイス2の孔内に送り込む。よって、加工バイト内の管の全域に亘って圧縮場が発生する。その結果、加工バイト内の入側、出側を問わず、管3はプラグ1およびダイス2に十分接触できる。しかも、軽度の縮径率であっても、加工バイト内は圧縮場となるため、引き抜きに比較して管とプラグ、管とダイスが十分接触しやすくて、管は平滑化しやすくなるので、高寸法精度の管が得られるわけである。   In contrast, in the punching process used in the present invention, as shown in FIG. 2, the plug 3 is inserted into the pipe 3 and the pushing force is applied by the pipe pusher 4 from the entry side of the die 2. (Compressive force) is applied, and the tube 3 is fed into the hole of the die 2. Therefore, a compression field is generated over the entire area of the pipe in the machining tool. As a result, the tube 3 can sufficiently contact the plug 1 and the die 2 regardless of the entry side or the exit side in the machining tool. In addition, even within a small diameter reduction ratio, since the inside of the machining tool is a compression field, the tube and the plug, the tube and the die are more easily in contact with each other than the drawing, and the tube is easily smoothed. A tube with dimensional accuracy is obtained.

しかし、押し抜きにおいて、より細径の管を製造するために縮径率を18%以上に大きくしようとすると、ダイスと管、プラグと管とが焼き付いて摩擦係数が著しく大きくなり、荷重が増大して加工が不能になる。そこで、種々のサイズの素管を準備して、ダイスの縮径率を18%未満に抑制して、種々のサイズの管を製造せざるをえなかった。
そこで、本発明者らは、1回の加工で高縮径率を得る方法を検討した結果、本発明に至ったわけである。すなわち、ダイス1段当たりの縮径率に限界があるのであれば、例えば図1に示すように、加工サイズ(孔径)の異なる複数のダイス2を加工方向に孔径の小さくなる順に多段に直列配置して押し抜き加工を行えばよいわけである。従来の冷牽では、管の先端をすぼめて管引き機で挟んで引き抜く必要があったため、多段に直列配置した複数のダイスに管を通すことが難しく、かかる複数のダイスによる加工は困難であった。しかし、本発明で用いる押し抜き加工では、管をダイスの入側から押すだけでよいので、順次複数のダイスによって縮径されて、より細径の管に加工可能なわけである。したがって、本発明では、多段に直列配置した複数のダイスによる総縮径率を18%以上とすることが好ましい。これにより、1回の押し抜き加工で高縮径率を達成でき、もって高寸法精度管を製造することができる。
However, if an attempt is made to increase the diameter reduction ratio to 18% or more in order to produce a smaller diameter tube in the punching, the die and the tube, the plug and the tube are seized, the friction coefficient becomes remarkably large, and the load increases. Processing becomes impossible. Therefore, it has been unavoidable to prepare pipes of various sizes by preparing various sizes of pipes and suppressing the diameter reduction rate of the dies to less than 18%.
Therefore, the present inventors have come up with the present invention as a result of studying a method for obtaining a high diameter reduction ratio by one processing. That is, if there is a limit to the diameter reduction rate per stage of the die, for example, as shown in FIG. 1, a plurality of dies 2 having different processing sizes (hole diameters) are arranged in series in the order of decreasing the hole diameter in the processing direction. Then, it is only necessary to perform punching. In conventional chillers, it is necessary to squeeze the tip of the pipe and pinch it with a pipe puller, so it is difficult to pass the pipe through multiple dies arranged in series, and processing with such multiple dies is difficult. It was. However, in the punching process used in the present invention, it is only necessary to push the pipe from the entrance side of the die, so that the diameter can be reduced successively by a plurality of dies and processed into a smaller diameter pipe. Therefore, in the present invention, it is preferable that the total diameter reduction ratio by a plurality of dies arranged in series in multiple stages is 18% or more. Thereby, a high diameter reduction rate can be achieved by a single punching process, and thus a high dimensional accuracy tube can be manufactured.

