JP2016143462A - Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP2016143462A
JP2016143462A JP2015016299A JP2015016299A JP2016143462A JP 2016143462 A JP2016143462 A JP 2016143462A JP 2015016299 A JP2015016299 A JP 2015016299A JP 2015016299 A JP2015016299 A JP 2015016299A JP 2016143462 A JP2016143462 A JP 2016143462A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
active material
silicon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015016299A
Other languages
Japanese (ja)
Other versions
JP2016143462A5 (en
Inventor
岡井 誠
Makoto Okai
誠 岡井
千恵子 荒木
Chieko Araki
千恵子 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015016299A priority Critical patent/JP2016143462A/en
Publication of JP2016143462A publication Critical patent/JP2016143462A/en
Publication of JP2016143462A5 publication Critical patent/JP2016143462A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent silicon particles from being electrically isolated due to expansion/contraction of silicon particles.SOLUTION: For example, a negative electrode active material for a lithium ion secondary battery of the present invention is characterized in that particles of scale-like silicon adhere to the surface of a carbon base material and a part of the scale-like silicon sticks in the carbon base material.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池に関する。   The present invention relates to a negative electrode active material for a lithium ion secondary battery and a lithium ion secondary battery.

リチウムイオン二次電池の負極活物質として、黒鉛系の炭素材料が広く用いられている。黒鉛にリチウムイオンを充填した際の化学量論的組成は、LiC6であり、その理論容量は372mAh/gと算出できる。 Graphite-based carbon materials are widely used as negative electrode active materials for lithium ion secondary batteries. The stoichiometric composition when graphite is filled with lithium ions is LiC 6 , and its theoretical capacity can be calculated as 372 mAh / g.

これに対してシリコンにリチウムイオンを充填した際の化学量論的組成は、Li15Si4もしくはLi22Si5であり、その理論容量は3577mAh/gもしくは4197mAh/gと算出できる。このようにシリコンは黒鉛に比べて、9.6倍もしくは11.3倍のリチウムを貯蔵できる魅力的な材料である。しかしながら、シリコン粒子にリチウムイオンを充填すると、体積が2.7倍ないしは3.1倍程度に膨張するため、リチウムイオンの充填と放出を繰り返す間に、シリコン粒子が力学的に破壊する。シリコン粒子が破壊することにより、破壊した微細シリコン粒子が電気的に孤立し、また、破壊面に新しい電気化学的被覆層ができることにより、不可逆容量が増加し、充放電サイクル特性が著しく低下する。 On the other hand, the stoichiometric composition when silicon is filled with lithium ions is Li 15 Si 4 or Li 22 Si 5 , and the theoretical capacity can be calculated as 3577 mAh / g or 4197 mAh / g. Thus, silicon is an attractive material that can store 9.6 times or 11.3 times as much lithium as graphite. However, when the silicon particles are filled with lithium ions, the volume expands to about 2.7 times or 3.1 times, so that the silicon particles are mechanically destroyed while repeatedly filling and releasing lithium ions. When the silicon particles are broken, the broken fine silicon particles are electrically isolated, and a new electrochemical coating layer is formed on the broken surface, whereby the irreversible capacity is increased and the charge / discharge cycle characteristics are remarkably lowered.

リチウムイオン二次電池の負極活物質としてシリコン粒子をナノ化ことにより、リチウムイオンの充填と放出に伴う機械的破壊を防ぐことができる。しかしながら、リチウムイオンの充填と放出に伴う体積変化により、シリコンナノ粒子の一部が電気的に孤立し、これが原因で寿命特性が大きく劣化するという問題があった。   By making silicon particles nano-sized as a negative electrode active material of a lithium ion secondary battery, mechanical breakdown associated with filling and releasing of lithium ions can be prevented. However, there has been a problem that due to the volume change accompanying the filling and releasing of lithium ions, some of the silicon nanoparticles are electrically isolated and the life characteristics are greatly deteriorated due to this.

特許文献1には、炭素質材料Aからなる被膜Aを表面の少なくとも一部に有するシリコン粒子と、黒鉛質材料とが密着している構造を有する複合材料に関する技術が開示されている。   Patent Document 1 discloses a technique relating to a composite material having a structure in which silicon particles having a coating A made of a carbonaceous material A on at least a part of a surface thereof and a graphite material are in close contact with each other.

特開2008−235247号公報JP 2008-235247 A

特許文献1のようにシリコン粒子の表面に炭素被覆を設けることで、シリコンへのリチウムイオンの充填放出に伴う体積変化により、シリコンナノ粒子の一部が電気的に孤立することを防ぐことができる。しかし、球形どうしのシリコンと黒鉛とでは、接面積に限界があるため、電気的に孤立を充分に解決できない可能性がある。   By providing a carbon coating on the surface of silicon particles as in Patent Document 1, it is possible to prevent a part of silicon nanoparticles from being electrically isolated due to a volume change associated with filling and releasing of lithium ions into silicon. . However, there is a possibility that isolation between the spherical silicon and graphite cannot be sufficiently solved electrically because the contact area is limited.

また、特許文献1には、鱗片状の粒子を用いることができる旨の記載があるが、この場合粒子同士が凝集しやすい問題がある。   Further, Patent Document 1 describes that scaly particles can be used, but in this case, there is a problem that the particles are likely to aggregate.

本発明の課題は、シリコン粒子の膨張収縮によるシリコン粒子の電気的孤立を防ぐことにある。   An object of the present invention is to prevent electrical isolation of silicon particles due to expansion and contraction of the silicon particles.

本発明の特徴は、例えば、以下の通りである。炭素基材の表面に、鱗片状シリコン粒子が付着し、前記鱗片状シリコンの一部は前記炭素基材に突き刺さったリチウムイオン二次電池用負極活物質。 The features of the present invention are, for example, as follows. A negative electrode active material for a lithium ion secondary battery in which scaly silicon particles adhere to the surface of a carbon base material, and a part of the scaly silicon sticks into the carbon base material.

本発明により、シリコン粒子の膨張収縮によるシリコン粒子の電気的孤立を防ぐことができる。   According to the present invention, electrical isolation of silicon particles due to expansion and contraction of the silicon particles can be prevented.

