JP6167934B2 - 質量分析装置 - Google Patents

質量分析装置 Download PDF

Info

Publication number
JP6167934B2
JP6167934B2 JP2014033574A JP2014033574A JP6167934B2 JP 6167934 B2 JP6167934 B2 JP 6167934B2 JP 2014033574 A JP2014033574 A JP 2014033574A JP 2014033574 A JP2014033574 A JP 2014033574A JP 6167934 B2 JP6167934 B2 JP 6167934B2
Authority
JP
Japan
Prior art keywords
high voltage
switch
power supply
load
needle electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014033574A
Other languages
English (en)
Other versions
JP2015159051A (ja
JP2015159051A5 (ja
Inventor
俊也 土生
俊也 土生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014033574A priority Critical patent/JP6167934B2/ja
Publication of JP2015159051A publication Critical patent/JP2015159051A/ja
Publication of JP2015159051A5 publication Critical patent/JP2015159051A5/ja
Application granted granted Critical
Publication of JP6167934B2 publication Critical patent/JP6167934B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

本発明は高電圧電源装置及び該装置を用いた質量分析装置に関し、さらに詳しくは、容量性の負荷に対してパルス状の高電圧を印加するための高電圧電源装置及び該装置を用いた質量分析装置に関する。
液体クロマトグラフ(LC)と質量分析装置(MS)とを組み合わせた液体クロマトグラフ質量分析装置(LC−MS)では、液体クロマトグラフのカラムから溶出した試料液中の成分を略大気圧の下でイオン化するために、エレクトロスプレーイオン化(ESI)法や大気圧化学イオン化(APCI)法などの大気圧イオン化法によるイオン源が使用されている。ESIイオン源とAPCIイオン源とではイオン化され易い化合物が異なるため、通常、分析対象の試料の種類や分析目的などによってイオン化法の使い分けが行われる。これに対応するため、ESI法によるイオン化とAPCI法によるイオン化とを選択的に実行可能とした構造のイオン源が知られている(特許文献1など参照)。
分析対象の試料の多様化、或いは分析精度やスループットの改善などに対応するために、近年、新たな大気圧イオン化法が開発され実用に供されている。非特許文献1等に記載の探針エレクトロスプレーイオン化(PESI=Probe Electrospray Ionization)法はそうした方法の一つである。PESI法では、例えば、試料の上方に上下動可能に設置した針電極を降下させ、その針電極の先端を試料に接触させ又は僅かに刺入させて、試料の一部を針電極先端に付着させる。そのあと、針電極を引き上げて試料から離間させ、該針電極に高電圧電源装置から高電圧を印加する。すると、針電極先端の試料に強い電場が作用してエレクトロスプレー現象が生じ、試料分子が試料から離脱しながらイオン化する。こうして生成されたイオンを収集して後段の真空室へと輸送し質量分析に供する。
上記PESI法によれば、例えば生体組織から切り出した生体切片などの試料を前処理することなく質量分析することができる。また例えば、試料を載置したステージを2次元的に移動する毎に、針電極の上下動による試料の採取及び該針電極への高電圧の印加を繰り返すことで、試料の2次元的な質量分布情報を得ることができる。
