JP2016143482A - イオン化装置、それを有する質量分析装置及び画像作成システム - Google Patents

イオン化装置、それを有する質量分析装置及び画像作成システム Download PDF

Info

Publication number
JP2016143482A
JP2016143482A JP2015016662A JP2015016662A JP2016143482A JP 2016143482 A JP2016143482 A JP 2016143482A JP 2015016662 A JP2015016662 A JP 2015016662A JP 2015016662 A JP2015016662 A JP 2015016662A JP 2016143482 A JP2016143482 A JP 2016143482A
Authority
JP
Japan
Prior art keywords
voltage
sample
probe
mass
ionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015016662A
Other languages
English (en)
Inventor
正文 教學
Masabumi Kyogaku
正文 教學
大塚 洋一
Yoichi Otsuka
洋一 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015016662A priority Critical patent/JP2016143482A/ja
Publication of JP2016143482A publication Critical patent/JP2016143482A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】大気中で、固体試料面上の異なった微小領域の成分を混濁することなく分離することのできるイオン化装置、並びに、そのイオン化装置を使用する質量分析装置及び画像形成システムを提供する。【解決手段】本発明のイオン化装置は、試料を保持する保持台、前記保持台に保持されている前記試料のイオン化する部分を決めるためのプローブ、前記試料のイオン化したイオンを引き出す引出電極、前記試料の一部領域に液体を供給する液供給手段、前記プローブと前記引出電極との間に第一の電圧を印加する手段、及び前記プローブと前記保持台との間に第二の電圧を印加する手段、を有し、前記第二の電圧をパルス変調することを特徴とする。【選択図】 図1

