JP5145843B2 - Wet copper refining method for copper raw materials containing copper sulfide minerals - Google Patents

Wet copper refining method for copper raw materials containing copper sulfide minerals Download PDF

Info

Publication number
JP5145843B2
JP5145843B2 JP2007245199A JP2007245199A JP5145843B2 JP 5145843 B2 JP5145843 B2 JP 5145843B2 JP 2007245199 A JP2007245199 A JP 2007245199A JP 2007245199 A JP2007245199 A JP 2007245199A JP 5145843 B2 JP5145843 B2 JP 5145843B2
Authority
JP
Japan
Prior art keywords
copper
solution
leaching
iron
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007245199A
Other languages
Japanese (ja)
Other versions
JP2009074140A (en
Inventor
賢二 竹田
聡 浅野
範幸 長瀬
敬司 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007245199A priority Critical patent/JP5145843B2/en
Publication of JP2009074140A publication Critical patent/JP2009074140A/en
Application granted granted Critical
Publication of JP5145843B2 publication Critical patent/JP5145843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は、黄銅鉱(CuFeS2)を始めとする銅硫化鉱物を含む銅原料の湿式銅精錬法に関し、特に、硫黄の酸化を抑制しながら高浸出率で銅を浸出して一価銅電解または溶媒抽出で回収し、また、随伴する有価金属も回収して、浸出残渣などの廃棄物を可能な限り減少させることができる湿式銅精錬法に関する。 TECHNICAL FIELD The present invention relates to a wet copper refining method for copper raw materials containing copper sulfide minerals including chalcopyrite (CuFeS 2 ), and in particular, leaching copper at a high leaching rate while suppressing sulfur oxidation to monovalent copper electrolysis Or it is related with the wet copper refining method which collect | recovers by solvent extraction and also collect | recovers the accompanying valuable metals, and can reduce wastes, such as a leaching residue, as much as possible.

銅精錬法には、乾式法と湿式法が存在する。従来より、銅酸化鉱物を含有する銅原料に対しては、湿式銅精錬法が用いられている。かかる湿式銅精錬法としては、積み上げた鉱石に硫酸を散布して銅を浸出し、得られた浸出生成液の銅濃度を上げるために溶媒抽出法で処理した後、銅を電解採取する方法が、工業的に広く用いられている。   Copper refining methods include a dry method and a wet method. Conventionally, the copper refining method is used with respect to the copper raw material containing a copper oxide mineral. As such a wet copper refining method, there is a method in which sulfuric acid is sprayed on the piled ore to leach copper, and after processing by a solvent extraction method to increase the copper concentration of the obtained leaching product liquid, electrolytic extraction of copper is performed. Widely used industrially.

しかし、銅鉱石の大部分を占める銅硫化鉱物に適用した場合、その含有鉱物として最も賦存量の多い黄銅鉱について、硫酸による浸出速度が遅く、かつ、銅浸出率が低いという問題があった。このため、黄銅鉱を含む銅原料に対しては、従来の湿式銅精錬法では、高い銅の実収率を得ることが困難であった。   However, when applied to copper sulfide minerals that occupy most of the copper ore, chalcopyrite, which has the largest abundance as the contained mineral, has a problem that the leaching rate with sulfuric acid is slow and the copper leaching rate is low. For this reason, it has been difficult to obtain a high copper yield by conventional wet copper refining methods for copper raw materials containing chalcopyrite.

黄銅鉱に湿式銅精錬法を適用するための解決策として、黄銅鉱の浸出を促進しうる条件で浸出を行う方法が提案されている。   As a solution for applying the wet copper refining method to chalcopyrite, a method of leaching under conditions that can promote leaching of chalcopyrite has been proposed.

代表的な方法として、特許文献1に記載されているように、銅鉱石または銅精鉱を、ハロゲン化物を含む硫酸溶液中で加圧酸化した後、浸出し、第2銅イオンを含む浸出生成液を還元し、第1銅イオンを含む還元生成液を溶媒抽出し、逆抽出し、得られた逆抽出液から銅を電解採取する方法がある。   As a typical method, as described in Patent Document 1, copper ore or copper concentrate is subjected to pressure oxidation in a sulfuric acid solution containing a halide and then leached to produce a leaching containing cupric ions. There is a method in which the liquid is reduced, the reduction product liquid containing the first copper ions is solvent-extracted, back-extracted, and copper is electrolytically collected from the obtained back-extracted liquid.