負極活物質100を模式的に示した概念図Schematic diagram schematically showing the negative electrode active material 100 炭素基材101の概念図Conceptual diagram of carbon substrate 101 鱗片状シリコン粒子201の概念図Conceptual diagram of scaly silicon particles 201 表面に炭素を被覆した鱗片状シリコン粒子201の概念図Conceptual diagram of scaly silicon particles 201 whose surface is covered with carbon 炭素被覆層301の作製法を模式的に示した概念図Schematic diagram schematically showing the method for producing the carbon coating layer 301 炭素基材101に鱗片状シリコン粒子201を被覆した負極活物質100に炭素被覆層301を設けた場合の概念図である。It is a conceptual diagram at the time of providing the carbon coating layer 301 in the negative electrode active material 100 which coat | covered the scaly silicon particle 201 on the carbon base material 101. FIG. 実施例1の負極活物質100の走査型電子顕微鏡写真Scanning electron micrograph of the negative electrode active material 100 of Example 1 実施例1の負極活物質100の走査型電子顕微鏡写真(拡大)Scanning electron micrograph of the negative electrode active material 100 of Example 1 (enlarged) 実施例1の負極活物質100の走査型電子顕微鏡写真(鱗片状シリコン粒子201を部分的に取り除いたもの)Scanning electron micrograph of the negative electrode active material 100 of Example 1 (partially removed from the scaly silicon particles 201) 電気容量のシリコン重量比依存性を計算した結果Results of calculating the silicon weight ratio dependence of capacitance 二次電池の構造概念図Secondary battery structure conceptual diagram 実施例1および比較例1にて電池を評価した結果Results of battery evaluation in Example 1 and Comparative Example 1

以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible.

<負極活物質>
図1は、負極活物質100を模式的に示した概念図である。
<Negative electrode active material>
FIG. 1 is a conceptual diagram schematically showing the negative electrode active material 100.

負極活物質100は、炭素基材101の表面に鱗片状シリコン粒子201が付着したものである。
鱗片状シリコン粒子201は、ファンデルワールス力により、炭素基材101の表面に付着している。また、一部の鱗片状シリコン粒子201は、その一部が炭素基材101に突き刺さるように挿入し、より強く結合している。リチウムイオンの吸蔵放出は主に、鱗片状シリコン粒子201が行う。炭素基板の表面に鱗片状シリコン粒子201が付着することで、さらに導電性を確保することができる。シリコン粒子が鱗片状であることにより、シリコン粒子が球状である場合と比較してシリコン粒子と炭素基材101との接面積を大きくすることができる。このため、電池の充放電によりシリコン粒子が膨張収縮した場合であっても、粒子が孤立して電気的結合が断たれる可能性を低くすることができる。
The negative electrode active material 100 is obtained by attaching scaly silicon particles 201 to the surface of a carbon substrate 101.
The scale-like silicon particles 201 are attached to the surface of the carbon substrate 101 by van der Waals force. Further, some of the scaly silicon particles 201 are inserted such that a part of the silicon particles 201 pierces the carbon substrate 101 and are more strongly bonded. Lithium ion storage / release is mainly performed by the scaly silicon particles 201. Conductivity can be further ensured by the scaly silicon particles 201 adhering to the surface of the carbon substrate. Since the silicon particles are scaly, the contact area between the silicon particles and the carbon substrate 101 can be increased as compared with the case where the silicon particles are spherical. For this reason, even if it is a case where a silicon particle expands and contracts by charging / discharging of a battery, possibility that a particle | grain will be isolated and an electrical coupling will be cut | disconnected can be made low.

鱗片状シリコン粒子201同士も、ファンデルワールス力により、付着して、多層構造を形成している。多層構造であるため、シリコン粒子同士の接面積を大きくすることができ、電池の充放電により膨張収縮が起こった場合であっても、粒子が孤立しにくく、導電性が高い負極活物質を実現することができる。
<炭素基材>
図2は、炭素基材101の概念図である。炭素基材101は、粒子状であり、人造黒鉛、天然黒鉛、あるいはそれらを加工した黒鉛材料を用いることができる。粒径の最も長い部分、最長粒径の平均は1〜50μm、さらに望ましくは5〜30μmである。最長粒径が1μm以下の場合、寸法が小さすぎるために、表面の湾曲が大きく、後述する鱗片状シリコン粒子201を、その表面に十分に付着できない。さらに鱗片状シリコン粒子201の付着量を十分に確保するためには、その最長粒径が5μm以上であることが望ましい。最長粒径が50μm以上の場合、比表面積が小さすぎるため、表面に多くの鱗片状シリコン粒子201を付着させる必要がある。しかしながら、多数の鱗片状シリコン粒子201を付着させると、鱗片状シリコン粒子201間の電気抵抗のために、炭素基材表面近傍にある鱗片状シリコン粒子201しか効率的に活物質として利用できなくなり、結果として寿命特性が劣化する可能性がある。さらに、すべての付着した鱗片状シリコン粒子201を効率的に利用するためには、最長粒径が30μm以下であることが望ましい。
<鱗片状シリコン粒子>
図3は鱗片状シリコン粒子201の概念図である。鱗片状シリコン粒子201は、鱗片状の形状を有しており、図3(a)は上面、図3(b)は側面から見た場合の概念図である。鱗片状シリコン粒子201の厚さは5〜100nm、さらに望ましくは10〜50nmであり、平坦部分の最も長い径、最長径が100nm〜3μm、さらに望ましくは100nm〜1μmである。鱗片状シリコン粒子201の厚さが5nm以下の場合、機械的強度が弱く、負極ペースト作製工程中に粉々に破壊する可能性がある。十分な機械強度を確保するためには、その厚さが10nm以上であることが望ましい。また、その厚さが100nm以上になると、リチウムイオン充填時の体積膨張により破壊する可能性が高い。高速充放電時にも破壊しないためには、50nm以下であることが望ましい。また、最長径が100nm以下の場合、鱗片形状とは言い難い形状となるため、積層構造を形成しにくくなる可能性がある。最長径が3μm以上になると、リチウムイオン充填時の体積膨張により破壊する可能性が高い。高速充放電時にも破壊しないためには、1μm以下であることが望ましい。
<鱗片状シリコン粒子の作製方法>
鱗片状シリコン粒子201は、平均直径が1ミクロンの球状シリコン粒子を、イソプロピルアルコールを溶媒とするビーズミル粉砕法により粉砕することにより作製した。球状シリコン粒子50gと、イソプロピルアルコール450gを混合し、直径が500ミクロンにジルコニア性ビーズを用いて、2時間粉砕した。ビーズミルを用いることで、球状シリコン粒子を粉砕するだけでなく、鱗片状シリコン粒子同士を分散させ、ダマとなることを防ぐことができる。
The scaly silicon particles 201 are also adhered to each other by van der Waals force to form a multilayer structure. Due to the multi-layer structure, the contact area between silicon particles can be increased, and even when expansion and contraction occur due to battery charge / discharge, a negative electrode active material with high electrical conductivity is realized. can do.
<Carbon substrate>
FIG. 2 is a conceptual diagram of the carbon base material 101. The carbon substrate 101 is in the form of particles, and artificial graphite, natural graphite, or a graphite material obtained by processing them can be used. The average of the longest particle diameter and the longest particle diameter is 1 to 50 μm, more preferably 5 to 30 μm. When the longest particle diameter is 1 μm or less, the dimension is too small, and the curvature of the surface is large, and the scaly silicon particles 201 described later cannot sufficiently adhere to the surface. Furthermore, in order to ensure a sufficient adhesion amount of the scaly silicon particles 201, the longest particle size is desirably 5 μm or more. When the longest particle diameter is 50 μm or more, the specific surface area is too small, and thus it is necessary to attach many scaly silicon particles 201 to the surface. However, when a large number of scaly silicon particles 201 are attached, due to the electrical resistance between scaly silicon particles 201, only scaly silicon particles 201 in the vicinity of the carbon substrate surface can be efficiently used as an active material. As a result, the life characteristics may be deteriorated. Furthermore, in order to efficiently use all the attached scaly silicon particles 201, it is desirable that the longest particle diameter is 30 μm or less.
<Scaly silicon particles>
FIG. 3 is a conceptual diagram of the scaly silicon particles 201. The scaly silicon particles 201 have a scaly shape, and FIG. 3A is a conceptual diagram when viewed from the top surface and FIG. 3B is a conceptual diagram when viewed from the side surface. The thickness of the scaly silicon particles 201 is 5 to 100 nm, more desirably 10 to 50 nm, and the longest diameter and longest diameter of the flat portion are 100 nm to 3 μm, and more desirably 100 nm to 1 μm. When the thickness of the scaly silicon particles 201 is 5 nm or less, the mechanical strength is weak, and there is a possibility of breaking into pieces during the negative electrode paste manufacturing process. In order to ensure sufficient mechanical strength, the thickness is desirably 10 nm or more. Moreover, when the thickness is 100 nm or more, there is a high possibility of destruction due to volume expansion at the time of lithium ion filling. In order not to break even during high-speed charge / discharge, it is desirable that the thickness be 50 nm or less. In addition, when the longest diameter is 100 nm or less, it is difficult to say a scaly shape, which may make it difficult to form a laminated structure. When the longest diameter is 3 μm or more, there is a high possibility of destruction due to volume expansion at the time of lithium ion filling. In order not to break even during high-speed charging / discharging, the thickness is desirably 1 μm or less.
<Method for producing scaly silicon particles>
The scaly silicon particles 201 were produced by pulverizing spherical silicon particles having an average diameter of 1 micron by a bead mill pulverization method using isopropyl alcohol as a solvent. 50 g of spherical silicon particles and 450 g of isopropyl alcohol were mixed and pulverized for 2 hours using zirconia beads having a diameter of 500 microns. By using a bead mill, not only can spherical silicon particles be pulverized, but scaly silicon particles can be dispersed and prevented from becoming lumps.

