JP2016141877A - Method for treating copper-containing molybdenum ore - Google Patents

Method for treating copper-containing molybdenum ore Download PDF

Info

Publication number
JP2016141877A
JP2016141877A JP2015020676A JP2015020676A JP2016141877A JP 2016141877 A JP2016141877 A JP 2016141877A JP 2015020676 A JP2015020676 A JP 2015020676A JP 2015020676 A JP2015020676 A JP 2015020676A JP 2016141877 A JP2016141877 A JP 2016141877A
Authority
JP
Japan
Prior art keywords
copper
leaching
iron
containing molybdenum
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015020676A
Other languages
Japanese (ja)
Inventor
由樹 青砥
Yuki Aoto
由樹 青砥
和浩 波多野
Kazuhiro Hatano
和浩 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015020676A priority Critical patent/JP2016141877A/en
Publication of JP2016141877A publication Critical patent/JP2016141877A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating copper-containing molybdenum ore where, after a copper leaching step of leaching a copper component in copper-containing molybdenum ore, molybdenum included in a leaching rear liquid obtained there can be effectively recovered.SOLUTION: Provided is a method for treating copper-containing molybdenum ore comprising: a copper leaching step where a copper component included in copper-containing molybdenum ore is leached in an acid halogen bath including iron ions; and an iron oxidation step where, after the copper leaching step, iron ions in the leaching rear liquid obtained by the copper leaching step are oxidized to precipitate at least a part of the iron ions as an iron compound, in which molybdenum eluted from the copper-containing molybdenum ore in the copper leaching step and included in the leaching rear liquid is recovered as a solid in the iron oxidation step.SELECTED DRAWING: Figure 1

Description

この発明は、銅を含有するモリブデン鉱を処理する方法に関するものであり、特には、銅含モリブデン鉱から銅とモリブデンを分離させて回収するに当り、モリブデンの回収率の向上に寄与することのできる技術を提案するものである。   The present invention relates to a method for treating molybdenum ore containing copper, and in particular, in separating and recovering copper and molybdenum from copper-molybdenum ore, it contributes to an improvement in the recovery rate of molybdenum. It proposes a technology that can be used.

モリブデンは輝水鉛鉱(molybdenite,MoS2)(硫化モリブデン)、モリブデン鉛鉱(wulfenite,PbMoO4)(モリブデン酸鉛)、パウエライト(Ca(Mo,W)O4)、鉄水鉛鉱(Fe2(MoO43・nH2O)等の鉱石中に存在しており、これらの中でも輝水鉛鉱の工業的な利用が進んでいる。 Molybdenite is molybdenite (MoS 2 ) (molybdenum sulfide), molybdenum lead ore (wulfenite, PbMoO 4 ) (lead molybdate), pawerite (Ca (Mo, W) O 4 ), iron-water lead ore (Fe 2 ( It exists in ores such as MoO 4 ) 3 · nH 2 O), and among these, the industrial use of molybdenite is progressing.

輝水鉛鉱は銅の硫化物とともに産出されることが多く、この輝水鉛鉱から、浮遊選鉱により銅とモリブデンを選別するが、それによって回収したモリブデン精鉱中には一般に数%の銅の硫化物が混在している。これを、モリブデンの主要用途である鉄鋼添加剤に用いた場合は、銅が鉄鋼製品の性状を低下させることから、予めモリブデン精鉱から銅を除く必要がある。   The hydropyrite is often produced together with copper sulfide, and copper and molybdenum are selected from the hydropyrite by flotation, and the recovered molybdenum concentrate generally contains several percent copper sulphide. Things are mixed. When this is used as a steel additive, which is the main use of molybdenum, it is necessary to remove copper from the molybdenum concentrate in advance because copper deteriorates the properties of the steel product.

含銅モリブデン精鉱から銅を分離回収する方法としては従来、非特許文献1、特許文献1、2に記載されているような、いわゆる塩化鉄法が知られている。この方法では、含銅モリブデン精鉱を、Fe3+イオンを120g/L程度含有する浸出液を用いて110℃程度に加熱したオートクレーブ内で浸出処理することで、銅を優先的に浸出させ、モリブデンと銅を分離して脱銅モリブデン精鉱を得る。このように銅を浸出させた後の脱銅モリブデン精鉱は、モリブデン製錬プロセスに供される。一方、銅浸出で得られた浸出後液中の銅は、鉄屑などと反応させてセメント銅(Cu品位90%程度)を沈殿させるセメンテーション法によって回収される。 As a method for separating and recovering copper from a copper-containing molybdenum concentrate, a so-called iron chloride method as described in Non-Patent Document 1, Patent Documents 1 and 2 is conventionally known. In this method, the copper-containing molybdenum concentrate is leached in an autoclave heated to about 110 ° C. using a leachate containing about 120 g / L of Fe 3+ ions, so that copper is leached preferentially, and molybdenum And copper are separated to obtain decoppered molybdenum concentrate. Thus, the copper-free molybdenum concentrate after leaching copper is subjected to a molybdenum smelting process. On the other hand, the copper in the liquid after leaching obtained by copper leaching is recovered by a cementation method in which cement copper (about 90% of Cu quality) is precipitated by reacting with iron scraps and the like.

特許文献1では、モリブデン精鉱に高温高圧下で塩化鉄溶液及び塩素ガスを供給して、銅や鉛などの不純物を除去する方法が記載されている。
特許文献2には、モリブデン精鉱から銅や鉛などの不純物を除去するために、アルカリ金属又はアルカリ土類金属の塩化物を含有する水溶液を浸出液として用いる方法が開示されている。
Patent Document 1 describes a method of removing impurities such as copper and lead by supplying an iron chloride solution and chlorine gas to molybdenum concentrate under high temperature and high pressure.
Patent Document 2 discloses a method in which an aqueous solution containing an alkali metal or alkaline earth metal chloride is used as a leachate in order to remove impurities such as copper and lead from molybdenum concentrate.

なお特許文献3は、銅を含む硫化鉱から銅を分離回収する方法について記載されたものであるが、ここでは、塩化浴で特別な酸化剤や特別な装置を使用することなく空気の使用のみによって、硫化銅鉱中の銅を98%以上浸出し回収することが記載されている。より詳細には、アルカリ金属もしくはアルカリ土類金属の塩化物及び臭化物と、銅と鉄の塩化物もしくは銅と鉄の臭化物を含む酸性溶液(以下「酸性溶液」という)に銅鉱物を添加し、大気圧下かつ水溶液沸点以下において酸性溶液に空気を吹き込みつつ、酸性溶液中の鉄イオンもしくは銅イオンの一方あるいは両方の酸化力により原料から銅を一価銅及び二価銅として浸出させる。次いで、固液分離を行い、この固液分離後の溶液に空気を吹き込んで、溶液中の銅を酸化し、かつ原料から酸性溶液に浸出された鉄及び不純物を共沈させる。その後、共沈物を含む沈澱物を分離した酸化後液から銅を抽出するとともに、抽出した銅は硫酸溶液中に硫酸銅として回収し、この硫酸銅溶液より銅を回収する。銅の抽出時に生成する酸は、銅の浸出に繰り返し用いることが記載されている。   Patent Document 3 describes a method for separating and recovering copper from sulfide ore containing copper, but here, only the use of air without using a special oxidizing agent or a special device in a chlorination bath. Describes leaching and recovering 98% or more of copper in copper sulfide ore. More specifically, a copper mineral is added to an acidic solution (hereinafter referred to as an “acidic solution”) containing an alkali metal or alkaline earth metal chloride and bromide and copper and iron chloride or copper and iron bromide, While blowing air into the acidic solution at atmospheric pressure and below the boiling point of the aqueous solution, copper is leached from the raw material as monovalent copper and divalent copper by the oxidizing power of one or both of iron ions and copper ions in the acidic solution. Next, solid-liquid separation is performed, and air is blown into the solution after the solid-liquid separation to oxidize copper in the solution and coprecipitate iron and impurities leached from the raw material into the acidic solution. Then, while extracting copper from the post-oxidation liquid which isolate | separated the deposit containing a coprecipitate, the extracted copper is collect | recovered as a copper sulfate in a sulfuric acid solution, and copper is collect | recovered from this copper sulfate solution. It is described that the acid generated at the time of copper extraction is repeatedly used for copper leaching.