また、特許文献2に記載されているように、銅精鉱を、臭化塩素イオンのようなハロゲン化錯体を形成する浸出液で浸出し、それに続く低酸化還元電位領域での浸出を経て、得られた第1銅イオンを含む浸出生成液から、銅を電解採取する方法がある。   Further, as described in Patent Document 2, copper concentrate is obtained by leaching with a leachate that forms a halogenated complex such as chlorine bromide ions, followed by leaching in a low redox potential region. There is a method of electrolytically collecting copper from a leaching product liquid containing the first copper ions.

さらに、非特許文献1に記載されているように、塩化第二鉄を利用して銅精鉱を浸出し、溶媒抽出した後に、分離された塩化鉄をゲーサイト(α−FeOOH)として酸化除去する方法が提言されている。   Furthermore, as described in Non-Patent Document 1, after fertilizing copper concentrate using ferric chloride and solvent extraction, the separated iron chloride is oxidized and removed as goethite (α-FeOOH). A way to do it is suggested.

以上の湿式銅精錬法では、乾式法である溶錬法と比べて、反応温度が低いので、設備が比較的簡便であり、投資が圧縮できるという利点や、短周期で運転と停止の繰り返しができるので、生産調整が容易であるという利点などがある。   In the above-mentioned wet copper refining method, the reaction temperature is lower than that of the smelting method, which is a dry method, so that the equipment is relatively simple and the investment can be reduced, and the repeated operation and stoppage in a short cycle. As a result, there is an advantage that production adjustment is easy.

黄銅鉱をハロゲン浴の水溶液中に浸出させる湿式銅精錬法を用いる場合、浸出液には、銅と鉄が同時に含まれているため、鉄を銅と分離して除去する必要がある。かかる鉄の分離除去のために、いくつかの手段が考えられている。   In the case of using a wet copper refining method in which chalcopyrite is leached into an aqueous solution of a halogen bath, the leachate contains copper and iron at the same time. Therefore, it is necessary to separate and remove iron from copper. Several means are considered for the separation and removal of iron.

(1)鉄純分の高い液に浄液した後に、電解して金属鉄として排出する方法:
特許文献1に記載されているように、銅と鉄を溶媒抽出やセメンテーション法で分離して、銅電解の尾液を塩化鉄の純液とし、該液を電解にかけて、陰極に鉄を電着することによって、分離除去することができる。この方法では、ゲーサイトやヘマタイト(α−Fe23)ではなく、金属鉄として鉄を回収できるという利点がある。しかしながら、鉄電解にかける液を精製するためには、銅を完全に除去しなければならず、そのための工程に手間やコストがかかるという問題がある。また、電解のための電力やその設備が必要になり、効率的な鉄分離が難しいといった問題がある。
(1) Method of electrolyzing and discharging as metallic iron after purifying to a liquid with high iron content:
As described in Patent Document 1, copper and iron are separated by solvent extraction or a cementation method, a copper electrolysis tail solution is used as a pure iron chloride solution, the solution is electrolyzed, and iron is charged to the cathode. It can be separated and removed by wearing. This method has an advantage that iron can be recovered as metallic iron, not goethite or hematite (α-Fe 2 O 3 ). However, in order to purify the liquid subjected to iron electrolysis, copper must be completely removed, and there is a problem that the process for that takes time and cost. In addition, there is a problem that it is difficult to efficiently separate iron because electric power and equipment for electrolysis are required.

(2)鉄を中和して水酸化物として排出する方法:
この場合は、一般に中和剤を水溶液中に添加して、鉄の水酸化物を生成させるが、水酸化物を作るためにアルカリ剤が必要となるほか、pHを上げる際に、銅も同時に沈殿してしまい、分離性が悪くなる可能性がある。また、アルカリ剤の種類によっては、塩が水溶液中に残り、不純物となる可能性もある。さらに、アルカリ中和で得られた鉄澱物は細かく、性状もゼリー状になりやすいため、ろ過性が悪く、銅や液との分離性も悪く、ろ過時間がかかり、銅の実収率もよくないという問題がある。
(2) Method of neutralizing iron and discharging as hydroxide:
In this case, a neutralizing agent is generally added to the aqueous solution to produce an iron hydroxide, but an alkali agent is required to make the hydroxide, and copper is simultaneously added to raise the pH. Precipitation may occur, resulting in poor separation. In addition, depending on the type of the alkaline agent, the salt may remain in the aqueous solution and become an impurity. Furthermore, the iron starch obtained by alkali neutralization is fine, and the properties are likely to be jelly-like, so the filterability is poor, the separability from copper and liquid is poor, the filtration time is long, and the actual yield of copper is good. There is no problem.