Description

本発明は、固体試料のイオン化装置、並びにそれを有する質量分析装置及び画像システムに関する。
固体試料の表面の成分分析のために固体を大気圧環境下でイオン化させる技術がある。
非特許文献1では、固体試料表面の微小領域に微量体積の溶媒を提供し、試料の成分を溶媒に溶解させた後で、エレクトロスプレーイオン化法により成分をイオン化する方法が提案されている。発生したイオンを質量分析装置に導入し、イオンの質量電荷比を計測し、成分の分析を行うことができる。固体試料表面の微小領域に溶媒を付与するために、プローブが用いられている。プローブには連続的に溶媒が導入され、プローブが固体試料表面と近接した状態で、両者の間に液架橋が形成され、液架橋に固体試料表面の成分が溶解する。成分が溶解した溶液は印可された電圧によってイオン化される。プローブが固体試料表面と近接し続けている状態でイオン化を行う方法をContact−mode Scanning Probe Electrospray Ionization (Contact−mode SPESI)、プローブが振動し、固体試料表面に間欠的に溶媒が付与される状態でイオン化を行う方法をTapping−mode Scanning Probe Electrospray Ionization (Tapping−mode SPESI)と名付けている。
Yoichi Otsuka et al., "Scanning probe electrospray ionization for ambient mass spectrometry"Rapid Communications in mass spectrometry, 26, 2725 (2012)
非特許文献1では、プローブが振動することによって、プローブと試料表面が間欠的に接触し、間欠的に液架橋が形成される。従って、液架橋の形成時間とイオン化の時間は、プローブの振動数等の振動条件によって規定されるので、自由に設定することができない。そのため、プローブの振動や溶液の流量等の条件によっては、試料表面上を走査して成分を連続的に計測する場合に、試料表面上のある測定点で液架橋に溶解した試料成分が、次の測定点で形成された液架橋中にも残留し、両測定点での溶解成分を正しく分離して分析できなくなる場合がある、という問題があった。
本発明は上記問題を解決するためになされたものであり、本発明のイオン化装置は、
試料を保持する保持台、
前記保持台に保持されている前記試料のイオン化する部分を決めるためのプローブ、
前記試料のイオン化したイオンを引き出す引出電極、
前記試料の一部領域に液体を供給する液供給手段、
前記プローブの前記液架橋部に接している部分と前記引出電極との間に第一の電圧を印加する手段、及び、
前記プローブと前記保持台との間に第二の電圧を印加する手段、
を有し、
前記第二の電圧をパルス変調することを特徴とする。
本発明により、大気中で、固体試料面上の異なった微小領域の成分を混濁することなく分離してイオン化する装置、そのイオン化する装置を使用した、質量を分析する装置、及び、成分分布を画像化する装置を提供することができる。
第一及び第二の実施形態に係るイオン化装置を有する画像作成システムを示す模式図である。 第一の実施形態に係る電圧印加タイミングを示す図である。 第三の実施形態に係るイオン化装置を有する画像作成システムを示す模式図である。 第四の実施形態に係るイオン化装置を有する画像作成システムを示す模式図である。 第四の実施形態に係る電圧印加とトリガー発生のタイミングを示す図である。 第五の実施形態に係るイオン化装置を有する画像作成システムを示す模式図である。
(第一の実施形態)
本発明の第一の実施形態に係るイオン化装置は、試料に溶媒を供給する液供給手段と、液架橋を試料との間で形成するプローブと、イオンを引き出す引出電極と、プローブと引出電極との間に電圧を印加する手段と、が配置されている装置である。
図1は本発明の第一の実施形態及び後述する第二の実施形態に係るイオン化装置を有する画像作成システムを示す模式図である。
試料2は保持台1に載置され保持される。試料2は本実施形態では生体組織の切片(細胞群)等である。保持台1は、導電性の材質で構成される。試料2は更に平坦な基板上に配置されても良い。このとき、基板は、試料2の導電性に応じて、適宜、導電性或いは絶縁性の材質から選ばれる。試料2が導電性である場合には絶縁性の基板を選択することが好ましいが、必ずしも絶縁性で無くても良い。
プローブ3は針状でその端部が試料2に接触あるいは図示するように極めて近い位置に配置されている。プローブ3はその配置によって試料2のイオン化する部分を決める。プローブ3はその内側に流路を有し、例えば筒状である。プローブ3の端部には開口がある。プローブ3は、開口から溶媒が連続的に流れ出すことにより、試料2の表面上に溶媒を供給する。溶媒は液供給手段4から接続用配管5、及び導電性配管6を介してプローブ3へ連続して供給される。
溶媒は試料2に含まれる物質を溶質として溶解できる液体であり、溶質が溶解した溶媒を以下「溶液」と呼ぶ。溶媒は、水と有機溶媒の混合物であるとよく、酸および塩基の少なくともいずれかが更に混合されているとよいが、水あるいは有機溶媒のみでも良い。溶媒であるこの混合物が試料2に触れることで、試料2に含まれる溶媒に溶解しやすい物質(脂質と糖類と平均分子量が20以上1億未満の分子の少なくともいずれか)が容易に溶解し、溶媒である液体が溶液へ変化する。
ここで溶解とは、溶媒中に分子、原子、微小な粒子が分散している状態のことを指す。溶解しやすい物質の例として、細胞膜を構成する脂質分子や、細胞内に含まれる糖や浮遊するタンパク質があげられる。
プローブ3から供給される溶媒は、プローブ3の端部と試料2との間で液架橋7を形成する。液架橋7とは、大気圧環境下で形成される、プローブ3と試料2とを架橋する状態の液体のことであり、表面張力等によって架橋した状態を保っている。液架橋7が形成されると、液体内に試料2の表面の物質が溶解される。液架橋7の、試料2の接触面積はおよそ1×10−8程度である。すなわち液架橋7は試料2の面内の極めて狭い一部領域に配置される。
プローブ3のサイズ、材質、流路サイズ、溶媒の流量は、例えば、以下のように選択する。
プローブの長さ :10マイクロメートル〜100ミリメートル