米国特許第4500496号明細書US Pat. No. 4,500,006 米国特許第3674424号明細書US Pat. No. 3,744,424 特開2009−256764号公報JP 2009-256664 A

平成24年度成果報告 「モリブデン、タングステン 最近の選鉱技術動向」(独立行政法人石油天然ガス・金属鉱物資源機構)2012 Report “Molybdenum and Tungsten Recent Trends in Mineral Technology” (Japan Oil, Metals and Mineral Resources Agency)

非特許文献1や特許文献1及び2に記載されているような塩化鉄法では、銅の浸出処理時に、比較的多くのモリブデンが、銅と一緒に浸出されて浸出後液に含まれることが解かった。
このことは、特許文献2の表Vに、銅を浸出除去した浸出後液に含まれるモリブデンの濃度が0.26〜5.1g/Lと記載されており、その平均が1.42g/Lと比較的高いことからも解かる。特に、特許文献2に記載されたこの試験では、銅含有量が0.2〜1.0重量%と低いモリブデン精鉱を用いており、それよりも銅含有量が5%程度と多い一般的な含銅モリブデン精鉱では、浸出後液に含まれて回収されないモリブデンの量はさらに増加することが予想される。
In the iron chloride method as described in Non-Patent Document 1 and Patent Documents 1 and 2, a relatively large amount of molybdenum may be leached together with copper and contained in the liquid after leaching during copper leaching treatment. It was solved.
This is described in Table V of Patent Document 2 where the concentration of molybdenum contained in the leached solution obtained by leaching and removing copper is 0.26 to 5.1 g / L, and the average is 1.42 g / L. It is also understood from the relatively high. In particular, in this test described in Patent Document 2, a molybdenum concentrate having a low copper content of 0.2 to 1.0% by weight is used, and the copper content is generally as high as about 5%. In copper-containing molybdenum concentrates, it is expected that the amount of molybdenum contained in the liquid after leaching and not recovered will further increase.

そして、上記の特許文献等に記載の方法では、浸出後液に浸出したモリブデンが回収されないことから、モリブデンの回収率が低いものとなる。
それ故、かかる塩化鉄法でモリブデンの回収率を高めるためには、含銅モリブデン鉱から浸出後液に溶出したモリブデンを効果的に回収することが必要である。
And in the method described in said patent document etc., since the molybdenum leached in the liquid after leaching is not collect | recovered, the recovery rate of molybdenum becomes a low thing.
Therefore, in order to increase the recovery rate of molybdenum by the iron chloride method, it is necessary to effectively recover the molybdenum eluted from the copper-containing molybdenum ore into the solution after leaching.

一方、特許文献3に記載された方法は、塩化浴を用いて硫化銅鉱から銅を浸出するものであって、含銅モリブデン鉱からモリブデンを回収する点については何ら着目されていないが、この方法を、含銅モリブデン鉱からのモリブデンの回収に適用した場合もまた、酸性溶液中への銅の浸出後の浸出後液に、僅かながらモリブデンが含まれることが解かった。
この場合であっても、モリブデンの回収率をさらに高めるため、浸出後液に含まれるモリブデンを有効に回収することが望まれる。
On the other hand, the method described in Patent Document 3 is a method in which copper is leached from copper sulfide ore using a chlorination bath, and no attention is paid to the point of recovering molybdenum from copper-containing molybdenum ore. Was applied to the recovery of molybdenum from copper-containing molybdenum ore, it was also found that molybdenum was slightly contained in the post-leaching solution after leaching of copper into the acidic solution.
Even in this case, it is desired to effectively recover the molybdenum contained in the liquid after leaching in order to further increase the recovery rate of molybdenum.

この発明は、このような問題を解決することを課題とするものであり、それの目的とするところは、含銅モリブデン鉱中の銅成分を浸出させる銅浸出工程の後、そこで得られた浸出後液に含まれるモリブデンを有効に回収することのできる含銅モリブデン鉱の処理方法を提供することにある。   The object of the present invention is to solve such problems. The purpose of the present invention is to obtain a leaching obtained after a copper leaching step of leaching a copper component in copper-containing molybdenum ore. An object of the present invention is to provide a method for treating copper-containing molybdenum ore capable of effectively recovering molybdenum contained in a post-solution.

発明者は鋭意検討の結果、含銅モリブデン鉱に含まれる銅成分を、鉄イオンを含む酸性ハロゲン浴にて浸出させる銅浸出工程の後、銅浸出工程で得られた浸出後液に対し、それに含まれる鉄イオンの少なくとも一部を鉄化合物として析出させる鉄酸化工程を実施することにより、浸出後液に含まれるモリブデンの多く又はほぼ全てが、鉄とともに共沈することを見出した。そして、これにより、モリブデンを有効に回収できると考えた。   As a result of intensive studies, the inventor conducted a copper leaching process in which the copper component contained in the copper-containing molybdenum ore was leached in an acidic halogen bath containing iron ions. It has been found that most or almost all of the molybdenum contained in the liquid after leaching is co-precipitated with iron by carrying out an iron oxidation step in which at least part of the iron ions contained is precipitated as an iron compound. Then, it was considered that this makes it possible to recover molybdenum effectively.

このような知見の下、この発明の含銅モリブデン鉱の処理方法は、含銅モリブデン鉱に含まれる銅成分を、鉄イオンを含む酸性ハロゲン浴にて浸出させる銅浸出工程と、銅浸出工程の後、銅浸出工程で得られた浸出後液中の鉄イオンを酸化させて、当該鉄イオンの少なくとも一部を鉄化合物として析出させる鉄酸化工程とを含み、銅浸出工程で含銅モリブデン鉱から溶出して前記浸出後液に含まれるモリブデンを、鉄酸化工程で固体として回収することにある。   Under such knowledge, the copper-containing molybdenum ore processing method of the present invention includes a copper leaching step of leaching a copper component contained in the copper-containing molybdenum ore in an acidic halogen bath containing iron ions, and a copper leaching step. And an iron oxidation step of oxidizing iron ions in the liquid after leaching obtained in the copper leaching step and precipitating at least a part of the iron ions as an iron compound. From the copper-containing molybdenum ore in the copper leaching step The molybdenum which is eluted and contained in the leached solution is recovered as a solid in the iron oxidation step.

ここで、前記鉄酸化工程では、浸出後液のpHを0.5〜3.0とすることがそれぞれ好ましい。
またここで、前記鉄酸化工程では、浸出後液に酸素含有気体を吹き込むことにより、鉄イオンを酸化させることが好ましい。
Here, in the iron oxidation step, the pH of the leached solution is preferably 0.5 to 3.0.
Here, in the iron oxidation step, it is preferable to oxidize iron ions by blowing an oxygen-containing gas into the leached solution.

また、前記銅浸出工程の酸性ハロゲン浴は酸性塩化物浴とすることが好ましい。
この場合、前記銅浸出工程の酸性塩化物浴が、鉄イオンを1g/L〜50g/L、塩化物イオンを100g/L〜200g/Lで含有するとともに、さらに銅イオンを含有するものとし、前記酸性塩化物浴の温度を、50〜100℃とすることが好ましい。
The acidic halogen bath in the copper leaching step is preferably an acidic chloride bath.
In this case, the acidic chloride bath of the copper leaching step contains iron ions at 1 g / L to 50 g / L, chloride ions at 100 g / L to 200 g / L, and further contains copper ions. The temperature of the acidic chloride bath is preferably 50 to 100 ° C.

この発明の含銅モリブデン鉱の処理方法では、含銅モリブデン鉱が、銅を0.5質量%〜10質量%で含有するとともに、モリブデンを20質量%以上で含有するものであることが好ましい。   In the copper-containing molybdenum ore processing method of the present invention, the copper-containing molybdenum ore preferably contains copper in an amount of 0.5 mass% to 10 mass% and molybdenum in an amount of 20 mass% or more.

前記銅浸出工程では、得られる浸出残渣中の銅品位が0.5質量%以下となるまで浸出を実施することが好ましい。   In the copper leaching step, leaching is preferably carried out until the copper quality in the obtained leaching residue is 0.5 mass% or less.

なお、前記浸出後液に含まれるモリブデンの量に対し、前記鉄酸化工程で固体として回収されるモリブデンの回収率を95%以上とすることが好適である。
また、鉄酸化工程で得られる酸化残渣中の銅品位を、0.5質量%以下とすることが好ましい。
It is preferable that the recovery rate of molybdenum recovered as a solid in the iron oxidation step is 95% or more with respect to the amount of molybdenum contained in the liquid after leaching.
Moreover, it is preferable that the copper quality in the oxidation residue obtained by an iron oxidation process shall be 0.5 mass% or less.

この発明の含銅モリブデン鉱の処理方法では、鉄酸化工程の後、鉄酸化工程で得られた酸化後液中の銅イオンの少なくとも一部を抽出する銅抽出工程を更に含み、前記銅抽出工程で銅を抽出した後の抽出後液を、銅浸出工程の酸性ハロゲン浴に用いることが好ましい。   The copper-containing molybdenum ore processing method of the present invention further includes a copper extraction step for extracting at least part of copper ions in the post-oxidation solution obtained in the iron oxidation step after the iron oxidation step, and the copper extraction step It is preferable to use the post-extraction solution after extracting copper with the acidic halogen bath in the copper leaching step.