また、本発明では、同一サイズの素管から種々の異なるサイズの管を製造するには、製品管の目標サイズに応じて複数のダイスの配置段数を変えてやればよい。すなわち、複数用意したダイスの全数を多段に直列配置したものを用いて加工すれば、最も高縮径を得て最も細径の管が製造でき、また、前記ダイスの全数を多段に直列配置したものから最終段のダイスを取り除けば、その縮径率分だけ太い管が製造でき、さらに、最終段に加えてその上流側の複数段を取り除けば、さらに太い管の製造が可能になるわけである。   Further, in the present invention, in order to manufacture various different sizes of tubes from the same size of raw tubes, the number of arrangement stages of a plurality of dies may be changed according to the target size of the product tube. In other words, if the total number of dice prepared is processed using what is arranged in series in multiple stages, the thinnest tube can be manufactured with the highest diameter reduction, and all the dice are arranged in series in multiple stages. By removing the final stage die from the product, a thicker tube can be manufactured for that diameter reduction rate, and by removing multiple upstream stages in addition to the final stage, it is possible to manufacture a thicker tube. is there.

また、加工中の焼き付き発生を防止するために、通常は素管の外面あるいはさらに内面に潤滑剤皮膜を形成した上で加工が行われるが、本発明では複数段のダイスに管を通すものであるから、2段目以降の加工では、前段のダイスまたはプラグで加工されたことにより管の表面に付着した潤滑剤の膜厚が薄くなり、場合によっては全く付着していない状態となって焼き付きを発生しやすく、加工後の管表面に疵が多発して所望の製品が得られない場合がある。また、管の加工速度(送り速度)が速いと焼き付きが拡大して加工できない場合がある。そのため、加工速度を著しく低速としたり、焼き付いた場合はダイスやプラグを交換する必要があって、加工能率を上げるのが困難である。   In order to prevent the occurrence of seizure during processing, the processing is usually performed after forming a lubricant film on the outer surface or further on the inner surface of the raw tube, but in the present invention, the tube is passed through a plurality of dies. Therefore, in the processing after the second stage, the film thickness of the lubricant adhering to the surface of the pipe is thinned by being processed with the previous die or plug, and in some cases, it is not attached at all and seizes. In some cases, wrinkles frequently occur on the tube surface after processing, and a desired product cannot be obtained. Also, if the tube processing speed (feeding speed) is high, there may be cases where seizure increases and the tube cannot be processed. For this reason, when the processing speed is significantly reduced or seized, it is necessary to exchange dies and plugs, and it is difficult to increase the processing efficiency.

そこで、本発明者らは、まずダイスに着目し、前段の加工を受けた管の外面に再度潤滑剤を供給すれば、次段の加工中に焼き付きを発生することなく安定して押し抜きができるようになることを見出した。
また、プラグと管内面との潤滑を良好にするため、プラグ中央部に開けた潤滑剤供給孔を通して潤滑剤を供給すれば、前段の加工を受けた管の内面に潤滑剤を供給できるわけである。
Therefore, the inventors first pay attention to the die, and if the lubricant is supplied again to the outer surface of the tube subjected to the previous processing, the punching can be stably performed without causing seizure during the subsequent processing. I found out that I could do it.
In addition, in order to improve the lubrication between the plug and the inner surface of the pipe, if the lubricant is supplied through the lubricant supply hole opened in the center of the plug, the lubricant can be supplied to the inner surface of the pipe subjected to the previous processing. is there.

図4は、加工途中の管(ダイス段間の管)に潤滑剤を供給する本発明実施形態の1例を示す縦断面図である。なお、プラグ部は側面図で示した。この例では、図1において各段のダイス2の入側の管外面側に配置した潤滑剤供給ノズル6から、1段目のダイス2の入側の管(素管)外面のみならず、2段目以降のダイス2の段間の管外面にも、潤滑剤を供給するようにしている。また、この例では、1〜4段目に配置するプラグ1の中央部に潤滑剤供給孔7を開け、1段目のダイス2の入側の管内面側に配置した潤滑剤供給ノズル6Aから、1段目のダイス2の入側の管(素管)内面のみならず、潤滑剤供給孔7を通して2段目以降のダイス2の段間の管内面にも、潤滑剤を供給するようにしている。   FIG. 4 is a longitudinal sectional view showing an example of an embodiment of the present invention for supplying a lubricant to a pipe being processed (a pipe between die stages). The plug portion is shown in a side view. In this example, not only the outer surface of the pipe (element tube) on the inlet side of the first-stage die 2 but also the lubricant supply nozzle 6 arranged on the pipe outer surface side of the inlet 2 of each stage of the die 2 in FIG. The lubricant is also supplied to the outer surface of the pipe between the stages of the dies 2 after the stage. Further, in this example, a lubricant supply hole 7 is opened in the center portion of the plug 1 arranged in the first to fourth stages, and the lubricant supply nozzle 6A arranged on the pipe inner surface side on the entry side of the first stage die 2 is used. Lubricant is supplied not only to the inner surface of the pipe (element tube) on the inlet side of the first stage die 2 but also to the inner surface of the pipe between the stages of the second and subsequent dies 2 through the lubricant supply hole 7. ing.