こうしたPESI法によるイオン化と上述したESI法やAPCI法によるイオン化とを選択的に行いたい場合に、それらイオン化法ではいずれも最大で数kV程度の高電圧が必要であるため、高電圧電源装置を共用することがコストや装置の小型軽量化などの点で有利である。ただし、通常、ESIイオン源やAPCIイオン源では液体クロマトグラフのカラム等から連続的に供給される試料液中の試料成分をイオン化するために高電圧を連続的にスプレーノズル等に印加するのに対し、上記のような繰り返し測定を行うPESIイオン源では、針電極に印加する高電圧をオン・オフさせる必要がある。そのため、PESI法によるイオン化の際には、直流高電圧をスイッチングして高電圧パルスを生成する高電圧スイッチング回路が必要となる。
特開平8−297112号公報
竹田 扇、ほか7名、「質量分析法と統計的学習機械を組み合わせた新規がん診断支援装置」、島津評論編集部、島津評論、第69巻、第3・4号、2013年3月29日発行
一般に上記のような高電圧スイッチング回路には高耐圧のMOSFETなどの半導体スイッチング素子が利用される。しかしながら、ESIイオン源やAPCIイオン源のための直流高電圧電源から出力される高電圧を単にスイッチングしただけでは、次のような問題がある。
即ち、ESI法やAPCI法によるイオン化ではスプレーノズルやコロナ放電用の針電極に高電圧を印加すると、導電性の高い試料溶液の噴霧流を通して放電電流が流れる。そこで、通常、この放電を安定化するために、直流高電圧電源の出力抵抗として数十MΩの高抵抗が用いられている。この構成では、例えば試料溶液の噴霧量が増加して放電電流が増加すると、直流高電圧電源の出力抵抗による電圧降下が大きくなる。その結果、ESIイオン源のスプレーノズル等に印加される電圧が下がり、放電を安定化することができる。
一方、PESI法によるイオン化の際には、試料が表面に付着した針電極に大気中で高電圧を印加するため、ESIイオン源やAPCIイオン源に比べると放電電流は格段に小さい。そのため、PESIイオン源における針電極、つまり高電圧電源装置の負荷は、単純な容量(キャパシタンス)であるとみなすことができる。この容量は主として、高電圧電源装置と針電極とを接続する高耐圧ケーブル線の浮遊容量である。これは数十pF〜数百pF程度の僅かな容量であるものの、上記のように出力抵抗が数十MΩと大きな高電圧電源装置にこうした容量性の負荷が接続されると、その抵抗と容量とのRC回路の時定数によって、針電極に印加される高電圧パルスの立ち上がり時間はmsecのオーダーとなってしまう。針電極に印加される高電圧パルスの時間幅が短い場合、高電圧パルスの立ち上がりが遅れると、針電極先端の試料に高電圧が印加される時間が短すぎてイオンの生成効率が低下したり、極端な場合には、エレクトロスプレーに必要な電圧にまで達せずにイオンが生成されなかったりするおそれがある。
本発明はこうした課題を解決するためになされたものであり、その目的とするところは、直流高電圧電源の出力抵抗が大きく、しかも高電圧パルスを印加する対象である負荷が容量性であっても、立ち上がり特性の良好な高電圧パルスを負荷に供給することができる高電圧スイッチング回路を備えた高電圧電源装置及び該装置を用いた質量分析装置を提供することである。
上記課題を解決するために成された本発明は、直流高電圧電源による電圧をスイッチングして高電圧パルスを生成し容量性である負荷に供給する高電圧電源装置において、
a)前記直流高電圧電源の出力端から前記負荷に至る線路を開閉する第1スイッチと、
b)前記第1スイッチの出力端と共通線路との間を開閉する第2スイッチと、
c)前記第1スイッチの入力端と前記共通線路との間に接続されたキャパシタと、
d)前記負荷に高電圧パルスを印加する際に、前記第1スイッチをオフからオンに切り替えるとともに前記第2スイッチをオンからオフに切り替え、前記負荷への高電圧パルスの印加を停止する際に、前記第1スイッチをオンからオフに切り替えるとともに前記第2スイッチをオフからオンに切り替える制御部と、
を備え、前記負荷に高電圧パルスを印加するべく前記第1及び第2スイッチを切り替えた直後に、その直前まで前記キャパシタに保持されていた電荷を、オンした前記第1スイッチを通して前記負荷の容量に供給して該容量を充電するようにしたことを特徴としている。
本発明に係る高電圧電源装置において、第1及び第2スイッチは高耐圧(つまりは電力用)の半導体スイッチング素子、例えばパワーMOSFETである。また、上記共通線路は典型的にはGND線路である。また、上記キャパシタはコンデンサ素子であってもよいが、例えばケーブル線などの浮遊容量を用いることもできる。