実施例1では、表面に炭素を被覆した鱗片状シリコン粒子201を用いることにより鱗片状シリコン同士の電気伝導度を高めた。
<炭素基材への鱗片状シリコン粒子の被覆方法>
鱗片状シリコン粒子は、平板状の形状を有することから、粒子間の接面積が大きく、だまになりやすい性質を有する。したがって、これを分散するために、炭素基材への被覆前に、例えばビーズミルと混合して撹拌する分散工程を設けることが好ましい。分散工程は、その条件を変更することで、鱗片状シリコン粒子の分散だけでなく、粉砕することもできる。
<鱗片状シリコンへの炭素被覆>
図4(a)は表面に炭素を被覆した鱗片状シリコン粒子の概念図である。
In Example 1, the electrical conductivity between scaly silicons was increased by using scaly silicon particles 201 whose surfaces were coated with carbon.
<Method of coating scaly silicon particles on carbon substrate>
Since the scaly silicon particles have a flat shape, the contact area between the particles is large, and the scaly silicon particles have the property of being easily fooled. Therefore, in order to disperse this, it is preferable to provide a dispersion step of mixing and stirring with a bead mill, for example, before coating on the carbon substrate. In the dispersing step, not only the scaly silicon particles can be dispersed but also pulverized by changing the conditions.
<Carbon coating on scaly silicon>
FIG. 4A is a conceptual diagram of scaly silicon particles whose surface is coated with carbon.

鱗片状シリコン粒子201の表面に炭素被覆層301で覆うこともできる。炭素被覆層301は、電気伝導性を有しており、鱗片状シリコン粒子201の粒子間の電気伝導を向上させる効果がある。鱗片状シリコン粒子201の表面全体ではなく、部分的に炭素被覆層301で覆われていても、一定の効果が期待できる。図4(b)は、表面に炭素を被覆した鱗片状シリコン粒子201の断面概念図である。   The surface of the scale-like silicon particles 201 can be covered with the carbon coating layer 301. The carbon coating layer 301 has electrical conductivity and has an effect of improving electrical conduction between the scaly silicon particles 201. Even if the entire surface of the scaly silicon particles 201 is partially covered with the carbon coating layer 301, a certain effect can be expected. FIG. 4B is a conceptual cross-sectional view of the scaly silicon particles 201 whose surface is covered with carbon.

図5は炭素被覆層301の作製法を模式的に示した概念図である。   FIG. 5 is a conceptual diagram schematically showing a method for producing the carbon coating layer 301.