上記潤滑剤としては、二硫化モリブデン等の極圧剤を含む鉱油系液体潤滑剤や、ワックス等を分散した速乾性樹脂系液体潤滑剤などが好ましく用いうる。
なお、管の寸法精度への要求が外径のみ厳しい場合には、管内にプラグを装入せずに押し抜き加工を行うと、荷重が低減して加工しやすくなり、ダイス1段で18%を超える縮径率での加工が可能となって、複数のダイスを用いると、さらに細径の管の製造が可能となる。
As the lubricant, a mineral oil-based liquid lubricant containing an extreme pressure agent such as molybdenum disulfide, a quick-drying resin-based liquid lubricant in which a wax or the like is dispersed can be preferably used.
If the outer diameter is strictly required for the dimensional accuracy of the pipe, if the punching process is performed without inserting the plug into the pipe, the load will be reduced and the process will be easier, and 18% will be achieved with one stage of the die. When a plurality of dies are used, it is possible to manufacture a tube having a smaller diameter.

(本発明例1)
外径34mm、肉厚7mm、強度410MPaのロットの鋼管を素管とし、プラグ角度5.5°およびプラグ長さ20mmになる外径の異なる複数の鏡面のプラグと、該プラグに対応した孔径をもちダイス角度5.5°およびダイス縮径率12.5%になる複数の一体型ダイスを加工方向に孔径が小さくなる順に5段に直列配置した5段ダイス配列(図1)とを用い、管内にプラグを装入して、表1に示す総縮径率になる押し抜き加工を行い、表1に示す外径になる管を製造した。
(Invention Example 1)
A steel pipe having an outer diameter of 34 mm, a wall thickness of 7 mm, and a strength of 410 MPa is used as a raw pipe, and a plurality of mirror-surface plugs having different outer diameters having a plug angle of 5.5 ° and a plug length of 20 mm, and a hole diameter corresponding to the plug. Using a five-stage die arrangement (FIG. 1) in which a plurality of integrated dies having a die angle of 5.5 ° and a die reduction ratio of 12.5% are arranged in series in five stages in order of decreasing the hole diameter in the machining direction. A plug was inserted into the tube, and a punching process having a total diameter reduction ratio shown in Table 1 was performed to manufacture a tube having an outer diameter shown in Table 1.