本発明に係る高電圧電源装置において、制御部の制御の下で、第1スイッチがオフ状態、第2スイッチがオン状態であるときには、第2スイッチを通して負荷は共通線路に接続されるため、負荷の容量に蓄積されていた電荷は放電され、負荷の電位は共通線路の電位と等しくなる。一方、このとき、キャパシタには直流高電圧電源による電圧が印加されているため、該キャパシタは充電された状態である。こうした状態から、制御部が、第1スイッチをオンに切り替えるとともに第2スイッチをオフに切り替えると、まずその直前までキャパシタに保持されていた電荷が第1スイッチを通して負荷容量に供給され、該容量は充電される。このときの電荷の供給は直流高電圧電源の出力抵抗の影響を受けないので、この充電に相当する電圧まで負荷に掛かる電圧は迅速に立ち上がる。
引き続いて、直流高電圧電源による電圧が第1スイッチを通して負荷に印加される。この電圧の立ち上がりは、直流高電圧電源の出力抵抗と負荷容量及びキャパシタの容量とからなるRC回路の時定数により緩やかになるが、負荷容量は先に或る程度充電されているため、所定の電圧値までの立ち上がり時間はキャパシタによる充電がない場合に比べて確実に短縮される。即ち、本発明に係る高電圧電源装置では、立ち上がりの迅速な高電圧パルスを負荷に印加することができる。
なお、直流高電圧電源による電圧の極性は正、負いずれでもよく、電圧の立ち上がりとは、電圧の絶対値が小さい状態から大きくなるときの変化のことをいう。
本発明に係る高電圧電源装置は、例えば数百V程度から数kV程度、或いはさらに大きな電圧値である高電圧パルスを必要とする様々な装置に利用することができるが、特に、直流高電圧電源の出力抵抗を大きくする必要があり、且つ容量性の負荷に高電圧パルスを印加する必要がある装置に有用である。上述したように、ESI法やAPCI法によるイオン化を行う場合には、大きな出力抵抗を通してこれらイオン化を行うイオン源に直流高電圧を印加する必要があり、一方、PESI法によるイオン化を行う場合には、容量性の負荷に高電圧パルスを印加する必要がある。そこで、本発明に係る高電圧電源装置は、ESI法やAPCI法によるイオン化とPESI法によるイオン化とを切り替えて実行可能であるイオン源を搭載した質量分析装置に好適である。
即ち、上記発明に係る高電圧電源装置を用いた、本発明に係る質量分析装置は、イオン源として、ESI法によるイオン源又はAPCI法によるイオン源の少なくともいずれか一方と、PESI法によるイオン源とを具備し、該PESI法によるイオン源の構成要素である針電極を前記負荷とするとともに、前記直流高電圧電源による電圧が前記ESI法によるイオン源の構成要素であるスプレーノズル又は前記APCI法によるイオン源の構成要素であるコロナ放電用針電極に印加されることを特徴としている。
ここでPESI法によるイオン源は、針電極と、該針電極の先端に試料を付着させるべく該針電極又は試料の少なくとも一方を移動させる移動部と、を含む構成である。この構成において、移動部により針電極又は試料の少なくとも一方を移動させて、針電極の先端を試料に接触させ又は僅かに刺入させ、針電極先端に試料の一部を付着させる。そのあと、試料から離間させた針電極に高電圧パルスを印加し、針電極に付着している試料中の成分をイオン化する。本発明に係る質量分析装置では、このときに針電極に印加される高電圧パルスの立ち上がりを迅速にすることができるので、高電圧パルスの時間幅を狭くしておいても、エレクトロスプレーに必要な電圧を確実に針電極に印加することができる。それによって、PESI法によるイオン生成効率を高めることができる。
本発明に係る高電圧電源装置によれば、直流電圧を発生する直流高電圧電源の出力抵抗が大きくても、容量性の負荷に印加する高電圧パルスを高速に立ち上げることができる。それにより、例えば高電圧パルスのパルス幅を狭くしても、確実に所定の電圧値(パルス高)のパルスを印加することができる。さらにまた、それによって、高電圧パルスの発生周期を短くすることもできる。
また本発明に係る高電圧電源装置を用いた質量分析装置によれば、PESIイオン源の針電極に印加する高電圧パルスのパルス幅を狭くしても十分な量のイオンを生成することができる。また、それによって、PESIイオン源を用いた質量分析の測定の繰り返し周期を短くして、測定の効率を高めることもできる。
本発明に係る高電圧電源装置を用いた質量分析装置の一実施例の概略構成図。 本発明に係る高電圧電源装置の一実施例の概略構成図。 本実施例の高電圧電源装置の動作説明図。 本実施例の高電圧電源装置の出力電圧波形の実測図。