プローブの径 :外径1マイクロメートル〜5ミリメートル
材質 :ガラス、ステンレス、シリコン、PMMA
流路サイズ :流路断面積1平方マイクロメートル〜1平方ミリメートル
溶媒の流量 :毎分1ナノリットル〜毎分100マイクロリットル
プローブ3、或いは、導電性配管6と、引出電極10には、第一の電圧印加手段101が接続されており、第一の電圧が印加される。プローブ3の先端と引出電極10との距離は、10mm以下である。
更に、プローブ3、或いはプローブ3に導入される溶媒と保持台1との間に電圧を印加するために、第二の電圧印加手段102が接続されている。
プローブ3は導体、或いは絶縁性の材質で形成されるが、プローブが導体の場合、第一の電圧印加手段101、或いは第二の電圧印加手段102はプローブ3に直接接続することができる。一方、溶媒に導電性があれば、絶縁性のプローブを用いてもよいが、液供給手段4からプローブ3までの間の流路のいずれかの箇所に導体の部材を設けて、これに電圧を印加する必要がある。ここでは、導電性配管6を設け、第一の電圧印加手段101は導電性配管6に接続される。第一の電圧印加手段101から供給された電圧は、導電性の溶媒を通して、プローブ3、及びプローブ先端から流れ出す溶媒にも印加される。この場合でも、以下ではプローブに電圧を印加すると表現することがある。
また、試料2の導電性が低く、保持台1として良導体が選択されている場合は、保持台1をプローブ3、或いは導電性配管6に電気的に接続して、同電位となるようにしても良い。
引出電極10は導電部材を有する構造体であり、例えば平板状、あるいは筒状である。第一の電圧印加手段101によって、第一の電圧が印加されると、プローブ3の高いアスペクト比を持つ構造ゆえにプローブ3の先端部には電界集中による高電界が形成されて、液体の一部はテイラーコーン8を形成する。引出電極10は、テイラーコーン8先端部から放出される帯電液滴9、或いはイオンを引き出すためのものである。
テイラーコーン8は、引出電極10に向かって錐状に伸びた形状をしている。テイラーコーン8の先端において、帯電した液体が引きちぎられ、過剰に帯電した帯電液滴9となる。帯電液滴9は、クーロン力によって引出電極10に向かってスプレーされる。なお、テイラーコーン8が形成されること、帯電液滴9がスプレーされること、イオン化することの一連を総称して以降ではエレクトロスプレーイオン化と呼ぶ。
第一の電圧は、プローブ3の先端部で液体がテイラーコーン8を生じるのに十分な高電界を発生させることのできる電圧に設定される。第一の電圧は、通常1kV以上10kV以下、より好ましくは3kV以上5kV以下の高電圧である。ただし、プローブ3と引出電極10の間の距離が小さいほど、テイラーコーン8を生じる電界強度を得るために必要な電圧は低下する。この場合、第一の電圧として、1kV未満の電圧でも良い。
第一の電圧の極性は目的のイオンの電荷の正負によって切り替えられる。正電荷のイオンを検出する時は、相対的に引出電極10を低電位に設定する。負電荷のイオンを検出する時は、相対的に引出電極10を高電位に設定する。基準電位は任意に設定することができ、引出電極10が接地されていても良く、プローブ3が接地されていても良い。ただし、引出電極10と測定系のグランドとの間の静電容量が大きいので、引出電極10がグランド電位に対して一定である方が、後述するパルス電圧印加時の電圧応答性の観点で好ましい。
液架橋7を形成した溶媒は、試料2に含まれる物質を溶解した溶液となり、一部はプローブ3の先端部を移動して、テイラーコーン8を形成する。即ち、テイラーコーン8を形成する液体は、試料2に含まれる物質が溶解した溶液を含む。以上のように、本発明のイオン化装置では、液架橋の形成と物質のイオン化が同一のプローブで行われる。
引出電極10には開口が設けられており、更に導入路11を介して質量分析部200が接続されている。導入路11は例えば細い筒状である。質量分析部200、及び導入路11には不図示のポンプが接続されており、外部環境に対して陰圧になっている。そのため、イオンは液滴あるいは気相のいずれの状態であっても、イオンを取り巻く雰囲気の気体分子と共に引出電極10に引き寄せられ、引出電極10を通過する。そして質量分析部200においては、イオンは気相の状態で飛行する。帯電液滴9に含まれる物質は質量分析部200においてイオン化した状態で導入される。質量分析部200はイオンの質量電荷比を計測する。なお、引出電極10は、導入路11、或いは質量分析部200を真空保持する筐体部と一体の構成であってもよい。
本発明においては、第一の電圧が印加された状態で、同時に、プローブ3と保持台1の間に第二の電圧が印加される。図2に第一の電圧及び第二の電圧の印加の様子を示す。図2(a)に示すように、ここでは、第一の電圧はDC電圧である。なお、第一の電圧がパルス電圧であっても良い。一方、第二の電圧は、パルス変調され、間欠的に印加される。ここでは、パルス変調とは、低電位の状態に対して高電位の状態を間欠的に形成し、パルス状の電圧を繰返し形成することを意味する。パルスの時間T1とパルス間間隔T2は任意に設定することができる。通常、パルスは一定のパルス間間隔、即ち一定の周波数で印加することが好ましいが、T1とT2が順次変化するように設定しても良い。
プローブ3の先端に供給された溶媒、或いは、試料2を溶解した溶液が、プローブ3の先端と試料2の表面との間に液架橋7を作り試料表面に流れるか、或いは、プローブ3の先端にテイラーコーン8を形成し引出電極10に向かってエレクトロスプレーとして飛翔するかは、プローブ3の先端にかかる電界強度のバランスによって決まる。言い換えれば、プローブ3の先端の引出電極10側の電界と、プローブ3の先端の試料2の表面側の電界との電界強度の大小関係によって決定される。プローブ3の先端の引出電極10側の電界が相対的に強ければ、テイラーコーン8を形成し、プローブ3の先端の試料2の表面側の電界が相対的に強ければ液架橋7を形成する。
第一の電圧としてDC電圧を印加したときに、第二の電圧を印加しなければ、テイラーコーン8が形成される。ここで第二の電圧として十分強い電圧のパルス電圧を印加すればテイラーコーン8は消滅し、代わって液架橋7が形成されて試料成分の溶解が行われる。更に電圧を高くすれば液架橋7の体積及び試料2の面内方向の面積は増大する。従って、第二の電圧としてのパルス電圧の波高値及びパルス間隔の制御のみで、液架橋の形成とエレクトロスプレーの発生を制御することが可能である。