(3)ゲーサイトとして分離除去する方法:
特許文献2に記載されているように、浸出工程で酸化して固体とし、残渣と同時に除去する。この場合は、酸化され沈殿したゲーサイト等が、その他の浸出残渣と同時に沈殿し、硫黄やそのほかの不溶解物と分離できない状態で、大量の残渣が排出されることになる。
(3) Method for separating and removing as a goethite:
As described in Patent Document 2, it is oxidized in the leaching process to form a solid, which is removed simultaneously with the residue. In this case, oxidized and precipitated goethite and the like are precipitated simultaneously with other leaching residues, and a large amount of residues are discharged in a state where they cannot be separated from sulfur and other insoluble matters.

あるいは、非特許文献1に記載されているように、塩化第二鉄で銅精鉱を浸出し、溶媒抽出で銅を分離した後の塩化第一鉄を加圧酸化し、ゲーサイトを生成して分離する方法もある。この場合、酸化を促進するために加圧容器内で加圧浸出を行っている。よって、加圧するためのオートクレーブといった大型でコストのかかる設備が必要となるほか、塩化物浴をオートクレーブ内に入れるため、腐食反応が進行しやすく、建設コストやメンテナンスコストが多大にかかるおそれがある。   Alternatively, as described in Non-Patent Document 1, ferrous chloride is leached with ferric chloride, and ferrous chloride after separation of copper by solvent extraction is pressure-oxidized to produce goethite. There is also a method of separating them. In this case, pressure leaching is performed in the pressure vessel in order to promote oxidation. Therefore, a large and costly facility such as an autoclave for pressurization is required, and since the chloride bath is placed in the autoclave, the corrosion reaction is likely to proceed, and there is a possibility that the construction cost and the maintenance cost are very high.

(4)鉄を加圧酸化して、ヘマタイトとして排出する方法:
この場合は、ヘマタイトまで酸化するために、水溶液をオートクレーブに入れて温度を上げる必要があるため、オートクレーブといった大型でコストのかかる設備が必要となるほか、温度を上げるための熱が必要になる。非特許文献1では、初期の銅の浸出段階でオートクレーブを用いて、ここで鉄をヘマタイトにしているが、この場合も、有価物を含む浸出残渣である硫黄分や、その他の不溶解成分と鉄残渣が同じ残渣となり、大量の混合残渣が残るといった問題がある。
特開2005−60813号公報 特許第2857930号公報 “ACORGA CLX50 - A Pyridine Carboxylic Ester Based Extractant for the Solvent Extraction of Copper from Chloride Leach Solutions”, RAYMOND F.DALTON AND ARTHUR BURGESS, Solvent Extraction 1990, T.Sekine
(4) Method of pressure oxidizing iron and discharging it as hematite:
In this case, in order to oxidize to hematite, it is necessary to increase the temperature by putting the aqueous solution into the autoclave. Therefore, a large and costly facility such as an autoclave is required, and heat for increasing the temperature is required. In Non-Patent Document 1, an autoclave is used in the initial copper leaching stage, and iron is made into hematite. In this case, too, sulfur content which is a leaching residue containing valuable materials and other insoluble components are used. There is a problem that the iron residue becomes the same residue and a large amount of mixed residue remains.
JP 2005-60813 A Japanese Patent No. 2857930 “ACORGA CLX50-A Pyridine Carboxylic Ester Based Extractant for the Solvent Extraction of Copper from Chloride Leach Solutions”, RAYMOND F. DALTON AND ARTHUR BURGESS, Solvent Extraction 1990, T. Sekine

本発明の目的は、中和剤やその他の特殊な薬剤を用いずに、ろ過性がよく、銅をほとんど含まない鉄澱物を作ることを可能とする湿式銅精錬法を提供することにある。   An object of the present invention is to provide a wet copper refining method that makes it possible to produce an iron starch that has good filterability and hardly contains copper, without using a neutralizing agent or other special agents. .

本発明は、銅硫化鉱物を含む銅原料を塩素浸出して、浸出生成液を得る塩素浸出工程、得られた浸出生成液を還元して、還元生成液を得る銅イオン還元処理工程、得られた還元生成液から、銅を電解採取または溶媒抽出する銅分離採取工程、および、浸出生成液、還元生成液、溶媒抽出残液または電解尾液から鉄を分離除去する工程を含む湿式銅精錬法に係る。   The present invention provides a chlorine leaching step for leaching a copper raw material containing a copper sulfide mineral to obtain a leaching product solution, a copper ion reduction treatment step for obtaining a reduced product solution by reducing the obtained leaching product solution, and A copper separation and collection step of electrolytically collecting or solvent-extracting copper from the reduced product solution and a step of separating and removing iron from the leaching product solution, reduction product solution, solvent extraction residual solution or electrolytic tail solution Concerning.