以下、本発明に係る高電圧電源装置の一実施例、及びこの装置を用いた質量分析装置の一実施例について、図面を参照して説明する。
図1は本発明に係る高電圧電源装置を用いた質量分析装置の一実施例の概略構成図である。
この質量分析装置は、大気圧の下で試料中の成分のイオン化を行うイオン化室1と高真空度の下でイオンの質量分離及び検出を行う分析室4との間に、段階的に真空度が高められた複数(この例では二つ)の中間真空室2、3を備えた多段差動排気系の構成である。図1では、略大気圧に維持されるイオン化室1内にPESIイオン化ユニットAが備えられているが、このイオン化ユニットはESIイオン化ユニット等の別のイオン化ユニットBに交換可能である。
PESIイオン化ユニットAは、試料9が載置される試料ステージ8と、試料ステージ8上の空間に配置された針電極10と、所定位置にある針電極10の先端付近に溶媒を噴射するノズル7と、を含む。針電極10は、モータや減速機構或いはアクチュエータなどを含むZ方向駆動部12により、図中のZ軸方向に移動可能である。また、高電圧発生部11から針電極10には、最大で数kV程度の高電圧が印加される。一方、試料ステージ8は、モータや減速機構などを含むX−Y方向駆動部13により、図中のX軸方向及びY軸方向に移動可能である。それによって、針電極10が降下したときに、該針電極10の先端が接触する試料9表面上の位置はX−Y平面内で任意に移動可能である。溶媒容器5中には、水、アルコール類、アセトニトリルなど所定の溶媒が貯留され、送液ポンプ6が作動すると該ポンプ6により略一定流量で溶媒容器5中から吸引された溶媒が、ノズル7から微細液滴として噴出される。
イオン化室1内と第1中間真空室2内とは細径の脱溶媒管14を通して連通しており、脱溶媒管14の両端開口の圧力差によって、イオン化室1内のガスは脱溶媒管14を通して第1中間真空室2内へと引き込まれる。第1中間真空室2内には、イオン光軸Cに沿って配列された複数枚の円板状の電極板を一つの仮想的ロッド電極とし、イオン光軸Cの周りに四つの仮想的ロッド電極を配置したQアレイと呼ばれる第1イオンガイド15が設置されている。第1中間真空室2内と第2中間真空室3内とはスキマー16の頂部に形成された小径のオリフィスを通して連通している。第2中間真空室3内には、イオン光軸Cの周りに8本のロッド電極を配置したオクタポール型の第2イオンガイド17が設置されている。最後段の分析室4内には、イオン光軸Cの周りに4本のロッド電極を配置した四重極マスフィルタ18と、到達したイオンの量に応じた信号を出力するイオン検出器19とが配置されている。第1イオンガイド15、第2イオンガイド17、四重極マスフィルタ18、さらには信号線の記載を省略しているものの、脱溶媒管14やイオン検出器19などの各部には、電圧発生部20よりそれぞれ所定の電圧が印加される。
制御部22は試料9に対する質量分析を実行するために、高電圧発生部11、Z方向駆動部12、X-Y方向駆動部13、電圧発生部20などをそれぞれ制御する。また、イオン検出器19による検出信号はデータ処理部21に入力され、ここでデジタルデータに変換されたあとに所定のデータ処理が実行される。制御部22にはユーザインターフェイスを担う入力部23や表示部24が接続されている。
この質量分析装置において、目的とする試料9に対するマススペクトルデータを取得する際の質量分析動作について概略的に説明する。ここで分析対象とする試料9は、例えば被検者から採取された細胞組織などである。
図1に示すように、試料9が試料ステージ8上に載置された状態で、制御部22の制御の下にZ方向駆動部12は針電極10を、その先端が試料9の上面に僅かに接触する位置(図1中の点線の位置)まで降下させ、次いで針電極10を所定位置(図1中の実線の位置)まで上昇させる。これにより、針電極10の先端には試料9のごく一部が付着する。試料ステージ8上の試料を符号9、針電極10に付着した試料を符号9aで記す。X-Y方向駆動部13により試料ステージ8を適宜移動させることで、試料9の面上で針電極10により試料9aが採取される部位を任意に変更することができる。
そのあと、高電圧発生部11は針電極10に所定の高電圧パルスを印加し、同時に、送液ポンプ6の動作によりノズル7から微細化された溶媒液滴を針電極10先端に向けて噴射させる。なお、針電極10に印加される高電圧の極性は分析対象の成分の種類などに依存する。針電極10先端に高電圧パルスが印加されると、付着している試料9a中に大きな電場が作用し、クーロン斥力等により試料9aは片寄った電荷を有しながら脱離する。その過程で、試料分子がイオン化される。発生したイオンは、上述したように圧力差によって生じているガスの流れに乗って脱溶媒管14中に吸い込まれ、第1中間真空室2内に送られる。