同様に、第二の電圧としてDC電圧を印加し、第一の電圧を印加しなければ、液架橋7が形成され、試料成分の溶解が行われる。プローブ3の先端に供給された溶媒は、DC電圧によって形成された電界によって試料2の表面に引き寄せられ、効率良く液架橋7の形成を行うことができる。ここに、第一の電圧として十分強い電圧のパルス電圧を印加すれば、試料表面に溜まっていた溶液が液架橋7を通してプローブ3に戻され、更に液架橋7が縮小し、代わりにテイラーコーン8が形成されてエレクトロスプレーが発生する。ここでの電圧印加の様子を、図2(b)に示す。第一の電圧のパルスの時間はT3、パルス間の時間間隔はT4である。第一の電圧としてのパルス電圧の波高値及びパルス間隔の制御でも、液架橋の形成とエレクトロスプレーの発生を制御することが可能である。
或いは、第一、或いは第二の電圧がDC電圧にパルス電圧が重畳した電圧であってもよい。特に第一の電圧に関しては、DC電圧値に応じて、パルス電圧の波高値を小さくすることができるので、パルス応答性が向上する。このとき、パルス印加によるエレクトロスプレー発生の制御性を確保するには、DC電圧としては、テイラーコーンを形成しても良いがエレクトロスプレーを発生しない程度の電圧値に設定することが好ましい。
第二の電圧の印加極性は、プローブ3の電位が相対的に保持台1の電位より高くても良いし、低くてもよい。ただし、第一の電圧が印加されているときに、同時に第二の電圧が印加される場合は、電位関係を規定することが好ましい。正イオンを検出する場合は、引出電極10の電位<導電性配管6の電位<保持台1の電位、となるように設定することが好ましい。また、負イオンを検出するときは、この逆の電位関係となるように各構成要素の電位を設定する。
プローブ3と試料2の表面は極近接しているのに対して、プローブ3と引出電極10の距離は相対的に大きい。この構成において、第一の電圧はテイラーコーン8を形成する程度に十分大きい必要がある。一方、第二の電圧は放電、或いは過電流によって、プローブ、或いは試料等に損傷しないように、第一の電圧よりも十分低い必要がある。そこで第二の電圧は、数十V以下に設定されることが好ましい。
また、引出電極10、及び導入路11を接地せずに、弱いDCオフセット電圧が重畳して印加されるようにしても良い。例えば、正に帯電した液滴を検出する場合には、オフセット電圧として、質量分析部200に対して相対的に数十V程度高い電圧を引出電極10に印加する。すると、正に帯電した液滴が引出電極10に付着することを抑制し、効率良く質量分析部200に送ることができる。
また、第二の電圧としてパルス電圧の電圧値が低いときは、プローブ3から供給される溶媒は、主にテイラーコーン8を形成するように移動し、帯電液滴9として放出される。一方、このとき液架橋7の形成のために移動する溶媒の量は減少する。溶媒のプローブ3への供給量が少ない条件では、液架橋7はほとんど形成されない。一方、パルス電圧が印加されているときは、プローブ3から供給される溶媒は、液架橋7の形成のために移動し、試料2の表面の成分が液架橋7に溶解する。次に、パルス電圧が低くなったときに、液架橋7を形成していた溶液は、プローブ上部にかかる強い電界によってプローブ3先端の試料2の表面とは反対側に引き寄せられて、テイラーコーン8を形成する溶液の一部となる。
なお、T1の長さと液架橋7のサイズは対応しており、更に、液架橋7のサイズはイオン化領域のサイズと対応する。即ち、T1の長さは後述の質量分布画像の空間分解能を決定する。従って、以降で示す試料の移動速度が同じであれば、T1が短い程、液架橋のサイズが小さくなり空間分解能は向上する。
本実施形態において、T2は、好ましくは、1msecから1secの間の任意の値に設定することができる。このとき、T1は、T1<T2の範囲で任意に設定できる。
以上のように、電圧を間欠的に印加して、電圧印加時間を任意に制御することで、試料表面の成分の溶解と、帯電液滴9の形成を明確に分離できるようになる。また、帯電液滴の形成の時間を十分長くとることで、相前後するタイミングで、試料2の表面上の異なった測定地点で溶解した成分の混濁を抑制して、質量分析を行うことができるようになる。
なお、電圧印加の結果、プローブ3が振動しても良い。電圧が間欠的に印加されると、クーロン力によってプローブ3が間欠的に変形する結果、振動を生じることがある。この場合、第一の電圧の印加は、プローブ3の先端が試料2の表面から最も離れた時に行われると、最も電界強度を強めることができるので、容易にイオン化ができる。
(第二の実施形態)
第二の実施形態に係る画像作成システムは、質量分析装置と、画像形成装置300を有する。ここで、質量分析装置は、上述したイオン化装置をイオン化部として有するとともに質量分析部200を有する。また、画像情報を作成する画像形成装置300は、画像形成部301、位置指定部302、及び、画像表示部303を有する(図1)。
上述したように液架橋7は試料2の面内の極めて狭い領域に配置される。試料2の面内のより広い範囲を分析するために、イオン化装置は更に試料2を試料2の表面と平行な方向に走査させる移動手段12を有している。移動手段12は位置指定部302に接続される。移動手段12は、位置指定部302が指定する位置情報に従って、保持台1を移動させる。なお、液架橋7の形成と帯電液滴9の形成、或いはイオン化は同時ではないため、分析する試料2の表面上での位置座標は、保持台1の移動速度とパルス印加時刻から計算される。
質量分析結果は、質量分析部200によって質量スペクトルデータなどの質量情報として得られる。画像形成部301は、質量スペクトルデータと位置指定部302からの位置情報を統合して画像情報を形成する。画像情報は、二次元画像でも三次元画像でもよい。画像形成部301から出力された画像情報はディスプレイ等の画像表示部303に送られ、画像として表示される。
質量分析結果からは、液架橋に溶解した溶質の成分を知ることができるので、画像は成分分布画像、或いは質量分布画像を構成する。画像上には、例えば、成分の種類とその量が表示される。種類と量は、例えば色、あるいは明るさ等でその違いが表示される。また、予め取得した試料の光学顕微鏡画像と、質量分布画像とを重ね合わせて表示することもできる。