本発明では、特に、塩化第一鉄と塩化第一銅もしくは塩化第二銅を含む、前記浸出生成液、還元生成液、溶媒抽出残液または電解尾液のpHを0〜2.5に、温度を60〜95℃にそれぞれ保持し、大気圧下で、該液に酸素を含むエアを吹き込むことにより、塩化第一鉄の一部をゲーサイトとして沈殿させることを特徴とする。   In the present invention, in particular, the pH of the leaching product solution, reduction product solution, solvent extraction residual solution or electrolytic tail solution containing ferrous chloride and cuprous chloride or cupric chloride is 0 to 2.5, The temperature is maintained at 60 to 95 ° C., and air containing oxygen is blown into the liquid at atmospheric pressure to precipitate a part of ferrous chloride as goethite.

前記温度を70℃〜85℃に保持することが好ましい。   The temperature is preferably maintained at 70 to 85 ° C.

また、前記浸出生成液、還元生成液、溶媒抽出残液または電解尾液の酸化還元電位を、銀/塩化銀電極で550mV以下とすることが好ましい。   Moreover, it is preferable that the oxidation-reduction potential of the leaching product solution, reduction product solution, solvent extraction residual solution or electrolytic tail solution is 550 mV or less at the silver / silver chloride electrode.

本発明の方法により、銅イオンと鉄イオンを含む浸出生成液または還元生成液から鉄を分離除去できる。具体的には、特段のアルカリ剤等を添加することなく、塩化第一鉄と塩化第一銅もしくは塩化第二銅を含むこれらの溶液の塩化第一鉄を酸化させ、塩化第二鉄と結晶性のゲーサイトを生成することにより、塩化第一鉄全体の約1/3をゲーサイトとすることができる。この際、銅の沈殿も防止され、ゲーサイトがその他の多量の残渣と混じることはないため、効率的に主として鉄分のみを分離除去することができる。   By the method of the present invention, iron can be separated and removed from a leaching product solution or a reduction product solution containing copper ions and iron ions. Specifically, without adding a special alkali agent or the like, ferrous chloride and ferrous chloride in these solutions containing cuprous chloride or cupric chloride are oxidized to produce crystals of ferric chloride and crystals. By generating sex goethite, about 1/3 of the whole ferrous chloride can be made goethite. At this time, precipitation of copper is also prevented, and goethite is not mixed with a large amount of other residues, so that only iron can be efficiently separated and removed.

銅および鉄を含む塩化物溶液から鉄を酸化除去するためには、水溶液中の除去されるべき鉄が塩化第一鉄の状態である必要がある。   In order to oxidize and remove iron from a chloride solution containing copper and iron, the iron to be removed in the aqueous solution needs to be in the form of ferrous chloride.

このため、水溶液の酸化還元電位は、銀/塩化銀電極で550mV以下であることが望ましい。これ以上であると、水溶液中の塩化鉄が塩化第二鉄となり、それ以上には酸化されることがないため、鉄を酸化沈殿除去することが難しくなる。   For this reason, the redox potential of the aqueous solution is desirably 550 mV or less at the silver / silver chloride electrode. If it is more than this, the iron chloride in the aqueous solution becomes ferric chloride and it is not oxidized any more, so it becomes difficult to remove the iron by oxidation precipitation.

例えば、浸出生成液に含まれる鉄が、塩化第二鉄である場合、該浸出生成液を還元して、塩化第二鉄を塩化第一鉄としておく必要がある。この場合、還元後の還元生成液が鉄の分離除去の処理の対象となる。一方、浸出生成液に含まれる鉄が、塩化第一鉄である場合には、銅が塩化第一銅であるか塩化第二銅であるかにかかわらず、浸出生成液を鉄の分離除去の処理の対象とすることができる。さらに、電解採取または溶媒抽出後の残液もしくは尾液を処理の対象としてもよい。   For example, when the iron contained in the leaching product liquid is ferric chloride, it is necessary to reduce the leaching product liquid so that the ferric chloride is ferrous chloride. In this case, the reduction product solution after reduction is the target of the iron separation and removal process. On the other hand, when the iron contained in the leaching solution is ferrous chloride, the leaching solution is separated and removed regardless of whether the copper is cuprous chloride or cupric chloride. It can be the target of processing. Further, the residual liquid or tail liquid after electrolytic collection or solvent extraction may be the target of treatment.