ここで、プラグ角度は、プラグの傾斜部分の外面が加工中心軸に対してなす角度であり、プラグ長さは、プラグの傾斜部分の加工中心軸長さであり、ダイス角度は、ダイス孔内面が加工中心軸に対してなす角度であり、ダイス縮径率は、(入側孔径−出側孔径)/入側孔径(×100%)である。
(本発明例2)
同上のロットの鋼管を素管とし、同上のプラグと、同上の5段ダイス配列から最終段およびその1つ前の段を取り除いてなる3段ダイス配列とを用い、管内にプラグを装入して、表1に示す総縮径率になる押し抜き加工を行い、表1に示す外径になる管を製造した。
(比較例)
同上のロットの鋼管を素管とし、同上のプラグと、同上の5段ダイス配列から第1段以外の段を取り除いてなる1段ダイス配列(図2)とを用い、管内にプラグを装入して、表1に示す総縮径率になる押し抜き加工を行い、表1に示す外径になる管を製造した。
(従来例)
同上のロットの鋼管を素材とし、同上のプラグと、同上の5段ダイス配列から最初段以外の段を取り除いてなる1段ダイス配列(図3)とを用い、管内にプラグを装入して、表1に示す総縮径率になる引き抜き加工を行い、表1に示す外径になる管を製造した。
Here, the plug angle is an angle formed by the outer surface of the inclined portion of the plug with respect to the processing center axis, the plug length is the processing center axis length of the inclined portion of the plug, and the die angle is the inner surface of the die hole. Is the angle formed with respect to the machining center axis, and the die diameter reduction ratio is (incoming side hole diameter−outside hole diameter) / incoming side hole diameter (× 100%).
(Invention Example 2)
The steel pipe of the same lot is used as a raw pipe, and the plug is inserted into the pipe using the same plug and the three-stage die arrangement obtained by removing the last stage and the previous stage from the five-stage die arrangement. Then, a punching process having a total diameter reduction ratio shown in Table 1 was performed, and a tube having an outer diameter shown in Table 1 was manufactured.
(Comparative example)
The steel pipe of the same lot is used as the raw pipe, and the plug is inserted into the pipe using the same plug as above and the one-stage die arrangement (FIG. 2) obtained by removing the steps other than the first stage from the same five-stage die arrangement. Then, a punching process having a total diameter reduction ratio shown in Table 1 was performed, and a tube having an outer diameter shown in Table 1 was manufactured.
(Conventional example)
Using the steel pipe of the same lot as the raw material, using the same plug as above and the one-stage die arrangement (Fig. 3) obtained by removing the stage other than the first stage from the same five-stage die arrangement, the plug is inserted into the pipe. Then, drawing was performed to obtain the total diameter reduction ratio shown in Table 1, and a tube having an outer diameter shown in Table 1 was manufactured.

なお、上記の各例では素管に速乾性樹脂系液体潤滑剤を供給して樹脂皮膜を管内外面に形成させた。また、本発明例1、2および比較例では、加工途中の管(複数のダイスの段間の管)に対しては潤滑剤を供給しなかった。
上記各例について、加工後の管の寸法精度(肉厚偏差、外径偏差)を調べた結果を表1に示す。ここで、外径偏差は、管の円周方向断面を画像解析して、真円からの最大偏差(すなわち(最大径−最小径)/真円径×100%)を円周方向に算出することにより求めた。また、肉厚偏差は、管の円周方向断面を画像解析して、肉厚断面の画像から平均肉厚に対する最大偏差(すなわち(最大肉厚−最小肉厚)/平均肉厚×100%)として直接測定した。
In each of the above examples, a quick-drying resin-based liquid lubricant was supplied to the raw tube to form a resin film on the inner and outer surfaces of the tube. In the inventive examples 1 and 2 and the comparative example, the lubricant was not supplied to the pipe being processed (the pipe between the stages of the plurality of dies).
Table 1 shows the results of examining the dimensional accuracy (thickness deviation, outer diameter deviation) of the processed pipe for each of the above examples. Here, the outer diameter deviation is calculated by calculating the maximum deviation from the true circle (that is, (maximum diameter−minimum diameter) / true circle diameter × 100%) in the circumferential direction by image analysis of the circumferential section of the tube. Was determined by Further, the thickness deviation is obtained by image analysis of the circumferential cross section of the tube, and the maximum deviation with respect to the average thickness from the image of the thickness cross section (that is, (maximum thickness−minimum thickness) / average thickness × 100%). As measured directly.

表1より、本発明例1,2では、多段ダイス配列の段数を変えることにより押し抜き加工後の管のサイズを変えることができ、該加工後の管の寸法精度は良好であった。これに対して、比較例では、加工後の管の寸法精度は良好であったが、加工後の管のサイズは1種類に限られ、種々のサイズの管を製造することはできなかった。また、従来例では、加工後の管の寸法精度が著しく低下した。   From Table 1, in Examples 1 and 2 of the present invention, the size of the tube after the punching process could be changed by changing the number of stages of the multistage die arrangement, and the dimensional accuracy of the tube after the processing was good. On the other hand, in the comparative example, the dimensional accuracy of the tube after processing was good, but the size of the tube after processing was limited to one type, and it was impossible to manufacture tubes of various sizes. Further, in the conventional example, the dimensional accuracy of the tube after processing is significantly lowered.