本実施形態に係るイオン化装置は、プローブ3が内部に流路を有し、流路に溶媒が流れる構成であるが、液供給手段4から溶媒がプローブ3に供給され、その溶媒がプローブ3の表面を伝って移動し、プローブ3先端で液架橋7を形成する構成でもよい。
本実施形態に係るイオン化装置は、飛行時間型質量分析装置、四重極型質量分析計や磁場偏向型質量分析計、イオントラップ型質量分析計、イオンサイクロトロン型質量分析計などの質量分析装置のイオン発生部として用いてもよい。
本実施形態に係るイオン化装置は、大気圧環境下で液架橋を形成し、物質をイオン化させているが、大気圧とは標準大気圧の101325Paの0.1倍から10倍の範囲である。また環境は通常の室内と同じ雰囲気下でもよく、あるいは窒素雰囲気下、あるいはアルゴン雰囲気下のような不活性ガス雰囲気下でもよい。
(第三の実施形態)
本発明の第三の実施形態に係るイオン化装置を有する画像形成システムの模式図を図3に示す。本実施形態においては、第一の実施形態と比較すると、引出電極10が導入路11とは分離してプローブ3により近い位置に設けられる。更に、取込み電極13が導入路に近接して設けられている。
引出電極10と導電性配管6には第一の電圧印加手段101が接続され、第一の電圧が間欠的に印加される。取込み電極13と引出電極10とには第三の電圧印加手段103が接続され、第三の電圧が印加される。第三の電圧はDC電圧が好ましいがAC電圧、或いはパルス電圧であっても良い。また、第二の電圧印加手段102は、導電性配管6と保持台1に接続され、第二の電圧を印加する。その他の構成は第一の実施形態と同様であるので詳細は省略する。
第一の電圧が印加されたとき、プローブ3の先端部にはテイラーコーン8が形成され、テイラーコーン8の先端からは帯電液滴9が放出される。帯電液滴9は引出電極10に設けられた開口を通り抜ける。帯電液滴9は、引出電極10と取込み電極13との間の電界に従って、取込み電極13に到達し、更には取込み電極13に設けられた開口と導入路11を通って質量分析部200に到達する。
引出電極10とプローブ3の先端との距離は、5mm以下に設定され、好ましくは2mm以下に設定される。第一の電圧の波高値は、テイラーコーン8が形成される電圧に設定され、典型的には1kV以下に設定される。プローブ3と引出電極10との距離が1mm以下に近接している場合は、数十V〜数百V程度の低い値に設定することができる。より低い電圧を設定できれば、放電の発生に伴って装置に損傷を与える危険性を低減することができる。
第三の電圧は、例えばイオンを検出する場合には、取込み電極13の電位が引出電極10の電位の低い状態よりも低くなるように設定される。これは、引出電極10を通過したイオンを効率よく取込み電極13に導くためである。正イオンを検出する場合は、取込み電極13の電位<引出電極10の電位<導電性配管6の電位<保持台1の電位、となるように設定することが好ましい。基準電位は任意に設定して良い。また、負イオンを検出する場合は、この逆の電位関係になるように引出電極10等の各構成要素の電位を設定する。
電圧印加のタイミングは第一の実施形態における図2と同様である。また、電圧印加にともなう液架橋7の形成、及びテイラーコーン8の形成等の作用についても、第一の実施形体における作用と同様である。ただし、第三の電圧がACまたはパルス電圧であった場合、第二のパルス電圧に同期して印加される。
本実施形態においても、プローブ3と試料2の表面は極近接しているのに対して、プローブ3と引出電極10の距離は十分大きい。また、第一の電圧はテイラーコーン8を形成する程度に十分大きい必要がある。一方、第二の電圧は放電、或いは過電流によって、プローブ、或いは試料等に損傷しないように、第一の電圧よりも十分低く設定される。
本実施形態においても、プローブ3の走査に伴い、異なった試料2の表面上の位置に由来する物質が溶液中で混濁することを抑制することができる。従って、正しく成分を分離して分析を行うことができるので、空間分解能の低下を軽減することができる。
(第四の実施形態)
本発明の第四の実施形態に係るイオン化装置の模式図を図4に示す。また、電圧印加とトリガー信号発生のタイミングを図5に示す。トリガー信号は、イオンの発生と同期して生成されるようにする。本実施形態では、第二の電圧印加手段102から出力されたトリガー信号は質量分析部200に入力され、質量分析装置200は、イオンの発生に同期して質量分析を行う。それ以外の構成は第一の実施形態と同様であるので詳細は省略する。
質量分析部200としては、飛行時間型、四重極型、磁場偏向型、二重収束型、イオントラップ型、イオンサイクロトロン型などの各種質量分析計を用いることができる。
本実施形態ではトリガー信号は、第二の電圧としてのパルス電圧の印加の立下り時刻に発生させる。このパルス電圧印加の立下りと同時に、帯電液滴9はプローブ3の先端から放出され、引出電極10に向かって飛翔を開始する。帯電液滴9は、質量分析部200に導入される過程で、更に***し、帯電液滴9に含まれる成分がイオン化される。質量分析部200は、トリガー信号を受けて質量分析を開始する。質量分析結果は、画像形成部301に送られる。なお、トリガー信号は、パルス電圧が印加された時刻から一定時間遅延した時刻で発生するようにしても良い。或いは、第一の電圧印加手段101がパルス電圧を発生する場合は、トリガー信号線を切り替えて第一の電圧に同期した第一の電圧印加手段101からのトリガー信号を質量分析部200に入力し、質量分析が開始されるようにしても良い。
例えば、四重極型の質量分析部の場合は、トリガー信号とイオン行路上の電場掃引を同期するようにし、磁場収束型、或いは二重収束型の質量分析部の場合は、セクタ型イオン偏向部の磁場掃引と同期するようにする。
次に、質量分析部200として、TOF法(Time of Flight法)を利用した飛行時間型質量分析手段を用いた場合を例示する。TOF法では、加速部(不図示)に導入されたイオンを電界で加速した後、飛行管に導入され、この中を等速度で飛行するイオンの飛行時間を計測することによってイオンの質量電荷比を計測する。