本発明においては、これらの水溶液中の塩化第一鉄が酸化され、以下の反応が進行する。   In the present invention, ferrous chloride in these aqueous solutions is oxidized, and the following reaction proceeds.

6FeCl2+3・(1/2O2)+H2O → 4FeCl3+2FeOOH
この式のように、3つの塩化第一鉄のうちの1つが、ゲーサイトとなって沈殿する。すなわち、水溶液中にある塩化第一鉄の1/3を沈殿させることが可能である。このとき、水溶液のpHにかかわらず、酸化が行われることでゲーサイトが生成するため、特段の中和剤は必要とされない。なお、残余の塩化第一鉄は、浸出工程に酸化剤としてリサイクルされる。
6FeCl 2 + 3 · (1 / 2O 2 ) + H 2 O → 4FeCl 3 + 2FeOOH
As in this equation, one of the three ferrous chlorides precipitates as goethite. That is, it is possible to precipitate 1/3 of the ferrous chloride in the aqueous solution. At this time, no special neutralizing agent is required because goethite is generated by oxidation regardless of the pH of the aqueous solution. The remaining ferrous chloride is recycled as an oxidizing agent in the leaching process.

これらの水溶液のpHは2.5以下とする必要がある。pHが大きいほど、上記の酸化反応が効果的に生じうるが、pHが、2.5を超えると、水溶液中に同時に含まれる銅イオンが中和沈殿されてしまい、鉄残渣に不純物として混入したり、水溶液中の銅のロスとなってしまう可能性がある。さらに、pHが3以上となると、上記の酸化反応以前に中和反応が起こり、水酸化鉄が沈殿することとなる。実操業においては、反応を起こそうとする前に、配管中などで水酸化鉄が沈殿して、閉塞などの不具合が起こる。よって、本発明の条件下で、反応槽の中で確実に沈殿を生成するためには、pHを2.5以下とする。ただし、浸出生成液および還元生成液は、通常そのpHは2.5以下である。   The pH of these aqueous solutions needs to be 2.5 or less. The higher the pH, the more effectively the above oxidation reaction can occur. However, when the pH exceeds 2.5, copper ions simultaneously contained in the aqueous solution are neutralized and precipitated, and are mixed into the iron residue as impurities. Or a loss of copper in the aqueous solution. Further, when the pH is 3 or more, a neutralization reaction occurs before the above oxidation reaction, and iron hydroxide is precipitated. In actual operation, before the reaction is attempted, iron hydroxide precipitates in the piping and the like, causing problems such as blockage. Therefore, in order to reliably generate a precipitate in the reaction tank under the conditions of the present invention, the pH is set to 2.5 or less. However, the pH of the leaching product solution and the reduction product solution is usually 2.5 or less.

一方、pHがあまりにも低い条件、すなわち、反応前の始液のpHが0未満の状態にあると、ゲーサイトは生成されるものの、その一部が酸に溶解してしまうため、効率的な沈殿が生成されにくくなってしまう。よって、沈殿生成を効率的に行うためには、始液のpHを0以上とする必要がある。   On the other hand, when the pH is too low, that is, when the pH of the starting solution before the reaction is less than 0, goethite is generated, but a part of it is dissolved in the acid. Precipitation is less likely to be generated. Therefore, in order to efficiently generate precipitates, the pH of the starting solution needs to be 0 or more.

したがって、本発明では、pHが0〜2.5の範囲内にない場合のみ、始液の段階でpHを調整する必要があるが、その後は特段の中和剤が必要とされない点で有利である。   Therefore, in the present invention, only when the pH is not within the range of 0 to 2.5, it is necessary to adjust the pH at the initial stage, but thereafter, it is advantageous in that a special neutralizing agent is not required. is there.

また、一般に、この酸化反応は、温度が高いほど起こりやすくなる。また、ゲーサイトの結晶が形状よく成長するには、始液の温度が、最低でも60℃でなければ、実用的な範囲での反応は起こらず、望ましくは65℃以上、より望ましくは70℃以上である。温度が高いほど、反応時間は短く済み、脱鉄反応としては効率が良くなる。   In general, this oxidation reaction is more likely to occur at higher temperatures. In order for the goethite crystal to grow in a good shape, if the temperature of the starting liquid is not at least 60 ° C., no reaction occurs within a practical range, preferably 65 ° C. or higher, more preferably 70 ° C. That's it. The higher the temperature, the shorter the reaction time, and the more efficient the iron removal reaction.