針電極10に付着した試料9aは乾燥し易いが、ノズル7から溶媒を噴霧することによって針電極10の表面で試料9aを溶解させつつ又は適度な湿り気を保持させつつ良好にイオン化することができる。また、溶媒の供給によってエレクトロスプレーを緩慢に行うようにすることができるので、試料9aに複数の成分が含まれる場合でも、イオン化し易い成分のイオン化を遅らせながら複数の成分を漏れなくイオン化することができる。
第1中間真空室2に送り込まれた試料9a由来のイオンは第1イオンガイド15により形成される高周波電場で収束されつつ輸送され、スキマー16頂部のオリフィスを経て第2中間真空室3へ送られる。さらに、イオンは第2イオンガイド17により形成される高周波電場で収束されつつ分析室4へと送られる。四重極マスフィルタ18には電圧発生部20から直流電圧に高周波電圧を重畳した電圧が印加され、その電圧に応じた質量電荷比m/zを有するイオンのみが四重極マスフィルタ18の長軸方向の空間を通り抜け、それ以外の質量電荷比のイオンは途中で発散する。電圧発生部20から四重極マスフィルタ18に印加される電圧は所定の範囲で走査され、その走査に伴い四重極マスフィルタ18を通過し得るイオンの質量電荷比は所定範囲で走査される。したがって、1回の電圧走査の間にイオン検出器19に到達するイオンの強度を時間経過に伴って測定することで、所定の質量範囲のイオン強度情報、つまりはマススペクトル情報を得ることができる。
データ処理部21は上記のようなマススペクトルデータを収集し、これをデータ記憶装置に格納する。なお、同じ質量電荷比範囲を複数回走査し、各走査でそれぞれ得られたデータを質量電荷比毎に積算してマススペクトルデータとしてもよい。
以上のようにして、この質量分析装置では、試料9上のごく微小な特定部位のマススペクトルデータを得ることができる。同じ試料9に対し異なる部位のマススペクトルデータを得たい場合には、X-Y方向駆動部13により試料ステージ8を適宜移動させつつ、Z方向駆動部12により針電極10を降下させて試料9に接触させ、針電極10先端に試料9の一部を付着させて、上述したようなイオン化及び質量分析を行えばよい。
上述したように、イオン化に際し高電圧発生部11は針電極10に高電圧パルスを印加する。この高電圧発生部11が本発明に係る高電圧電源装置の一実施例である。
図2は高電圧発生部11の概略構成図である。
この高電圧発生部11は、最大数kV程度(極性は正、負切替可能)の直流高電圧を出力する直流高電圧電源110と、高電圧スイッチング回路112と、を含む。この直流高電圧電源110はPESIイオン化ユニットAの代わりに装着されるESIイオン化ユニット、やAPCIイオン化ユニットであるイオン化ユニットBへ直流高電圧を印加するのにも利用される。即ち、直流高電圧電源110は複数のイオン化ユニットに共用される。一方、高電圧スイッチング回路112はPESIイオン化ユニットAのみに使用される。
上述したような理由により、直流高電圧電源110の出力抵抗111の抵抗値R1は数MΩ以上である。
高電圧スイッチング回路112は、入力端117から入力される直流高電圧を分圧するために、一端が入力端117に接続され、他端がGNDに接続された、抵抗値がR2である抵抗器113と、抵抗器113と並列に接続された、キャパシタンスがC1であるコンデンサ114と、一端が入力端117に、他端が出力端118に接続された第1スイッチ115と、一端が出力端118に、他端がGNDに接続された第2スイッチ116と、を含む。第1スイッチ115及び第2スイッチ116はいずれも電力用MOSFET等の高耐圧の半導体スイッチング素子であり、制御部22からの制御信号によりオン及びオフが切り替わるように駆動される。高電圧スイッチング回路112の出力端118には高耐圧ケーブル線を介して針電極10が接続される。この高耐圧ケーブル線は浮遊容量を有するが、この容量は出力端118からみると負荷容量と同じであるから、図2では、これをキャパシタンスがC2である負荷容量100として記載してある。