質量分析部200は、トリガー信号を時間の基準にしてイオンが質量分析部の内部の検出器(不図示)に到達するまでの時間の計測を行う。このとき、トリガー信号の発生に対して、質量分析部内のイオン加速部への加速電界の印加のタイミングは適宜調整される。トリガー信号に同期して加速部で電界を印加してイオンを加速し、引き続き飛行時間の計測を開始する。ただし、イオン質量を求めるために必要なのは、イオンが質量分析部の内部の飛行管(不図示)を飛行する時間のみである。そのため、トリガー信号の発生からイオンが飛行管の入り口に到達する時間Tdelayは適宜見積もられて、イオン検出時間から差し引かれる。
また、ある時刻に第二のパルス電圧の印加により生成したイオンの信号と、引き続いて印加されたパルス電圧によって生成したイオンの信号が、質量分析装置において混濁しないようにする必要がある。そのために、第二の電圧のパルス間間隔T2は計測対象イオンの飛行時間の計測時間Ttofよりも長くなるように設定される。
以上のように、本実施形態では、成分の溶解とイオン化を間欠的に行い、イオン化のタイミングと質量分析のタイミングと同期させることで、試料2の表面上の隣接する計測位置において溶解した成分の質量分析情報の混濁を低減できる。また、帯電液滴の放出、或いはイオンが発生するときのみ質量分析を行うので、信号のS/Nが改善される。これによって、精度よく質量分析を行い、空間分解能の高い質量分布画像を得ることができる。
(第五の実施形態)
本発明の第五の実施形態に係るイオン化装置の模式図を図6に示す。本実施形態では、プローブ3或いは試料2の表面の変位を測定する変位計測手段400を有する。それ以外の構成は第1から4のいずれかの実施形態と同様であるので詳細は省略する。
本実施形態においては、移動手段12は、試料2の表面と平行な方向への変位に加えて、試料の表面に垂直なZ方向への変位機能を有する。変位計測手段400からの信号を受けて、位置指定部302は移動手段12に対してZ方向の位置の帰還制御を行う。信号が一定になるように制御すれば、プローブ3と試料2の表面との距離をおよそ一定に保つことができる。これにより、液架橋7の形成時間あるいは形成量を安定させることができる。また、試料に過度の力が加わることを避けることができるので、安定して試料2の表面上を走査し試料2の表面の成分をイオン化することができる。
本実施形態における変位計測手段400には、以下に示すように様々な方式を用いた構成を採用することができるが、本実施形態に示した方式に限定されるものではない。
プローブ3の先端が試料2の表面に近接し、接触した場合、或いは、液架橋7が形成された場合には凝着力の発生によってプローブにたわみが生じる。試料2の表面とプローブ3の先端との距離に応じて液架橋7の形成状態が変化すると凝着力が変化するのでプローブのたわみ量が変化する。プローブ3のたわみ量が一定になるように移動手段12を帰還制御することで、プローブと試料表面との凝着力または距離を一定に保つことができる。
プローブ3のたわみを検出する方式として、光てこ方式や光干渉方式等を応用することができる。プローブ3を圧電材料で形成し、プローブ3の変位に応じて発生する電圧を検出する方式を用いても良い。
光てこ方式を応用した変位計測手段400では、光照射器401から射出されたレーザー光をプローブ3の背面に照射して、反射してきた光を光検出器402で検出し、光検出器402における光の検出位置の変位からプローブ3のたわみ量を検出する。なお、光路調整を容易にするために光路上に反射鏡(不図示)を設置しても良い。
更に、精密にプローブ3と試料2の表面との距離を一定に保つには、更に、以下に示す方法を用いても良い。
プローブ3に僅かに振動を与えておき、変位計測手段400でプローブ3のたわみを検出することでプローブ3の振動周波数を検出する。プローブ3に一定周波数の交流電圧を印加すれば、静電力によってプローブ3に振動を与えることが出来る。或いは、圧電素子など機械的な手段を用いてプローブ3を振動させても良い。プローブ3の先端と試料2の表面との距離が変化すると、液架橋7による凝着力が変化するため、プローブ3の振動数或いは振幅が変化する。プローブ3の振動数或いは振幅を一定に保つように、移動手段12のZ変位を帰還制御する。
実施形態の1〜4においてパルス変調した第二或いは第一の電圧をプローブ印加したが、この場合でもプローブ3はたわみにより変位する。このときのプローブ3の変位を検出し、この検出信号を用いて移動手段12に対してZ変位の帰還制御を行っても良い。或いは、上記のようにパルス変調した電圧とは別に、一定周波数の交流電圧をプローブ3と保持台1との間に印加した場合、プローブ3のパルス電圧による変位と交流電圧による変位を分離する必要がある。そのためには、周波数フィルターを用いる方法、或いは、交流電圧に同期して変動する信号をロックイン検出などによって分離する方法などが用いられる。
上記では、プローブ3の変位を計測したが、試料2の表面の変位を計測しても良い。以下、変位計測手段400に光干渉方式を用いて変位計測を行う手段を用いた例を示す。プローブ3が近接する試料2の表面の近傍部位に光照射器401の先端からレーザー光を照射し、光照射器401から分岐したレーザー光と、試料2の表面で反射したレーザー光との干渉光の強度を計測することで試料2の表面の位置を検出する。ここで、光照射器401からの光照射は例えば光ファイバーを通して行う。光ファイバーの端部のファイバー光軸は、試料2の面におよそ垂直になるように設置される。入射光から分岐した光、及び、光ファイバーに戻った反射光は、分岐された光路上で干渉し、干渉光は分岐された光路上に設置された光検出器402で検出される。検出される試料2の表面の位置が一定になるように、移動手段12は帰還制御される。プローブ3と光ファイバーは共に筐体に固定されている。これにより、傾きを持った試料2の表面をプローブ3が走査する場合でもプローブ3の先端と試料2の表面との距離を一定に保つことで安定して液架橋を形成できるので、安定したイオン化を行うことができるようになる。
1 保持台
2 試料
3 プローブ
4 液供給手段
5 接続用配管
6 導電性配管
7 液架橋
8 テイラーコーン
9 帯電液滴
10 引出電極
11 導入路
12 移動手段
13 取り込み電極
101 第一の電圧印加手段
102 第二の電圧印加手段
103 第三の電圧印加手段
200 質量分析部
300 画像形成装置
301 画像形成部
302 位置指定部
303 画像表示部
400 変位計測手段
401 光照射器
402 光検出器