ただし、水溶液であるため、一般に100℃以上には反応温度を上げることが困難であり、加熱することによる熱エネルギーも必要となる。従って、より現実的な範囲で効率的となるのは、沸騰を抑えられる95℃以下であり、好ましくはエネルギーロスが少なくなる90℃以下、通常可能な加温範囲であれば85℃以下がより好ましい。   However, since it is an aqueous solution, it is generally difficult to raise the reaction temperature to 100 ° C. or higher, and heat energy by heating is also required. Therefore, the efficiency in a more realistic range is 95 ° C. or lower which can suppress boiling, preferably 90 ° C. or lower where energy loss is reduced, and 85 ° C. or lower if the heating range is normally possible. preferable.

水溶液中の塩化第一鉄を酸化させるためには、酸化剤が必要となる。最も一般的な酸化剤は酸素を含むエア、具体的には大気である。したがって、本発明では、大気を水溶液中に吹き込むだけで酸化反応は進行する。しかし、大気中の酸素は約20%であり、この酸素が水溶液に溶け込んでから反応が起こるため、大気の吹込みによる酸化反応は、かならずしも効率的とはいえない。   In order to oxidize ferrous chloride in the aqueous solution, an oxidizing agent is required. The most common oxidant is oxygen-containing air, specifically the atmosphere. Therefore, in the present invention, the oxidation reaction proceeds only by blowing air into the aqueous solution. However, the oxygen in the atmosphere is about 20%, and the reaction takes place after this oxygen is dissolved in the aqueous solution. Therefore, the oxidation reaction by blowing in the atmosphere is not necessarily efficient.

したがって、酸素を含むエアとして、より酸素濃度の高い酸素ガスを吹き込むことで、さらに酸化効率を上げることができる。また、さらに酸化力の強いオゾンを吹き込むことでも、酸化効率を上げることができるのは自明である。必要なガスや酸化剤の量や強さを比較して、それらを単独で用いたり、もしくは複数を同時に用いることも可能である。   Therefore, the oxidation efficiency can be further increased by blowing oxygen gas having a higher oxygen concentration as air containing oxygen. In addition, it is obvious that the oxidation efficiency can be increased by blowing ozone having a stronger oxidizing power. It is also possible to compare the amounts and strengths of the necessary gases and oxidants and use them alone or in combination.

(実施例1)
塩化第一鉄、塩化第二銅、食塩、および塩酸の試薬を用いて、鉄濃度87g/L、銅濃度21g/L、および塩素イオン濃度121g/Lを含む始液を作製した。始液の酸化還元電位は、銀/塩化銀電極で358mVであった。
Example 1
An initial solution containing an iron concentration of 87 g / L, a copper concentration of 21 g / L, and a chlorine ion concentration of 121 g / L was prepared using ferrous chloride, cupric chloride, sodium chloride, and hydrochloric acid reagents. The oxidation-reduction potential of the starting solution was 358 mV at the silver / silver chloride electrode.

得られた始液のpHを1.0に調整し、温度を約80℃に保って、酸素を含むエア(酸素濃度:21%)の吹込みを、360分間、行った。終了時のpHは0.9であった。その後、銅および鉄の沈殿率を測定した。その結果を表1に示す。なお、鉄の沈殿物はゲーサイトであった。   The pH of the obtained starting liquid was adjusted to 1.0, the temperature was kept at about 80 ° C., and air containing oxygen (oxygen concentration: 21%) was blown for 360 minutes. The pH at the end was 0.9. Thereafter, the precipitation rate of copper and iron was measured. The results are shown in Table 1. The iron precipitate was goethite.

実施例1では、鉄の30%以上、ほぼ1/3が除去でき、銅とよく分離できていることが確認できる。   In Example 1, it can be confirmed that 30% or more of iron and almost 1/3 can be removed and well separated from copper.

Figure 0005145843
Figure 0005145843

(比較例1)
塩化第一鉄、塩化第二銅、食塩、および塩酸の試薬を用いて、鉄濃度82g/L、銅濃度38g/L、および塩素イオン濃度247g/Lを含む始液を作製した。始液の酸化還元電位は、銀/塩化銀電極で210mVであった。
(Comparative Example 1)
An initial solution containing an iron concentration of 82 g / L, a copper concentration of 38 g / L, and a chloride ion concentration of 247 g / L was prepared using ferrous chloride, cupric chloride, sodium chloride, and hydrochloric acid reagents. The oxidation-reduction potential of the starting solution was 210 mV at the silver / silver chloride electrode.