なお、抵抗器113は原理的には必須な構成要素ではない。この例では、直流高電圧電源110の最大出力電圧が約5kVであるのに対し、第1、第2スイッチ115、116の耐圧が4kV程度であるため、抵抗器113を用いてスイッチ115、116に印加される電圧を抑えている。スイッチ115、116の耐圧が十分に高い場合、或いは直流高電圧電源110の最大出力電圧自体が低ければ抵抗器113は不要である。また、コンデンサ114は独立した回路素子ではなく、直流高電圧電源110と高電圧スイッチング回路112との間を接続するケーブル線などの浮遊容量で以て置き換えることも可能である。
この高電圧発生部11の特徴的な動作を図3を参照して説明する。
第1スイッチ115がオン状態、第2スイッチ116がオフ状態であるとき、高電圧発生部11から針電極10には高電圧が印加されている。出力電圧をターンオフする場合、制御部22からの指示により、第1スイッチ115はオン→オフ、第2スイッチ116はオフ→オンに切り替わる。すると、図3(a)に示すように、一端がGNDに接続されている負荷容量100の他端は第2スイッチ116を通してGNDに接続されるため、その直前まで負荷容量100に充電されていた電荷は第2スイッチ116を通して放電される。これにより、出力電圧は短時間で低下し、負荷、つまり針電極10の電位はGNDレベルとなる。即ち、高電圧パルスの立ち下がりは迅速である。
なお、当然のことながら、両スイッチ115、116が同時にオン状態となると、直流高電圧電源110の出力が短絡してしまうため、これを回避するべく、両スイッチ115、116が同時にオンしないようにオン・オフの切替タイミングは適切に調整されている。これは次の出力電圧ターンオン時も同様である。
出力電圧ターンオン時には、制御部22からの指示により、第1スイッチ115はオフ→オン、第2スイッチ116はオン→オフに切り替わる。この出力電圧ターンオン時の動作は2段階に分けて説明できる。
出力電圧ターンオン時の直前、つまり二つのスイッチ115、116が図3(a)に示す状態にあるとき、コンデンサ114の両端の電圧VAは次の(1)式で示される。
VA={R2/(R1+R2)}VE …(1)
ここで、VEは直流高電圧電源110の出力電圧である。上述したように、このとき負荷容量100の両端電圧は0Vである。この状態から出力電圧をターンオンすると、図3(b)に示すように、コンデンサ114に充電されている電荷が第1スイッチ115を通して短時間で負荷容量100に移動する。この移動後のコンデンサ114及び負荷容量100の両端の電圧VBは次の(2)式で示される。
VB={C1/(C1+C2)}VA …(2)
これが、出力電圧立ち上がり動作の第1段階である。
次に、図3(c)に示すように、コンデンサ114及び負荷容量100はいずれも直流高電圧電源110による電圧によって充電され、それにより出力電圧はR1×(C1+C2)の時定数で緩やかに上昇する。そして、最終的に定常電圧VAに達する。これが出力電圧立ち上がり動作の第2段階である。
いま、第2段階の出力電圧Vo(t)、及び通過電流I1、I2を図3(d)のように定義すると、
VE=(I1+I2)R1+Vo(t) …(3)
ただし、I1=(C1+C2)(dVo(t)/dt)、I2=Vo(t)/R2
と表される。(3)式の微分方程式を初期条件Vo(t)=VB(ただしt=0のとき)で解くと(4)式となる。
Vo(t)=VA[1−(C2×P)exp{−Pt((1/R1)+(1/R2))}] …(4)
ただし、P=1/(C1+C2)
図4は、図2に示した回路によりPESIイオン源の針電極に印加される電圧を実測した波形である。
この実測波形から、本実施例の高電圧発生部11では、直流高電圧電源110の出力抵抗が大きく、負荷が容量性であっても、該負荷に印加する高電圧パルスの立ち上がりが高速化できていることが確認できる。
なお、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形、修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。例えば、上記実施例の高電圧電源装置は質量分析装置におけるイオン源の電源のみなず、同様に高電圧パルスが必要な各種の装置に利用することができる。
1…イオン化室
5…溶媒容器
6…送液ポンプ
7…ノズル
8…試料ステージ
9…試料
10…針電極
11…高電圧発生部
12…Z方向駆動部
13…X−Y方向駆動部
22…制御部
100…負荷容量
110…直流高電圧電源
111…出力抵抗
112…高電圧スイッチング回路
113…抵抗器
114…コンデンサ
115、116…スイッチ
117…入力端
118…出力端