この発明の含銅モリブデン鉱の処理方法によれば、銅浸出工程で含銅モリブデン鉱から溶出して浸出後液に含まれるモリブデンを、鉄酸化工程で固体として回収することから、モリブデンを浸出後液に残すことなく有効に回収することができる。その結果として、含銅モリブデン鉱からのモリブデンの回収率を大きく高めることができる。   According to the method for treating copper-containing molybdenum ore of the present invention, molybdenum eluted from the copper-containing molybdenum ore in the copper leaching step and recovered in the liquid after leaching is recovered as a solid in the iron oxidation step. It can be effectively recovered without leaving it in the liquid. As a result, the recovery rate of molybdenum from the copper-containing molybdenum ore can be greatly increased.

この発明の第一実施形態に係る含銅モリブデン鉱の処理方法を示すフロー図である。It is a flowchart which shows the processing method of the copper-containing molybdenum ore which concerns on 1st embodiment of this invention. この発明の第二実施形態に係る含銅モリブデン鉱の処理方法を示すフロー図である。It is a flowchart which shows the processing method of the copper-containing molybdenum ore which concerns on 2nd embodiment of this invention. 実施例の各工程の溶液ないし残渣に含まれる各元素の含有量を示すフロー図である。It is a flowchart which shows content of each element contained in the solution thru | or residue of each process of an Example. 実施例の鉄酸化工程での酸化時間の経過に伴う、pH及びORPの推移を示すグラフならびに液濃度の推移を示すグラフである。It is a graph which shows transition of pH and ORP with progress of the oxidation time in the iron oxidation process of an Example, and a graph which shows transition of a liquid concentration.

以下に、この発明の実施形態について詳細に説明する。
この発明の含銅モリブデン鉱の処理方法は、含銅モリブデン鉱に含まれる銅成分を、鉄イオンを含む酸性ハロゲン浴にて浸出させる銅浸出工程と、銅浸出工程の後、銅浸出工程で得られた浸出後液中の鉄イオンを酸化させて、当該鉄イオンの少なくとも一部を鉄化合物として析出させる鉄酸化工程とを含むものである。
Hereinafter, embodiments of the present invention will be described in detail.
The copper-containing molybdenum ore processing method of the present invention is obtained in a copper leaching step after leaching the copper component contained in the copper-containing molybdenum ore in an acidic halogen bath containing iron ions, and after the copper leaching step. And an iron oxidation step in which iron ions in the liquid after leaching are oxidized to deposit at least a part of the iron ions as an iron compound.

この発明で対象とする含銅モリブデン鉱としては特に制限はないが、たとえば、輝水鉛鉱、モリブデン鉛鉱、パウエライト、及び鉄水鉛鉱から選択される一種以上を含有する鉱石、なかでも、輝水鉛鉱を含有する鉱石を浮遊選鉱した後のモリブデン精鉱を挙げることができる。含銅モリブデン鉱中の銅は硫化物の形態、例えば輝銅鉱及び/又は黄銅鉱の形態で存在することがある。
含銅モリブデン鉱は、Cuを0.5〜10質量%、好ましくは1〜10質量%、より好ましくは2〜5質量%で含有し、また、含銅モリブデン鉱は、Moを20質量%以上、好ましくは30〜60質量%、より好ましくは40〜50質量%で含有するものを対象とすることができる。
The copper-containing molybdenum ore to be used in the present invention is not particularly limited. Mention may be made of molybdenum concentrate after flotation of ore containing ore. Copper in the copper-containing molybdenum ore may be present in the form of sulfides, for example in the form of chalcocite and / or chalcopyrite.
The copper-containing molybdenum ore contains Cu in an amount of 0.5 to 10% by mass, preferably 1 to 10% by mass, more preferably 2 to 5% by mass, and the copper-containing molybdenum ore contains 20% by mass or more of Mo. , Preferably it is 30-60 mass%, More preferably, what contains 40-50 mass% can be made into object.

このような含銅モリブデン鉱に対し、この発明では、はじめに銅浸出工程を行う。この銅浸出工程では、多くのモリブデンは浸出残渣として溶け残るが、いくらかのモリブデンは、含銅モリブデン鉱から銅とともに溶出して浸出後液に含まれることになる。
この浸出後液に含まれるモリブデンを回収することについて、発明者は検討した結果、上記の浸出後液中の鉄イオンを酸化させる鉄酸化工程で、浸出後液に浸出したモリブデンが鉄とともに共沈することを新たに見出し、この鉄酸化工程にて、浸出後液中のモリブデンを固体として回収できると考えた。
In this invention, a copper leaching process is first performed on such a copper-containing molybdenum ore. In this copper leaching process, a large amount of molybdenum remains undissolved as a leaching residue, but some molybdenum is eluted together with copper from the copper-containing molybdenum ore and is contained in the liquid after leaching.
As a result of investigation by the inventors on the recovery of molybdenum contained in the liquid after leaching, the molybdenum leached into the liquid after leaching is coprecipitated together with iron in the iron oxidation step in which iron ions in the liquid after leaching are oxidized. It was found that the molybdenum in the liquid after leaching can be recovered as a solid in this iron oxidation process.

この知見の下、この発明では、銅浸出工程の後に、銅浸出工程で得られた浸出後液中の鉄イオンを酸化させて、当該鉄イオンの少なくとも一部を鉄化合物として析出させる鉄酸化工程を実施することとし、そこで、浸出後液に含まれるモリブデンを固体として回収する。
この発明の処理方法は具体的には、たとえば、図1又は2に示す実施形態により実施することができる。それぞれの実施形態を以下に詳説する。
Under this knowledge, in the present invention, after the copper leaching step, the iron oxidization step of oxidizing iron ions in the post-leaching solution obtained in the copper leaching step to precipitate at least a part of the iron ions as an iron compound. Therefore, molybdenum contained in the liquid after leaching is recovered as a solid.
Specifically, the processing method of the present invention can be implemented by the embodiment shown in FIG. 1 or 2, for example. Each embodiment is described in detail below.

<第一実施形態>
図1に示す実施形態では、銅浸出工程、鉄酸化工程及び銅抽出工程の各工程を順次に実施する。
<First embodiment>
In the embodiment shown in FIG. 1, the copper leaching process, the iron oxidation process, and the copper extraction process are sequentially performed.

(銅浸出工程)
銅浸出工程では、塩化物イオンを100g/L〜200g/L、銅イオンを1g/L〜30g/L、鉄イオンを1g/L〜50g/Lでそれぞれ含有する50〜100℃の酸性水溶液(以下、「浸出液」ともいう。)を、酸素含有気体の供給下で含銅モリブデン鉱に接触させて、含銅モリブデン鉱に含まれる銅成分を浸出する。すなわち、銅浸出工程では、酸性ハロゲン浴としての酸性塩化物浴を使用することにより、含銅モリブデン鉱中の銅を浸出することとし、ここでは銅イオンを浸出液中に存在させておくことで、銅の浸出反応を促進させることができる。
(Copper leaching process)
In the copper leaching step, an acidic aqueous solution of 50 to 100 ° C. containing chloride ions at 100 g / L to 200 g / L, copper ions at 1 g / L to 30 g / L, and iron ions at 1 g / L to 50 g / L, respectively ( Hereinafter, the copper component contained in the copper-containing molybdenum ore is leached by bringing the copper-containing molybdenum ore into contact with the copper-containing molybdenum ore under the supply of the oxygen-containing gas. That is, in the copper leaching step, by using an acidic chloride bath as an acidic halogen bath, copper in the copper-containing molybdenum ore is leached, and here, copper ions are present in the leaching solution, The leaching reaction of copper can be promoted.

銅浸出工程で使用する浸出液中の塩化物イオンの濃度は、銅の溶解反応を高い効率で実現する観点から、100g/L以上であることが好ましく、特に120g/L以上であることがより好ましく、さらには140g/L以上であることが特に好ましい。しかしながら、経済性を考慮すると、過度に高濃度にする必要はなく、浸出液中の塩化物イオンの濃度は一般には200g/L以下であり、好ましくは180g/L以下である。   The concentration of chloride ions in the leaching solution used in the copper leaching step is preferably 100 g / L or more, more preferably 120 g / L or more, from the viewpoint of realizing a copper dissolution reaction with high efficiency. Further, it is particularly preferably 140 g / L or more. However, in consideration of economy, it is not necessary to make the concentration too high, and the concentration of chloride ions in the leachate is generally 200 g / L or less, preferably 180 g / L or less.

銅浸出工程で使用する浸出液中の銅イオンの濃度は、銅浸出反応の促進の観点から、1g/L以上であることが好ましく、さらに5g/L以上であることがより好ましい。しかしながら、経済性を考慮すると、過度に高濃度にする必要はなく、浸出液中の銅イオンの濃度は一般には30g/L以下であり、好ましくは20g/L以下である。   From the viewpoint of promoting the copper leaching reaction, the concentration of copper ions in the leaching solution used in the copper leaching step is preferably 1 g / L or more, and more preferably 5 g / L or more. However, in consideration of economy, it is not necessary to make the concentration too high, and the concentration of copper ions in the leachate is generally 30 g / L or less, preferably 20 g / L or less.