Claims (11)

  1. イオン化装置であって、
    試料を保持する保持台、
    前記保持台に保持されている前記試料のイオン化する部分を決めるためのプローブ、
    前記試料のイオン化したイオンを引き出す引出電極、
    前記試料の一部領域に液体を供給する液供給手段、
    前記プローブと前記引出電極との間に第一の電圧を印加する手段、及び
    前記プローブと前記保持台との間に第二の電圧を印加する手段、
    を有し、
    前記第二の電圧をパルス変調することを特徴とする、イオン化装置。
  2. 前記第一の電圧がDC電圧であることを特徴とする、請求項1に記載のイオン化装置。
  3. 前記プローブの端部と前記保持台が保持する試料との間に液架橋が形成されることを特徴とする、請求項1に記載のイオン化装置。
  4. 第二の電圧が第一の電圧よりも低いことを特徴とする、請求項1乃至3のいずれか一項に記載のイオン化装置。
  5. 前記プローブ或いは前記試料との変位を計測する変位計測手段を更に有し、
    前記変位計測手段からの信号を基に、前記試料の位置を変位するための移動手段の前記試料の表面と垂直な方向の位置を帰還制御することを特徴とする、請求項1乃至4のいずれか一項に記載のイオン化装置。
  6. 請求項1乃至5のいずれか一項に記載のイオン化装置を有するイオン化部、及び
    イオンの質量電荷比を分析する質量分析部、
    を有することを特徴とする、質量分析装置。
  7. パルス変調された第一の電圧の印加と、前記質量分析部の計測とを同期させることを特徴とする、請求項6に記載の質量分析装置。
  8. 前記質量分析部が飛行時間型の質量分析部であることを特徴とする、請求項6又は7に記載の質量分析装置。
  9. パルス変調された第一の電圧或いは第二の電圧の印加と、前記飛行時間型の質量分析部の飛行時間の計測とを同期させることを特徴とする、請求項8に記載の質量分析装置。
  10. 前記パルス変調された第一の電圧或いは第二の電圧の一連のパルスの印加の時間間隔は、前記飛行時間型の質量分析部の飛行時間の計測時間よりも長いことを特徴とする、請求項9に記載の質量分析装置。
  11. 請求項6乃至10のいずれか一項に記載の質量分析装置、及び
    画像形成装置であって、前記質量分析装置によって分析された質量情報と前記試料表面における前記領域の位置情報とから試料に含まれる物質の成分の分布を画像表示するための画像情報を作成する画像形成部と、前記画像情報を表示装置に出力する画像表示部とを有する、画像形成装置、
    を有することを特徴とする、画像作成システム。
JP2015016662A 2015-01-30 2015-01-30 イオン化装置、それを有する質量分析装置及び画像作成システム Pending JP2016143482A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016662A JP2016143482A (ja) 2015-01-30 2015-01-30 イオン化装置、それを有する質量分析装置及び画像作成システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016662A JP2016143482A (ja) 2015-01-30 2015-01-30 イオン化装置、それを有する質量分析装置及び画像作成システム