得られた始液のpHを3.5に調整し、温度を約80℃に保って、酸素を含むエア(酸素濃度:21%)の吹込みを、360分間、行った。終了時のpHは3.6であった。銅および鉄の沈殿率を測定した。その結果を表1に示す。なお、鉄の沈殿物はゲーサイトであった。   The pH of the obtained starting liquid was adjusted to 3.5, the temperature was kept at about 80 ° C., and air containing oxygen (oxygen concentration: 21%) was blown for 360 minutes. The pH at the end was 3.6. The precipitation rate of copper and iron was measured. The results are shown in Table 1. The iron precipitate was goethite.

比較例1では、鉄のほぼ全量をゲーサイトとして除去できているが、銅もほとんどが沈殿していた。従って、比較例1のようにpHが高い状態では、銅と鉄の分離が不十分になることが分かる。   In Comparative Example 1, almost all the iron was removed as goethite, but most of the copper was precipitated. Therefore, it can be seen that the separation of copper and iron is insufficient when the pH is high as in Comparative Example 1.

(実施例2)
硫化銅鉱物を含む銅原料を塩素浸出して、得られた浸出生成液を還元して、得られた還元生成液から、銅の一部を電解採取して、始液を得た。得られた始液は、鉄濃度108g/L、銅濃度27g/L、および塩素イオン濃度285g/Lであった。始液の酸化還元電位は、銀/塩化銀電極で395mVであった。また、得られた始液のpHは1.65であった。
(Example 2)
A copper raw material containing a copper sulfide mineral was leached with chlorine, the obtained leaching product solution was reduced, and a part of copper was electrolyzed from the obtained reduction product solution to obtain an initial solution. The obtained starting liquid had an iron concentration of 108 g / L, a copper concentration of 27 g / L, and a chloride ion concentration of 285 g / L. The oxidation-reduction potential of the starting solution was 395 mV at the silver / silver chloride electrode. Moreover, the pH of the obtained starting liquid was 1.65.

得られた始液の温度を約80℃に保って、酸素を含むエア(酸素濃度:21%)の吹込みを、360分間、行った。終了時のpHは約0.7であった。銅および鉄の沈殿率を測定した。その結果を表1に示す。なお、鉄の沈殿物はゲーサイトであった。   The temperature of the obtained starting liquid was maintained at about 80 ° C., and air containing oxygen (oxygen concentration: 21%) was blown for 360 minutes. The pH at the end was about 0.7. The precipitation rate of copper and iron was measured. The results are shown in Table 1. The iron precipitate was goethite.

実施例2では、鉄の30%以上、ほぼ1/3をゲーサイトして除去できており、銅とよく分離できていることが確認できる。   In Example 2, it can be confirmed that 30% or more of iron and approximately 1/3 of the iron can be removed by goethite and well separated from copper.

(実施例3)
実施例2で得られた始液の温度を約70℃に保って、酸素を含むエア(酸素濃度:21%)の吹込みを、360分間、行った。終了時のpHは約0.5であった。銅および鉄の沈殿率を測定した。その結果を表1に示す。なお、鉄の沈殿物はゲーサイトであった。
(Example 3)
The temperature of the starting liquid obtained in Example 2 was maintained at about 70 ° C., and air containing oxygen (oxygen concentration: 21%) was blown for 360 minutes. The pH at the end was about 0.5. The precipitation rate of copper and iron was measured. The results are shown in Table 1. The iron precipitate was goethite.

実施例3では、鉄の沈殿率が若干低下するものの、鉄の30%以上、ほぼ1/3弱が除去でき、銅とよく分離できていることが確認できる。   In Example 3, although the precipitation rate of iron is slightly reduced, it can be confirmed that 30% or more of iron and almost 1/3 of the iron can be removed, and the iron is well separated from copper.

Claims (2)