サンプルボートに鱗片状シリコン粒子201を入れて、反応炉の中央付近に設置する。反応炉は、例えば石英製であり、直径が5cm、長さが40cmのものを用いることができる。図5の水素ラインを用いて、水素ガスを200mL/minの流速で流し、成長炉を室温から1000℃まで、10℃/minでの速度で昇温し、さらに1000℃で1hr保持した。この熱処理工程により、鱗片状シリコン粒子201の表面に形成された自然酸化膜を還元することが可能である。その後、水素ラインを閉じ、アルゴンガスを200mL/minの流速で流し、10℃/minの速度で降温し、800℃まで降温した。800℃に達したところで、プロピレンガスを10mL/minの流速で導入し、同時にアルゴンガスの流速を190mL/minにして、炭素被覆層を1時間成長した。その後、プロピレンガスラインを閉じ、アルゴンガスを200mL/minの流速で流し、15min保持した後、自然冷却した。これにより、鱗片状シリコンナノ粒子の表面に、ナノグラフェン多層構造を有する炭素被覆層301(膜厚5nm)を作製することが可能である。   The scaly silicon particles 201 are put in a sample boat and installed near the center of the reactor. The reactor is made of, for example, quartz, and a reactor having a diameter of 5 cm and a length of 40 cm can be used. Using the hydrogen line of FIG. 5, hydrogen gas was flowed at a flow rate of 200 mL / min, the growth furnace was heated from room temperature to 1000 ° C. at a rate of 10 ° C./min, and further maintained at 1000 ° C. for 1 hr. By this heat treatment step, the natural oxide film formed on the surface of the scaly silicon particles 201 can be reduced. Then, the hydrogen line was closed, argon gas was flowed at a flow rate of 200 mL / min, the temperature was lowered at a rate of 10 ° C./min, and the temperature was lowered to 800 ° C. When the temperature reached 800 ° C., propylene gas was introduced at a flow rate of 10 mL / min, and at the same time, the flow rate of argon gas was set to 190 mL / min, and the carbon coating layer was grown for 1 hour. Thereafter, the propylene gas line was closed, and argon gas was allowed to flow at a flow rate of 200 mL / min, maintained for 15 min, and then naturally cooled. Thereby, it is possible to produce the carbon coating layer 301 (film thickness 5 nm) which has a nano graphene multilayer structure on the surface of a scale-like silicon nanoparticle.

図6は、炭素基材101に鱗片状シリコン粒子201を被覆した負極活物質100に炭素被覆層302を設けた図である。炭素基材101の表面に、鱗片状シリコン粒子201が付着もしくはその一部分が挿入し、さらに全体の表面が炭素被覆層302で覆われた構造である。図6の構造体は、図1の構造体を作製した後、炭素被覆層302を形成することにより得ることができる。実施例1では、表面に炭素を被覆した鱗片状シリコン粒子201を用い、全体への被覆は施していないが、電気伝導度の観点からは、炭素被覆を用いることがより好ましい。   FIG. 6 is a diagram in which a carbon coating layer 302 is provided on the negative electrode active material 100 in which the carbon substrate 101 is coated with the scaly silicon particles 201. In this structure, the scaly silicon particles 201 are attached to the surface of the carbon substrate 101 or a part thereof is inserted, and the entire surface is covered with the carbon coating layer 302. The structure shown in FIG. 6 can be obtained by forming the carbon covering layer 302 after the structure shown in FIG. In Example 1, the scaly silicon particles 201 whose surfaces are coated with carbon are used and the entire coating is not performed. However, from the viewpoint of electrical conductivity, it is more preferable to use carbon coating.

炭素基材101に鱗片状シリコン粒子201を被覆した負極活物質100に炭素被覆層302を設ける方法は、鱗片状シリコンナノ粒子の表面に炭素被覆層301を設ける方法と同様のものを用いることができる。   The method of providing the carbon coating layer 302 on the negative electrode active material 100 in which the carbon substrate 101 is coated with the scaly silicon particles 201 is the same as the method of providing the carbon coating layer 301 on the surface of the scaly silicon nanoparticles. it can.

炭素被覆層302の作製法を図5を用いて説明する。サンプルボートに図1の構造体(炭素基材101に鱗片状シリコン粒子201を被覆したもの)を入れて、反応炉の中央付近に設置する。反応炉は、例えば石英製であり、直径が5cm、長さが40cmのものを用いることができる。図5の水素ラインを用いて、水素ガスを200mL/minの流速で流し、成長炉を室温から1000℃まで、10℃/minでの速度で昇温し、さらに1000℃で1hr保持した。この熱処理工程により、鱗片状シリコン粒子201の表面に形成された自然酸化膜を還元することが可能である。その後、水素ラインを閉じ、アルゴンガスを200mL/minの流速で流し、10℃/minの速度で降温し、800℃まで降温した。800℃に達したところで、プロピレンガスを10mL/minの流速で導入し、同時にアルゴンガスの流速を190mL/minにして、炭素被覆層302を1時間成長した。その後、プロピレンガスラインを閉じ、アルゴンガスを200mL/minの流速で流し、15min保持した後、自然冷却した。これにより、図1の構造体の表面に、ナノグラフェン多層構造を有する炭素被覆層302を作製することが可能である。   A method for manufacturing the carbon coating layer 302 will be described with reference to FIGS. The structure shown in FIG. 1 (the carbon substrate 101 covered with the scaly silicon particles 201) is placed in a sample boat and installed near the center of the reactor. The reactor is made of, for example, quartz, and a reactor having a diameter of 5 cm and a length of 40 cm can be used. Using the hydrogen line of FIG. 5, hydrogen gas was flowed at a flow rate of 200 mL / min, the growth furnace was heated from room temperature to 1000 ° C. at a rate of 10 ° C./min, and further maintained at 1000 ° C. for 1 hr. By this heat treatment step, the natural oxide film formed on the surface of the scaly silicon particles 201 can be reduced. Then, the hydrogen line was closed, argon gas was flowed at a flow rate of 200 mL / min, the temperature was lowered at a rate of 10 ° C./min, and the temperature was lowered to 800 ° C. When the temperature reached 800 ° C., propylene gas was introduced at a flow rate of 10 mL / min, and at the same time, the flow rate of argon gas was set to 190 mL / min, and the carbon coating layer 302 was grown for 1 hour. Thereafter, the propylene gas line was closed, and argon gas was allowed to flow at a flow rate of 200 mL / min, maintained for 15 min, and then naturally cooled. Thereby, the carbon coating layer 302 having a nanographene multilayer structure can be formed on the surface of the structure of FIG.

図7は、実施例1の負極活物質の走査型電子顕微鏡写真である。実施例1では、人造黒鉛粒子の表面に、鱗片状シリコン粒子201が付着した複合材料を作製した。人造黒鉛粒子の最長径は33μmである。   FIG. 7 is a scanning electron micrograph of the negative electrode active material of Example 1. In Example 1, a composite material in which scaly silicon particles 201 adhered to the surface of artificial graphite particles was produced. The longest diameter of the artificial graphite particles is 33 μm.

図8は、実施例1の負極活物質の走査型電子顕微鏡写真である。図7の人造黒鉛粒子の表面に付着した鱗片状シリコン粒子201の拡大写真である。鱗片状シリコン粒子201の平均厚さは30nm、平均最長径は300nmである。   FIG. 8 is a scanning electron micrograph of the negative electrode active material of Example 1. It is an enlarged photograph of the scale-like silicon particle 201 adhering to the surface of the artificial graphite particle of FIG. The average thickness of the scaly silicon particles 201 is 30 nm, and the average longest diameter is 300 nm.