Publications (1)

Publication Number Publication Date
JP2016143482A true JP2016143482A (ja) 2016-08-08

Family

ID=56570653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016662A Pending JP2016143482A (ja) 2015-01-30 2015-01-30 イオン化装置、それを有する質量分析装置及び画像作成システム

Country Status (1)

Country Link
JP (1) JP2016143482A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018092284A1 (ja) * 2016-11-18 2019-06-24 株式会社島津製作所 イオン化方法及びイオン化装置、並びにイメージング分析方法及びイメージング分析装置
JP2020032357A (ja) * 2018-08-29 2020-03-05 パナソニックIpマネジメント株式会社 電圧印加装置及び放電装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018092284A1 (ja) * 2016-11-18 2019-06-24 株式会社島津製作所 イオン化方法及びイオン化装置、並びにイメージング分析方法及びイメージング分析装置
JP2020032357A (ja) * 2018-08-29 2020-03-05 パナソニックIpマネジメント株式会社 電圧印加装置及び放電装置

Similar Documents

Publication Publication Date Title
JP6339883B2 (ja) イオン化装置、それを有する質量分析装置及び画像作成システム
US8710436B2 (en) Ionization device, mass spectrometer including the ionization device, and image generation system including the ionization device
US9058966B2 (en) Ionization device, mass spectrometer including ionization device, image display system including mass spectrometer, and analysis method
US9269557B2 (en) Ionization device, mass spectrometer including the ionization device, and image generation system including the ionization device
US9252004B2 (en) Ionization device, mass spectrometry apparatus, mass spectrometry method, and imaging system
US5945678A (en) Ionizing analysis apparatus
US9287099B2 (en) Ionization method, mass spectrometry method, extraction method, and purification method
US20140072476A1 (en) Ionization device, mass spectrometer including the ionization device, and image generation system
JP2016128788A (ja) プローブ変位計測装置、およびそれを有するイオン化装置、質量分析装置、情報取得システム
US9190257B2 (en) Ionization method, mass spectrometry method, extraction method, and purification method
US9230787B2 (en) Ionization apparatus, mass spectrometer including ionization apparatus, and image forming system
JP2014067709A (ja) イオン化装置、それを有する質量分析装置あるいはそれを有する画像作成システム
JP6167934B2 (ja) 質量分析装置
JP2016143482A (ja) イオン化装置、それを有する質量分析装置及び画像作成システム
Kamihoriuchi et al. Visualization of sampling and ionization processes in scanning probe electrospray ionization mass spectrometry
JP2016128789A (ja) プローブ変位計測装置、およびそれを有するイオン化装置、質量分析装置、情報取得システム
JP2004303497A (ja) 粒子イオン化方法及び装置
RU2537961C2 (ru) Способ транспорта ионов из полярной жидкости в вакуум и устройство для его осуществления
Balakin et al. Pulsed field evaporation of ions from polar solutions
KR101936525B1 (ko) 이차 이온 질량 분석기 및 그 제어 방법
JP2015031585A (ja) 質量分析装置
JP2017033659A (ja) イオン化装置、それを有する質量分析装置及び画像作成システム
Barni et al. Spatial and temporal evolution of microdischarges in Surface Dielectric Barrier Discharges for aeronautical applications plasmas
JP2015052464A (ja) イオン化装置、イオン化方法、質量分析装置および画像化システム
Brittin RTILs as a Matrix in ME-SIMS

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214