鉄イオンは銅浸出の促進に好適な成分であり、銅の溶解反応を高い効率で実現する観点から、1g/L以上であることが好ましいが、50g/Lを超えるとMoの浸出率が顕著に増加して逸損する。これを防止するため、浸出液中の鉄イオン濃度は50g/L以下とすることができ、好ましくは10g/L以下とする。鉄イオン濃度は、特に8g/L以下とすること、6g/L以下とすることがより好ましい。   Iron ion is a suitable component for promoting copper leaching, and is preferably 1 g / L or more from the viewpoint of realizing a copper dissolution reaction with high efficiency, but if it exceeds 50 g / L, the leaching rate of Mo is remarkable. To increase and lose. In order to prevent this, the iron ion concentration in the leachate can be 50 g / L or less, preferably 10 g / L or less. The iron ion concentration is particularly preferably 8 g / L or less, and more preferably 6 g / L or less.

Moの浸出を防止するという観点からは、浸出液中の銅イオンと鉄イオンの合計が25g/L以下であることが好ましく、20g/L以下であることがより好ましい。
なお、上記の塩化物イオン、銅イオン及び鉄イオンの濃度は、酸性水溶液を含銅モリブデン鉱に接触させる前の浸出液中の濃度を指す。
From the viewpoint of preventing leaching of Mo, the total of copper ions and iron ions in the leaching solution is preferably 25 g / L or less, and more preferably 20 g / L or less.
In addition, the density | concentration of said chloride ion, copper ion, and iron ion points out the density | concentration in the leaching solution before making acidic aqueous solution contact copper-containing molybdenum ore.

浸出液と含銅モリブデン鉱の接触方法としては特に制限はなく、噴霧や浸漬などの方法があるが、反応効率の観点から、浸出液中に含銅モリブデン鉱を浸漬し、撹拌する方法が好ましい。   The method for contacting the leachate and the copper-containing molybdenum ore is not particularly limited, and there are methods such as spraying and dipping. From the viewpoint of reaction efficiency, a method of dipping and stirring the copper-containing molybdenum ore in the leachate is preferable.

銅浸出工程は、酸素含有気体を浸出液に供給しながら実施することが重要である。酸素含有気体を供給することにより銅の浸出速度を高めることが可能となる。酸素含有気体の流量を増大させることで、銅の浸出速度が増大する傾向にある。これにより、モリブデンが浸出するよりも先に銅の浸出が進行するため、モリブデンの逸損を抑えることが可能となる。酸素含有気体としては、特に制限はないが、例えば空気、酸素、酸素と不活性ガス(窒素や希ガスなど)の混合ガスが挙げられる。経済性の観点からは空気が好ましい。   It is important to carry out the copper leaching process while supplying an oxygen-containing gas to the leaching solution. By supplying the oxygen-containing gas, the copper leaching rate can be increased. By increasing the flow rate of the oxygen-containing gas, the copper leaching rate tends to increase. Thereby, since leaching of copper proceeds before leaching of molybdenum, loss of molybdenum can be suppressed. Although there is no restriction | limiting in particular as oxygen-containing gas, For example, the mixed gas of air, oxygen, oxygen, and inert gas (nitrogen, a noble gas, etc.) is mentioned. Air is preferable from the viewpoint of economy.

酸素含有気体は上述した効果を有効に発揮させるという観点から前記浸出液1L当たり0.02L/min以上の流量で供給することが好ましく、特に0.04L/min以上の流量で供給することがより好ましく、さらに0.08L/min以上の流量で供給することがより一層好ましい。ただし、過剰に供給した場合は、気泡中への液の蒸発で奪われる蒸発熱を補償するために電力などのエネルギーを多く消費し、また、精鉱粒子が表面に塗された気泡の層(フロス)が大量に発生して反応槽からあふれる。そのため、前記浸出液1L当たり0.5L/min以下の流量で供給することが好ましく、特に前記浸出液1L当たり0.25L/min以下の流量で供給することがより好ましく、さらに前記浸出液1L当たり0.15L/min以下の流量で供給することがより一層好ましい。   The oxygen-containing gas is preferably supplied at a flow rate of 0.02 L / min or more per liter of the leachate from the viewpoint of effectively exhibiting the above-described effects, and more preferably supplied at a flow rate of 0.04 L / min or more. It is even more preferable to supply at a flow rate of 0.08 L / min or more. However, if it is supplied excessively, it consumes a lot of energy such as electric power to compensate for the heat of evaporation taken away by evaporation of the liquid into the bubbles, and a layer of bubbles with concentrate particles coated on the surface ( Floss) is generated in large quantities and overflows from the reaction tank. Therefore, it is preferable to supply at a flow rate of 0.5 L / min or less per liter of the leachate, more preferably at a flow rate of 0.25 L / min or less per liter of the leachate, and further 0.15 L per liter of the leachate. It is even more preferable to supply at a flow rate of / min or less.

塩化物イオンの供給源としては特に制限はなく、例えば塩化水素、塩酸及び塩化金属等が挙げられるが、経済性や安全性を考慮すれば塩化金属の形態で供給するのが好ましい。塩化金属としては、例えば塩化銅(塩化第一銅、塩化第二銅)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の塩化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の塩化物が挙げられ、経済性や入手容易性の観点から、塩化ナトリウムが好ましい。また、銅イオンの供給源としても利用できることから、塩化銅を利用することも好ましい。   There is no restriction | limiting in particular as a supply source of a chloride ion, For example, a hydrogen chloride, hydrochloric acid, a metal chloride, etc. are mentioned, However, Considering economical efficiency and safety | security, supplying in the form of a metal chloride is preferable. Examples of the metal chloride include copper chloride (cuprous chloride, cupric chloride), alkali metal (lithium, sodium, potassium, rubidium, cesium, francium) chloride, alkaline earth metal (beryllium, magnesium, calcium, (Strontium, barium, radium) chlorides are mentioned, and sodium chloride is preferred from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion, it is also preferable to utilize copper chloride.

銅イオン及び鉄イオンは、塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができる。塩化物イオンの供給源としても利用できる観点から銅イオンは塩化銅、鉄イオンは塩化鉄として供給されるのが好ましい。塩化銅及び塩化鉄としてはそれぞれ、塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)を使用することが、酸化力の観点から望ましいが、塩化第一銅(CuCl)及び塩化第一鉄(FeCl2)を使用した場合であっても、浸出液に酸素含有気体を供給することにより、塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)にそれぞれ酸化されるため、大差はない。 Copper ions and iron ions are usually supplied in the form of a salt, and can be supplied, for example, in the form of a halide salt. From the viewpoint that it can also be used as a supply source of chloride ions, copper ions are preferably supplied as copper chloride and iron ions are preferably supplied as iron chloride. It is desirable to use cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) as copper chloride and iron chloride, respectively, from the viewpoint of oxidizing power, but cuprous chloride (CuCl) and ferric chloride. monoferric even when using the (FeCl 2), by supplying an oxygen-containing gas in the leaching solution, to be oxidized respectively cupric (CuCl 2) and ferric chloride (FeCl 3), There is no big difference.

含銅モリブデン鉱から銅の浸出効率を高めるため、浸出液は酸性とすべきであり、塩化物イオンの供給源としても利用できることから、塩酸酸性とすることが好ましい。浸出液のpHは浸出した銅の溶解度を確保する理由から、ガラス電極によって測定されるpHが0〜3程度とすることが好ましく、特に0.2〜2.5程度とするのがより好ましい。   In order to increase the leaching efficiency of copper from the copper-containing molybdenum ore, the leaching solution should be acidic, and since it can be used as a supply source of chloride ions, it is preferably acidic with hydrochloric acid. The pH of the leachate is preferably about 0 to 3, more preferably about 0.2 to 2.5, as measured by the glass electrode, in order to ensure the solubility of the leached copper.

以上より、銅浸出工程での浸出液としては、塩酸、塩化第二銅、塩化第二鉄、及び塩化ナトリウムの混合液を使用することができる。   From the above, as the leaching solution in the copper leaching step, a mixed solution of hydrochloric acid, cupric chloride, ferric chloride, and sodium chloride can be used.