図9は、実施例1の負極活物質の走査型電子顕微鏡写真である。図8の人造黒鉛粒子の表面に付着した鱗片状シリコン粒子201を部分的に取り除いたサンプルであり、鱗片状シリコン粒子201が人造黒鉛粒子の表面に挿入している部分を矢印で示した。この写真から、炭素基材101表面上の鱗片状シリコン粒子201の一部は、炭素基材101表面に挿入されていることがわかる。このような構造を取ることにより、炭素基材101と鱗片状シリコン粒子201との結合が強くなり、シリコンが膨張収縮した場合であっても充分な結合を保つことができる。また、このような炭素基材101表面付近に存在する鱗片状シリコン粒子201がさらにその周りの鱗片状シリコン粒子201同士もファンデルワールス力により結合しているため、炭素基材101から、離れた位置にある鱗片状シリコンも電気的に独立することなく充分な結合を保つことができる(図9ではファンデルワールス力により結合している鱗片状シリコンは取り除いている)。このような構造をとるためには、鱗片状シリコン粒子201同士がだまになることなく、均一に分散した状態で炭素基材101に被覆されることが重要である。鱗片状シリコン粒子201がより小さな粒子に分散していることで、炭素基材101表面の孔に入り込みやすい(突き刺さる)と考えられる。鱗片状シリコン粒子201が充分に分散されるためには、上述したように、鱗片状シリコン粒子201をビーズミル等とともに撹拌、分散させる等の工程を用いることが好ましい。   FIG. 9 is a scanning electron micrograph of the negative electrode active material of Example 1. This is a sample in which the scaly silicon particles 201 attached to the surface of the artificial graphite particles in FIG. 8 are partially removed, and the part where the scaly silicon particles 201 are inserted on the surface of the artificial graphite particles is indicated by arrows. From this photograph, it can be seen that some of the scaly silicon particles 201 on the surface of the carbon substrate 101 are inserted into the surface of the carbon substrate 101. By adopting such a structure, the bond between the carbon substrate 101 and the scaly silicon particles 201 becomes strong, and a sufficient bond can be maintained even when silicon expands and contracts. Further, since the scaly silicon particles 201 existing in the vicinity of the surface of the carbon base material 101 are further bonded to each other by the van der Waals force, the scaly silicon particles 201 around them are separated from the carbon base material 101. The scaly silicon in the position can also maintain a sufficient bond without being electrically independent (in FIG. 9, the scaly silicon bonded by van der Waals force is removed). In order to take such a structure, it is important that the carbon base material 101 is coated in a uniformly dispersed state without the flaky silicon particles 201 being fooled. It is considered that the scaly silicon particles 201 are dispersed in smaller particles so that they can easily enter (pierce) the holes on the surface of the carbon substrate 101. In order to sufficiently disperse the scaly silicon particles 201, as described above, it is preferable to use a process of stirring and dispersing the scaly silicon particles 201 together with a bead mill or the like.

また、炭素基材101と鱗片状シリコン粒子201の混合割合、鱗片状シリコン表面への炭素被覆量、全構造体への炭素被覆量を調整することにより、その電気容量を調整することが可能である。   In addition, the electric capacity can be adjusted by adjusting the mixing ratio of the carbon substrate 101 and the scaly silicon particles 201, the carbon coating amount on the scaly silicon surface, and the carbon coating amount on the entire structure. is there.

図10は、電気容量のシリコン重量比依存性を計算した結果である。炭素に対しては、リチウムイオンを充填した際の化学量論的組成を、LiC6と仮定し、その電気容量を372mAh/gとした。また、シリコンに対しては、リチウムイオンを充填した際の化学量論的組成を、Li15Si4と仮定し、その電気容量を3577mAh/gとした場合と、Li22Si5と仮定し、その電気容量を4197mAh/gとした場合について計算した。横軸のSi/(Si+C)のSiは、鱗片状シリコン粒子の重量を、Cは、炭素基材101、炭素被覆層301,302等の合計重量である。シリコン重量比を変えることで、炭素固有の電気容量から、シリコン固有の電気容量まで、幅広く制御することが可能である。現実的には、シリコン重量比5〜95wt%の複合材料を作製することが可能であり、被覆率を上げる観点から特に好ましくは5〜50wt%の範囲である。
<電池の作製>
本発明の第二の実施例について、図11を用いて説明する。図11で、1101は正極、1102はセパレータ、1103は負極、1104は電池缶、1105は正極集電タブ、1106は負極集電タブ、1107は内蓋、1108は内圧開放弁、1109はガスケット、1110は正温度係数(TPC; positive temperature coeffocent)抵抗素子、1111は電池蓋である。電池蓋1111は、内蓋1107、内圧開放弁1108、ガスケット1109、正温度係数抵抗素子1110からなる一体化部品である。
FIG. 10 shows the result of calculating the silicon weight ratio dependence of the electric capacity. For carbon, the stoichiometric composition when filled with lithium ions was assumed to be LiC 6 and its electric capacity was 372 mAh / g. For silicon, the stoichiometric composition when lithium ions are filled is assumed to be Li 15 Si 4, and the electric capacity is assumed to be 3577 mAh / g, and Li 22 Si 5 is assumed, It calculated about the case where the electric capacity was 4197 mAh / g. On the horizontal axis, Si of Si / (Si + C) is the weight of the scaly silicon particles, and C is the total weight of the carbon substrate 101, the carbon coating layers 301 and 302, and the like. By changing the silicon weight ratio, it is possible to control a wide range from the specific capacitance of carbon to the specific capacitance of silicon. Actually, it is possible to produce a composite material having a silicon weight ratio of 5 to 95 wt%, and particularly preferably in the range of 5 to 50 wt% from the viewpoint of increasing the coverage.
<Production of battery>
A second embodiment of the present invention will be described with reference to FIG. 11, 1101 is a positive electrode, 1102 is a separator, 1103 is a negative electrode, 1104 is a battery can, 1105 is a positive electrode current collecting tab, 1106 is a negative electrode current collecting tab, 1107 is an inner lid, 1108 is an internal pressure release valve, 1109 is a gasket, 1110 is a positive temperature coefficient (TPC) resistance element, and 1111 is a battery lid. The battery lid 1111 is an integrated part including an inner lid 1107, an internal pressure release valve 1108, a gasket 1109, and a positive temperature coefficient resistance element 1110.