銅硫化鉱物を含む銅原料を塩素浸出して、浸出生成液を得る塩素浸出工程、得られた浸出生成液を還元して、還元生成液を得る銅イオン還元処理工程、得られた還元生成液から、銅を電解採取または溶媒抽出する銅分離採取工程、および、浸出生成液、還元生成液、溶媒抽出残液または電解尾液から鉄を分離除去する工程を含む湿式銅精錬法において、塩化第一鉄と塩化第一銅もしくは塩化第二銅を含む、前記浸出生成液、還元生成液、溶媒抽出残液または電解尾液のpHを0〜2.5に、温度を70〜85℃にそれぞれ保持し、大気圧下で、該液に酸素を含むエアを吹き込むことにより、塩化第一鉄の一部をゲーサイトとして沈殿させることを特徴とする湿式銅精錬法。 Chlorine leaching of copper raw materials containing copper sulfide minerals to obtain a leaching product liquid, a leaching product liquid, reducing the obtained leaching product liquid to obtain a reduction product liquid, a copper ion reduction treatment process, and obtained reduction product liquid In a wet copper refining method, the method includes a copper separation and extraction step of electrolytically collecting or solvent-extracting copper, and a step of separating and removing iron from a leaching product solution, a reduction product solution, a solvent extraction residual solution or an electrolytic tail solution. The pH of the leaching product solution, reduction product solution, solvent extraction residual solution or electrolytic tail solution containing ferrous iron and cuprous chloride or cupric chloride is 0 to 2.5, and the temperature is 70 to 85 ° C. A wet copper refining method characterized in that a part of ferrous chloride is precipitated as goethite by holding and blowing air containing oxygen into the liquid under atmospheric pressure. 前記浸出生成液、還元生成液、溶媒抽出残液または電解尾液の酸化還元電位を、銀/塩化銀電極で550mV以下とする請求項1に記載の湿式銅精錬法。   The wet copper refining method according to claim 1, wherein an oxidation-reduction potential of the leaching product solution, reduction product solution, solvent extraction residual solution or electrolytic tail solution is 550 mV or less at a silver / silver chloride electrode.
JP2007245199A 2007-09-21 2007-09-21 Wet copper refining method for copper raw materials containing copper sulfide minerals Active JP5145843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007245199A JP5145843B2 (en) 2007-09-21 2007-09-21 Wet copper refining method for copper raw materials containing copper sulfide minerals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007245199A JP5145843B2 (en) 2007-09-21 2007-09-21 Wet copper refining method for copper raw materials containing copper sulfide minerals

Publications (2)

Publication Number Publication Date
JP2009074140A JP2009074140A (en) 2009-04-09
JP5145843B2 true JP5145843B2 (en) 2013-02-20

Family

ID=40609397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007245199A Active JP5145843B2 (en) 2007-09-21 2007-09-21 Wet copper refining method for copper raw materials containing copper sulfide minerals

Country Status (1)

Country Link
JP (1) JP5145843B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106676577B (en) * 2017-02-06 2019-03-22 中国科学院过程工程研究所 A method of recycling copper from waste and old circuit board
CN111197171A (en) * 2020-02-18 2020-05-26 华建彬 Wet copper extraction process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776826A (en) * 1972-07-19 1973-12-04 Du Pont Electrolytic recovery of metal values from ore concentrates
FR2271304B1 (en) * 1974-05-15 1976-12-24 Penarroya Miniere Metallurg
AP538A (en) * 1992-06-26 1996-09-18 Intec Pty Ltd Production of metal from minerals
JP4352823B2 (en) * 2002-11-18 2009-10-28 住友金属鉱山株式会社 Method for refining copper raw materials containing copper sulfide minerals

Also Published As

Publication number Publication date
JP2009074140A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP5370683B2 (en) Method for recovering copper from copper sulfide
JP5370777B2 (en) Method for recovering copper from copper sulfide
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP2008266774A (en) Zinc recovery method
JP2009256764A (en) Method for collecting copper from ore
JP5760954B2 (en) Method for recovering copper from sulfide minerals containing copper and iron
JP4316582B2 (en) Method for producing metallic nickel from crude nickel sulfate
EP3172348A1 (en) Recovery of zinc and manganese from pyrometallurgy sludge or residues
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP6233478B2 (en) Purification method of bismuth
JP2008274382A (en) Method for separating lead from aqueous cobalt chloride solution
JP5145843B2 (en) Wet copper refining method for copper raw materials containing copper sulfide minerals
JP5702272B2 (en) Treatment method of bismuth electrolytic deposits
JP6943141B2 (en) Leaching method of mixed sulfide containing nickel and cobalt
JP2020105588A (en) Treatment method of mixture containing noble metal, selenium and tellurium
JP5181684B2 (en) Solvent extraction method for aqueous chloride solution
JP6957974B2 (en) Chlorine leaching method, electronickel manufacturing method
JP2008013388A (en) Method for purifying nickel chloride aqueous solution
JP2016141877A (en) Method for treating copper-containing molybdenum ore
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP2007154249A (en) Method for recovering silver in wet type copper refining process
JP6429990B2 (en) Method for separating molybdenum and method for treating copper-containing molybdenum ore
JP6196209B2 (en) Method for treating copper-containing molybdenum ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R150 Certificate of patent or registration of utility model

Ref document number: 5145843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3