(本発明例3)
本発明例1と同じロットの鋼管を素管とし、本発明例1と同じプラグ、同じ5段ダイス配列を用い、同じ縮径加工条件および同じ潤滑剤供給条件(加工途中の管への潤滑剤供給なし)で、10本の素管を連続的に押し抜き加工した。
(本発明例4)
潤滑剤供給条件を以下の通りとして加工途中の管の外面に潤滑剤を供給し、それ以外は全て本発明例3と同一の仕様で押し抜き加工を行った。
・潤滑剤供給条件:1段目のダイス入側および各段のダイス間の管外面に鉱油系液体潤滑剤を供給(図4のように配置した潤滑剤供給ノズル6を使用)する。
(本発明例5)
プラグおよび潤滑剤供給条件を以下の通りとして加工途中の管の外面および内面に潤滑剤を供給し、それ以外は全て本発明例3と同一の仕様で押し抜き加工を行った。
・プラグ:1〜4段目ではそれぞれ本発明例3の同段目のプラグの中央部に直径1mmの潤滑剤供給孔を設けなるプラグを用い、5段目は本発明例3の同段目と同じとする。
・潤滑剤供給条件:本発明例4の潤滑剤供給条件に加え、1段目のダイス入側の管内面側から1〜4段目のプラグの潤滑剤供給孔に通してダイス段間の管内面に鉱油系液体潤滑剤を供給(図4のように配置した潤滑剤供給ノズル6Aを使用)する。
(Invention Example 3)
A steel pipe of the same lot as the present invention example 1 is used as a raw pipe, the same plug as the present invention example 1 and the same five-stage die arrangement are used, the same diameter reduction processing condition and the same lubricant supply condition (the lubricant to the pipe in the middle of processing) 10 blanks were continuously punched without supply.
(Invention Example 4)
The lubricant supply conditions were as follows, and the lubricant was supplied to the outer surface of the pipe being processed. Except that, the punching was performed with the same specifications as in Example 3 of the present invention.
Lubricant supply conditions: Mineral oil-based liquid lubricant is supplied to the inlet side of the first stage die and the pipe outer surface between the dies of each stage (using the lubricant supply nozzle 6 arranged as shown in FIG. 4).
(Invention Example 5)
The plug and lubricant supply conditions were as follows, and the lubricant was supplied to the outer surface and the inner surface of the pipe in the middle of processing. Except that, the punching was performed with the same specifications as in Example 3 of the present invention.
-Plugs: In the first to fourth stages, plugs provided with a lubricant supply hole having a diameter of 1 mm are used in the central part of the same-stage plugs of Example 3 of the present invention, and the fifth stage is the same stage of Example 3 of the present invention. Same as
Lubricant supply conditions: In addition to the lubricant supply conditions of Example 4 of the present invention, through the lubricant supply holes of the first to fourth stage plugs from the inner surface side of the first stage die entry side into the pipe between the die stages A mineral oil-based liquid lubricant is supplied to the surface (using a lubricant supply nozzle 6A arranged as shown in FIG. 4).

上記本発明例3〜5について、加工後の管の寸法精度(肉厚偏差、外径偏差)を実施例1と同じ方法で調べると共に、加工中の焼き付き発生の有無を調べた。その結果を表2に示す。   With respect to Examples 3 to 5 of the present invention, the dimensional accuracy (thickness deviation, outer diameter deviation) of the tube after machining was examined by the same method as in Example 1, and the presence or absence of seizure during machining was examined. The results are shown in Table 2.

表2より、本発明例4,5では、加工途中で潤滑剤を供給したことにより焼き付きは充分防止できて、該加工後の管の寸法精度は良好であった。一方、加工途中での潤滑剤供給を行わなかった本発明例3では、加工後の管の寸法精度は良好であったが、焼き付きを発生する場合があった。   From Table 2, in Examples 4 and 5 of the present invention, seizure was sufficiently prevented by supplying the lubricant during the processing, and the dimensional accuracy of the tube after the processing was good. On the other hand, in Example 3 of the present invention in which the lubricant was not supplied during the processing, the dimensional accuracy of the tube after processing was good, but seizure sometimes occurred.