例えば、正極1101は以下の手順により作製できる。正極活物質には、LiMn24を用いる。正極活物質の85.0wt%に、導電材として黒鉛粉末とアセチレンブラックをそれぞれ7.0wt%と2.0wt%を添加する。さらに、結着剤として6.0wt%のポリフッ化ビニリデン(以下、PVDFと略記)(1−メチル−2−ピロリドン(以下、NMPと略記)に溶解した溶液)を加えて、プラネタリ−ミキサーで混合し、さらに真空下でスラリー中の気泡を除去して、均質な正極合剤スラリーを調製する。このスラリーを、塗布機を用いて厚さ20μmのアルミニウム箔の両面に均一かつ均等に塗布する。塗布後ロールプレス機により電極密度が2.55g/cm3になるように圧縮成形する。これを切断機で裁断し、厚さ100μm、長さ900mm、幅54mmの正極1101を作製する。 For example, the positive electrode 1101 can be manufactured by the following procedure. LiMn 2 O 4 is used as the positive electrode active material. 7.0 wt% and 2.0 wt% of graphite powder and acetylene black are added as conductive materials to 85.0 wt% of the positive electrode active material, respectively. Further, 6.0 wt% polyvinylidene fluoride (hereinafter abbreviated as PVDF) (a solution dissolved in 1-methyl-2-pyrrolidone (hereinafter abbreviated as NMP)) was added as a binder and mixed with a planetary mixer. Further, bubbles in the slurry are removed under vacuum to prepare a homogeneous positive electrode mixture slurry. This slurry is uniformly and evenly applied to both surfaces of an aluminum foil having a thickness of 20 μm using an applicator. After the application, compression molding is performed by a roll press so that the electrode density is 2.55 g / cm 3 . This is cut with a cutting machine to produce a positive electrode 1101 having a thickness of 100 μm, a length of 900 mm, and a width of 54 mm.

例えば、負極1003は以下の手順により作製できる。負極活物質は、本発明における鱗片状シリコン粒子が被覆された炭素材料からなる負極活物質を用いることができる。負極活物質の95.0wt%に、結着剤として5.0wt%のPVDF(NMPに溶解した溶液)を加える。それをプラネタリ−ミキサーで混合し、真空下でスラリー中の気泡を除去して、均質な負極合剤スラリーを調製する。このスラリーを塗布機で厚さ10μmの圧延銅箔の両面に均一かつ均等に塗布する。塗布後、その電極をロールプレス機によって圧縮成形して、電極密度が1.3g/cm3とする。これを切断機で裁断し、厚さ110μm、長さ950mm、幅56mmの負極1103を作製する。 For example, the negative electrode 1003 can be manufactured by the following procedure. As the negative electrode active material, a negative electrode active material made of a carbon material coated with the scaly silicon particles in the present invention can be used. As a binder, 5.0 wt% PVDF (solution dissolved in NMP) is added to 95.0 wt% of the negative electrode active material. It is mixed with a planetary mixer, and bubbles in the slurry are removed under vacuum to prepare a homogeneous negative electrode mixture slurry. This slurry is uniformly and evenly applied to both surfaces of a rolled copper foil having a thickness of 10 μm with an applicator. After application, the electrode is compression-molded by a roll press to make the electrode density 1.3 g / cm 3 . This is cut with a cutting machine to produce a negative electrode 1103 having a thickness of 110 μm, a length of 950 mm, and a width of 56 mm.

上のように作製できる正極1101と、負極1103の未塗布部(集電板露出面)に、それぞれ正極集電タブ1105および負極集電タブ1106を超音波溶接する。正極集電タブ1105はアルミニウム製リード片とし、負極集電タブ1106にはニッケル製リード片を用いることができる。   The positive electrode current collecting tab 1105 and the negative electrode current collecting tab 1106 are ultrasonically welded to the positive electrode 1101 and the uncoated portion (current collector exposed surface) of the negative electrode 1103 that can be produced as described above. The positive electrode current collecting tab 1105 may be an aluminum lead piece, and the negative electrode current collecting tab 1106 may be a nickel lead piece.

その後、厚み30μmの多孔性ポリエチレンフィルムからなるセパレータ1102を正極1101と負極1103に挿入し、正極1101、セパレータ1102、負極1103を捲回する。この捲回体を電池缶1104に収納し、負極集電タブ1106を電池缶1104の缶底に抵抗溶接機により接続する。正極集電タブ1105は、内蓋1107の底面に超音波溶接により接続する。   Thereafter, a separator 1102 made of a porous polyethylene film having a thickness of 30 μm is inserted into the positive electrode 1101 and the negative electrode 1103, and the positive electrode 1101, the separator 1102, and the negative electrode 1103 are wound. The wound body is accommodated in the battery can 1104, and the negative electrode current collecting tab 1106 is connected to the bottom of the battery can 1104 by a resistance welder. The positive electrode current collecting tab 1105 is connected to the bottom surface of the inner lid 1107 by ultrasonic welding.

上部の電池蓋1111を電池缶1104に取り付ける前に、非水電解液を注入する。電解液の溶媒は、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)からなり、体積比として1:1:1などがある。電解質は濃度1mol/L(約0.8mol/kg)のLiPF6である。このような電解液を捲回体の上から滴下し、電池蓋1111を電池缶1104に、かしめて密封し、リチウムイオン二次電池を得ることができる。
<電池の評価方法>
放電容量および維持率の測定は、1Cの速度で、定電流モードで行った。
(比較例1)
実施例1において、炭素被覆した鱗片状シリコン粒子201の代わりに、炭素被覆した球状のシリコンナノ粒子を用いたものを用いた。実施例1と同様の方法にて評価した。
Before attaching the upper battery lid 1111 to the battery can 1104, a non-aqueous electrolyte is injected. The solvent of the electrolytic solution includes, for example, ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC), and has a volume ratio of 1: 1: 1. The electrolyte is LiPF 6 at a concentration of 1 mol / L (about 0.8 mol / kg). Such an electrolytic solution is dropped from above the wound body, and the battery lid 1111 is caulked and sealed in the battery can 1104, whereby a lithium ion secondary battery can be obtained.
<Battery evaluation method>
The discharge capacity and the maintenance rate were measured in a constant current mode at a speed of 1C.
(Comparative Example 1)
In Example 1, instead of carbon-coated scale-like silicon particles 201, carbon-coated spherical silicon nanoparticles were used. Evaluation was performed in the same manner as in Example 1.