Claims (1)

  1. 直流高電圧電源による電圧をスイッチングして高電圧パルスを生成し容量性である負荷に供給する高電圧電源装置であって
    a)前記直流高電圧電源の出力端から前記負荷に至る線路を開閉する第1スイッチと、
    b)前記第1スイッチの出力端と共通線路との間を開閉する第2スイッチと、
    c)前記第1スイッチの入力端と前記共通線路との間に接続されたキャパシタと、
    d)前記負荷に高電圧パルスを印加する際に、前記第1スイッチをオフからオンに切り替えるとともに前記第2スイッチをオンからオフに切り替え、前記負荷への高電圧パルスの印加を停止する際に、前記第1スイッチをオンからオフに切り替えるとともに前記第2スイッチをオフからオンに切り替える制御部と、
    を備え、前記負荷に高電圧パルスを印加するべく前記第1及び第2スイッチを切り替えた直後に、その直前まで前記キャパシタに保持されていた電荷を、オンした前記第1スイッチを通して前記負荷の容量に供給して該容量を充電するようにした高電圧電源装置を用いた質量分析装置において、
    イオン源として、エレクトロスプレーイオン化法によるイオン源又は大気圧化学イオン化法によるイオン源の少なくともいずれか一方と、探針エレクトロスプレーイオン化法によるイオン源とを具備し、該探針エレクトロスプレーイオン化法によるイオン源の構成要素である針電極を前記負荷とするとともに、前記直流高電圧電源による電圧が前記エレクトロスプレーイオン化法によるイオン源の構成要素であるスプレーノズル又は前記大気圧化学イオン化法によるイオン源の構成要素であるコロナ放電用針電極に印加されることを特徴とする質量分析装置。
JP2014033574A 2014-02-25 2014-02-25 質量分析装置 Active JP6167934B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014033574A JP6167934B2 (ja) 2014-02-25 2014-02-25 質量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014033574A JP6167934B2 (ja) 2014-02-25 2014-02-25 質量分析装置