銅浸出工程に使用する浸出液の温度は、浸出効率や装置の材質の観点から、50℃以上とすることが好ましく、60℃以上とすることがより好ましく、70℃以上とすることがより一層好ましい。この一方で、浸出液の温度が高すぎると、浸出液の蒸発や加熱コストの上昇あることから、100℃以下とすることが好ましく、90℃以下とすることがより好ましく、85℃以下とするのがより一層好ましい。浸出効率を高めることを目的として銅浸出工程を加圧下で実施することも可能であるが、大気圧下で十分である。これにより、高圧での浸出工程を行うための耐圧容器を必要とせず、より簡易な装置を用いることが可能になる。銅浸出を促進するため、処理対象となる含銅モリブデン鉱を予め粉砕・摩鉱しておくことが好ましい。   The temperature of the leaching solution used in the copper leaching step is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 70 ° C. or higher, from the viewpoint of leaching efficiency and material of the apparatus. . On the other hand, if the temperature of the leachate is too high, the leachate will evaporate and the heating cost will increase, so it is preferably 100 ° C. or less, more preferably 90 ° C. or less, and 85 ° C. or less. Even more preferred. Although it is possible to carry out the copper leaching step under pressure for the purpose of increasing the leaching efficiency, it is sufficient under atmospheric pressure. This makes it possible to use a simpler apparatus without requiring a pressure vessel for performing the leaching process at high pressure. In order to promote copper leaching, it is preferable to pulverize and grind the copper-containing molybdenum ore to be treated in advance.

銅浸出工程は、使用する浸出液に対する含銅モリブデン鉱の量を多くして実施することが、浸出コストの低減の観点から好ましい。そのため、ここでは、たとえば、50g/L以上のパルプ濃度で浸出工程を行うことができ、また、150g/L以上のパルプ濃度で浸出工程を行うことができ、さらに、300g/L以上のパルプ濃度で浸出工程を行うことができる。この一方で、浸出速度を高めるという観点からは、使用する浸出液に対する含銅モリブデン鉱の量は少ないことが好ましいことから、800g/L以下のパルプ濃度で浸出工程を行うことができ、また、600g/L以下のパルプ濃度で浸出工程を行うことができ、さらに、500g/L以下のパルプ濃度で浸出工程を行うことができる。ここで、パルプ濃度とは使用する浸出液の体積(L)に対する含銅モリブデン鉱(乾燥重量(g))の比である。   It is preferable that the copper leaching step is carried out by increasing the amount of the copper-containing molybdenum ore with respect to the leaching solution used from the viewpoint of reducing the leaching cost. Therefore, for example, the leaching step can be performed at a pulp concentration of 50 g / L or higher, the leaching step can be performed at a pulp concentration of 150 g / L or higher, and the pulp concentration of 300 g / L or higher is further achieved. The leaching process can be performed. On the other hand, from the viewpoint of increasing the leaching rate, since it is preferable that the amount of the copper-containing molybdenum ore with respect to the leaching solution used is small, the leaching step can be performed at a pulp concentration of 800 g / L or less, and 600 g The leaching step can be performed at a pulp concentration of / L or less, and the leaching step can be performed at a pulp concentration of 500 g / L or less. Here, the pulp concentration is the ratio of the copper-containing molybdenum ore (dry weight (g)) to the volume (L) of the leachate used.

銅の浸出は、含銅モリブデン鉱中の銅成分が十分に浸出されるまで、具体的には浸出残渣中の銅品位が0.5質量%以下となるまで実施することが好ましい。それにより、銅が十分に取り除かれた浸出残渣を、たとえば鉄鋼添加剤として有効に用いることができる。
銅の浸出が終了した後は、得られた浸出反応液を、フィルタープレスやシックナー等を用いた固液分離によって、浸出後液と浸出残渣に分離する。
It is preferable to carry out the copper leaching until the copper component in the copper-containing molybdenum ore is sufficiently leached, specifically, until the copper grade in the leaching residue is 0.5% by mass or less. Thereby, the leaching residue from which copper is sufficiently removed can be effectively used, for example, as a steel additive.
After the leaching of copper is completed, the obtained leaching reaction liquid is separated into a liquid after leaching and a leaching residue by solid-liquid separation using a filter press, a thickener or the like.

ここで、銅浸出工程での銅の浸出は一回のみとすることもできるが、酸性ハロゲン浴を取り替えて繰り返し実施することが好適である。これにより、浸出残渣である脱銅モリブデン鉱中のモリブデン純度が上昇して市場価値が高まると共に、銅をさらに多く回収できるという利点が得られる。銅の浸出を複数回にわたって繰り返し行う場合、具体的には、一回目の銅の浸出が終了した後に、フィルタープレスやシックナー等によって固液分離し、浸出残渣に対して二回目、所要に応じて三回目以降の銅の浸出を行うことにより実施することができる。典型的には、銅の浸出は二回〜四回にわたって行うことができる。   Here, the copper leaching in the copper leaching step can be performed only once, but it is preferable to repeatedly carry out by replacing the acidic halogen bath. Thereby, the molybdenum purity in the copper-free molybdenum ore which is the leaching residue is increased to increase the market value, and an advantage that more copper can be recovered is obtained. When copper leaching is repeated multiple times, specifically, after the first copper leaching is completed, solid-liquid separation is performed with a filter press, thickener, etc., and the leaching residue is second time, as required. It can be carried out by leaching copper after the third time. Typically, copper leaching can be performed two to four times.

図1に示すこの実施形態では、浸出後液中へのモリブデンの浸出を抑制しながら、銅を高い浸出率で浸出することが可能である。たとえば、浸出後液中のモリブデン濃度を0.001g/L以下に抑制しながら、銅の浸出率70%以上を達成することができ、あるいは、浸出後液中のモリブデン濃度を0.005g/L以下に抑制しながら、銅の浸出率90%以上を達成することができ、また条件によっては、浸出後液中のモリブデン濃度を0.005g/L以下に抑制しながら、銅の浸出率95%以上を達成することができる。この点で図1の実施形態は、後述するような図2の実施形態より有利である。   In this embodiment shown in FIG. 1, copper can be leached at a high leaching rate while suppressing leaching of molybdenum into the liquid after leaching. For example, it is possible to achieve a copper leaching rate of 70% or more while suppressing the molybdenum concentration in the liquid after leaching to 0.001 g / L or less, or the molybdenum concentration in the liquid after leaching is 0.005 g / L. While suppressing below, copper leaching rate of 90% or more can be achieved, and depending on conditions, the copper leaching rate is 95% while suppressing the molybdenum concentration in the liquid after leaching to 0.005 g / L or less. The above can be achieved. In this regard, the embodiment of FIG. 1 is more advantageous than the embodiment of FIG.

浸出に要する時間は、原料である含銅モリブデン鉱中の銅品位にもよるが、浸出残渣中の銅品位が0.5質量%以下となるまでに要する時間は、例えば4〜10時間くらいであり、典型的には5〜6時間くらいである。   The time required for leaching depends on the copper grade in the copper-containing molybdenum ore as the raw material, but the time required for the copper grade in the leaching residue to be 0.5 mass% or less is, for example, about 4 to 10 hours. Yes, typically around 5-6 hours.

(鉄酸化工程)
銅浸出工程によって得られた浸出後液には、浸出液に元々含まれていた鉄イオンの他、含銅モリブデン鉱中の鉄の一部が溶解した鉄イオンが含まれている。これらの鉄イオンの多くはFe(II)と考えられる。
この鉄酸化工程では、上記の鉄イオンを酸化することでFe(III)とし、再度浸出に使用し、また、pHを調整して、Fe(III)の一部を沈殿させて鉄化合物を生成させることによって、浸出液中の鉄濃度をコントロールすることができる。なおここでは、浸出後液中のCu(I)も酸化されてCu(II)となる。
(Iron oxidation process)
The leached solution obtained by the copper leaching step contains iron ions in which part of iron in the copper-containing molybdenum ore is dissolved, in addition to iron ions originally contained in the leaching solution. Many of these iron ions are thought to be Fe (II).
In this iron oxidation process, the above iron ions are oxidized to Fe (III) and used again for leaching, and the pH is adjusted to precipitate a part of Fe (III) to produce an iron compound. By doing so, the iron concentration in the leachate can be controlled. Here, Cu (I) in the solution after leaching is also oxidized to Cu (II).

ここにおいて、先述したように、浸出後液には、銅浸出工程で溶出されたモリブデンが若干含まれており、このモリブデンをも回収するべく、この実施形態では、鉄酸化工程で鉄イオンを酸化することにより、鉄イオンが析出した鉄化合物とともにモリブデンを共沈させ、これを固体として回収する。それにより、モリブデンの回収率を有効に高めることができる。   Here, as described above, the leached solution contains a small amount of molybdenum eluted in the copper leaching process, and in this embodiment, iron ions are oxidized in the iron oxidation process in order to recover this molybdenum. By doing so, molybdenum is co-precipitated with the iron compound in which iron ions are deposited, and this is recovered as a solid. Thereby, the recovery rate of molybdenum can be increased effectively.

鉄酸化工程での鉄の酸化は、常温で行うことも可能であるが、反応を促進させるために少し加熱してもよい。具体的には、ここでの浸出後液の温度は、たとえば、20〜70℃とすることができる。   The oxidation of iron in the iron oxidation step can be performed at room temperature, but may be slightly heated to promote the reaction. Specifically, the temperature of the liquid after leaching here can be set to 20 to 70 ° C., for example.