本発明の実施形態の1例を示す縦断面図である。It is a longitudinal section showing an example of an embodiment of the present invention. 比較例とした押し抜き加工の概要を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline | summary of the punching process made into the comparative example. 従来例とした冷牽法の概要を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline | summary of the cold check method made into the prior art example. 加工途中で潤滑剤を供給する本発明の実施形態の1例を示す縦断面図(プラグ部は側面図)である。It is a longitudinal cross-sectional view (a plug part is a side view) which shows an example of embodiment of this invention which supplies a lubricant in the middle of a process.

符号の説明Explanation of symbols

1 プラグ
2 ダイス
3 管
4 管押し機
5 管引き機
6,6A 潤滑剤供給ノズル
7 潤滑剤供給孔
DESCRIPTION OF SYMBOLS 1 Plug 2 Dies 3 Pipe 4 Pipe pushing machine 5 Pipe drawing machine 6,6A Lubricant supply nozzle 7 Lubricant supply hole

Claims (6)

管内にプラグを装入し、該管をダイスで押し抜き加工する高寸法精度管の製造方法において、前記ダイスとして、加工方向に多段に直列配置した加工サイズの異なる複数のダイスを用いることを特徴とする高寸法精度管の製造方法。   In a manufacturing method of a high dimensional accuracy pipe in which a plug is inserted into a pipe and the pipe is punched with a die, a plurality of dies having different processing sizes arranged in series in a processing direction are used as the die. A manufacturing method of a high dimensional accuracy tube. 前記複数のダイスによる総縮径率を18%以上とすることを特徴とする請求項1記載の高寸法精度管の製造方法。   The method for manufacturing a high dimensional accuracy tube according to claim 1, wherein a total diameter reduction ratio of the plurality of dies is set to 18% or more. 目標製品管サイズに応じて前記複数のダイスの配置段数を変更することを特徴とする請求項1または2に記載の高寸法精度管の製造方法。   The method for manufacturing a high-dimensional accuracy pipe according to claim 1 or 2, wherein the number of arrangement stages of the plurality of dice is changed in accordance with a target product pipe size. 前記複数のダイスの段間の管外面に潤滑剤を供給しつつ押し抜きを行うことを特徴とする請求項1〜3のいずれかに記載の高寸法精度管の製造方法。   The method for manufacturing a high-dimensional accuracy pipe according to any one of claims 1 to 3, wherein punching is performed while supplying a lubricant to the outer surface of the pipe between the stages of the plurality of dies. 前記プラグに設けた潤滑剤供給孔から前記複数のダイスの段間の管内面に潤滑剤を供給しつつ押し抜きを行うことを特徴とする請求項1〜4のいずれかに記載の高寸法精度管の製造方法。   The high dimensional accuracy according to any one of claims 1 to 4, wherein the punching is performed while supplying the lubricant from the lubricant supply hole provided in the plug to the inner surface of the pipe between the stages of the plurality of dies. A method of manufacturing a tube. 管内にプラグを装入する工程を省略することを特徴とする請求項1〜4のいずれかに記載の高寸法精度管の製造方法。   The method for manufacturing a high-dimensional accuracy pipe according to any one of claims 1 to 4, wherein a step of inserting the plug into the pipe is omitted.
JP2004315231A 2004-08-27 2004-10-29 Manufacturing method of tube having high dimensional accuracy Pending JP2006088221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004315231A JP2006088221A (en) 2004-08-27 2004-10-29 Manufacturing method of tube having high dimensional accuracy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004247648 2004-08-27
JP2004315231A JP2006088221A (en) 2004-08-27 2004-10-29 Manufacturing method of tube having high dimensional accuracy

Publications (1)

Publication Number Publication Date
JP2006088221A true JP2006088221A (en) 2006-04-06

Family

ID=36229683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004315231A Pending JP2006088221A (en) 2004-08-27 2004-10-29 Manufacturing method of tube having high dimensional accuracy

Country Status (1)