人造黒鉛の平均長径は20μm、シリコンナノ粒子の平均長径は60nmである。最終的なシリコン重量比は、15.6wt%である。充放電は1Cの速度で行った。本発明の人造黒鉛+鱗片状Si粒子の複合材料では、200サイクル後の容量維持率が96.0%であり、人造黒鉛+シリコンナノ粒子の複合材料の容量維持率は25.6%であった。   The average major axis of artificial graphite is 20 μm, and the average major axis of silicon nanoparticles is 60 nm. The final silicon weight ratio is 15.6 wt%. Charging / discharging was performed at a speed of 1C. In the composite material of artificial graphite + flaky Si particles of the present invention, the capacity maintenance rate after 200 cycles was 96.0%, and the capacity maintenance rate of the composite material of artificial graphite + silicon nanoparticles was 25.6%. It was.

実施例1および比較例1にて電池を評価した結果を図12に示す。   The results of evaluating the batteries in Example 1 and Comparative Example 1 are shown in FIG.

100負極活物質
101 炭素基材
201 鱗片状シリコン粒子
301 炭素被覆層
302 炭素被覆層
1101 正極
1102 セパレータ
1103 負極
1104 電池缶
1105 正極集電タブ
1106 負極集電タブ
1107 内蓋
1108 圧力開放弁
1109 ガスケット、
1110 正温度係数抵抗素子
1111 電池蓋
100 negative electrode active material 101 carbon base material 201 scaly silicon particle 301 carbon coating layer 302 carbon coating layer 1101 positive electrode 1102 separator 1103 negative electrode 1104 battery can 1105 positive electrode current collecting tab 1106 negative electrode current collecting tab 1107 inner lid 1108 pressure release valve 1109 gasket,
1110 Positive temperature coefficient resistance element 1111 Battery cover

Claims (12)

炭素基材の表面に、鱗片状シリコン粒子が付着し、
前記鱗片状シリコンの一部は前記炭素基材に突き刺さっているリチウムイオン二次電池用負極活物質。
Scale-like silicon particles adhere to the surface of the carbon substrate,
A part of the scaly silicon is a negative electrode active material for a lithium ion secondary battery that pierces the carbon substrate.
請求項1において、
前記炭素基材は、人造黒鉛または天然黒鉛を少なくとも有するリチウムイオン二次電池用負極活物質。
In claim 1,
The carbon base material is a negative electrode active material for a lithium ion secondary battery having at least artificial graphite or natural graphite.
請求項2において
前記鱗片状シリコン粒子の厚さは5〜100nmの範囲であり、
前記鱗片状シリコン粒子の平均最長径は100nm〜3μmの範囲であるリチウムイオン二次電池用負極活物質。
In Claim 2, The thickness of the scaly silicon particles is in the range of 5 to 100 nm,
The negative active material for a lithium ion secondary battery, wherein the average longest diameter of the scaly silicon particles is in the range of 100 nm to 3 μm.
請求項3において
前記鱗片状シリコン粒子の厚さは10〜50nmの範囲であり、
前記鱗片状シリコン粒子の平均最長径は100nm〜1μmの範囲であるリチウムイオン二次電池用負極活物質。
In Claim 3, The thickness of the scaly silicon particles is in the range of 10 to 50 nm,
The negative active material for a lithium ion secondary battery, wherein the average longest diameter of the scaly silicon particles is in the range of 100 nm to 1 μm.
請求項3または請求項4において、
前記炭素基材の平均最長粒径は1〜50μmの範囲であるリチウムイオン二次電池用負極活物質。
In claim 3 or claim 4,
The negative electrode active material for a lithium ion secondary battery, wherein the average longest particle diameter of the carbon substrate is in the range of 1 to 50 μm.
請求項5において、
前記炭素基材の平均最長粒径は5〜30μmの範囲であるリチウムイオン二次電池用負極活物質。
In claim 5,
The average longest particle diameter of the carbon substrate is a negative electrode active material for a lithium ion secondary battery having a range of 5 to 30 μm.
請求項3ないし請求項6のいずれかにおいて、
前記鱗片状シリコン粒子と前記炭素基材との合計重量に対する前記鱗片状シリコン粒子の重量比は5〜95wt%の範囲であるリチウムイオン二次電池負極材料。
In any one of Claims 3 thru | or 6,
The lithium ion secondary battery negative electrode material whose weight ratio of the said scaly silicon particle with respect to the total weight of the said scaly silicon particle and the said carbon base material is the range of 5-95 wt%.
請求項3ないし請求項7のいずれかにおいて、
前記鱗片状シリコン粒子は、球状シリコン粒子をビーズミルにより粉砕、分散させたことを特徴とするリチウムイオン二次電池用負極活物質。
In any one of Claims 3 thru | or 7,
The negative electrode active material for a lithium ion secondary battery, wherein the scaly silicon particles are obtained by pulverizing and dispersing spherical silicon particles with a bead mill.
請求項3ないし請求項8のいずれかにおいて、
前記鱗片状シリコン粒子は、炭素により被覆されているリチウムイオン二次電池用負極活物質。
In any one of Claims 3 thru | or 8,
The scaly silicon particles are a negative electrode active material for a lithium ion secondary battery coated with carbon.
請求項3ないし請求項8のいずれかに記載のリチウムイオン二次電池用負極活物質は、炭素により被覆されているリチウムイオン二次電池用負極活物質。   The negative electrode active material for a lithium ion secondary battery according to any one of claims 3 to 8, wherein the negative electrode active material for a lithium ion secondary battery is coated with carbon. 正極と負極とを有するリチウムイオン二次電池において、
前記負極は負極活物質を有し、前記負極活物質は、請求項1ないし請求項10のいずれかに記載のリチウムイオン二次電池用負極活物質であるリチウムイオン二次電池。
In a lithium ion secondary battery having a positive electrode and a negative electrode,
The said negative electrode has a negative electrode active material, The said negative electrode active material is a lithium ion secondary battery which is a negative electrode active material for lithium ion secondary batteries in any one of Claim 1 thru | or 10.
炭素基材の表面に、鱗片状シリコン粒子が付着し、
前記鱗片状シリコンの一部は前記炭素基材に突き刺さっているリチウムイオン二次電池用負極活物質の製造方法であって、
前記鱗片状シリコン粒子は、球状シリコン粒子をビーズミルにより粉砕、分散させたことを特徴とするリチウムイオン二次電池用負極活物質の製造方法。
Scale-like silicon particles adhere to the surface of the carbon substrate,
A part of the scaly silicon is a method for producing a negative electrode active material for a lithium ion secondary battery that pierces the carbon substrate,
The method for producing a negative electrode active material for a lithium ion secondary battery, wherein the scaly silicon particles are obtained by pulverizing and dispersing spherical silicon particles with a bead mill.
JP2015016299A 2015-01-30 2015-01-30 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery Pending JP2016143462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016299A JP2016143462A (en) 2015-01-30 2015-01-30 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016299A JP2016143462A (en) 2015-01-30 2015-01-30 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016143462A true JP2016143462A (en) 2016-08-08
JP2016143462A5 JP2016143462A5 (en) 2017-10-26