また、この鉄酸化工程では、鉄イオンを有効に酸化させるとともに銅イオンの沈殿を防止するため、浸出後液のpHを0.5〜3.0の範囲内とすることが好ましい。言い換えれば、浸出後液のpHが0.5未満では鉄イオンの沈殿が生じないことがあり、それによって鉄と共沈するモリブデンもまた十分に沈殿しないおそれがある。この一方で、浸出後液のpHが3.0を超えると、銅イオンの沈殿が生じてしまう可能性がある。
このような観点から、鉄酸化工程での浸出後液のpHは、より好ましくは0.5〜2.0、さらに好ましくは1.0〜2.0とする。
Moreover, in this iron oxidation process, in order to effectively oxidize iron ions and prevent precipitation of copper ions, it is preferable to set the pH of the solution after leaching within a range of 0.5 to 3.0. In other words, if the pH of the solution after leaching is less than 0.5, precipitation of iron ions may not occur, so that molybdenum co-precipitated with iron may not be sufficiently precipitated. On the other hand, if the pH of the liquid after leaching exceeds 3.0, precipitation of copper ions may occur.
From such a viewpoint, the pH of the solution after leaching in the iron oxidation step is more preferably 0.5 to 2.0, and still more preferably 1.0 to 2.0.

鉄酸化工程での鉄の酸化は、浸出後液への、過酸化水素水の添加、又は、酸素、酸素と不活性ガス(窒素や希ガスなど)の混合ガス等の酸素含有気体の吹き込み等により行うことできるが、特に、酸素含有気体の吹き込みにより行うことが好ましい。なかでも、空気を吹き込むことがコスト面で好適である。
酸素含有気体を吹き込む場合は、前記浸出後液1L当たり0.01L/min〜1.5L/minの流量で供給することが好ましい。0.01L/minは、水60℃での溶存酸素が低下しない程度の供給量であり、このように酸素含有気体の供給流量が少なすぎる場合は酸化に時間を要する。この一方で、酸素含有気体の供給流量が多すぎる場合は、気泡中への液の蒸発で奪われる蒸発熱を補償するために電力などのエネルギーを多く消費する。
The oxidation of iron in the iron oxidation process includes the addition of hydrogen peroxide water to the solution after leaching or the blowing of oxygen-containing gas such as oxygen, oxygen and inert gas (nitrogen, rare gas, etc.) However, it is particularly preferable to carry out by blowing oxygen-containing gas. Among these, it is preferable in terms of cost to blow air.
When oxygen-containing gas is blown, it is preferable to supply at a flow rate of 0.01 L / min to 1.5 L / min per liter of the leached liquid. 0.01 L / min is a supply amount that does not lower the dissolved oxygen in water at 60 ° C. Thus, if the supply flow rate of the oxygen-containing gas is too small, it takes time to oxidize. On the other hand, when the supply flow rate of the oxygen-containing gas is too large, a large amount of energy such as electric power is consumed to compensate for the heat of evaporation taken away by the evaporation of the liquid into the bubbles.

このような条件の下で鉄酸化工程を実施することにより、鉄酸化工程でのモリブデンの回収率、すなわち、浸出後液中のモリブデンの量に対する、酸化残渣中のモリブデンの量の割合を、95%以上とすることが好ましい。浸出後液中のモリブデン濃度や酸化条件によっては、浸出後液に含まれるモリブデンのほぼ全てを回収することも可能である。   By performing the iron oxidation step under such conditions, the recovery rate of molybdenum in the iron oxidation step, that is, the ratio of the amount of molybdenum in the oxidation residue to the amount of molybdenum in the liquid after leaching is 95. % Or more is preferable. Depending on the molybdenum concentration in the liquid after leaching and the oxidation conditions, it is possible to recover almost all of the molybdenum contained in the liquid after leaching.

鉄酸化工程で得られる酸化残渣は、上記の浸出後液中のモリブデンが固体となって含まれることから、先述の銅浸出工程で得られた浸出残渣に加えて、これらをモリブデンの主要用途である鉄鋼添加剤等として用いることができる。
但し、これらの残渣を鉄鋼添加剤として用いる場合、そこに銅が多量に含まれると鉄鋼製品の性状が低下するので、残渣中の銅品位は少ないことが好ましい。具体的には、酸化残渣中の銅品位は、0.5質量%以下とすることが好ましい。
The oxidation residue obtained in the iron oxidation process contains molybdenum in the liquid after leaching as a solid, so in addition to the leaching residue obtained in the copper leaching process described above, these are the main applications of molybdenum. It can be used as a certain steel additive.
However, when these residues are used as a steel additive, the properties of the steel product are lowered if a large amount of copper is contained therein, so that the copper quality in the residue is preferably small. Specifically, the copper quality in the oxidation residue is preferably 0.5% by mass or less.

(銅抽出工程)
銅抽出工程では、上記の鉄酸化工程を経た後の酸化後液から銅を回収することができる。ここでの銅の回収方法としては特に制限はないが、例えば溶媒抽出、イオン交換、卑な金属との置換析出及び電解採取などを利用することができる。酸化後液中の銅は1価及び2価の状態が混在しているが、溶媒抽出やイオン交換を円滑に行うために、全部が2価の銅イオンとなるように予め酸化しておくことが好ましい。酸化の方法は特に制限はないが空気や酸素を酸化後液中に吹き込む方法が簡便である。
(Copper extraction process)
In the copper extraction step, copper can be recovered from the post-oxidation solution after the iron oxidation step. Although there is no restriction | limiting in particular as a copper collection | recovery method here, For example, solvent extraction, ion exchange, substitution precipitation with a base metal, electrowinning, etc. can be utilized. The copper in the solution after oxidation has both monovalent and divalent states. However, in order to perform solvent extraction and ion exchange smoothly, the copper should be oxidized beforehand so that it becomes divalent copper ions. Is preferred. The method of oxidation is not particularly limited, but a method of blowing air or oxygen into the solution after oxidation is simple.

この銅抽出工程では、酸化後液中の銅を、溶媒抽出及び逆抽出に供した後、電解採取によりカソード上に電気銅として回収する処理を更に含む。この処理は一般にSX−EW(Solvent Extraction and Electro-Winning)法と呼ばれている方法であり、当業者には周知である。   This copper extraction step further includes a process of recovering copper in the solution after oxidation as electrolytic copper on the cathode by electrolytic extraction after subjecting it to solvent extraction and back extraction. This process is generally called a SX-EW (Solvent Extraction and Electro-Winning) method and is well known to those skilled in the art.

また、溶媒抽出前に、酸化後液に空気などの酸素含有気体を吹き込んで液中の銅を酸化する処理を施すこともできる。これにより、銅を溶媒抽出後に逆抽出(ストリップ)して直接電解採取することを可能にするという利点が得られる。酸化処理を施さない場合、強塩化物浴では一価の銅が高濃度で存在するため電解採取の際にデンドライト銅として析出する。デンドライト銅は金属粉末として電解槽に沈殿する。カソードに板状銅として回収する方が圧倒的に運搬等の操作性の面で長所が多い。更に、酸化処理後は固液分離することもできる。固液分離は浸出液中に鉄が含まれている場合に、酸化した後の残渣に移行するため、浸出後液中の銅純度を高める上で有利である。   In addition, before the solvent extraction, a treatment for oxidizing copper in the liquid by blowing an oxygen-containing gas such as air into the post-oxidation liquid can be performed. This provides the advantage that copper can be back extracted (striped) after solvent extraction and directly electrowinned. When the oxidation treatment is not performed, monovalent copper is present in a high concentration in the strong chloride bath, so that it is deposited as dendritic copper during electrowinning. Dendritic copper precipitates in the electrolytic cell as a metal powder. It is overwhelmingly more advantageous in terms of operability such as transportation when recovered as plate-like copper on the cathode. Furthermore, solid-liquid separation can also be performed after the oxidation treatment. Solid-liquid separation is advantageous in increasing the purity of copper in the liquid after leaching because it moves to the residue after oxidation when iron is contained in the leaching liquid.

このような銅抽出工程を経た後に得られる抽出後液(銅抽出後液)は、銅イオンと鉄イオンを含むことがあり、この場合、この抽出後液を、先述の銅浸出工程での酸性ハロゲン浴の浸出液として繰り返し用いることが好適である。この発明では、先に述べたように、鉄酸化工程で浸出後液からモリブデンが十分に取り除かれていることから、銅抽出工程で得られる抽出後液にもモリブデンがほぼ含まれず、それにより、上記のように抽出後液を有効に循環させて用いることができる。   The post-extraction liquid (copper post-extraction liquid) obtained after such a copper extraction process may contain copper ions and iron ions. In this case, the post-extraction liquid is acidified in the copper leaching process described above. It is preferred to use repeatedly as a halogen bath leaching solution. In the present invention, as described above, molybdenum is sufficiently removed from the liquid after leaching in the iron oxidation process, so that the liquid after extraction obtained in the copper extraction process is substantially free of molybdenum, As described above, the liquid after extraction can be effectively circulated and used.