Country Link
JP (1) JP2006088221A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102632093A (en) * 2012-04-01 2012-08-15 徐州徐工液压件有限公司 Steel pipe cold-drawing mould with twice-reducing and twice-shaping functions
CN103264062A (en) * 2013-05-24 2013-08-28 新兴铸管股份有限公司 Hot-extrusion reaming head
CN103831354A (en) * 2013-12-25 2014-06-04 赵恒佩 Production method for compressing cylindrical hollow pipe to form conical pipe by utilizing mold
CN104438398A (en) * 2014-10-08 2015-03-25 俞启福 Cone processing technology for seamless steel tube
CN107030131A (en) * 2017-06-07 2017-08-11 宁波金田铜管有限公司 Suitable for the copper pipe system head machine of multi-joint drawing and its head method processed
KR20200118959A (en) * 2019-04-09 2020-10-19 김재훈 Multiple step compression forming mehthod of traction link bush
CN113385546A (en) * 2021-06-23 2021-09-14 沈阳理工大学 Single-pass double-core-head pipe drawing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102632093A (en) * 2012-04-01 2012-08-15 徐州徐工液压件有限公司 Steel pipe cold-drawing mould with twice-reducing and twice-shaping functions
CN103264062A (en) * 2013-05-24 2013-08-28 新兴铸管股份有限公司 Hot-extrusion reaming head
CN103831354A (en) * 2013-12-25 2014-06-04 赵恒佩 Production method for compressing cylindrical hollow pipe to form conical pipe by utilizing mold
CN104438398A (en) * 2014-10-08 2015-03-25 俞启福 Cone processing technology for seamless steel tube
CN107030131A (en) * 2017-06-07 2017-08-11 宁波金田铜管有限公司 Suitable for the copper pipe system head machine of multi-joint drawing and its head method processed
KR20200118959A (en) * 2019-04-09 2020-10-19 김재훈 Multiple step compression forming mehthod of traction link bush
KR102196348B1 (en) * 2019-04-09 2020-12-29 김재훈 Multiple step compression forming mehthod of traction link bush
CN113385546A (en) * 2021-06-23 2021-09-14 沈阳理工大学 Single-pass double-core-head pipe drawing device
CN113385546B (en) * 2021-06-23 2023-11-07 沈阳理工大学 Single-pass double-core pipe drawing device

Similar Documents

Publication Publication Date Title
JP4285053B2 (en) High dimensional accuracy tube and manufacturing method thereof
US8141405B2 (en) Method for producing ultra thin wall metallic tube with cold working process
WO2009096034A1 (en) Process for manufacturing ultrathin wall metallic pipe by cold drawing method
US8939001B2 (en) Method of extrusion forming
CN107443023A (en) A kind of flexible processing method with muscle thin-walled large aluminum alloy cylinder
JP2006088221A (en) Manufacturing method of tube having high dimensional accuracy
JP2007000907A (en) High dimensional precision pipe manufacturing method with high efficiency and stability
JP2005118799A (en) Device and method for contracting diameter of metal tube
JP2006061932A (en) Highly efficient manufacturing method for tube with high dimensional precision
JP2006181611A (en) Highly efficient method for manufacturing pipe with high dimensional accuracy and excellent surface quality
JP4333257B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP2007054882A (en) Method for efficiently manufacturing pipe with high dimensional accuracy
JP2006346689A (en) Method for consistently manufacturing high dimensional precision pipe
JP2006035299A (en) Method for efficiently and consistently manufacturing tube of high dimensional accuracy
JP2006136899A (en) Manufacturing method of pipe having high dimensional accuracy
JP4396234B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP2006088194A (en) Manufacturing method of tube having high dimensional accuracy
JP4300864B2 (en) High dimensional accuracy pipe manufacturing equipment
JP2007090392A (en) Highly-efficient and consistent manufacturing method of high dimensional precision pipe
JP2006175484A (en) Method for highly efficiently manufacturing pipe having high dimensional accuracy and excellent in surface quality
JP2006136898A (en) High efficiency stable manufacturing method of pipe having high dimensional accuracy
JP2006175485A (en) Method for highly efficiently manufacturing pipe having high dimensional accuracy
JP2006346690A (en) Method for consistently manufacturing high dimensional precision pipe, with high efficiency
JP4285072B2 (en) High-efficiency manufacturing method for high dimensional accuracy pipes
US7861571B1 (en) Trapped ball draw process for reducing the diameter of tubing