Family

ID=56570614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016299A Pending JP2016143462A (en) 2015-01-30 2015-01-30 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2016143462A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208314A1 (en) * 2015-06-22 2018-04-05 株式会社日立製作所 Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2018113187A (en) * 2017-01-12 2018-07-19 日立化成株式会社 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
WO2018174300A1 (en) * 2017-03-24 2018-09-27 日産自動車株式会社 Non-aqueous electrolyte secondary battery negative electrode material, and negative electrode and non-aqueous electrolyte secondary battery using non-aqueous electrolyte secondary battery negative electrode material
CN114420891A (en) * 2021-11-25 2022-04-29 西安交通大学 High-voltage lithium ion battery current collector, preparation method and application
US11664489B2 (en) 2017-03-24 2023-05-30 Nissan Motor Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027897A (en) * 2006-06-20 2008-02-07 Osaka Gas Chem Kk Anode active substance for lithium ion secondary battery
JP2010092830A (en) * 2008-09-11 2010-04-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2011503804A (en) * 2007-11-05 2011-01-27 ナノテク インスツルメンツ インク Composite negative electrode compound for lithium-ion batteries mainly composed of nanographene platelets
JP2012124113A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2012246215A (en) * 2011-05-27 2012-12-13 Pohang Univ Of Science & Technology Academy-Industry Cooperation Method for producing carbon thin film, electronic element containing the same, and electrochemical element containing the same
JP2013084601A (en) * 2011-10-05 2013-05-09 Samsung Sdi Co Ltd Negative electrode active material and lithium battery employing the same material
JP2013129912A (en) * 2011-11-22 2013-07-04 Semiconductor Energy Lab Co Ltd Method for cleaning film formation apparatus
JP2013237575A (en) * 2012-05-14 2013-11-28 Panasonic Corp Method for forming graphene film
JP2014060124A (en) * 2012-09-19 2014-04-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014532024A (en) * 2012-07-20 2014-12-04 エルジー・ケム・リミテッド Carbon-silicon composite, production method thereof, and negative electrode active material including the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027897A (en) * 2006-06-20 2008-02-07 Osaka Gas Chem Kk Anode active substance for lithium ion secondary battery
JP2011503804A (en) * 2007-11-05 2011-01-27 ナノテク インスツルメンツ インク Composite negative electrode compound for lithium-ion batteries mainly composed of nanographene platelets
JP2010092830A (en) * 2008-09-11 2010-04-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2012124113A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2012246215A (en) * 2011-05-27 2012-12-13 Pohang Univ Of Science & Technology Academy-Industry Cooperation Method for producing carbon thin film, electronic element containing the same, and electrochemical element containing the same
JP2013084601A (en) * 2011-10-05 2013-05-09 Samsung Sdi Co Ltd Negative electrode active material and lithium battery employing the same material
JP2013129912A (en) * 2011-11-22 2013-07-04 Semiconductor Energy Lab Co Ltd Method for cleaning film formation apparatus
JP2013237575A (en) * 2012-05-14 2013-11-28 Panasonic Corp Method for forming graphene film
JP2014532024A (en) * 2012-07-20 2014-12-04 エルジー・ケム・リミテッド Carbon-silicon composite, production method thereof, and negative electrode active material including the same
JP2014060124A (en) * 2012-09-19 2014-04-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208314A1 (en) * 2015-06-22 2018-04-05 株式会社日立製作所 Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2018113187A (en) * 2017-01-12 2018-07-19 日立化成株式会社 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
WO2018174300A1 (en) * 2017-03-24 2018-09-27 日産自動車株式会社 Non-aqueous electrolyte secondary battery negative electrode material, and negative electrode and non-aqueous electrolyte secondary battery using non-aqueous electrolyte secondary battery negative electrode material
US10903488B2 (en) 2017-03-24 2021-01-26 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery negative electrode material, and negative electrode and non-aqueous electrolyte secondary battery using the same
US11664489B2 (en) 2017-03-24 2023-05-30 Nissan Motor Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN114420891A (en) * 2021-11-25 2022-04-29 西安交通大学 High-voltage lithium ion battery current collector, preparation method and application
CN114420891B (en) * 2021-11-25 2023-12-19 西安交通大学 High-voltage lithium ion battery current collector, preparation method and application

Similar Documents

Publication Publication Date Title
JP6457590B2 (en) Negative electrode active material, negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode, method for producing negative electrode active material, and method for producing lithium ion secondary battery
CN106537663B (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particles
JP6334195B2 (en) Composite active material for lithium secondary battery and method for producing the same
JP5326567B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery equipped with the same, and method for producing the same
JP6181590B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6873614B2 (en) Lithium-ion secondary battery and its manufacturing method
JP6569398B2 (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2019034105A1 (en) Positive electrode material and preparation method thereof, positive electrode and lithium ion battery
WO2016208314A1 (en) Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
KR101539843B1 (en) Anode Active Material of High Density and Methode for Preparation of The Same
JP2015207474A (en) Negative electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, negative electrode active material layer for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP6297991B2 (en) Nonaqueous electrolyte secondary battery
JP2016143462A (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
KR20180020857A (en) Electrode material, manufacturing method for same, and lithium battery
JP6448462B2 (en) Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery
JP2017123281A (en) Negative electrode active substance, mixed negative electrode active substance material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, manufacturing method of negative electrode active substance, and manufacturing method of lithium ion secondary battery
JP2018113187A (en) Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP4712837B2 (en) Nonaqueous electrolyte secondary battery
JP6484503B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6518685B2 (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2015029128A1 (en) Negative electrode active material, negative electrode mixture using same, negative electrode and lithium ion secondary battery
JP2018147772A (en) Lithium ion secondary battery negative electrode material and lithium ion secondary battery
CN112640164A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017084684A (en) Negative electrode active material for lithium ion secondary batteries, manufacturing method thereof, and lithium ion secondary battery
TWI727096B (en) Rechargeable electrochemical cell and battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806