(モリブデン回収工程)
なお、銅浸出工程で得られた浸出残渣をモリブデン精鉱として、当業者に公知の精製プロセスを経てモリブデン中間生産物を製造することができる。例えば、酸化焙焼して三酸化モリブデン製品を製造したり、更に成型・乾燥工程を経て三酸化モリブデンブリケットを製造したり、テルミット還元を経て低炭素フェロモリブデンを製造したりすることができる。更に、酸化焙焼・脱硫後に、アンモニア抽出及び水素還元を行って金属モリブデンを得ることも可能である。
(Molybdenum recovery process)
The leaching residue obtained in the copper leaching step can be used as molybdenum concentrate to produce a molybdenum intermediate product through a purification process known to those skilled in the art. For example, molybdenum trioxide products can be produced by oxidation roasting, molybdenum trioxide briquettes can be produced through molding and drying processes, and low carbon ferromolybdenum can be produced through thermite reduction. Furthermore, it is possible to obtain metallic molybdenum by performing ammonia extraction and hydrogen reduction after oxidative roasting and desulfurization.

<第二実施形態>
図2に示す他の実施形態は、いわゆる塩化鉄法として当業界で一般に知られている方法である。この塩化鉄法に対しても、以下に述べるようにして、この発明の処理方法を適用することができる。
図2に示すこの方法では、はじめに、含銅モリブデン鉱を、浸出液を用いて110℃程度に加熱したオートクレーブ内で浸出処理する銅浸出工程を行う。ここでの浸出液は、たとえば、Fe3+イオンを100g/L〜120g/L程度、ハロゲン化物イオンを300g/L〜350g/L程度で含有するとともに、さらに銅イオンを含有するものとすることができる。このハロゲン化物イオンとしては、塩化物イオン、臭化物イオン等があげられるが、なかでも塩化物イオンとすることが一般的である。
<Second embodiment>
Another embodiment shown in FIG. 2 is a method commonly known in the art as the so-called iron chloride method. The treatment method of the present invention can be applied to the iron chloride method as described below.
In this method shown in FIG. 2, first, a copper leaching process is performed in which copper-containing molybdenum ore is leached in an autoclave heated to about 110 ° C. using a leaching solution. The leachate here contains, for example, Fe 3+ ions at about 100 g / L to 120 g / L, halide ions at about 300 g / L to 350 g / L, and further copper ions. it can. Examples of the halide ions include chloride ions and bromide ions. Among them, chloride ions are generally used.

次いで、この銅浸出工程で得られた浸出後液に対し、セメンテーション工程を実施する。ここでは、浸出液中の銅を鉄屑等と反応させることにより、セメント銅(Cu品位90%程度)を沈殿させる。   Next, a cementation process is performed on the leached solution obtained in the copper leaching process. Here, the copper in the leachate is allowed to react with iron scraps or the like, thereby precipitating cement copper (Cu quality of about 90%).

その後、セメンテーション工程で得られた溶液に対して鉄酸化工程を行う。ここで、塩化鉄法では通常、塩素ガスを吹き込むことで鉄を沈殿させずに鉄イオンを二価から三価に酸化させるが、塩素ガスでなく酸素含有ガスを吹き込むことで、鉄を例えばゲーサイトのような形態で沈殿させることにより上記の溶液に溶存しているMoを共沈させて回収することができる。鉄酸化工程は必要に応じて塩素ガスによる鉄酸化工程と酸素含有ガスによる鉄酸化工程とを分けて実施してもよい。
当該塩化鉄法では、上記の浸出処理で、含銅モリブデン鉱に含有される銅とともに多くのモリブデンが浸出されることから、浸出後液には、モリブデンが比較的多く含まれている。そのため、上記のように、浸出後液に対してセメンテーション工程を実施して得られる溶液中のモリブデンを、鉄酸化工程で沈殿させて回収することが有効となる。
なお、鉄酸化工程で鉄及びモリブデンを回収した後の溶液は、上述したような含銅モリブデン鉱中の銅の浸出処理に、浸出液として再度用いることができる。
Then, an iron oxidation process is performed with respect to the solution obtained at the cementation process. Here, in the iron chloride method, the iron ions are usually oxidized from divalent to trivalent without precipitating the iron by blowing in chlorine gas. By precipitating in the form of a site, Mo dissolved in the above solution can be coprecipitated and recovered. If necessary, the iron oxidation step may be performed separately from the iron oxidation step using chlorine gas and the iron oxidation step using oxygen-containing gas.
In the iron chloride method, since a large amount of molybdenum is leached together with the copper contained in the copper-containing molybdenum ore by the above leaching treatment, the leached solution contains a relatively large amount of molybdenum. Therefore, as described above, it is effective to precipitate and recover molybdenum in the solution obtained by performing the cementation step on the leached solution in the iron oxidation step.
In addition, the solution after iron and molybdenum are collect | recovered by an iron oxidation process can be used again as a leaching liquid for the leaching process of the copper in a copper-containing molybdenum ore as mentioned above.

次に、この発明の処理方法を試験的に実施したので、以下に説明する。但し、ここでの説明は単に例示する目的で記載したものであり、それに限定されることを意図するものではない。   Next, the processing method of the present invention was experimentally implemented and will be described below. However, the description here is provided for illustrative purposes only and is not intended to be limiting.

含銅モリブデン鉱として、輝水鉛鉱を含む鉱石から浮遊選鉱により選別されたモリブデン精鉱を粉砕したものを、図1に示すフローに従って処理した。各工程での残渣や溶液に含まれるモリブデン、銅及び鉄を、ICP発光分光分析法(ICP−OES)にて分析したところ、図3に示す結果を得た。   As the copper-containing molybdenum ore, a pulverized molybdenum concentrate selected from float ore containing oresite by flotation was processed according to the flow shown in FIG. When the residue in each process and the molybdenum, copper, and iron contained in the solution were analyzed by ICP emission spectroscopy (ICP-OES), the results shown in FIG. 3 were obtained.

なお、銅浸出工程では、塩酸、塩化第二鉄、塩化第二銅、塩化ナトリウムを混合した浸出液(Cu浸出前液)を、ホットスターラーで75℃に加熱し、これに含銅モリブデン鉱を投入した後、空気を吹き込みつつ撹拌した。
また、鉄酸化工程では、浸出後液の液温を60℃とし、その浸出後液に空気を0.15L/minで吹き込んで、8時間にわたって酸化を行った。その際の酸化時間の経過に伴うpH及びORPの推移を、図4にグラフで示す。
In the copper leaching process, a leaching solution (pre-Cu leaching solution) mixed with hydrochloric acid, ferric chloride, cupric chloride, and sodium chloride is heated to 75 ° C. with a hot stirrer, and copper-containing molybdenum ore is added thereto. Then, the mixture was stirred while blowing air.
In the iron oxidation step, the temperature of the liquid after leaching was set to 60 ° C., and air was blown into the liquid after leaching at 0.15 L / min for oxidation for 8 hours. The transition of pH and ORP with the progress of the oxidation time at that time is shown by a graph in FIG.

図3に示す結果から、銅浸出工程では、含銅モリブデン鉱中のモリブデンは、その99.8%を浸出残渣として回収することができたが、残りが僅かに溶出されて浸出後液に含まれることとなった。
そしてその後、鉄酸化工程を行うことにより、この浸出後液に含まれるモリブデンの全てが鉄とともに共沈して、酸化残渣に回収されたことから、酸化後液にはモリブデンが含まれていなかった。
From the results shown in FIG. 3, in the copper leaching process, 99.8% of the molybdenum in the copper-containing molybdenum ore could be recovered as a leaching residue, but the remainder was slightly eluted and included in the liquid after leaching. It was decided that
After that, by performing an iron oxidation process, all of the molybdenum contained in the solution after leaching was coprecipitated with iron and recovered into an oxidation residue, so that the solution after oxidation did not contain molybdenum. .

また図4に示すグラフより、浸出後液のpHが0.5以上となったときから、浸出後液中の鉄の濃度が有効に低下していることから、鉄とともに共沈するモリブデンの沈殿を効果的に促進させるためには、浸出後液のpHを0.5以上とすることが好ましいことが解かる。   Further, from the graph shown in FIG. 4, since the concentration of iron in the liquid after leaching is effectively reduced after the pH of the liquid after leaching is 0.5 or more, precipitation of molybdenum co-precipitated with iron. It can be seen that the pH of the solution after leaching is preferably 0.5 or more in order to effectively promote the above.

なお、この鉄酸化工程で得られた酸化残渣を調べたところ、残渣中のMo濃度が低く、沈殿したMoの詳細な形態は確認できなかったが、X線回折法(XRD)や鉱物自動分析装置(MLA)を用いた試験の結果からMoとFeとの化合物が確認されず、また、FeのほとんどはゲーサイトFeOOHであったことから、鉄酸化工程では、Moは一般的なFeの共沈作用で沈殿すると考えられる。   In addition, when the oxidation residue obtained in this iron oxidation process was examined, the Mo concentration in the residue was low and the detailed form of precipitated Mo could not be confirmed, but X-ray diffraction (XRD) or automatic mineral analysis As a result of the test using the apparatus (MLA), a compound of Mo and Fe was not confirmed, and most of Fe was goethite FeOOH. Therefore, in the iron oxidation process, Mo is a common Fe compound. It is thought that it settles by sedimentation.