Publications (3)

Publication Number Publication Date
JP2015159051A JP2015159051A (ja) 2015-09-03
JP2015159051A5 JP2015159051A5 (ja) 2016-06-23
JP6167934B2 true JP6167934B2 (ja) 2017-07-26

Family

ID=54182903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014033574A Active JP6167934B2 (ja) 2014-02-25 2014-02-25 質量分析装置

Country Status (1)

Country Link
JP (1) JP6167934B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145380A1 (ja) * 2016-02-26 2017-08-31 株式会社島津製作所 直流高圧電源装置
WO2018066064A1 (ja) * 2016-10-04 2018-04-12 株式会社島津製作所 高電圧電源装置
JP7156047B2 (ja) * 2019-01-16 2022-10-19 株式会社島津製作所 クロマトグラフ装置およびロードスイッチ回路
WO2021140713A1 (ja) * 2020-01-06 2021-07-15 株式会社島津製作所 イオン化装置
CN115549652A (zh) * 2022-11-29 2022-12-30 浙江迪谱诊断技术有限公司 一种自恢复高压脉冲驱动器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180322A (ja) * 1984-02-28 1985-09-14 Nec Corp 高速度パルス電源装置
JP4497675B2 (ja) * 1999-08-12 2010-07-07 日本バイリーン株式会社 非導電性成形体の表面処理装置及び表面処理方法
US7129714B2 (en) * 2002-07-02 2006-10-31 Baxter Larry K Capacitive measurement system

Also Published As

Publication number Publication date
JP2015159051A (ja) 2015-09-03

Similar Documents

Publication Publication Date Title
JP6167934B2 (ja) 質量分析装置
CA2961183C (en) Mass spectrometer
JP6237924B2 (ja) 質量分析装置
JP5822031B2 (ja) 高電圧電源装置及び該電源装置を用いた質量分析装置
EP3249679B1 (en) Mass spectrometer and ion mobility analysis device
US10014168B2 (en) Ion guiding device and ion guiding method
JP2003123685A5 (ja)
US9269557B2 (en) Ionization device, mass spectrometer including the ionization device, and image generation system including the ionization device
US9111739B2 (en) Ionization method and apparatus using electrospray, and analyzing method and apparatus
RU2673792C2 (ru) Двухполярный искровой источник ионов
JP6658904B2 (ja) 質量分析装置
CN110581054B (zh) 离子迁移率分析装置
CN106486337A (zh) 一种提高待测物质质谱检测灵敏度的方法和***
JP2004303497A (ja) 粒子イオン化方法及び装置
JP7323058B2 (ja) イオン分析装置
JP6989010B2 (ja) 探針エレクトロスプレーイオン化質量分析装置
JPWO2019043943A1 (ja) 質量分析装置
CN118402038A (en) Mass spectrometer and control method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R151 Written notification of patent or utility model registration

Ref document number: 6167934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151