以上の結果より、この方法によれば、銅浸出工程で得られる浸出後液中のモリブデンを固体として有効に回収することができ、その結果として、含銅モリブデン鉱からのモリブデンの回収率をさらに向上できることが解かった。   From the above results, according to this method, molybdenum in the liquid after leaching obtained in the copper leaching step can be effectively recovered as a solid, and as a result, the recovery rate of molybdenum from the copper-containing molybdenum ore is further increased. It was found that it could be improved.

Claims (10)

含銅モリブデン鉱に含まれる銅成分を、鉄イオンを含む酸性ハロゲン浴にて浸出させる銅浸出工程と、銅浸出工程の後、銅浸出工程で得られた浸出後液中の鉄イオンを酸化させて、当該鉄イオンの少なくとも一部を鉄化合物として析出させる鉄酸化工程とを含み、
銅浸出工程で含銅モリブデン鉱から溶出して前記浸出後液に含まれるモリブデンを、鉄酸化工程で固体として回収する、含銅モリブデン鉱の処理方法。
Copper leaching process in which copper components contained in copper-containing molybdenum ore are leached in an acidic halogen bath containing iron ions, and after the copper leaching process, iron ions in the leached liquid obtained in the copper leaching process are oxidized. And an iron oxidation step for precipitating at least part of the iron ions as an iron compound,
A method for treating copper-containing molybdenum ore, wherein molybdenum is eluted from copper-containing molybdenum ore in a copper leaching step and is recovered as a solid in an iron oxidation step.
前記鉄酸化工程で浸出後液のpHを0.5〜3.0とする、請求項1に記載の含銅モリブデン鉱の処理方法。   The method for treating copper-containing molybdenum ore according to claim 1, wherein the pH of the solution after leaching in the iron oxidation step is 0.5 to 3.0. 前記鉄酸化工程で、浸出後液に酸素含有気体を吹き込むことにより、鉄イオンを酸化させる、請求項1又は2に記載の含銅モリブデン鉱の処理方法。   The method for treating copper-containing molybdenum ore according to claim 1 or 2, wherein in the iron oxidation step, iron ions are oxidized by blowing an oxygen-containing gas into the leached solution. 前記銅浸出工程の酸性ハロゲン浴を酸性塩化物浴とする、請求項1〜3のいずれか一項に記載の含銅モリブデン鉱の処理方法。   The processing method of the copper-containing molybdenum ore as described in any one of Claims 1-3 which uses the acidic halogen bath of the said copper leaching process as an acidic chloride bath. 前記銅浸出工程の酸性塩化物浴が、鉄イオンを1g/L〜50g/L、塩化物イオンを100g/L〜200g/Lで含有するとともに、さらに銅イオンを含有するものとし、
前記酸性塩化物浴の温度を、50〜100℃とする、請求項4に記載の含銅モリブデン鉱の処理方法。
The acidic chloride bath of the copper leaching step contains iron ions at 1 g / L to 50 g / L, chloride ions at 100 g / L to 200 g / L, and further contains copper ions,
The processing method of the copper-containing molybdenum ore of Claim 4 which sets the temperature of the said acidic chloride bath to 50-100 degreeC.
含銅モリブデン鉱が、銅を0.5質量%〜10質量%で含有するとともに、モリブデンを20質量%以上で含有する、請求項1〜5のいずれか一項に記載の含銅モリブデン鉱の処理方法。   The copper-containing molybdenum ore according to any one of claims 1 to 5, wherein the copper-containing molybdenum ore contains copper at 0.5 mass% to 10 mass% and molybdenum at 20 mass% or more. Processing method. 前記銅浸出工程で、得られる浸出残渣中の銅品位が0.5質量%以下となるまで浸出を実施する、請求項1〜6のいずれか一項に記載の含銅モリブデン鉱の処理方法。   The processing method of the copper-containing molybdenum ore as described in any one of Claims 1-6 which implements leaching until the copper quality in the leaching residue obtained becomes 0.5 mass% or less at the said copper leaching process. 前記浸出後液に含まれるモリブデンの量に対し、前記鉄酸化工程で固体として回収されるモリブデンの回収率を95%以上とする、請求項1〜7のいずれか一項に記載の含銅モリブデン鉱の処理方法。   The copper-containing molybdenum according to any one of claims 1 to 7, wherein a recovery rate of molybdenum recovered as a solid in the iron oxidation step is 95% or more with respect to an amount of molybdenum contained in the liquid after leaching. Mining treatment method. 鉄酸化工程で得られる酸化残渣中の銅品位を、0.5質量%以下とする、請求項1〜8のいずれか一項に記載の含銅モリブデン鉱の処理方法。   The copper-containing molybdenum ore processing method according to any one of claims 1 to 8, wherein a copper grade in an oxidation residue obtained in the iron oxidation step is 0.5 mass% or less. 鉄酸化工程の後、鉄酸化工程で得られた酸化後液中の銅イオンの少なくとも一部を抽出する銅抽出工程を更に含み、
前記銅抽出工程で銅を抽出した後の抽出後液を、銅浸出工程の酸性ハロゲン浴に用いる、請求項1〜9のいずれか一項に記載の含銅モリブデン鉱の処理方法。
After the iron oxidation step, further comprising a copper extraction step for extracting at least part of the copper ions in the post-oxidation solution obtained in the iron oxidation step,
The processing method of the copper-containing molybdenum ore as described in any one of Claims 1-9 which uses the liquid after extraction after extracting copper by the said copper extraction process for the acidic halogen bath of a copper leaching process.
JP2015020676A 2015-02-04 2015-02-04 Method for treating copper-containing molybdenum ore Pending JP2016141877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015020676A JP2016141877A (en) 2015-02-04 2015-02-04 Method for treating copper-containing molybdenum ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020676A JP2016141877A (en) 2015-02-04 2015-02-04 Method for treating copper-containing molybdenum ore

Publications (1)

Publication Number Publication Date
JP2016141877A true JP2016141877A (en) 2016-08-08

Family

ID=56569921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020676A Pending JP2016141877A (en) 2015-02-04 2015-02-04 Method for treating copper-containing molybdenum ore

Country Status (1)

Country Link
JP (1) JP2016141877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831660A (en) * 2020-12-30 2021-05-25 成都虹波钼业有限责任公司 Process for comprehensively utilizing molybdenum ore leaching slag
CN115418500A (en) * 2022-06-17 2022-12-02 中核沽源铀业有限责任公司 Process method for removing impurities from low-grade molybdenum ore acidic leaching solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831660A (en) * 2020-12-30 2021-05-25 成都虹波钼业有限责任公司 Process for comprehensively utilizing molybdenum ore leaching slag
CN115418500A (en) * 2022-06-17 2022-12-02 中核沽源铀业有限责任公司 Process method for removing impurities from low-grade molybdenum ore acidic leaching solution
CN115418500B (en) * 2022-06-17 2023-08-15 中核沽源铀业有限责任公司 Process method for removing impurities from low-grade molybdenum ore acid leaching solution

Similar Documents

Publication Publication Date Title
JP4924754B2 (en) Method for removing copper ions from copper-containing nickel chloride solution and method for producing electrolytic nickel
JP2009235525A (en) Method for leaching out gold
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP2012184462A (en) Method of leaching copper and gold from sulfide ore
JP6437366B2 (en) Method for recovering molybdenum from molybdenum concentrate
JP2005060813A (en) Method for refining copper raw material containing copper sulfide mineral
JP5370777B2 (en) Method for recovering copper from copper sulfide
JP2019173107A (en) Method of recovering tellurium
JP2007191782A (en) Method for producing cadmium
JP4962078B2 (en) Nickel sulfide chlorine leaching method
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP6437367B2 (en) Recovery method of rhenium from molybdenum concentrate
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP6998259B2 (en) How to treat copper ore
JP2016141877A (en) Method for treating copper-containing molybdenum ore
JP6195536B2 (en) Iron removal method, iron leaching method, and gold recovery method
JP6429990B2 (en) Method for separating molybdenum and method for treating copper-containing molybdenum ore
JP2013163868A (en) Leaching method of copper and gold from sulfide ore
JP6196209B2 (en) Method for treating copper-containing molybdenum ore
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
WO2015199098A1 (en) Method for processing copper-containing molybdenum ore
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte
JP6046082B2 (en) Method for treating copper-containing molybdenum ore
JP6957974B2 (en) Chlorine leaching method, electronickel manufacturing method
JP5145843B2 (en) Wet copper refining method for copper raw materials containing copper sulfide minerals